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Abstract 
 
Over 95% of human genes undergo alternative splicing (AS) in a developmental, tissue-specific, 
or signal transduction-dependent manner. A number of factors including binding of cis-acting 
sequences by RNA-binding proteins (RBPs) are known to affect AS, but the combinatorial 
mechanisms leading to the distribution of spliced isoforms remain largely unstudied. Here, in 
9011 samples from 532 individuals across 53 tissues from the Genotype-Tissue Expression 
(GTEx) resource, we identified 4,135 genes with sex-biased expression and 5,925 sex-biased 
AS events. We find that factors including escape from X-chromosomal inactivation, presence of 
Alu elements, and oestrogen receptor binding sites affect sex-biased AS. We utilize hierarchical 
Bayesian modelling to characterize the interactions of exon skipping, gene expression, and 
RBPs, and demonstrate two categories of sex-biased AS that differ with respect to splice site 
scores, gene expression, RBP levels, and skipping/inclusion ratio.  
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Introduction 
Alternative splicing (AS), a process by which splice sites are used differentially to create protein 
diversity, plays an important role in development,1 disease,2 and aging.3 Although some splicing 
isoforms are produced in the same proportions in all or most cell types, AS is often regulated by 
developmental or differential cues or in response to external stimuli.4 Several mechanisms have 
been demonstrated to regulate AS, although their combinatorial interactions remain poorly 
understood. Binding of RNA-binding proteins (RBPs) to intronic or exonic cis-acting regulatory 
sequences may promote or suppress local AS events.5 Additionally, chromatin-level 
mechanisms also play a role in AS regulation. Nucleosome density is higher within exons than 
in introns, suggesting the existence of RNA polymerase II (RNA Pol II)-mediated cross-talk 
between chromatin structure and exon-intron architecture.6 Alternative exons with suboptimal 
splicing signals may require more time to be recognized by the splicing machinery, and faster 
transcriptional elongation by RNA Pol II may influence exon skipping.7 Additionally, specific 
histone modifications that can be enriched over exons may promote binding of proteins such as 
HP1α and HP1γ that in turn influence transcriptional speed (fig 1a).8  
Although sex-biased gene expression is common,9 and widespread differences in AS have 
been identified in the human brain,10 no analysis has been performed  to date over a 
comprehensive dataset that spans multiple tissue types. Here, we perform a systematic survey 
of sex-biased AS across multiple tissues using a systems biology approach to characterize RBP 
levels and gene expression and their interplay (Fig. 1b). The Genotype-Tissue Expression 
(GTEx) project comprises samples from 53 non-diseased tissue sites assayed by whole 
genome or exome sequencing, and RNA-Seq.11–16 In this study, we leveraged the GTEx data to 
investigate gene expression and AS in male and female subjects. We analysed gene 
expression and AS in 9,011 samples from 532 individuals across 53 tissues (Supplemental Data 
Tables 1 and 2) with the goal of characterizing sex-specific patterns of gene expression, AS, 
and abundance of RBPs in multiple tissue types. 
 
Sex-biased differences in gene expression 
A total of 4,135 genes with significantly sex-biased expression were detected at a false-
discovery rate (FDR) cut-off of 0.05 and a fold change cut-off of 1.5 (Methods; Supplementary 
File 1). The tissue that had the largest number of genes showing significant differential 
expression (DE) was breast, followed by thyroid, skin, and adipose-subcutaneous 
(Supplemental Data Fig. 1). Figure 1b displays a heatplot of a hierarchical clustering of the 
different tissues, where tissues are clustered by similarity of the mean fold changes of gene 
expression between male and female sample.  The clustering analysis revealed a consistent 
shift in global expression patterns between males and females in some related tissues, such as 
11 brain regions (top left), as well as three arterial tissues, two oesophageal tissues, and sun-
exposed and non-sun-exposed skin (Fig. 1b).  
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Figure 1. Sex-biased gene expression and alternative splicing. (a) Pre-messenger RNA splicing occurs co-
transcriptionally and is influenced by RNA binding proteins and epigenetic factors such as histone modifications that 
interact with the transcriptional machinery or other proteins to influence splicing and transcription.17 (b) Flowchart 
depicting the analysis of GTEx RNA-seq data. Analysis of GTEx gene expression and AS profiles identified 
significantly sex-biased genes and AS events. Data were used as input for a hierarchical Bayesian model to 
characterize the influence of RBPs and gene expression on sex-biased AS events. (c) Heatplot representing 
similarity in the fold-changes between male and female samples, with the values in the heatmap being the correlation 
between the vectors of fold changes of the tissues. (d) The five categories of AS events that were investigated in this 
work (SE: skipped exon/exon inclusion; A3SS/A5SS: alternative 3’/5’ splice site; MEX: mutually exclusive exons; RI: 
retained intron). (e) Number of sex-biased AS events per tissue type. 
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Gene Ontology (GO) analysis of genes with significant sex-biased differential expression 
identified 79 significantly enriched terms including 15 terms enriched in two or more tissues 
(Supplemental Data Table 3). A number of the GO terms could reflect known sex differences, 
such as the enrichment of extracellular matrix (ECM) in breast tissue, which is known to display 
sex-biased differential expression of multiple ECM proteins,18 or translation initiation factor 
activity, which was differential in five tissues in our examination; several translation initiation 
factors have been shown to be differentially expressed between male and female muscle 
tissue.19  
 
