

1 A novel *qacA* allele results in an elevated chlorhexidine gluconate minimum inhibitory
2 concentration in cutaneous *Staphylococcus epidermidis* isolates

3

4 Amin Addetia^a, Alexander L Greninger^b, Amanda Adler^a, Shuhua Yuan^d, Negar Makhsoos^b,
5 Xuan Qin^{a,b*#}, Danielle M Zerr^{a,c*#}

6 ^aSeattle Children's Research Institute, Seattle, WA, USA

7 ^bDepartment of Laboratory Medicine, University of Washington, Seattle, WA, USA

8 ^cDepartment of Pediatrics, University of Washington, Seattle, WA, USA

9 ^dDepartment of Pediatric Pulmonology, Shanghai Children's Medical Center, Shanghai Jiao
10 Tong University School of Medicine, Shanghai, China

11 *These authors contributed equally to this work.

12

13 Running Head (54 characters max): Novel *qacA* allele increases CHG MIC of *S. epidermidis*

14

15 #Address correspondence to xuan.qin@seattlechildrens.org and/or
16 danielle.zerr@seattlechildrens.org.

17

18 **Abstract**

19 Chlorhexidine gluconate (CHG) is a topical antiseptic widely used in healthcare settings. In
20 *Staphylococcus* spp., the pump QacA effluxes CHG, while the closely related QacB cannot due
21 to a single amino acid substitution. We characterized 1,050 cutaneous *Staphylococcus* isolates
22 obtained from 173 pediatric oncology patients enrolled in a multicenter CHG bathing trial. CHG
23 susceptibility testing revealed 63 (6%) of these isolates had elevated CHG MICs ($\geq 4 \mu\text{g/mL}$).
24 Screening of all 1,050 isolates for *qacA/B* by restriction fragment length polymorphism (RFLP)
25 yielded 56 isolates with a novel *qacA/B* RFLP pattern, *qacAB₂₇₃*. The CHG MIC was
26 significantly higher for *qacAB₂₇₃*-positive isolates (MIC₅₀: 4 $\mu\text{g/mL}$, [range: 0.5 – 4 $\mu\text{g/mL}$])
27 compared to other *qac* groups: *qacA*-positive (n=559, 1 $\mu\text{g/mL}$, [0.5 – 4 $\mu\text{g/mL}$]), *qacB*-positive
28 (n=17, 1 $\mu\text{g/mL}$, [0.25 – 2 $\mu\text{g/mL}$]), and *qacA/B*-negative (n=418, 1 $\mu\text{g/mL}$, [0.125 – 2 $\mu\text{g/mL}$],
29 $p=0.001$). The *qacAB₂₇₃*-positive isolates also displayed a high proportion of methicillin
30 resistance (96.4%) compared to other *qac* groups (24.9 – 61.7%, $p=0.001$). Whole genome
31 sequencing revealed that *qacAB₂₇₃*-positive isolates encoded a variant of QacA with 2 amino acid
32 substitutions. This new allele, named *qacA4*, was carried on the novel plasmid pAQZ1. The
33 *qacA4*-carrying isolates belonged to the highly resistant *S. epidermidis* clone ST2 and were
34 collected from multiple centers across the United States and Canada. Curing an isolate of *qacA4*
35 resulted in a four-fold decrease in the CHG MIC, confirming the role of *qacA4* in the elevated
36 CHG MIC. Our results highlight the importance of further studying *qacA4* and its functional role
37 in clinical staphylococci.

38

39 **Importance**

40 *Staphylococcus epidermidis* is an important cause of infections in patients with implanted
41 devices. Bathing with chlorhexidine gluconate (CHG), a topical antiseptic, has been shown to

42 reduce rates of device-associated infections, especially those caused by *S. epidermidis*. In *S.*
43 *epidermidis*, reduced susceptibility to CHG is associated with carriage of the *qacA* gene. As part
44 of a multicenter CHG bathing trial, we obtained cutaneous *Staphylococcus* isolates from
45 pediatric oncology patients across the United States and Canada. We identified a group of
46 isolates capable of surviving in higher concentrations of CHG and determined a novel allele of
47 *qacA*, termed *qacA4* and carried on the novel plasmid pAQZ1, was responsible for the isolates'
48 survival in higher CHG concentrations. The *qacA4*-carrying *S. epidermidis* isolates belonged to
49 the highly resistant and virulent ST2 clonal type. Our results highlight the need to understand the
50 global distribution of novel *qacA* alleles, including *qacA4*, and their mechanistic effect on efflux.

51 **Introduction**

52 *Staphylococcus epidermidis* is a typical resident of the skin flora and an important cause of
53 device-associated infections, especially central line associated bloodstream infections (1). The
54 success of *S. epidermidis* as an opportunistic pathogen derives from its ability to bind indwelling
55 devices through the formation of a biofilm (2–4) and the high rate of antimicrobial resistance
56 within the population (5, 6).

57

58 With a favorable safety profile and broad-spectrum and residual activity (7), chlorhexidine
59 gluconate (CHG), is a promising option for skin cleansing and antisepsis for the prevention of
60 device-associated infections. Bathing with CHG has been demonstrated to reduce the rates of
61 central-line associated bloodstream infections (8, 9), acquisition of multidrug resistant organisms
62 (10), and blood culture contamination, which is frequently caused by *S. epidermidis* (11, 12).
63 Furthermore, topical applications of CHG have been demonstrated to significantly reduce
64 cutaneous microbial burden (13, 14). However, increasing usage of CHG may select for
65 organisms with decreased susceptibility to CHG and increased resistance to commonly
66 prescribed antimicrobials (13, 15–17).

67

68 In *Staphylococcus* spp., *qacA* encodes a 514-amino acid, 14 transmembrane segment pump with
69 the capacity to efflux CHG (18–20). The pump encoded by the closely related *qacB* differs from
70 *qacA* by only 7–9 nucleotides, but does not have the ability to efflux CHG (18, 21). A single
71 nucleotide variant (SNV) (968C>A) resulting in a substitution, Ala323Asp, in transmembrane
72 segment 10 accounts for the differing substrate specificities of QacA and QacB (18). Currently,
73 three alleles of *qacA* have been described; however, no functional differences between the pumps
74 encoded by these three alleles have been reported (21).

75

76 Beyond CHG, QacA is responsible for the efflux of a broad range of mono- and divalent cations,
77 including dyes and quaternary ammonium compounds (20). In *S. epidermidis*, *qacA* is most
78 frequently carried by the plasmid pSK105, which also carries the aminoglycoside resistance gene
79 *aacA-aphD* (22). Other plasmids carrying *qacA* may contain the trimethoprim resistance gene
80 *dfrA*, the *blaZ* β -lactamase, or genes encoding heavy metal efflux pumps (22).

81

82 In addition to QacA, the 107-amino acid, 4 transmembrane segment efflux pump encoded by
83 *smr*, also known as *qacC*, has been implicated in the efflux of CHG (23–25). While unrelated to
84 QacA and QacB, Smr demonstrates the capacity to efflux a similar, yet narrower range of
85 monovalent cations (24, 25).

86

87 In our study, cutaneous *Staphylococcus* isolates were obtained from pediatric oncology patients
88 enrolled in a multicenter randomized controlled CHG bathing trial. We identified a
89 subpopulation of isolates with an elevated CHG MIC, which we defined as an MIC $\geq 4 \mu\text{g/mL}$.
90 To investigate the genetic basis of the elevated CHG MIC, we screened the isolates for the
91 *qacA/B* genes via PCR and restriction fragment length polymorphism (RFLP). From this
92 screening, we identified a previously undescribed RFLP pattern, termed *qacAB₂₇₃*, in a subset of
93 isolates. We then determined whether the *qacAB₂₇₃* RFLP pattern was associated with a
94 significantly higher CHG MIC when compared to the *qacA*-positive, *qacB*-positive, and *qacA/B*-
95 negative isolates. We also described the sequence of the novel *qacA* allele, referred to as *qacA4*,
96 producing the novel *qacAB₂₇₃* RFLP pattern and characterized the isolates carrying *qacA4*.
97 Furthermore, through curing experiments, we investigated the role of *qacA4* in causing elevated
98 CHG MICs in *S. epidermidis*.

99

100 **Results**

101 *Overview of study population*

102 In total, 1050 cutaneous *Staphylococcus* isolates were obtained from 173 patients. The study
103 isolates primarily consisted of coagulase negative *Staphylococcus* with *S. epidermidis* being the
104 most frequently recovered species (53.1%), while *S. aureus* accounted for just 2.9% of the study
105 population (Table 1). In addition to *S. epidermidis*, 17 other coagulase negative *Staphylococcus*
106 species were identified in the study population. Of note, four coagulase negative *Staphylococcus*
107 isolates could not be speciated by MALDI-TOF.

108

109 *A subset of Staphylococcus isolates have an elevated CHG MIC*

110 Measuring the CHG MICs across all 1050 isolates yielded 63 isolates with elevated CHG MICs,
111 defined as an MIC $\geq 4 \mu\text{g/mL}$ (Figure 1a). All of these isolates were identified as *S. epidermidis*.

112

113 *Identification of a novel *qacA/B* RFLP pattern*

114 Isolates were screened for the *qacA/B* genes to explore the genetic basis of the elevated CHG
115 MICs. PCR amplification of the *qacA/B* gene resulted in an 864 bp product. Digestion of the
116 *qacA/B* PCR product with AluI resulted in the presence of a characteristic 198 bp fragment for
117 *qacA*-positive isolates and a characteristic 165 bp fragment for *qacB*-positive isolates. A third
118 subpopulation of isolates was distinguished by the appearance of a 273 bp fragment (Figure 2),
119 and is referred to as *qacAB₂₇₃*-positive isolates hereafter.

120

121 Of the 1050 isolates, 632 contained a *qacA/B* gene as identified by PCR. Based on the results of
122 the RFLP analysis, 559 were classified as *qacA*-positive, 17 as *qacB*-positive, and 56 as

123 *qacAB₂₇₃*-positive (Table 2). The *qacA/B* genes were detected in 8 different coagulase-negative
124 *Staphylococcus* species. When screened for carriage of *smr*, 279 of the 1050 isolates were
125 classified as *smr*-positive (Table 2). In total, 12 unique coagulase-negative *Staphylococcus*
126 species carried *smr*. Notably, the *qacA/B* genes and *smr* were not detected in any of the *S. aureus*
127 isolates.

128

129 *The qacAB₂₇₃ RFLP pattern is associated with an elevated CHG MIC*

130 Next, the relationship between elevated CHG MICs and detection of the *qacA/B* and *smr* genes
131 was examined. A *qacA/B* gene was detected in each of the 63 isolates with an elevated CHG
132 MIC: 54 were classified as *qacAB₂₇₃*-positive and 9 as *qacA*-positive (Figure 1b). None of the
133 isolates with an elevated CHG were classified as *qacB*-positive. Furthermore, 51 of the 63
134 isolates with elevated CHG were categorized as *smr*-positive and the remaining 12 as *smr*-
135 negative (Figure 1c).

136

137 To further investigate if the *qacAB₂₇₃* RFLP pattern was associated with an elevated CHG MIC,
138 differences in the CHG MIC distributions of the *qacA/B* containing isolates were assessed. The
139 CHG MIC was significantly higher for the *qacAB₂₇₃*-positive isolates as compared to the *qacA*-
140 positive, *qacB*-positive, and *qacA/B*-negative isolates ($p = 0.001$); the results did not change
141 when restricting the analyses to one randomly chosen isolate per patient per *qacA/B* group (Table
142 2). In addition, the CHG MIC distributions of the *smr*-positive and *smr*-negative isolates were
143 compared. The CHG MIC was significantly higher for the *smr*-positive isolates compared to the
144 *smr*-negative isolates ($p=0.02$); however, this comparison was no longer significant when the
145 analyses were restricted to one randomly chosen isolate per patient per *smr* group as one
146 individual accounted for 20% of the *smr*-positive isolates with elevated MICs ($p=0.11$) (Table 2).

147

148 Additionally, CHG MIC distributions associated with *qacA/B* and *smr* resistance gene
149 combinations among all isolates were assessed to determine if a particular resistance gene
150 combination was associated with elevated CHG MICs. This comparison revealed *qacAB₂₇₃* rather
151 than a particular resistance gene combination was associated with elevated CHG MICs
152 ($p=0.001$); the results did not change when restricting the analyses to one randomly chosen
153 isolate per patient per gene combination (Table 3).

154

155 The *qacAB₂₇₃*-positive isolates exhibited higher rates of resistance to methicillin (96.4%) and
156 other commonly prescribed antimicrobials, including erythromycin (ERY, 92.9%), ciprofloxacin
157 (CIP, 96.4%), gentamicin (GEN, 89.3%), and sulfamethoxazole/trimethoprim (SXT, 98.2%), as
158 compared to the *qacA*-positive, *qacB*-positive and *qacA/B*-negative isolates ($p<0.001$ for all
159 comparisons); the results did not change when restricting analyses to one randomly chosen
160 isolate per patient per *qacA/B* group (Table 4). All *qacA/B* groups exhibited rates of resistance
161 less than 1% to linezolid (LZD), rifampin (RIF), and vancomycin (VAN).

162

163 *Whole genome sequencing of qacA/B-positive isolates yields novel qacA alleles*
164 To further investigate the *qacA/B* gene in the *qacAB₂₇₃*-positive isolates, the genomes of 9
165 *qacAB₂₇₃*-positive *S. epidermidis* isolates were compared to the genomes of 10 *qacA*-positive and
166 4 *qacB*-positive *S. epidermidis* isolates (Table S1). All 9 of the *qacAB₂₇₃*-positive isolates had
167 elevated CHG MICs, while none of the 10 *qacA*-positive and 4 *qacB*-positive isolates had
168 elevated CHG MICs.

169

170 The sequence of *qacA/B* gene was highly conserved in the 9 *qacAB₂₇₃*-positive isolates with
171 elevated CHG MICs. As the *qacA/B* gene of the *qacAB₂₇₃*-positive isolates contained the
172 distinguishing *qacA* nucleotide 968A, the gene was classified as a novel allele of *qacA*. As
173 shown in Figure 3a, this allele contained three SNVs (470C>G, 819G>A, and 1133C>T)
174 compared to a reference *qacA* sequence (AB566410), and is referred to as *qacA4* (MK040360)
175 henceforth. The SNV at position 1133 in *qacA4* resulted in the loss of an AluI digestion site,
176 explaining the novel RFLP pattern observed in Figure 2. Two of the SNVs resulted in amino acid
177 substitutions, Ala157Gly and Ala378Val, in transmembrane segments 5 and 12, respectively
178 (Figure 3b).

179

180 When compared to the three previously characterized alleles of *qacA* (*qacA1* (GU565967),
181 *qacA2* (21), and *qacA3* (MK040360)) and the *qacA* alleles of the 10 *qacA*-positive *S. epidermidis*
182 isolates, *qacA4* differed from these sequences by at least three SNVs – including all three that
183 distinguished *qacA4* from the reference *qacA* sequence (Figure S1). Notably, from the 10 *qacA*-
184 positive isolates we sequenced, we identified 5 additional novel *qacA* alleles: *qacA7*
185 (MK040363), *qacA8* (MK040364), *qacA9* (MK040365), *qacA10* (MK040366), and *qacA11*
186 (MK040367) (Table S2; Figure S1). Similarly, comparing the sequence of *qacA4* to the other
187 sequences of *qacA* deposited in NCBI GenBank further confirmed the SNVs at the three
188 positions described above were unique to *qacA4*.

189

190 We also sequenced the genomes of the two *qacAB₂₇₃*-positive isolates that did not have elevated
191 CHG MICs (MIC < 4 µg/mL) to investigate their discordant genotypic-phenotypic relationship
192 (Table S1). Each of the *qacA/B* genes in these two *qacAB₂₇₃*-positive isolates lacked the three
193 identifying *qacA4* mutations and differed from the reference *qacA* sequence by six SNVs (Figure

194 4). These SNVs resulted in six and seven amino acid substitutions compared to the reference
195 *qacA* and *qacA4*, respectively (Figure 4). The *qacA/B* genes in these isolates were classified as
196 two additional alleles of *qacA*, referred to as *qacA5* (MK040361) and *qacA6* (MK040362). Due
197 to a SNV at position 1132, which resulted in the loss of an AluI digestion site, *qacA5* and *qacA6*
198 displayed identical digestion patterns to *qacA4*.

199

200 We next sequenced genomes from the nine *qacA*-positive isolates that had elevated CHG MICs.
201 From these isolates, we identified 4 *qacA* alleles: *qacA10*, *qacA12*, *qacA13*, and *qacA14* (Table
202 S2; Figure S2). The sequences of the *qacA* genes in these isolates differed from the reference
203 *qacA* sequence by 1 to 5 amino acid substitutions, and from *qacA4* by 2 to 8 amino acid
204 substitutions (Figure S2). The allele *qacA14*, identified in isolate 96.5, contained one of the
205 distinguishing coding changes of *qacA4*, Ala157Gly, but, not the other coding change. This
206 allele encoded a unique amino acid substitution Pro328Leu, which distinguished the allele from
207 the reference *qacA* and *qacA4*. Another isolate, 86.4, with an elevated CHG MIC carried the
208 same *qacA10* allele as isolate 110.3, which did not have an elevated CHG MIC. The amino acid
209 substitutions in these novel *qacA* alleles occurred in transmembrane segments 5, 6, 9, 10, 12, and
210 13 and in the extracellular loop between transmembrane segments 5 and 6.

211

212 *Identification of the novel resistance plasmid pAQZ1 containing qacA4 allele*
213 The genomic context of the *qacA4* allele in *de novo* assemblies of two separate *qacAB*₂₇₃-positive
214 isolates with high coverage, isolates 91.2 and 107.2, was examined to understand whether *qacA4*
215 was encoded chromosomally or on a plasmid. Both isolates carried *qacA4* on a 29,431 bp
216 circular contig with coverage that was 2.8X higher than average chromosomal coverage,

217 consistent with it being a plasmid (Figure 5a). The circular nature of the contig was verified by
218 conducting PCR across the predicted junction site (data not shown). The plasmid, designated
219 pAQZ1 (MK046687) henceforth, carrying *qacA4* contained the RepA replication initiation
220 protein with a RepA_N domain (pfam06970). Similar to other RepA_N family plasmids (26, 27),
221 the origin of replication of pAQZ1 is likely contained within *repA*. The plasmid also carried
222 several genes involved in heavy metal efflux including, *copZ*, *copA*, and *czcD*, the *knt* kanamycin
223 resistance gene, the *ble* bleomycin resistance gene, and an incomplete β -lactamase operon.

224

225 When pAQZ1 was compared to plasmid sequences deposited in GenBank, several regions of
226 pAQZ1 showed high sequence similarity (>99%) with previously characterized *S. aureus* and
227 coagulase-negative *Staphylococci* plasmids (CP017465 and CP023967). The complete sequence
228 of pAQZ1, however, did not fully align with any single, previously characterized *S. aureus* or
229 coagulase-negative *Staphylococci* plasmid. When queried against NCBI WGS, pAQZ1 showed
230 high sequence similarity and a query coverage of 68% and 86%, respectively, to two previously
231 sequenced contigs from two coagulase-negative *Staphylococcus* isolates (JZUM01000030.1 and
232 QSTD01000014.1).

233

234 *Curing analysis in vitro confirms qacA4 is responsible for the elevated CHG MICs*
235 Transformations of *S. epidermidis* TÜ1457 with pAQZ1 was attempted, but proved unsuccessful
236 (data not shown). Thus, to confirm the observed association between *qacA4* and the elevated
237 CHG MICs, we attempted to cure the *qacA4*-carrying, *smr*-negative *S. epidermidis* isolate 107.2
238 of the pAQZ1 plasmid. We took advantage of the ability of QacA to efflux ethidium bromide
239 (18) to screen for colonies which lost *qacA4*. Cells without *qacA4* accumulate ethidium bromide

240 in their cytoplasm and the resulting colonies fluoresce under UV radiation. Those retaining
241 *qacA4* do not accumulate ethidium bromide and thus, the resulting colonies do not fluoresce.

242

243 After 11 successive passages in trypticase soy broth without selection, an isolate cured of *qacA4*,
244 referred to as isolate 107.2_{cured}, was identified. The CHG MIC of 107.2_{cured} was four-fold lower
245 than that of 107.2 (Table 5). The 8-agent antimicrobial susceptibility profile of 107.2_{cured} was
246 identical to that of the parental strain (Table 5). Sequencing of the 107.2_{cured} (Table S1) revealed
247 recombination, presumably catalyzed by the recombinases on the plasmid, led to pAQZ1
248 eliminating an 11,934 bp segment and resulted in the formation of a new 17,497 bp plasmid.
249 This new plasmid, pAQZ2 (MK046688; Figure 5b), retained the RepA protein of pAQZ1. The
250 11.9 kb segment lost in 107.2_{cured} not only contained *qacA4*, but also the *knt* kanamycin
251 resistance gene, the *ble* bleomycin resistance gene, the partial β-lactamase operon, and several
252 recombinases (Figure 5c). PCR testing further confirmed isolate 107.2_{cured} lost the 11.9 kb
253 segment distinguishing pAQZ1 from pAQZ2 (data not shown). Isolate 107.2_{cured} contained one
254 coding change in its chromosome when compared to the 107.2 parental strain. This coding
255 change occurred in a GCN5-related N-acetyltransferase family protein (Gly225Glu).