Sex-biased differences in alternative splicing 
We investigated individual AS events rather than transcript (isoform) abundance, because 
despite improvements in algorithms, accurate quantification of the expression of individual 
transcripts is challenging with short-read RNA-seq technology, especially for short or low-
abundance transcripts and genes with complex structures.20–23 We focused on five classes of 
discrete AS events (Fig. 1c) and defined sex-biased AS based on a statistical model with sex, 
AS event, and sex:event interaction as covariates. We called AS events sex-biased if the 
interaction term was significant following multiple testing correction (Methods, Supplemental 
Data Figure 2). 
 
For the AS analysis, the 53 tissue types were consolidated into 46 groups by merging samples 
with highly similar distributions of skipping and inclusion counts (Methods; Supplemental Data 
Table 2). Statistical analysis revealed between 0 and 2724 genes with at least one significant 
AS event per tissue. The total number of AS events over all tissues was 5925 (Supplementary 
File 1). The overall count of sex-biased AS events was strikingly different in different tissue 
types. We identified four tissues with over 100 AS events, 12 tissues with between 10 and 100 
AS events, and 21 tissues with less than 10 AS events (Fig. 1d). In our analysis of the left 
ventricle, there were over 50 times more statistically significant AS events than significantly 
differentially expressed genes, suggesting the importance of investigating sex-biased AS and 
not just sex-biased gene expression as potential contributory mechanisms to the pronounced 
sex differences in cardiac physiology and heart disease.24 
 
We then tested whether sex-biased differential expression and AS occurs independently. The 
overlap between these two groups contained 836 genes, which is significantly more than 
expected by chance (p=1.55×10-93, hypergeometric test). It has been reported that differentially 
expressed sex-biased genes are likely to be linked to escape from X chromosome inactivation.25 

We confirmed this result with our data (p�=�5.47�×�10−50, Fisher’s exact test). Because of the 
observed overlap between sex-biased differential expression and AS, we hypothesized that AS 
events might be more commonly observed in X chromosomal genes that escape inactivation. 
Indeed, we found that escaped genes were enriched amongst genes displaying sex-biased AS 

(P�=�2.46�×�10−20, Fisher’s exact test; Figure 2a). 
 
Characterization of exons showing sex-biased alternative splicing events 
Alu elements are primate-specific repeats and comprise 11% of the human genome, with over 1 
million occurrences in the human genome. Thousands of human genes contain spliced exons 
derived from Alu elements, and some exert various effects on gene regulation and AS.26 We 
therefore hypothesized that some of the sex-biased AS events might be associated with Alu 
elements. Since Alu elements occur with a particularly high density in introns and intronic Alu 
elements can influence alternative splicing,27 we tested for enrichment of Alu elements in the 
introns flanking exons that displayed sex-biased skipping events, comparing the occurrence in 
sex-biased skipping events with the occurrence in all skipping events in our dataset. Twelve Alu 
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subfamilies were found to be enriched using an FDR threshold of 0.05 (Supplemental Data 
Table 3). Alu elements contain numerous binding sites for transcription factors that may partially 
mediate their effects on gene regulation, and the AluSp family (which showed the most 
significant enrichment in our analysis) has been noted to be enriched for a predicted oestrogen 
receptor (ER) binding site,28,29  We therefore compared the distribution of predicted ER binding 
sites in all AS events with those of the sex-biased events, and found that AluSx (FDR 2.32×10-6

) 

and AluSp (FDR 0.039) showed significant enrichment (Supplemental Data Table 4). 
Speculatively, oestrogen-Alu interactions could contribute to the observed sex bias in these AS 
events. 
 