256

257 With the exception of *qacA4*, each of the genes present on the segment lost in isolate 107.2_{cured}
258 was identified in at least one of the *qacA*-positive control isolates without elevated CHG MICs.
259 One of these *qacA*-positive isolates, 110.3, contained all of these other 11 genes contained on the
260 eliminated segment of pAQZ1.

261

262 *Isolates carrying qacA4 belong to the highly resistant and virulent S. epidermidis sequence type*
263 *ST2*

264 The isolates carrying *qacA4* harbored genes and mutations which confer resistance to several
265 classes of commonly prescribed antimicrobials (Figure 6). Additionally, all of the sequenced
266 *qacA4*-carrying isolates contained the biofilm formation operon, *icaADBC*. When classified by
267 multilocus sequence typing (MLST), all these isolates belonged to the *S. epidermidis* sequence
268 type ST2.

269

270 Five additional *qacAB₂₇₃*-positive isolates with elevated CHG MICs, but displaying discordant
271 susceptibility patterns (susceptible to methicillin, gentamicin, or erythromycin) were whole
272 genome sequenced (Table S1). Each of the isolates carried *qacA4* and belonged to ST2. The
273 divergent susceptibility patterns were explained by the absence of one or more resistance genes
274 (Figure 6).

275

276 *qacA4*-containing *S. epidermidis* isolates are distributed across North America
277 In total, 22 patients carried at least one cutaneous *S. epidermidis* isolate containing *qacA4* as
278 confirmed by sequencing or as presumed through the isolate's *qacAB₂₇₃*-positive RFLP pattern
279 and elevated CHG MIC. These 22 patients were enrolled at 14 study centers in 9 US states and 2
280 Canadian provinces (Figure 7). There was no obvious geographical clustering of the *qacA4*-
281 carrying isolates.

282

283 As shown in Figure 7, isolates containing *qacA4* existed outside of our study. A cutaneous *S.*
284 *epidermidis* isolate containing *qacA4* (Table S1) was obtained from a CHG bathing pilot study
285 (13) conducted at Seattle Children's Hospital. Four clinical *S. epidermidis* isolates containing
286 *qacA4* (SRA Accession Numbers: SRX761965, SRX762497, SRX762541, and SRX762777),
287 identified through a query of the NCBI Sequence Read Archive, were obtained from a previous

288 study (28) conducted at the University of Washington Medical Center. Susceptibility testing of
289 these isolates revealed that all had an elevated CHG MIC (4 µg/mL).

290

291 **Discussion**

292 In this study, we identified a novel *qacA* allele, termed *qacA4*, associated with an elevated CHG
293 MIC in cutaneous *S. epidermidis* isolates and determined *qacA4* was contained on the novel
294 pAQZ1 plasmid. We demonstrated *qacA4* was the determinant for the elevated CHG MIC by
295 curing an isolate of the gene. Additionally, our analyses revealed isolates carrying *qacA4*
296 displayed high rates of resistance to methicillin and other commonly prescribed antimicrobials,
297 including erythromycin, ciprofloxacin, gentamicin, and sulfamethoxazole/trimethoprim. Whole
298 genome sequencing revealed the isolates harbored several antimicrobial resistance determinants
299 and resistance-associated mutations. Our analyses further demonstrated these isolates contained
300 the chromosomally-encoded biofilm formation operon, *icaADBC* (2), and belonged to the highly
301 resistant and pathogenetic ST2 clone (29). We identified isolates proven or presumed to carry
302 *qacA4* from 22 patients enrolled in a multicenter, randomized controlled CHG bathing trial at 14
303 participating study centers across the United States and Canada. Furthermore, we identified
304 *qacA4* in clinical *S. epidermidis* isolates collected in a prior study at a center without patients
305 participating in our CHG bathing trial (28).

306

307 Previous studies have characterized three alleles of *qacA*: *qacA1*, *qacA2*, and *qacA3* (18, 21).
308 Additional studies, however, have suggested clinical and environmental *Staphylococcus* isolates
309 may carry novel alleles of *qacA* (30, 31). Our identification of multiple novel *qacA* alleles
310 supports this suggestion that considerably more *qacA* allelic variation exists within human
311 staphylococcal populations than previously appreciated.

312

313 The efflux pumps encoded by *qacA1*, *qacA2*, and *qacA3* do not exhibit any functional
314 differences (21). However, the efflux potential of QacA has been shown to vary with its amino
315 acid sequence (32–35). Despite this recognition, no studies have examined the functional
316 differences associated with the sequence variation of *qacA* observed in clinical and
317 environmental *Staphylococcus* isolates. As the CHG MIC of the *qacA4*-carrying isolates was
318 significantly higher than the CHG MICs of the isolates carrying other alleles of *qacA*, our results
319 suggest different alleles of *qacA* encode pumps with varying CHG efflux potentials. This is
320 further supported by our identification of 4 novel *qacA* alleles from the nine *S. epidermidis*
321 isolates with prototypical *qacA* restriction patterns and elevated CHG MICs. These novel alleles
322 indicate other unique mutations may result in elevated CHG MICs and further underscore the
323 importance of exploring the allelic variation of *qacA* in clinical and environmental
324 *Staphylococcus* isolates.

325

326 It is tempting to speculate which of the two amino acid substitutions in QacA4, Ala157Gly and
327 Ala378Val, is causal for the elevated CHG MIC observed in *qacA4*-carrying isolates. The
328 Ala378Val substitution is particularly suspect as this mutation occurs in transmembrane segment
329 12. Transmembrane segment 12 is noteworthy when discussing the CHG efflux potential of
330 QacA since a previous study demonstrated that this segment lines the CHG binding pocket (32).
331 The Ala157Gly substitution was identified in an *S. epidermidis* isolate with the prototypical *qacA*
332 RFLP pattern and an elevated CHG MIC. This may indicate the Ala157Gly substitution has a
333 more causal role in the elevated CHG MICs. Future *in vitro* characterizations examining the
334 structure-function relationship of the amino acid substitutions is merited.

335

336 Several studies have provided contradicting results as to whether the carriage of *qacA* influences
337 the CHG MIC of *Staphylococcus* isolates (16, 19, 24, 36–40). These studies, however, did not
338 distinguish between the *qacA* alleles carried by the isolates. Our findings highlight the
339 importance of specifying the *qacA* allele carried by isolates when examining associations with
340 CHG MICs: carriage of *qacA4*, as demonstrated by our curing analysis, results in a four-fold
341 increase in the CHG MIC of an isolate, while carriage of other alleles may not increase the CHG
342 MIC.

343

344 Screening for *qacA/B* has been used as a proxy for determining whether an isolate exhibits
345 reduced susceptibility or tolerance to CHG (39, 41–43), typically defined as a CHG MIC \geq 4
346 $\mu\text{g/mL}$ (16, 39). All isolates carrying *qacA4* had a CHG MIC of 4 $\mu\text{g/mL}$, compared to just
347 10.0% of all *qacA/B*-positive isolates. Thus, screening for *qacA4*, rather than indiscriminately
348 screening for *qacA/B*, may serve as a better indicator for reduced susceptibility to CHG in
349 *Staphylococcus* spp.

350

351 Similar to previously described plasmids carrying *qacA/B* (22), pAQZ1 carries several genes
352 involved in heavy metal efflux and a partial β -lactamase operon. As pAQZ1 only contains the β -
353 lactamase transcriptional regulators, *blaI* and *blaR* (44), it is unclear if carriage of the plasmid
354 influences β -lactam resistance. The kanamycin nucleotidyltransferase encoded by *knt* on pAQZ1
355 showed high sequence similarity to the kanamycin nucleotidyltransferase of *S. aureus* (X03408)
356 and may contribute to aminoglycoside resistance (45). Since the cured isolate also contained
357 other aminoglycoside resistant determinants, including *aac(6')-Ie/aph(2')-Ia* and *ant(4')-Ib*, we
358 were unable to assess the contribution of *knt* to aminoglycoside resistance.

359

360 All of the *qacA4*-carrying isolates we sequenced belonged to ST2, a *S. epidermidis* clone
361 frequently implicated in device-associated infections (5, 29, 46–49). Consistent with previous
362 studies (29, 46–48), our ST2 isolates contained genes and mutations which confer resistance to
363 several classes of commonly prescribed antimicrobials. Additionally, our isolates contained
364 genes associated with binding to foreign materials (5, 29), including the biofilm formation
365 operon *icaADBC*. These results suggest *qacA4* may allow the highly resistant *S. epidermidis* ST2
366 clone to better persist following topical application of CHG and thus, further succeed as an
367 opportunistic pathogen. However, as the concentration of CHG used in clinical settings (8, 10) is
368 much higher than tested *in vitro* (2,000 µg/mL versus 4 µg/mL), further study is required to fully
369 understand the clinical implications of carriage of *qacA4* by the ST2 clone.

370

371 Our results suggest *qacA4* is distributed in pediatric oncology populations at centers across the
372 United States and Canada. Four isolates carrying *qacA4* were also identified from a prior study
373 conducted at an institution without patients participating in our CHG bathing trial (28). These
374 four isolates were collected from patients in intensive care units where CHG bathing was
375 standard of care (Estella Whimbey, personal communication). With both the *S. epidermidis* ST2
376 clone and *qacA* widely disseminated throughout healthcare settings globally (29, 39), broader
377 screening may reveal *qacA4* follows this wide global distribution.

378

379 Our study was limited by the nature of the RFLP screening analysis. While our method of
380 screening for *qacA/B* allowed us to identify all the isolates with a mutation at positions 1131 to
381 1134, we were unable to easily detect the other novel *qacA* alleles that may have been present in
382 our study population. From just the 35 *qacA*-positive and *qacAB₂₇₃*-positive isolates we
383 sequenced, we identified 11 novel *qacA* alleles, and, as we demonstrated, at least one of these

384 alleles exhibits functional difference with respect to CHG efflux. This emphasizes the necessity
385 of using sequence to screen for allelic variation in resistance determinants, especially in those
386 determinants in which allelic variation has been underappreciated. Furthermore, reflecting the
387 difficulty of performing transformations in *Staphylococcus* spp. (50), we were unable to perform
388 a gain-of-function analysis for *qacA4* despite trying three different methods of preparing
389 electrocompetent cells and two separate electroporation conditions for each cell preparation.
390 Despite this limitation, we were able to perform a loss-of-function analysis to confirm the role of
391 *qacA4* in the elevated CHG MIC. It is remarkable that the loss-of-function was achieved by
392 recombination and that the cured isolate retained more than half of pAQZ1. Beyond *qacA4*, each
393 of the 11 other genes contained on the segment lost in the cured isolate may explain the four-fold
394 decrease in the CHG MIC exhibited by this cured isolate. Many of these genes, however, have
395 well-described functions unrelated to CHG efflux (44, 45, 51–53). Additionally, we identified
396 each of the other 11 genes in an isolate without an elevated CHG MIC. Thus, the decrease in the
397 CHG MIC observed in the cured isolate is most consistent with the loss of *qacA4*.

398
399 Our results highlight the importance of screening for allelic variation in *qacA*. Just as a single
400 SNV between *qacA* and *qacB* accounts for the differing substrate specificities of the resulting
401 efflux pumps (18), the three SNVs of *qacA4* are associated with a four-fold increase in the CHG
402 MIC. Further study should focus on understanding the functional differences of the various *qacA*
403 alleles identified in clinical and environmental *Staphylococcus* isolates. Moreover, our results
404 indicate the highly resistant *S. epidermidis* ST2 clone (29) carries *qacA4*. Future study is required
405 to understand if frequent usage of CHG selects for *qacA4* and this pathogenic clone of *S.*
406 *epidermidis*.

407

408 **Material and Methods**

409

410 **Collection and identification of cutaneous *Staphylococcus* isolates**

411 Skins swabs were obtained from patients between 2 months and 21 years of age undergoing
412 allogeneic hematopoietic cell transplantation or treatment for cancer who were enrolled in a
413 randomized double-blind placebo-controlled trial of CHG bathing versus control bathing
414 conducted at 37 centers in the United States and Canada from January 2014 to April 2017
415 (Children's Oncology Group ACCL1034). The study was approved by the National Cancer
416 Institute's Pediatric Central Institution Review Board as well as the local review boards at
417 participating institutions, if required.

418

419 Samples were obtained by swabbing a 3x3 cm area on the side or back of the neck and axilla
420 regions with a sterile nylon swab (Copan Diagnostics) for 20 seconds and transported in 1 mL of
421 the accompanying liquid Amies medium. The swab and Amies medium were vigorously
422 vortexed and the medium was plated on the following agar plates: Tryptic Soy with 5% Sheep's
423 Blood (Remel), Chocolate (Remel), Sabouraud Dextrose (Remel), MacConkey (Remel), and
424 Mannitol Salt (Remel). The plates were incubated at 35°C for 48 hours. *Staphylococcus* isolates
425 were identified via matrix-assisted laser desorption/ionization time of flight mass spectrometry
426 (MALDI-TOF MS).

427

428 Isolates were prepared for MALDI-TOF MS according to the manufacturer's Direct Transfer
429 Sample Preparation procedure (54). A MicroFlex LT mass spectrometer (Bruker Daltonics, Inc)
430 operated in the positive linear mode with FlexControl software (version 3.4, Bruker) was used to
431 obtain spectra. The resulting spectra were processed and classified using Biotyper software

432 (version 3.2, Bruker). Identification results were interpreted according to the manufacturer's
433 guidelines. The isolates, and the corresponding phenotypic information, included in the study are
434 presented in the Dataset S1.

435

436 Five additional *qacA4*-carrying isolates were obtained for phenotypic testing: one was collected
437 during a pilot study conducted at Seattle Children's Hospital (13), and the other four were
438 collected in a previous study at the University of Washington Medical Center (28).

439

440 **Antimicrobial susceptibility testing**

441 Following CLSI guidelines (55), susceptibility testing was performed by disk diffusion (Benton,
442 Dickinson, and Company) for the following antimicrobials: ERY (15 µg), CIP (5 µg), GEN (10
443 µg), LZD (30 µg), cefoxitin (FOX; 30 µg), RIF (5 µg), and SXT (23.75/1.25 µg). Additionally,
444 VAN (0.016 – 256 µg/mL) susceptibility testing was performed using the Etest (BioMérieux)
445 MIC method. FOX was used as a surrogate for methicillin susceptibility per CLSI guidelines
446 (55). Isolates were classified as resistant, intermediate, or susceptible to a given agent using the
447 breakpoints specified by CLSI (56).

448

449 CHG MICs (0.0625 – 64 µg/mL) were determined via the broth microdilution method (56, 57).
450 For the CHG MICs, the following strains were included as controls: *Pseudomonas aeruginosa*
451 ATCC 27853, *Staphylococcus aureus* ATCC 25923, *Staphylococcus epidermidis* (Laboratory
452 control strain) (13), *Escherichia coli* ATCC 25922.

453

454 **Detection of *qacA/B* and *smr***

455 Isolates were tested for the presence of *qacA/B* via PCR using AmpliTaq DNA Polymerase
456 (Applied Biosystems) following the manufacturer's instruction for the reaction mixture (58) with
457 the previously described primers and reaction conditions (21). To distinguish between *qacA* and
458 *qacB*, the PCR products were digested with *AluI* and the resulting fragments were visualized
459 with agarose gel electrophoresis (21). Control *qacA*-positive and *qacB*-positive strains were
460 obtained from Dr. Nobumichi Kobayashi.

461
462 Isolates were additionally screened for the presence of *smr* via PCR with the following primers:
463 F – 5'AAAACAATGCAACACCTACCCAC3' and R – 5'ATGCGATGTTCCGAAAATGT3'. The
464 following reactions conditions were used: an initial denaturation for 3 minutes at 95°C, followed
465 by 30 cycles of denaturation for 1 minute at 95°C, primer annealing for 30 seconds at 55°C, and
466 elongation for 1 minute at 72°C, and completed with a final elongation for 10 minutes at 72°C. A
467 control *smr*-positive strain was obtained from Dr. Arnold Bayer.

468
469 **Statistical testing**
470 Kruskal-Wallis or Wilcoxon rank-sum tests were used to assess differences in the distribution of
471 CHG MICs between *qac* groups. Fisher's exact test was used to assess the proportion of isolates
472 resistant to commonly used antimicrobials by *qac* group. All analyses were first performed on all
473 isolates and then repeated using one randomly chosen isolate per patient per *qac* group.
474 Analyses were performed using STATA version 14 (College Station, TX) and R version 3.3.2 (R
475 Core Team).

476
477 **Whole genome Sequencing**

478 In total, the genomes of 40 *Staphylococcus* spp. isolates were sequenced. An initial group of 10
479 *qacA*-positive, 4 *qacB*-positive, and 10 *qacAB*₂₇₃-positive isolates was selected for whole
480 genome sequencing. The pool of *qacA*-positive and *qacB*-positive isolates was restricted to
481 those identified as *S. epidermidis* since all of the *qacAB*₂₇₃-positive with an elevated CHG MIC
482 were identified as *S. epidermidis*. The pool of isolates was then further restricted to the first
483 *qacA*-positive isolate from 10 patients randomly chosen from the 91 patients with at least one
484 *qacA*-positive isolate, the first *qacAB*₂₇₃-positive isolate obtained from 10 patients randomly
485 chosen from the 24 patients with at least one *qacAB*₂₇₃-positive isolate, and the first *qacB*-
486 positive isolate from all 4 patients with at least one *qacB*-positive isolate. One of the initially
487 selected *qacAB*₂₇₃-positive isolates contained two alleles of *qacA*, with one being *qacA4*. As a
488 result, this isolate was excluded from all subsequent analyses. Additional isolates were selected
489 for whole genome sequencing based on their antimicrobial susceptibility phenotypes: 2
490 *qacAB*₂₇₃-positive isolates were chosen as they did not have elevated CHG MICs, 9 *qacA*-
491 positive isolates were selected as they had elevated CHG MICs, and 5 *qacAB*₂₇₃-positive isolates
492 were chosen as they had discordant antimicrobial susceptibility patterns (susceptible to FOX,
493 GEN, or ERY).

494

495 Isolates were grown in Brain Heart Infusion broth (Remel) for 24 hours at 37°C at a constant
496 shaking of 150 rpm. DNA was extracted from these isolates using the QIAamp DNA Mini Kit
497 (Qiagen) while following the manufacturer's protocol for isolating DNA from Gram-positive
498 bacteria (59). An initial cell lysis step was completed using a 200 µg/mL lysostaphin solution
499 (Sigma-Aldrich).

500

501 Libraries were prepared with the KAPA Hyper Prep Kit. Isolates were sequenced to at least 27X
502 coverage using 2x300 bp Illumina MiSeq runs. De novo assemblies were constructed with
503 SPAdes, annotated via prokka, and visualized using Geneious v.10.2.3.

504
505 Multilocus sequence typing was completed by uploading the assemblies to PubMLST's
506 *Staphylococcus epidermidis* MLST website (<https://pubmlst.org/sepidermidis/>) (60). Resistance
507 genes, limited to only those matching "Perfect" and "Strict" criteria, were detected with the
508 Comprehensive Antibiotic Resistance Database's Resistance Gene Identifier
509 (<https://card.mcmaster.ca/analyze/rgi>) (61). The sequence of the DNA gyrase A protein in our
510 isolates was compared with the DNA gyrase A protein of *S. epidermidis* ATCC12228
511 (AE015929), a ciprofloxacin-sensitive strain, to determine the identity of the residue at position
512 84. Isolates containing the Ser84Phe mutation were determined to contain a *gyrA* gene conferring
513 resistance to fluoroquinolones (62). The assemblies were additionally screened for virulence
514 genes including *icaADBC* (U43366), *aap* (KJ920749), and *bhp* (AY028618).

515
516 **Curing of *qacA4***
517 An isolate carrying *qacA4*, 107.2, was selected for the curing analysis as this isolate did not
518 contain *smr*, which can efflux ethidium bromide. The isolate was successively passaged in
519 Tryptic Soy broth (Remel) in four separate curing conditions: No Selection – incubated for 24
520 hours at 37°C at a constant shaking of 150 rpm; Increased Temperature – incubated for 24 hours
521 at 42°C; Increasing Sub-Inhibitory Concentrations of Sodium Dodecyl Sulfate (Sigma-Aldrich) –
522 incubated for 24 hours at 37°C at a constant shaking of 150 rpm with 0.001% to 0.01% sodium
523 dodecyl sulfate; and Increasing Sub-Inhibitory Concentrations of Novobiocin (Sigma-Aldrich) –

524 incubated for 24 hours at 37°C at a constant shaking of 150 rpm with 0.01 µg/mL to 0.1 µg/mL
525 novobiocin.