The X chromosome also showed the highest normalized number of sex-biased AS events per 
exon. We defined a sex-biased splicing index (SBSI) as the number of statistically significant AS 
events per 1000 exons, and calculated the SBSI for each chromosome (excluding the Y 
chromosome). The X chromosome had by far the highest SBSI with 12.15 per 1000 exons 
showing sex-biased AS events, with most of the remaining chromosomes having an SBSI of 
between 5 and 7.5 (Fig. 2b). Most of the AS events were specific to one tissue, but slightly over 
12% were found in 2-5 tissues, with only 9 AS events being found in more than 5 tissues (Fig. 
2c). 27 genes were found to have >10 AS events (Fig. 2d). 8 of these genes (30%) were X 
chromosomal. 16 of the 27 genes had various roles in signalling and gene regulation, including 
2 genes involved in X inactivation, 5 in chromatin modification, 13 in signal transduction, and 7 
in transcriptional regulation (Supplemental Data Table 6). We performed GO analysis on all 
genes harbouring one or more AS events. A total of 54 distinct GO terms were significantly 
enriched in one or more tissues, reflecting a wide range of biological processes. The term 
translation initiation factor activity was the most commonly observed term with 12 tissues 
(Supplemental Data Table 7). The most common type of AS event was exon skipping in all 
tissues except the pituitary, in which intron retention was the most common. Oesophagus, lung, 
and basal ganglia showed a relatively high proportion of A3’SS and A5’SS events, and 
cerebellum displayed the highest frequency of mutually exclusive exons (Fig. 2e). 
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Figure 2. Characteristics of sex-biased alternative splicing. (a) Percentage of X chromosomal genes showing 
inactivation, escape from inactivation, or variable escape.25 Percentage is shown for the entire set of 631 investigated 
X chromosomal genes, as well as the subsets of 248 genes with differential expression (DE) and 166 with at least 
one AS event. P-values were derived with Fisher’s exact test comparing genes with DE or AS to the entire set of 631 
genes. (b) Sex-biased alternative splicing index for each chromosome. (c) Proportions of AS events that were strictly 
tissue-specific, present in 2-5, or over 5 tissues. (d) Genes with over 10 significant sex-biased AS events. The colour 
coding represents the number of affected tissues. (e) Distribution of categories of AS events that were significantly 
different in males and females (tissues with > 10 AS events). 
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Figure 3. Hierarchical Bayesian Modelling. (a) Structure of the HBM used in this work. The model posits that RBPs 
can affect the probability of exon skipping (shown as SE1,...,SEm) either negatively or positively but that the effect of 
each RBP will tend to be consistent across all genes in a given tissue (each one of the RBP1,...,RBPn distributions 
acts as a prior for the effect of the RBP at each exon skipping event). Furthermore, the overall expression of a gene 
Exprj can affect the probability of skipping of an exon of the gene either negatively or positively (the expression 
node), and additional sex-related effects may exist that are not captured by RBPs or gene expression (Sexj). All 
effects are combined in a logistic function � that models the probability of exon skipping. The MCMC algorithm 
generates accurate and stable estimates of the model parameters, which are then exploited by our subsequent 
analysis. (b) Average RBP effects for nine exemplary RBPs: 3 that tend to promote skipping (top row), 3 that tend to 
promote inclusion (middle row) and 3 that are context specific (bottom row). A positive coefficient indicates a positive 
correlation between the gene expression of an RBP and the probability of skipping of the genes identified as targets 
by the HBM. A negative coefficient indicates a negative correlation. The barplot at the bottom of the figure displays 
the percentage of RBPs from each type among all the RBPs in the study whose absolute sum of effects was in the 
0.8 quantile. (c) Predicted effects of gene expression vs. RBP levels on exon inclusion in 100 sex-biased SE events 
in the left ventricle. The Y axis shows the mean of the posterior of the coefficient that determines the effects of gene 
expression on exon inclusion. Negative values favour skipping and positive values favour inclusion. The X axis shows 
the sum of the absolute values of the posterior of the coefficients of the 87 RBPs. The higher the value, the more the 
predicted effect on exon skipping. In the left frame it can be seen that for 61 out of 100 sex-biased events in left 
ventricle, no effect of gene expression was predicted (flat line at y=0.0). For the remaining genes there was a 
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correlation with R2=0.35 (p=7.98x10-5).  (d) A similar correlation was found in mammary tissue, with R2=0.33 
(p=3.6x10-12). 
 
 
 
Interactions of exon skipping, gene expression, and RNA binding proteins 
We hypothesized that differential levels of RBPs with roles in AS could be responsible for some 
of the AS events. Furthermore, because of recent reports that transcription elongation rate can 
affect gene expression,30 and the observation that faster transcriptional elongation speed can 
lead to increased exon skipping,8 we additionally posited that overall gene expression levels 
could be correlated with exon skipping events. In order to test these hypotheses, we developed 
a hierarchical Bayesian model and applied it to the ten tissues with the largest number of sex-
biased skipped exon events. If available, the top 100 significant sex-biased were chosen for 
each tissue; otherwise, if fewer than 100 events had been called significant, the corresponding 
smaller number of events was chosen. The hierarchical model was designed on the basis of a 
number of assumptions explained in detail in the Methods. The outcome of the splicing process, 
i.e., counts of exon inclusion and exclusion reads, was modelled as a result of a weighted linear 
combination of the individual mRNA levels of 87 RBPs (Supplemental File 2) as well as of the 
overall expression level of the gene harbouring the exon-skipping event. Furthermore, a sex 
term was included to model influences not captured by RBP or gene expression. The structure 
of the model and the priors placed on the individual distributions (nodes) of the model reflect our 
expectations about the data (Fig 3a). The modelling process makes use of  Monte-Carlo Markov 
Chain (MCMC) sampling in order to estimate the posterior probability of the model given the 
data; our interpretation of the results of modelling is based on the highest posterior density 
interval (HDI), whereby we take a parameter to be meaningful if the 95% HDI for a given 
coefficient of the model does not include zero, and we take the mode of the HDI to be the 
estimate of the effect size. If the HDI for some parameter included zero, our interpretation is that 
the parameter is not relevant for determining exon skipping (Supplemental Data Figure 4). We 
examined measures of the convergence of the model such as the autocorrelation to assess 
model quality, and assessed the 95% HDI for all of the parameters in the model.  
 
A total of 556 SE events were modelled in the ten tissues that had shown the highest number of 
significant SE events in the above analysis. 87% of sex-biased exon-skipping events correlated 
with the expression of at least one RBP, and 67% of exon-skipping events correlated with gene 
expression. In 40% of exon-skipping events, our model indicated the existence of additional 
factors correlated with sex differences that were not captured by RBP mRNA levels or gene 
expression, and in 0.5% of events, a sex effect was predicted in the absence of RBP or 
expression effects (Supplemental File 3). We analysed the tendency of RBPs to promote exon 
skipping or inclusion by examining the distribution of coefficients for all SE events for which the 
interaction was predicted to be meaningful by the Bayesian model.  Roughly 17% of the RBPs 
were classified as exon skipping-promoting factors because at least 75% of the distribution was 
positive, and likewise roughly 16% of the RBPs were classified as exon inclusion-promoting 
factors. The remaining 67% were classified as context dependent (Fig. 3b). Histograms of the 
coefficients determined by our model for the effects of RBPs, gene expression, and the residual 
effect of sex are shown in Supplemental Data Figure 3. 
 
 
We then investigated the relationship between exon-skipping events, RBP levels, and gene 
expression in more detail. We plotted the sum (over the 87 RBPs) of the absolute coefficients 
for RBPs affecting exon inclusion against the mean coefficient for gene expression affecting 
exon inclusion. For left ventricle, 61 out of 100 sex-biased AS events showed no effect of gene 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 10, 2018. ; https://doi.org/10.1101/490904doi: bioRxiv preprint 

https://doi.org/10.1101/490904
http://creativecommons.org/licenses/by/4.0/


  

9 

expression (flat line at y=0.0), and for the remaining genes, a correlation with R2=0.35 

(p=7.98⋅10-5) was detected (Fig 3c). That is, for the AS events in which gene expression tended 
to promoter exon inclusion (negative values on the X axis), the predicted effect of RBPs was 

lower. A similar correlation was found in mammary tissue, with R2=0.33 (p=3.6⋅10-12) (Fig 3d). 
The overall tendency for the influence of RBPs to increase as the influence of gene expression 
on exon inclusion decreased was similar for both tissues. 
 