526

527 After each passage, broths were plated onto Tryptic Soy agar plates (Remel) containing 0.375
528 µg/mL of filter-sterilized ethidium bromide (VWR). The plates were incubated at 35°C for 48
529 hours. Screening for cured strains was completed with ultraviolet light as previously described
530 (37). PCR was used to confirm the cured strain eliminated *qacA4*. Whole genome sequencing
531 was used to confirm the cured strain contained minimal chromosomal mutations as compared to
532 the parental strain.

533

534 Three PCR reactions were conducted on the plasmids predicted from whole genome sequencing
535 of the isolates. To confirm the circular nature of the contig presumed to be a plasmid, PCR was
536 conducted with the following primers: F – 5'GGCTACTGTTTTACCTACACCACC3' and
537 R – 5'GCATACATAACCTTGCAGTTGTC3'. To confirm curing resulted in the
538 formation of a novel plasmid, PCR was conducted with the following primers: F –
539 5'CCATTGTGGCGTCATTCACGGC3' and R – 5'CGGCGAAATCCTTGAGCCATATCTG3'
540 and F – 5'GAAGAATCTGTAGTGGCGCTG3' and R –
541 5'GATGAAAGTTGCTACTAGTGCTCC3'. The following reactions conditions were used: an
542 initial denaturation for 3 minutes at 95°C, followed by 30 cycles of denaturation for 1 minute at
543 95°C, primer annealing for 30 seconds at 53°C, 57°C, or 52°C, respectively, and elongation for 1
544 minute at 72°C, and completed with a final elongation for 10 minutes at 72°C.

545

546 **Transformation of pAQZ1 into *S. epidermidis* TÜ1457**

547 In preparation for the extraction of the pAQZ1 plasmid, the *qacA4*-carrying *S. epidermidis*
548 isolate 107.2 was grown Tryptic Soy Broth (Remel) for 24 hours at 37°C at a constant shaking of
549 150 rpm. The plasmid was extracted using the QIAprep Spin Miniprep Kit (Qiagen) following
550 the manufacturer's instructions (63).

551

552 The pan-susceptible *S. epidermidis* TÜ1457 strain (64) was used for the transformations. Three
553 previously described methods were used for preparing electrocompetent cells (50, 65, 66). For
554 electroporation, 100 µL of the prepared cells were mixed with 100 ng of pAQZ1 DNA in a 1-
555 mm electroporation cuvette (Bio-Rad). Two electroporation conditions were used for each
556 preparation of electrocompetent cells: 21 kV/cm, 100 Ω, and 25 µF; and 23 kV/cm, 100 Ω, and
557 25 µF. The pulsed cells were resuspended 1000 µL of broth, with the type of broth being
558 selected based on the previously described methods, and incubated at 37°C at a constant shaking
559 for 150 rpm for 1 hour. The cells were plated onto Tryptic Soy Agar plates (Remel) containing
560 either 2 µg/mL CHG (Sigma-Aldrich), 15 µg/mL ethidium bromide (VWR), or 10 µg/mL of
561 kanamycin (Sigma-Aldrich) and incubated overnight at 37°C.

562

563 **Accession Numbers**

564 The sequence of *qacA4* was deposited in GenBank under accession number MK040360. The
565 accession numbers for the additional 10 novel *qacA* alleles identified in this study are listed in
566 Table S2. The sequences of pAQZ1 and pAQZ2 were deposited under accession numbers
567 MK046687 and MK046688, respectively. Draft genome assemblies are available in GenBank
568 under the study accession PRJNA415995. The accession numbers, as well as the phenotypic
569 data, for the individual isolates sequenced are displayed in Table S1.

570 **Acknowledgments:**

571 The authors would like to thank the patients who agreed to participate in this study as well as
572 the research teams at all the involved sites and the ACCL1034 committee. The authors would
573 also like to thank Dr. Stephen Salipante for sharing previously collected bacterial isolates, Dr.
574 Paul Fey for providing the *S. epidermidis* TÜ1457 strain, Dr. Nobumichi Kobayashi for
575 supplying the *qacA/B*-positive control strains, and Dr. Arnold Bayer for sharing the *smr*-positive
576 control strain.

577

578 This work was supported by the National Cancer Institute at the National Institutes of Health
579 [R01CA163394 and UG1CA189955]. The content is solely the responsibility of the authors and
580 does not necessarily represent the official views of the National Institutes of Health.

581 The research was also supported by St. Baldrick's Foundation.

582 **References**

583

584 1. Becker K, Heilmann C, Peters G. 2014. Coagulase-Negative Staphylococci. *Clinical Microbiology*

585 *Reviews* 27:870–926.

586 2. Gerke C, Kraft A, Süssmuth R, Schweitzer O, Götz F. 1998. Characterization of the N-

587 acetylglucosaminyltransferase activity involved in the biosynthesis of the *Staphylococcus*

588 *epidermidis* polysaccharide intercellular adhesin. *J Biol Chem* 273:18586–18593.

589 3. Fey PD, Olson ME. 2010. Current concepts in biofilm formation of *Staphylococcus epidermidis*.

590 *Future Microbiology* 5:917–933.

591 4. Hussain M, Herrmann M, von Eiff C, Perdreau-Remington F, Peters G. 1997. A 140-kilodalton

592 extracellular protein is essential for the accumulation of *Staphylococcus epidermidis* strains on

593 surfaces. *Infect Immun* 65:519–524.

594 5. Otto M. 2009. *Staphylococcus epidermidis* — the “accidental” pathogen. *Nature Reviews*

595 *Microbiology* 7:555–567.

596 6. Diekema DJ, Pfaller MA, Schmitz FJ, Smayevsky J, Bell J, Jones RN, Beach M,

597 SENTRY Participants Group. 2001. Survey of Infections Due to *Staphylococcus* Species: Frequency

598 of Occurrence and Antimicrobial Susceptibility of Isolates Collected in the United States, Canada,

599 Latin America, Europe, and the Western Pacific Region for the SENTRY Antimicrobial Surveillance

600 Program, 1997–1999. *Clinical Infectious Diseases* 32:S114–S132.

601 7. Edmiston CE, Bruden B, Rucinski MC, Henen C, Graham MB, Lewis BL. 2013. Reducing the risk of
602 surgical site infections: Does chlorhexidine gluconate provide a risk reduction benefit? American
603 Journal of Infection Control 41:S49–S55.

604 8. Milstone AM, Elward A, Song X, Zerr DM, Orscheln R, Speck K, Obeng D, Reich NG, Coffin SE, Perl
605 TM. 2013. Daily chlorhexidine bathing to reduce bacteraemia in critically ill children: a multicentre,
606 cluster-randomised, crossover trial. The Lancet 381:1099–1106.

607 9. Bleasdale SC, Trick WE, Gonzalez IM, Lyles RD, Hayden MK, Weinstein RA. 2007. Effectiveness of
608 Chlorhexidine Bathing to Reduce Catheter-Associated Bloodstream Infections in Medical Intensive
609 Care Unit Patients. Archives of Internal Medicine 167:2073.

610 10. Climo MW, Yokoe DS, Warren DK, Perl TM, Bolon M, Herwaldt LA, Weinstein RA, Sepkowitz KA,
611 Jernigan JA, Sanogo K, Wong ES. 2013. Effect of Daily Chlorhexidine Bathing on Hospital-Acquired
612 Infection. New England Journal of Medicine 368:533–542.

613 11. Mimoz O, Karim A, Mercat A, Cosseron M, Falissard B, Parker F, Richard C, Samii K, Nordmann P.
614 1999. Chlorhexidine compared with povidone-iodine as skin preparation before blood culture. A
615 randomized, controlled trial. Ann Intern Med 131:834–837.

616 12. Marlowe L, Mistry RD, Coffin S, Leckerman KH, McGowan KL, Dai D, Bell LM, Zaoutis T. 2010. Blood
617 Culture Contamination Rates after Skin Antisepsis with Chlorhexidine Gluconate versus Povidone-
618 Iodine in a Pediatric Emergency Department. Infection Control & Hospital Epidemiology 31:171–
619 176.

620 13. Soma V, Qin X, Zhou C, Adler A, Berry J, Zerr D. 2012. The effects of daily chlorhexidine bathing on
621 cutaneous bacterial isolates: a pilot study. Infection and Drug Resistance 75–78.

622 14. Vernon MO, Hayden MK, Trick WE, Hayes RA, Blom DW, Weinstein RA. 2006. Chlorhexidine
623 Gluconate to Cleanse Patients in a Medical Intensive Care Unit: The Effectiveness of Source Control
624 to Reduce the Bioburden of Vancomycin-Resistant Enterococci. *Archives of Internal Medicine*
625 166:306.

626 15. Block C, Furman M. 2002. Association between intensity of chlorhexidine use and micro-organisms
627 of reduced susceptibility in a hospital environment. *J Hosp Infect* 51:201–206.

628 16. Wang J-T, Sheng W-H, Wang J-L, Chen D, Chen M-L, Chen Y-C, Chang S-C. 2008. Longitudinal
629 analysis of chlorhexidine susceptibilities of nosocomial methicillin-resistant *Staphylococcus aureus*
630 isolates at a teaching hospital in Taiwan. *Journal of Antimicrobial Chemotherapy* 62:514–517.

631 17. Vali L, Davies SE, Lai LLG, Dave J, Amyes SGB. 2008. Frequency of biocide resistance genes,
632 antibiotic resistance and the effect of chlorhexidine exposure on clinical methicillin-resistant
633 *Staphylococcus aureus* isolates. *Journal of Antimicrobial Chemotherapy* 61:524–532.

634 18. Paulsen IT, Brown MH, Littlejohn TG, Mitchell BA, Skurray RA. 1996. Multidrug resistance proteins
635 QacA and QacB from *Staphylococcus aureus*: membrane topology and identification of residues
636 involved in substrate specificity. *Proceedings of the National Academy of Sciences* 93:3630–3635.

637 19. Mitchell BA, Brown MH, Skurray RA. 1998. QacA multidrug efflux pump from *Staphylococcus*
638 *aureus*: comparative analysis of resistance to diamidines, biguanidines, and guanylhydrazones.
639 *Antimicrob Agents Chemother* 42:475–477.

640 20. Brown MH, Skurray RA. 2001. Staphylococcal multidrug efflux protein QacA. *J Mol Microbiol*
641 *Biotechnol* 3:163–170.

642 21. Alam MM, Kobayashi N, Uehara N, Watanabe N. 2003. Analysis on Distribution and Genomic
643 Diversity of High-Level Antiseptic Resistance Genes *qacA* and *qacB* in Human Clinical Isolates of
644 *Staphylococcus aureus*. *Microbial Drug Resistance* 9:109–121.