 
Sex-biased alternative splicing and Nonsense-Mediated Decay 
 
Nonsense-mediated decay (NMD) is a translation-coupled mechanism that eliminates mRNAs 
containing premature termination codons (PTCs). NMD can thus serve as a quality control 
mechanism to prevent the accumulation of abnormal truncated proteins that could be 
deleterious to the cell.31 NMD additionally regulates the abundance of a large number of 
naturally occurring cellular mRNAs by degrading PTC-containing AS transcripts.32,33 In order to 
investigate a potential role of such physiological NMD in sex-biased AS, we divided all isoforms 
of the genes harbouring the SE events into isoforms that are predicted to trigger NMD because 
of the presence of a PTC, and isoforms that do not contain a PTC (which we refer to as non-
NMD in the following; Methods). We first tested whether inclusion counts of SE events 
associated with at least one NMD isoform differed from those of events not associated with any 
NMD isoform.  
Of the 5568 significantly sex-biased SE events in our dataset, 1284 were predicted to be 
associated with at least one NMD isoform (23%), as compared to 39180 total SE events 
(significant or not), in which 9719 corresponded to NMD isoforms (24.8%). As expected, there 
was a significantly lower inclusion count in the NMD-associated events (Fig 4a). The remaining 
non-NMD associated isoforms showed a significant, nearly two-fold increase in the number of 
inclusion read counts. Finally, we reasoned that exons associated with NMD isoforms might be 
less likely to code for protein domains if their primary function is the induction of NMD. Indeed, 
there was a significant depletion of domain annotations in NMD associated skipped exons and 
their flanking exons (Fig 4b). Fig. 3c shows an exemplary exon-skipping event in the CDKN2A 
gene in which there was both higher gene expression and higher exon-skipping levels in 
females compared to males (Fig. 4c). The skipped exon contains a PTC and is predicted to 
induce NMD. This finding is therefore compatible with NMD-induced down-regulation of 
CDKN2A in male breast tissue as compared to female breast tissue. 
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Figure 4 Nonsense-mediated decay in sex-biased alternative splicing. (a) Expression levels log2(mean inclusion 
counts+0.5) for SE events where the skipped exon belongs to at least one NMD isoform and where the exon does 
not belong to any NMD isoform.  The plot shows the values for sex-biased events that were correlated with 
expression in our hierarchical Bayesian model.  A similar distribution was observed for all the events in the dataset.  
(b) Depletion of domain annotations in NMD-associated skipped exons and their flanking exons. The y-axis indicates 
the percentage of ES events with the corresponding domain. The p-values were obtained using the hypergeometric 
density and Benjamini-Hochberg (BH) corrected for multiple testing. (c) 3-dimensional plot illustrating the relationship 
between gene expression and inclusion and exclusion counts for an exon skipping event in CDKN2A in mammary 
tissue. Females show both higher gene expression as well as higher skip counts than males. The skipped exon is 
present in isoform 5 of CDKN2A (NM_001195132.1) and causes a frameshift that is predicted to induce NMD.34 
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Interplay between splicing and gene expression: Type I and Type II exons 
To validate this observation with a larger set of events, we performed linear regression of 
skipping counts against RBP levels for each of the 87 investigated RBPs. We then plotted the 
log fold change in expression vs. log fold change in inclusion for all sex-biased events in 
mammary tissue. Most of the exon-skipping events identified in mammary tissue were found in 
genes that showed higher expression in females than in males (Fig. 4c). Of these genes, one 
group showed a higher amount of exon skipping in females (defined as type I), and the other 
showed a higher amount of inclusion in females (define as type II). Exon-skipping events are 
shown in blue instead of red if at least one RBP was significantly associated with the exon-
skipping event. The type I events in mammary tissue were all positively correlated with at least 
one RBP (blue points). In contrast, many of the type II AS events were not associated with any 
RBP (red points). There were 323 type I exons and 827 type II exons. The proportion of NMD-
associated exons was not significantly different from the overall proportion (type I: 22.7% ; type 
II: 20%). The effects of RNA polymerase II (RNAP2) elongation rate on splicing can be studied 
with RNAP2 mutants that alter the average elongation rates genome-wide. It was previously 
shown that cassette exons included by slow and excluded by fast elongation display a number 
of attributes including weaker splice sites.7 Although gene expression is not necessarily related 
to RNAP2 elongation speed, a recent study noted a correlation between the two,30 which 
motivated us to investigate the sum of donor and acceptor splice scores of the exons associated 
with sex-biased type I and type II AS events. Indeed, type I exons showed a mean score that 
was 1.73 less than for type II exons (Fig. 4b; 14.82 vs 16.55; p=9 x 10-7, t-test). We observed 
similar findings in the left ventricle (Supplemental Data Fig. 5). Sex-biased type I exons were 35 
bp shorter than type II exons on average (178.9 vs. 143.8 nt; p=3.95 x 10-12, t-test; Fig. 5c).  
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Figure 5 Two types of exons involved in sex-biased exon skipping. (a) log fold change expression vs. log fold 
change inclusion for all sex-biased events in mammary tissue.  A higher fold change of female-to-male expression 
corresponds to a higher value on the X axis, and a higher fold change of female-to-male skipping-to-inclusion counts 
on the Y axis. Both fold changes are calculated by limma. Type I events showed a higher frequency of exon skipping 
in females and type II events showed a higher frequency of inclusion in females. Exon-skipping events are shown in 
blue instead of red if at least one RBP was significantly associated with the exon-skipping event. The brown lines 
represent a fit of the points by second-order polynomial regression. (b) Comparison of the sum of acceptor and donor 
splice scores for type I and type II exons (t-test). (c) Comparison of the sum of exon lengths for type I and type II 
exons (t-test). 
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Discussion. 
We have provided the first comprehensive map of sex-biased gene expression and AS. Our 
computational results suggest previously undescribed associations between sex-biased AS 
events and escape from X-chromosomal inactivation as well as intronic Alu elements and 
oestrogen-receptor binding sites located therein. The vast majority of sex-biased AS events 
identified in our study were unique to one tissue. The density of sex-biased AS events per exon 
(SBSI) showed a striking degree of variability across the genome, being the highest for X 
chromosomal exons with a range of densities across the autosomes. We identified 27 genes 
that displayed sex-biased AS in ten or more tissues. 19 of these genes play roles in controlling 
gene expression or signalling, suggesting the possibility that the corresponding AS events are 
important for influencing regulatory networks that underlie sex differences in multiple tissues. 
We developed a hierarchical Bayesian modelling approach that uncovered widespread 
correlations between the levels of RBPs and overall gene expression and SE events. 
Transcription and pre-mRNA processing occur in a coordinated fashion, with capping, splicing 
and polyadenylation occurring while transcription proceeds.35 These observations suggest that 
RNAP2 can regulate pre-mRNA splicing; perhaps the best documented association between 
RNAP2 biology and splicing is the observation of a coupling between RNAP2 elongation speed 
and alternative splicing.7,8,36 One study showed a series of differences between cassette exons 
that tend to be included by slow and excluded by fast elongation as compared to exons that are 
excluded by slow and included by fast elongation.7 In our study, we characterized exons that 
showed inclusion associated with low expression and exclusion associated with high expression 
(type I) as well as exons that showed inclusion associated with low expression and exclusion 
associated with high expression (type II, Fig. 4a). The type I exons showed lower splice scores 
and were always found to be significantly associated with RBP levels, whereas the type II exons 
had higher splice scores and often displayed no significant association with RBP levels. 
Although our findings are reminiscent of the results on RNAP2 elongation speed, gene 
expression and RNAP2 are not directly coupled, and other explanations such as a potential 
coupling of RNAP2 promoters to alternative splicing37 with as yet to be explained effects on 
gene expression are conceivable. Finally, our results suggest that common approaches to the 
analysis of alternative splicing that discard differentially expressed genes38 may be missing a 
substantial fraction of relevant AS events. To our knowledge, our findings represent the first 
demonstration of a pervasive relationship between gene expression and sex-biased AS.  
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METHODS 
 
GTEx samples.  
FASTQ files as well as transcript per million (TPM) and read counts of 56,202 genes together 
with the corresponding GTEx sample attributes and phenotypes were downloaded from the 
most current release, GTEx Analysis V7 (dbGaP Accession phs000424.v7.p2) 
(https://www.gtexportal.org/home/datasets). Approval for use of the raw GTEx RNA-seq FASTQ 
files was granted by Database of Genotypes and Phenotypes (dbGaP). 
 
 
Alignment of RNA-seq data 
The analysis was performed on the Institute for Systems Biology Cancer Genomic Cloud (ISB-
CGC), an NCI Data Commons Pilot program. Our objective was to construct a matrix of counts 
for each of a variety of splicing types as discovered and catalogued by the rMATS39 program 
(version 3.2.5) for each of the samples available from the GTEx archive. A prerequisite to using 
the rMATS program is that all reads to be assessed in the matrix must be of the same length. 
Using the rMATS 3.2.5 version, FASTQ files from the GTEx project were trimmed using the 
included Python script trimFastq.py. Files were trimmed to 48 base pairs, aligned to the 
Genome Reference Consortium Homo sapiens assembly version hg38 (GRCh38.p7) using 
hisat2,40 and duplicates were removed using the Picard toolkit 
(http://broadinstitute.github.io/picard/). In order to create a matrix of counts with rows containing 
unique junction identifiers for each of the splicing types and columns containing the unique 
GTEx sample identifiers, some modifications were made to the standard process of running the 
rMATS program. For each file, rMATS identifies specific alternative splicing events capturing 
skipped exons (SE), retention introns (RI), alternative 3' and 5’ splice sites (A3SS and A5SS), 
and mutually exclusive exons (MXE). For each of these 5 different splicing types, rMATS 
creates two files, one containing the counts of reads that span the splicing junctions only, and a 
second file that additionally contains the counts of reads that are on target. Custom bash scripts 
were written to merge the data from individual samples into a single matrix for each of the 
sample types and for each of the AS types.  
 
Differential gene expression in male vs. female tissues. 
For analysis of differential gene expression and alternative splicing, genes on the Y 
chromosome were excluded from the analysis. In addition, for each tissue we kept only events 
for which the number of male and female samples with at least 1 cpm (count per million) for the 
gene of interest exceeds a threshold X, where X=(¼)min(#male samples, #female samples). 
For each of the 53 tissues, genes differentially expressed between male and female were 
individually determined using the voom function from the R package limma.41,42 The heatplot 
shown in Fig. 1b was created with R software by calculating the fold change of the mean 
expression of each gene between male and female samples and displaying the correlation 
between the vectors of fold changes of the tissues.  
 
Normalization of counts data for alternative splicing analysis 
We used the Yet Another RNA Normalization software pipeline (YARN)43 to look for samples 
that are likely to be mis-annotated. We applied the function checkMisAnnotation using 
chromosome Y genes as control genes and removed the individual GTEX-11ILO from the 
dataset (similar to ref. 43). We followed the YARN preprocessing procedure for identifying GTEx 
tissues that can be combined in the differential splicing analysis, using the function 
checkTissuesToMerge. This function creates multidimensional scaling (MDS) plots that 
reveal similarities and differences between samples in a set of tissues. As input for MDS, we 
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concatenated the matrices of the skip and inclusion isoform counts row-wise such that each
data point in the MDS is the counts of skip and inclusion isoforms in one sample, where a
sample corresponds to an individual and tissue. In order to obtain a consistent criterion for
merging, we created an MDS for each pair of samples in the following regions: brain, artery,
oesophagus, skin and fibroblasts, colon and adipose. We calculated the normalized distance ( )
between samples of the same anatomical region defined as the intersample distance divided by
the mean distance of all samples for each pairwise-MDS and AS event type. We then merged
tissues where  for all AS event types. In skin regions the merging was identical to that in
the original YARN publication, and in brain regions our procedure further refined merges
performed in YARN43 into finer subsets. For oesophagus, we found that Oesophagus -
Gastroesophageal Junction and Oesophagus - Muscularis can be merged. Similar to YARN43 ,
other regions were not found to be mergeable with respect to the 5 types of AS events
investigated in our study. 
 
Characterization of alternative splicing events (ASEs) 
We used rMATS 39 to identify and count reads that correspond to each of the 5 types of ASEs:
(1) skipped exon - the skipping of a single exon in an isoform of the transcript. (2) mutually
exclusive exons - two consecutive exons out of which only one is present in each isoform of the
transcript. (3) retained intron - the retention of an intron in an isoform of the transcript. (4)
alternative 5’ splice site - a different exon at a 5’ position in an isoform of the transcript. (5)
alternative 3’ splice site - similar to the previous category, but at a 3’ position (See Fig. 1b).
rMATS identifies these events from a GTF file of known transcripts using release 25 from
GENCODE annotation for genes for GRCh38.p7. rMATS then counts the number of reads that
agree with each of the two alternatives that the event describes. For example, for a skipped
exon rMATS will count the reads that fall within splice junctions that connect the skipped exon to
its neighbouring exons, and the reads that fall within a splice junction that connects the
neighbouring exons to each other. A matrix of event counts was generated for all samples
according to tissue types; one matrix was generated for each of the 5 categories of ASE and
was used for the downstream analysis. 
 