645 22. Leelaporn A, Paulsen IT, Tennent JM, Littlejohn TG, Skurray RA. 1994. Multidrug resistance to
646 antiseptics and disinfectants in coagulase-negative staphylococci. *Journal of Medical Microbiology*
647 40:214–220.

648 23. Paulsen IT, Brown MH, Dunstan SJ, Skurray RA. 1995. Molecular characterization of the
649 staphylococcal multidrug resistance export protein QacC. *Journal of Bacteriology* 177:2827–2833.

650 24. Littlejohn TG, Paulsen IT, Gillespie MT, Tennent JM, Midgley M, Jones IG, Purewal AS, Skurray RA.
651 1992. Substrate specificity and energetics of antiseptic and disinfectant resistance in
652 *Staphylococcus aureus*. *FEMS Microbiol Lett* 74:259–265.

653 25. Bjorland J, Sunde M, Waage S. 2001. Plasmid-Borne *smr* Gene Causes Resistance to Quaternary
654 Ammonium Compounds in Bovine *Staphylococcus aureus*. *Journal of Clinical Microbiology*
655 39:3999–4004.

656 26. Weaver KE, Kwong SM, Firth N, Francia MV. 2009. The RepA_N replicons of Gram-positive bacteria:
657 A family of broadly distributed but narrow host range plasmids. *Plasmid* 61:94–109.

658 27. Kwong SM, Ramsay JP, Jensen SO, Firth N. 2017. Replication of Staphylococcal Resistance Plasmids.
659 *Frontiers in Microbiology* 8.

660 28. Roach DJ, Burton JN, Lee C, Stackhouse B, Butler-Wu SM, Cookson BT, Shendure J, Salipante SJ.
661 2015. A Year of Infection in the Intensive Care Unit: Prospective Whole Genome Sequencing of

662 Bacterial Clinical Isolates Reveals Cryptic Transmissions and Novel Microbiota. PLOS Genetics
663 11:e1005413.

664 29. Schoenfelder SMK, Lange C, Eckart M, Hennig S, Kozytska S, Ziebuhr W. 2010. Success through
665 diversity – How *Staphylococcus epidermidis* establishes as a nosocomial pathogen. International
666 Journal of Medical Microbiology 300:380–386.

667 30. Wassenaar T, Ussery D, Nielsen L, Ingmer H. 2015. Review and phylogenetic analysis of *qac* genes
668 that reduce susceptibility to quaternary ammonium compounds in *Staphylococcus* species.
669 European Journal of Microbiology and Immunology 5:44–61.

670 31. Hijazi K, Mukhopadhyal, Abbott F, Milne K, Al-Jabri ZJ, Oggioni MR, Gould IM. 2016. Susceptibility
671 to chlorhexidine amongst multidrug-resistant clinical isolates of *Staphylococcus epidermidis* from
672 bloodstream infections. International Journal of Antimicrobial Agents 48:86–90.

673 32. Hassan KA, Skurray RA, Brown MH. 2007. Transmembrane Helix 12 of the *Staphylococcus aureus*
674 Multidrug Transporter QacA Lines the Bivalent Cationic Drug Binding Pocket. Journal of
675 Bacteriology 189:9131–9134.

676 33. Wu J, Hassan KA, Skurray RA, Brown MH. 2008. Functional analyses reveal an important role for
677 tyrosine residues in the staphylococcal multidrug efflux protein QacA. BMC Microbiology 8:147.

678 34. Hassan KA, Galea M, Wu J, Mitchell BA, Skurray RA, Brown MH. 2006. Functional effects of
679 intramembranous proline substitutions in the staphylococcal multidrug transporter QacA. FEMS
680 Microbiology Letters 263:76–85.

681 35. Xu Z, O'Rourke BA, Skurray RA, Brown MH. 2006. Role of Transmembrane Segment 10 in Efflux
682 Mediated by the Staphylococcal Multidrug Transport Protein QacA. *Journal of Biological Chemistry*
683 281:792–799.

684 36. Sheng W-H, Wang J-T, Lauderdale T-L, Weng C-M, Chen D, Chang S-C. 2009. Epidemiology and
685 susceptibilities of methicillin-resistant *Staphylococcus aureus* in Taiwan: emphasis on
686 chlorhexidine susceptibility. *Diagnostic Microbiology and Infectious Disease* 63:309–313.

687 37. Costa SS, Ntokou E, Martins A, Viveiros M, Pournaras S, Couto I, Amaral L. 2010. Identification of
688 the plasmid-encoded *qacA* efflux pump gene in methicillin-resistant *Staphylococcus aureus* (MRSA)
689 strain HPV107, a representative of the MRSA Iberian clone. *International Journal of Antimicrobial
690 Agents* 36:557–561.

691 38. Skovgaard S, Larsen MH, Nielsen LN, Skov RL, Wong C, Westh H, Ingmer H. 2013. Recently
692 introduced *qacA/B* genes in *Staphylococcus epidermidis* do not increase chlorhexidine MIC/MBC.
693 *Journal of Antimicrobial Chemotherapy*.

694 39. Horner C, Mawer D, Wilcox M. 2012. Reduced susceptibility to chlorhexidine in staphylococci: is it
695 increasing and does it matter? *Journal of Antimicrobial Chemotherapy* 67:2547–2559.

696 40. Hayden MK, Lolans K, Haffenreffer K, Avery TR, Kleinman K, Li H, Kaganov RE, Lankiewicz J, Moody
697 J, Septimus E, Weinstein RA, Hickok J, Jernigan J, Perlin JB, Platt R, Huang SS. 2016. Chlorhexidine
698 and Mupirocin Susceptibility of Methicillin-Resistant *Staphylococcus aureus* Isolates in the
699 REDUCE-MRSA Trial. *Journal of Clinical Microbiology* 54:2735–2742.

700 41. McClure J-A, Zaal DeLongchamp J, Conly JM, Zhang K. 2017. Novel Multiplex PCR Assay for
701 Detection of Chlorhexidine-Quaternary Ammonium, Mupirocin, and Methicillin Resistance Genes,

702 with Simultaneous Discrimination of *Staphylococcus aureus* from Coagulase-Negative
703 *Staphylococci*. *Journal of Clinical Microbiology* 55:1857–1864.

704 42. Noguchi N. 2005. Susceptibilities to antiseptic agents and distribution of antiseptic-resistance
705 genes *qacA/B* and *smr* of methicillin-resistant *Staphylococcus aureus* isolated in Asia during 1998
706 and 1999. *Journal of Medical Microbiology* 54:557–565.

707 43. Warren DK, Prager M, Munigala S, Wallace MA, Kennedy CR, Bommarito KM, Mazuski JE, Burnham
708 C-AD. 2016. Prevalence of *qacA/B* Genes and Mupirocin Resistance Among Methicillin-Resistant
709 *Staphylococcus aureus* (MRSA) Isolates in the Setting of Chlorhexidine Bathing Without Mupirocin.
710 *Infection Control & Hospital Epidemiology* 37:590–597.

711 44. Hackbart CJ, Chambers HF. 1993. *blaI* and *blaR1* regulate beta-lactamase and PBP 2a production
712 in methicillin-resistant *Staphylococcus aureus*. *Antimicrob Agents Chemother* 37:1144–1149.

713 45. Pedersen LC, Benning MM, Holden HM. 1995. Structural investigation of the antibiotic and ATP-
714 binding sites in kanamycin nucleotidyltransferase. *Biochemistry* 34:13305–13311.

715 46. Li M, Wang X, Gao Q, Lu Y. 2009. Molecular characterization of *Staphylococcus epidermidis* strains
716 isolated from a teaching hospital in Shanghai, China. *Journal of Medical Microbiology* 58:456–461.

717 47. Iorio NLP, Caboclo RF, Azevedo MB, Barcellos AG, Neves FPG, Domingues RMCP, dos Santos KRN.
718 2012. Characteristics related to antimicrobial resistance and biofilm formation of widespread
719 methicillin-resistant *Staphylococcus epidermidis* ST2 and ST23 lineages in Rio de Janeiro hospitals,
720 Brazil. *Diagnostic Microbiology and Infectious Disease* 72:32–40.

721 48. Hellmark B, Söderquist B, Unemo M, Nilsson-Augustinsson Å. 2013. Comparison of
722 *Staphylococcus epidermidis* isolated from prosthetic joint infections and commensal isolates in

723 regard to antibiotic susceptibility, agr type, biofilm production, and epidemiology. International
724 Journal of Medical Microbiology 303:32–39.

725 49. Widerström M, McCullough CA, Coombs GW, Monsen T, Christiansen KJ. 2012. A Multidrug-
726 Resistant *Staphylococcus epidermidis* Clone (ST2) Is an Ongoing Cause of Hospital-Acquired
727 Infection in a Western Australian Hospital. Journal of Clinical Microbiology 50:2147–2151.

728 50. Monk IR, Shah IM, Xu M, Tan M-W, Foster TJ. 2012. Transforming the Untransformable:
729 Application of Direct Transformation To Manipulate Genetically *Staphylococcus aureus* and
730 *Staphylococcus epidermidis*. mBio 3.

731 51. Grkovic S, Brown MH, Roberts NJ, Paulsen IT, Skurray RA. 1998. QacR is a repressor protein that
732 regulates expression of the *Staphylococcus aureus* multidrug efflux pump QacA. J Biol Chem
733 273:18665–18673.

734 52. Novick RP. 1989. Staphylococcal Plasmids and their Replication. Annual Review of Microbiology
735 43:537–563.

736 53. Sugiyama M, Kumagai T, Matsuo H, Bhuiyan MZ, Ueda K, Mochizuki H, Nakamura N, Davies JE.
737 1995. Overproduction of the bleomycin-binding proteins from bleomycin-producing *Streptomyces*
738 *verticillus* and a methicillin-resistant *Staphylococcus aureus* in *Escherichia coli* and their
739 immunological characterisation. FEBS Lett 362:80–84.

740 54. Bruker Daltonics. 2015. Instructions for Use Bruker Matrix HCCA.

741 55. CLSI. 2018. Performance Standards for Antimicrobial Disk Susceptibility Tests (M100).

742 56. CLSI. 2012. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow
743 Aerobically (M07-A9).

744 57. CLSI. 1999. Methods for Determining Bactericidal Activity of Antimicrobial Agents (M26-A).

745 58. Applied Biosystems. 2014. AmpliTaq DNA Polymerase Protocol.

746 59. QIAGEN. 2016. QIAamp® DNA Mini and Blood Mini Handbook.