Statistical approach to differential splicing between males & females 
In order to be able to fit a linear model to the data we use voom to transform the counts into
continuous data, appropriate for linear modelling. For each ASE, we combine skip and inclusion
event counts as individual samples in a multifactorial linear model, where skip and inclusion
counts from the same individual/sample are treated as replicate arrays in order to account for
correlation. Limma uses generalized least squares to fit the model, which does not assume that
the errors of different samples are independent. The multifactorial model has 3 predictors: sex
(male or female), event (skip or inclusion) and a sex:event interaction term: 

Events that have a significant sex:event interaction term (FDR≤0.05), and in addition a fold
change of at least 1.5 for that term, are considered differentially spliced. The sex predictor
accounts for the case where male or females have a higher level of both isoforms but the
proportions in both sexes are the same. The event predictor accounts for the case where one
event has more reads mapped to it, but not as a result of alternative splicing that is differential
between the sexes. For example, if due to the fragmentation process of RNA-Seq more reads
are mapped to the inclusion event, there will be a bias in both sexes towards this event. For
normalization, we used the edgeR function calcNormFactors.44  For each tissue we kept only
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events with ≥X/2 male samples with cpm ≥1 and analogously for the female samples, where X

equals the size of the smallest study group (male or female). 
 
 
Definition of set of “interesting” RNA-binding proteins (RBPs) 
We retrieved 87 RNA-binding proteins with a defined position-specific scoring matrix (PSSM)
from RBPMap45 and defined this set as RNA-binding proteins (RBPs).  
 
Clustering Analysis 
The log-fold-changes obtained from voom’s differential expression analysis were obtained for
each tissue, where genes that were screened out from the DE analysis of a tissue were
assigned a log-fold-change of 0. Genes with a logFC of 0 in all tissues were removed, and then
the Pearson correlation between each pair of tissues was calculated based on the logFC
vectors. The vectors of correlations were clustered using hierarchical clustering (Fig. 1c). 
 
Gene Ontology analysis 
Sets of significantly differentially expressed or spliced genes were obtained for each tissue and 
analysed with the model-based gene set analysis procedure in the Ontologizer.46,47 The 
population set was defined to be the set of all annotated human genes using the Human GO 
Annotation from the EBI release 2018-03-26  (http://geneontology.org/page/download-go-
annotations) that contains 19,712 gene product annotations for the association of genes to GO. 
 
Hierarchical Bayesian Modelling 
Hierarchical Bayesian modelling (HBM) is a technique for multiparameter modelling in which
one assumes a statistical distribution for individual parameters whose interdependencies are
reflected in the structure of the hierarchy. The HBM can use a Markov Chain Monte-Carlo
(MCMC) technique to estimate the posterior probability of each parameter. To apply HBM, one
must design the structure of the hierarchy and define the probability distribution of each node.
The HBM procedure can then use MCMC to estimate the posterior probability distribution at
each node. If the 95% high density interval for a coefficient does not contain zero, then we
assume that the corresponding parameter is relevant for the model.  
 
Our assumptions in developing our model were: (i) RNA binding proteins can affect the
probability of exon inclusion either negatively or positively; (ii) the effect of each RBP will tend to
be consistent across all genes in a given tissue; (iii) the overall expression of a gene can affect
the probability of inclusion of an exon of the gene either negatively or positively; (iv) additional
sex-related effects may exist that are not captured by RBPs or gene expression; (v) the effect of
RBPs, gene expression, and sex is additive; (vi) there is a prior assumption of no effect of any
of the above mentioned factors (in the absence of evidence against the prior). Additionally, our
model does not assume that the effects of an RBP must be the same for sex-biased and non-
sex-biased skipping events. 
For the analysis, we chose up to 100 statistically significant sex-biased AS events for each
tissue.  If a tissue had less than 100 significant events, all of them were modelled.  
The observed number of skip counts at event i in sample j ( ) is modelled as: 

 
Where   is the probability of skipping at event i in sample j and  is the number of inclusion
counts at event i in sample j. 
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The probability  of skipping at event i in sample j is: 
  

 
 
where  is the logistic function, the parameter  is an intercept for the ith event, is the effect of
sex, is the effect of the expression level of gene  to which the ith event belongs and   is
a vector of RBP effects on the ith event.  is a vector of the normalized RNA levels of each
RBP derived from the GTEx tpm matrix. Sex takes a value from {0,1}, and the expression level
of the gene and the RBPs are normalized to have mean 0 and standard deviation 1 over all the
samples. 
The priors of ,  and  are N(0,2), the priors for the effects of the kth RBP on skipping events.
The vector  contains normally distributed, unit-variance parameters that represent the
estimated effects of each of the RBPs on skipping at event i. The model contains one such
vector for each event. An additional normal distribution with a prior of N(0, ) serves as prior for
the mean of the coefficient of each RBP in each of the events. This reflects our prior knowledge
as described in assumption (ii) above. A similar hyperparameter is defined for the common
effect of an RBP on all the non-dimorphic events. 
We ran the scripts using the R-Stan, the R interface of Stan.48  The number of chains was set to
3, the number of iterations to 5,000, the number of warmup iterations to 3,000, the thinning
parameter was set to 1 and all parameter values were initialized to 0.  Each chain was run on a
different processor in order to improve performance. The script is available as Supplemental
File 4.  
 