747 60. Jolley KA, Bray JE, Maiden MCJ. 2018. Open-access bacterial population genomics: BIGSdb
748 software, the PubMLST.org website and their applications. Wellcome Open Research 3:124.

749 61. Jia B, Raphenya AR, Alcock B, Waglechner N, Guo P, Tsang KK, Lago BA, Dave BM, Pereira S, Sharma
750 AN, Doshi S, Courtot M, Lo R, Williams LE, Frye JG, Elsayegh T, Sardar D, Westman EL, Pawlowski
751 AC, Johnson TA, Brinkman FSL, Wright GD, McArthur AG. 2017. CARD 2017: expansion and model-
752 centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Research
753 45:D566–D573.

754 62. Sreedharan S, Peterson LR, Fisher LM. 1991. Ciprofloxacin resistance in coagulase-positive and -
755 negative staphylococci: role of mutations at serine 84 in the DNA gyrase A protein of
756 *Staphylococcus aureus* and *Staphylococcus epidermidis*. Antimicrob Agents Chemother 35:2151–
757 2154.

758 63. QIAGEN. 2015. QIAprep® Spin Miniprep Kit.

759 64. Galac MR, Stam J, Maybank R, Hinkle M, Mack D, Rohde H, Roth AL, Fey PD. 2017. Complete
760 Genome Sequence of *Staphylococcus epidermidis* 1457. Genome Announcements 5.

761 65. Andreote FD, Gullo MJM, de Souza Lima AO, Júnior WM, Azevedo JL, Araújo WL. 2004. Impact of
762 genetically modified *Enterobacter cloacae* on indigenous endophytic community of *Citrus sinensis*
763 seedlings. J Microbiol 42:169–173.

764 66. Schenk S, Laddaga RA. 1992. Improved method for electroporation of *Staphylococcus aureus*.

765 FEMS Microbiol Lett 73:133–138.

766

767

768 **Legends/Tables**

769

770 **Table 1.** Overview of the cutaneous *Staphylococcus* isolates (n = 1050) included in this study.

MALDI Identification	Total	Percent
<i>S. aureus</i>	30	2.9%
Coagulase Negative <i>Staphylococcus</i>	1020	97.1%
<i>S. epidermidis</i>	558	53.1%
<i>S. hominis</i>	267	25.4%
<i>S. capitis</i>	62	5.9%
<i>S. warneri</i>	47	4.5%
<i>S. haemolyticus</i>	22	2.1%
<i>S. pasteuri</i>	16	1.5%
<i>S. saprophyticus</i>	9	0.9%
<i>S. ludgunensis</i>	8	0.8%
<i>S. cohnii</i>	4	0.4%
<i>S. caprae</i>	4	0.4%
<i>S. pettenkoferi</i>	4	0.4%
<i>S. condiment</i>	3	0.3%
<i>S. schleiferi</i>	3	0.3%
<i>S. simulans</i>	3	0.3%
<i>S. auricularis</i>	2	0.2%
<i>S. equorum</i>	2	0.2%
<i>S. sciuri</i>	1	0.1%
<i>S. xylosus</i>	1	0.1%
<i>Staphylococcus</i> sp.	4	0.4%

771

772 **Table 2.** Comparison of the CHG MIC distributions, measured in $\mu\text{g/mL}$, of the *qacA*-positive,
773 *qacB*-positive, *qacAB₂₇₃*-positive, and *qacA/B*-negative isolates and the CHG MIC distributions
774 of the *smr*-positive and *smr*-negative isolates.

	<i>qacA</i>	<i>qacB</i>	<i>qacAB₂₇₃</i>	<i>qacA/B</i> -	<i>smr</i> +	<i>smr</i> -
Total Isolates	559	17	56	418	279	771
<i>MIC₅₀</i>	1	1	4	1	1	1
<i>MIC₉₀</i>	2	1	4	1	2	1
Range	0.5 – 4	0.25 – 2	0.5 – 4	0.125 – 2	0.25 – 4	0.125 – 4

775

776 **Table 3.** Comparison of the CHG MIC distributions, measured in $\mu\text{g/mL}$, associated with the
777 eight CHG resistance gene combinations detected in our isolates.

	<i>qacA</i> <i>smr</i> +	<i>qacA</i> <i>smr</i> -	<i>qacB</i> <i>smr</i> +	<i>qacB</i> <i>smr</i> -	<i>qacAB</i> ₂₇₃ <i>smr</i> +	<i>qacAB</i> ₂₇₃ <i>smr</i> -	<i>qacA/B</i> - <i>smr</i> +	<i>qacA/B</i> - <i>smr</i> -
Total Isolates	101	458	5	12	50	6	123	295
MIC ₅₀	1	1	1	0.75	4	4	0.5	1
MIC ₉₀	2	2	1.6	1	4	4	1	1
Range	0.5 - 4	0.5 - 4	0.5 - 2	0.25 - 1	4 - 4	0.5 - 4	0.25 - 1	0.125 - 2

778

779 **Table 4.** Comparison of the proportion of *qacA*-positive, *qacB*-positive, *qacAB*₂₇₃-positive, and
780 *qacA/B*-negative isolates resistant to commonly prescribed antimicrobials: cefoxitin (FOX),
781 erythromycin (ERY), ciprofloxacin (CIP), gentamicin (GEN), sulfamethoxazole/trimethoprim
782 (SXT), linezolid (LZD), rifampin (RIF), and vancomycin (VAN).

Antimicrobial	<i>qacA</i>	<i>qacB</i>	<i>qacAB</i> ₂₇₃	<i>qacA/B</i> -
FOX*	61.7	52.9	96.4	22.7
ERY*	76.0	88.2	92.9	30.1
CIP*	25.0	5.9	96.4	8.4
GEN*	15.0	0	89.3	2.6
SXT*	60.1	35.3	98.2	22.7
LZD	0	0	0	0
RIF	0.9	0	0	0
VAN	0	0	0	0

783 * P-value <0.001 for all comparisons. Results were generated using all isolates; results did not change when restricting analyses to one randomly
784 chosen isolate per patient per *qacA/B* group.

785

786

787 **Table 5.** Comparison of the CHG resistance gene combinations and resistance patterns of
788 isolates 107.2 and 107.2_{cured}. The CHG MIC is measured in $\mu\text{g/mL}$. “R” denotes the isolate is
789 resistant to the specified antimicrobial and “S” indicates the isolate is susceptible to the specified
790 antimicrobial.

791

Isolate	MADLI ID	qacA4?	smr?	CHG MIC	FOX	ERY	CIP	GEN	SXT	LZD	RIF	VAN
107.2	S. <i>epidermidis</i>	Yes	No	4	R	R	R	R	R	S	S	S
107.2 _{cured}	S. <i>epidermidis</i>	No	No	1	R	R	R	R	R	S	S	S

792

793

794 **Figure 1.** CHG MIC distribution of the 1050 cutaneous *Staphylococcus* isolates included in our
795 study grouped by a) species, b) *qacA/B* PCR and RFLP patterns, and c) *smr* PCR results. The
796 dashed line indicates the concentration we defined as an elevated CHG MIC ($\geq 4 \mu\text{g/mL}$).

797

798 **Figure 2.** RFLP patterns observed from the AluI restriction digest of the *qacA/B* PCR amplicon.
799 Isolates were classified as *qacA*-positive, *qacAB₂₇₃*-positive, or *qacB*-positive based on the
800 presence of a 198 bp, 273 bp, or 165 bp fragment, respectively (Alam et al., 2003). Ladder: 100
801 bp (Promega).

802

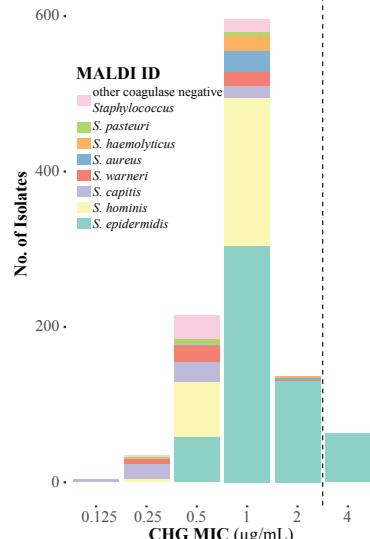
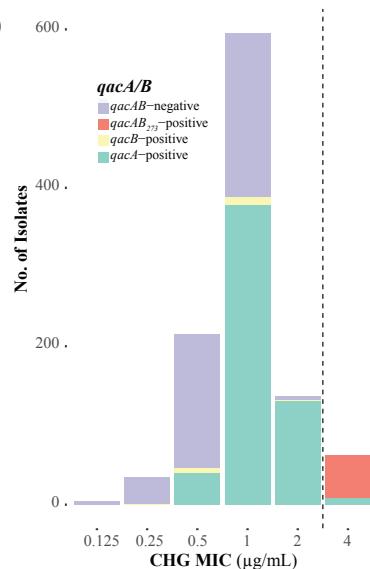
803 **Figure 3.** Comparison of a) the sequence of *qacA4* (MK040360), a reference *qacA* sequence
804 (AB566410), and a reference *qacB* sequence (AF053772). The associated AluI restriction sites
805 are shown below the nucleotide sequences and the corresponding amino acid sequences are
806 displayed in the boxes above the nucleotide sequences. Structure of b) the predicted efflux pump
807 encoded by *qacA4*, adapted from previous representations of QacA (Paulsen et al., 1996) (Brown
808 et al., 1998). The residues which distinguish QacA4 from the reference QacA are highlighted in
809 red. Those which distinguish QacA from QacB are displayed in blue.

810

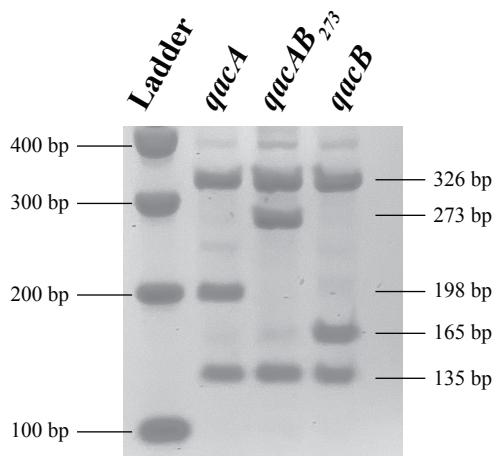
811 **Figure 4.** Comparison of the sequences of *qacA4* (MK040360), *qacA5* (MK040361), and *qacA6*
812 (MK040362) and the reference *qacA* sequence (AB566410). The associated *AluI* restriction sites
813 are shown below the nucleotide sequences and the corresponding amino acid sequences are
814 displayed in the boxes above the nucleotide sequences. The nucleotides which distinguish *qacA4*
815 from the reference *qacA*, *qacA5*, and *qacA6* are highlighted in red. Those which distinguish
816 *qacA5* and/or *qacA6* from *qacA4* and the reference *qacA* are displayed in green.