Statistical approach to correlation of gene expression and RBP levels with differential
splicing between males & females 
We obtained the log fold-change values computed by limma for differentially expressed genes
and significant alternative splicing events in those genes, and plotted them against each other.
A second order polynomial regression line was fit separately to points corresponding to positive
AS fold change (more skipping in females) and negative AS fold change (more skipping in
males): 

 

 
A linear regression was performed between the skip counts of each AS event (dependent
variable) and the transcript per million (TPM) of each RBP. 

 
The p-values obtained for each RBP were Benjamini-Hochberg (BH)-corrected for multiple
testing, and a significant correlation was associated with an FDR 0.05. 
 
 
Identification of events included in a nonsense-mediated decay isoform 
For each skipped exon event, we find all isoforms that contain this exon using the Ensembl GTF
file GRCh38.91.  For each isoform, we compare the amino acid length of the inclusion isoform
to the sum of lengths of the skip isoform and the skipped exon.  If the former is smaller, then the
inclusion isoform is identified as an NMD isoform containing a premature truncation codon as a
consequence of including the exon.  We do the reverse process to identify NMD isoforms in

 of 
is 

ch 
el 

he 

ts. 
he 
ch 
for 
ge 
on 

 to 
ng 
 a 
tal 

ial 

es 
er.  
ve 
in 

nt 

le 

F 
rm 
he 
 a 
in 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 10, 2018. ; https://doi.org/10.1101/490904doi: bioRxiv preprint 

https://doi.org/10.1101/490904
http://creativecommons.org/licenses/by/4.0/


  

18 

which the isoform without the exon contains a PTC, e.g., because of a frameshift.  For finding 
the lengths of each isoform, we use the program gffread from the GffCompare package 
(https://github.com/gpertea/gffcompare). All of the isoforms identified in the set of significantly 
sex-biased skipped exons fell into the first category. 
 
Analysis of Alu subfamilies and predicted oestrogen receptor binding sites associated 
with sex-biased exon skipping 
Repeat-masker data (http://www.repeatmasker.org) were downloaded from UCSC Table 
Browser in BED format for the human genome assembly hg38.  These sequences were filtered 
by name to contain only Alu elements of length �50 bp on chromosomes 1-22,X,Y. The 
sequences were then partitioned by Alu class and scanned in both strands with five PWMs of 
estrogen receptor binding sites (Supplemental Data Table 5). 
We defined an ER element as being present when the PWM score at any position in a 
sequence reached 80% of the maximum score. 
To find over representation of Alu elements in the proximity of sex-biased events compared to 
all the events in our data, we used the hypergeometric enrichment test, where an event was 
considered proximal to an Alu element if the element is in the region that spans from the start if 
its upstream intron to the end of its downstream intron.  To find the enrichment of oestrogen 
receptor binding sites within Alu elements in the proximity of sex-biased events compared to 
their enrichment in Alu elements in the proximity of all AS events in our data that passed our 
screening criteria in at least one tissue, we used a similar enrichment test, but the universe was 
restricted to all Alu-proximal events in our data, and enrichment of oestrogen receptor binding 
sites was tested in sex-biased Alu-proximal events.  Categories that had a count of less than 25 
for sex-biased events were considered insignificant and not tested.  In addition, we only 
considered binding sites that were in an antisense orientation to the Alu element as these were 
found to occur in Alu elements more often than expected by chance.  Multiple testing correction 
was performed using the Benjamini-Hochberg procedure. 
 
 
Domain depletion in NMD-associated events 
For each skipped exon event identified by rMATS analysis, we extracted the positions of the 
exons and its flanking exons, and downloaded domain annotation using MASER.49  We 
calculated the probability of finding the observed number of domain-containing skipped exon 
events or a smaller number in our NMD-associated events using the hypergeometric 
distribution.  We tested domains, modified residues, motifs, active sites, topological domains 
and trans- and intramembrane domains that occurred repeatedly in our set of sex-biased events 
(Supplemental Data Table 8).  
 
Calculation of the Sex-Biased Splicing Index 
Chromosomes are ranked by the normalized splicing index, which is the number of splicing 
events per 1000 exons in the chromosome. The normalized splicing index equals the number of 
exon skipping events divided by the number of exons on the chromosome and multiplied by 103. 
 
Calculation of the Splice Score 
Donor and acceptor splice scores were calculated using an information-content analysis.50 
Briefly, Information content is defined on the basis of a set of aligned donor or acceptor splice 
junction recognition sites by counting the frequencies of bases at each position and calculating 
the bits per base as  2 + log2f(b,l) with a sample-size correction factor. The individual 
information of a sequence is designated as Ri and is calculated as the dot product between the 
sequence and the weight matrix. The Ri was calculated for all donor or splice sites in the 
genome and for the indicated groups.  
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Supplemental Files 
 
Supplemental File 1 is an Excel file with data on log fold change and FDR for genes showing 
significant sex-biased differential expression and significantly sex-biased alternative splicing 
events. 
Supplemental File 2 is an Excel file showing the 87 RNA-binding proteins examined in this work. 
Supplemental File 3 is an Excel file with a summary of the results of hierarchical Bayesian 
modelling. 
Supplemental File 4 is a text file that contains the STAN script used to perform the Bayesian 
analysis. 
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