817

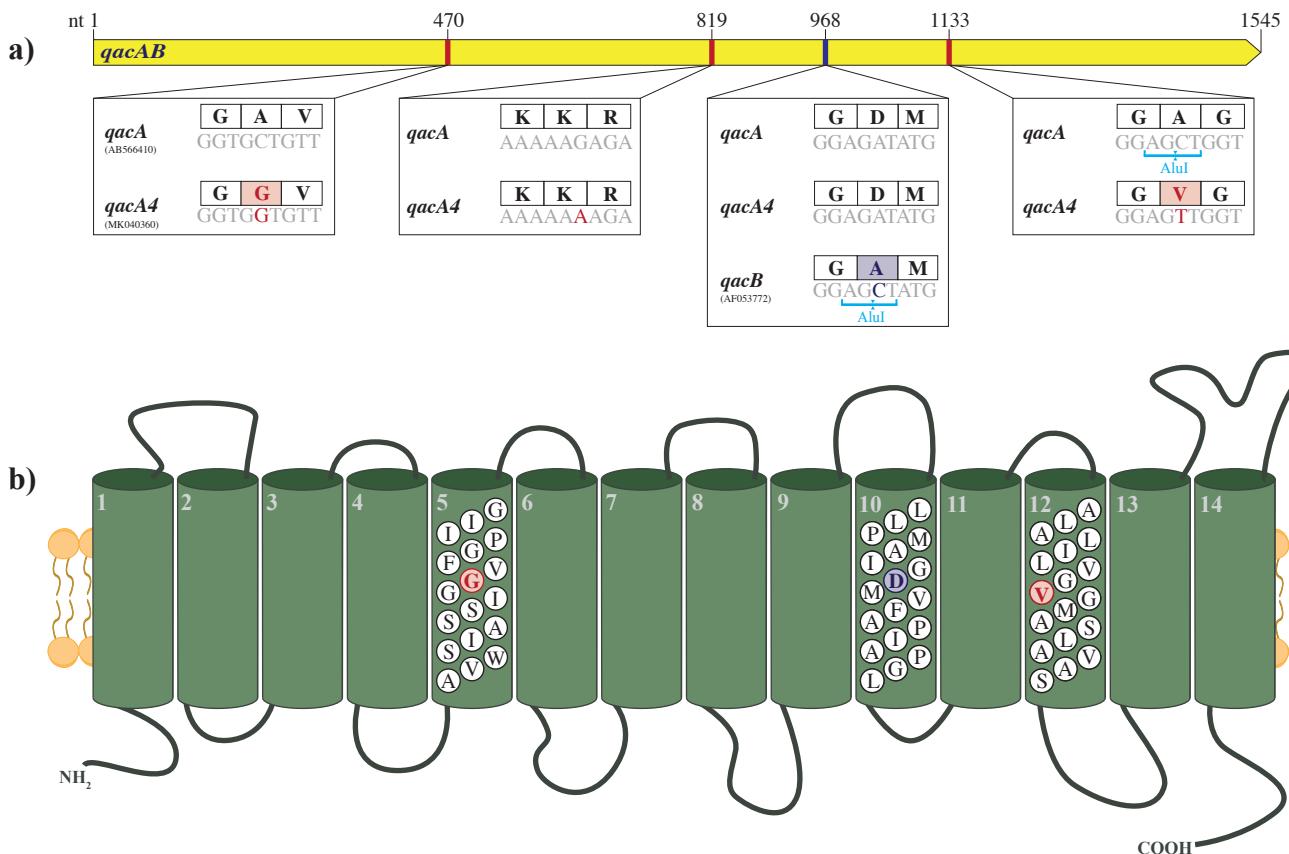
818 **Figure 5.** Schematic representations of a) the plasmid pAQZ1 containing *qacA4* obtained from
819 the *de novo* assemblies of isolates 91.2 and 107.2, b) the plasmid pAQZ2 retained in isolate
820 107.2_{cured}, and c) the 11,934 bp segment of pAQZ1 eliminated through the curing experiments.
821 Open reading frames (ORFs) shown in red depict resistance genes, ORFs in orange describe
822 heavy metal efflux genes, ORFs in green represent transcriptional regulator genes, ORFs in blue
823 depict recombinase genes, ORFs in purple describe replication genes, ORFs in white represent
824 hypothetical proteins, and ORFs in yellow depict genes with other functions.



825

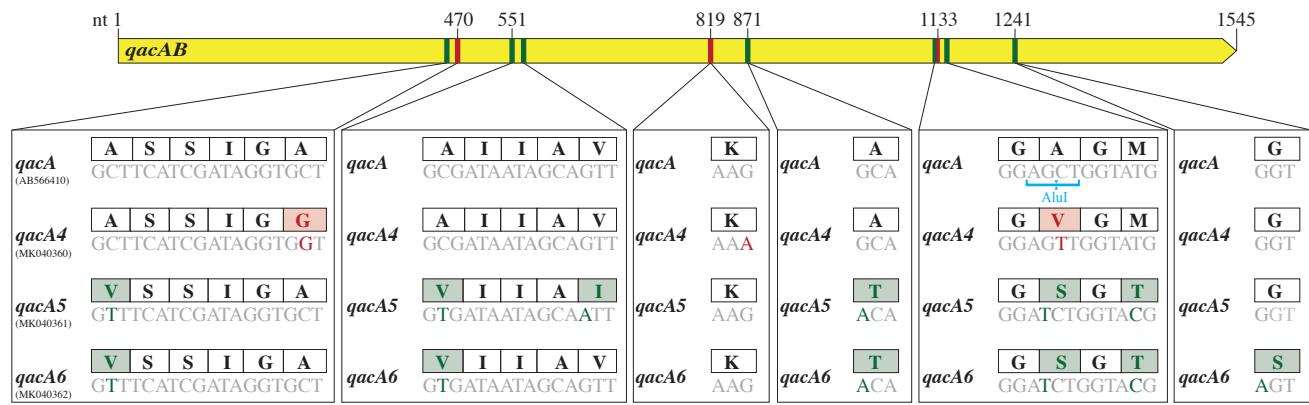
826 **Figure 6.** Presence-absence matrix displaying the antimicrobial resistance genes, resistance-
827 associated mutations, and virulence genes identified in the isolates carrying *qacA4*. A green
828 shaded box indicates the resistant or virulence determinant was identified in a given isolate. The
829 sequence type of each isolate as determined by MLST is shown.


830

831 **Figure 7.** Geographic distribution of the patients with at least one *S. epidermidis* isolate carrying
832 *qacA4*. The size of the circles represents the total number of patients enrolled in each state or
833 province, and shade of the circle represents the proportion of the total patients with at least one *S.*


834 *epidermidis* isolate. The green marker (Roach et al., 2015; Soma et al., 2012) represents isolates
835 carrying *qacA4* collected outside of our study.

a)**b)****c)**


Figure 1. CHG MIC distribution of the 1050 cutaneous Staphylococcus isolates included in our study grouped by a) species, b) *qacA/B* PCR and RFLP patterns, and c) *smr* PCR results. The dashed line indicates the concentration we defined as an elevated CHG MIC (≥ 4 μ g/mL).

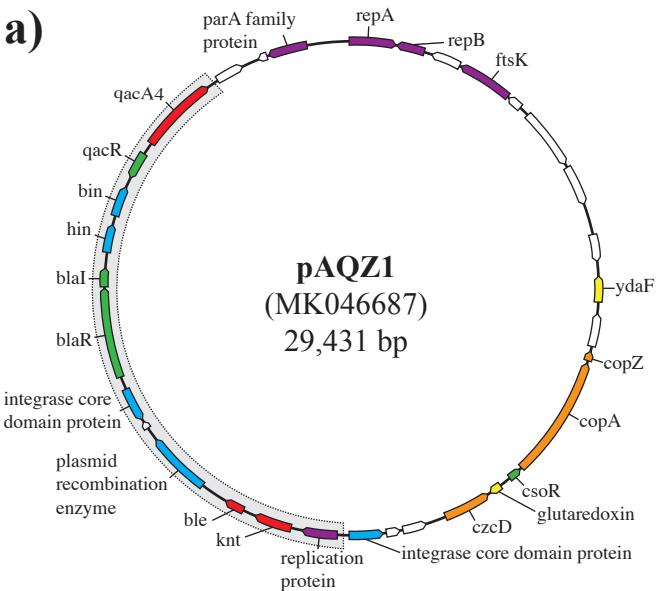
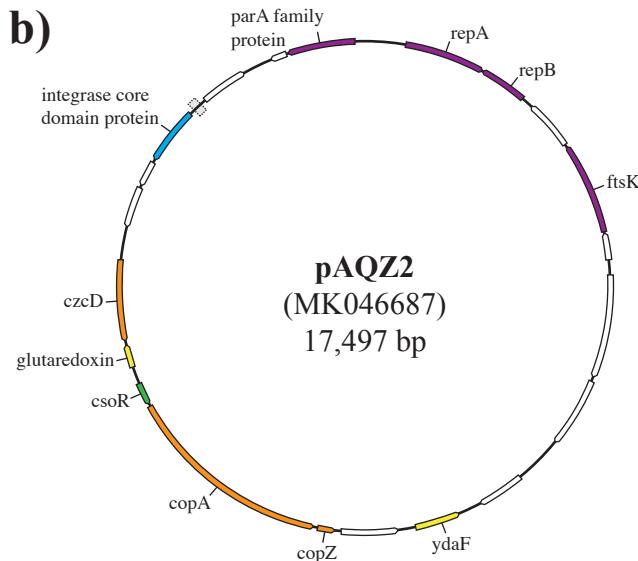
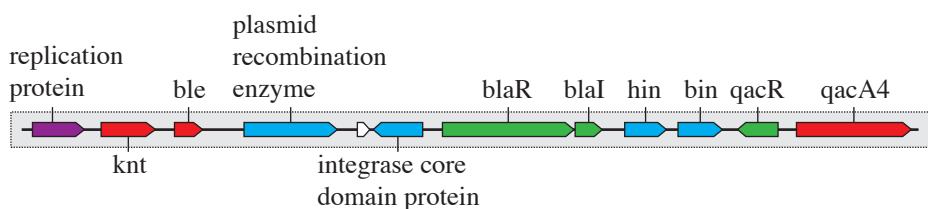
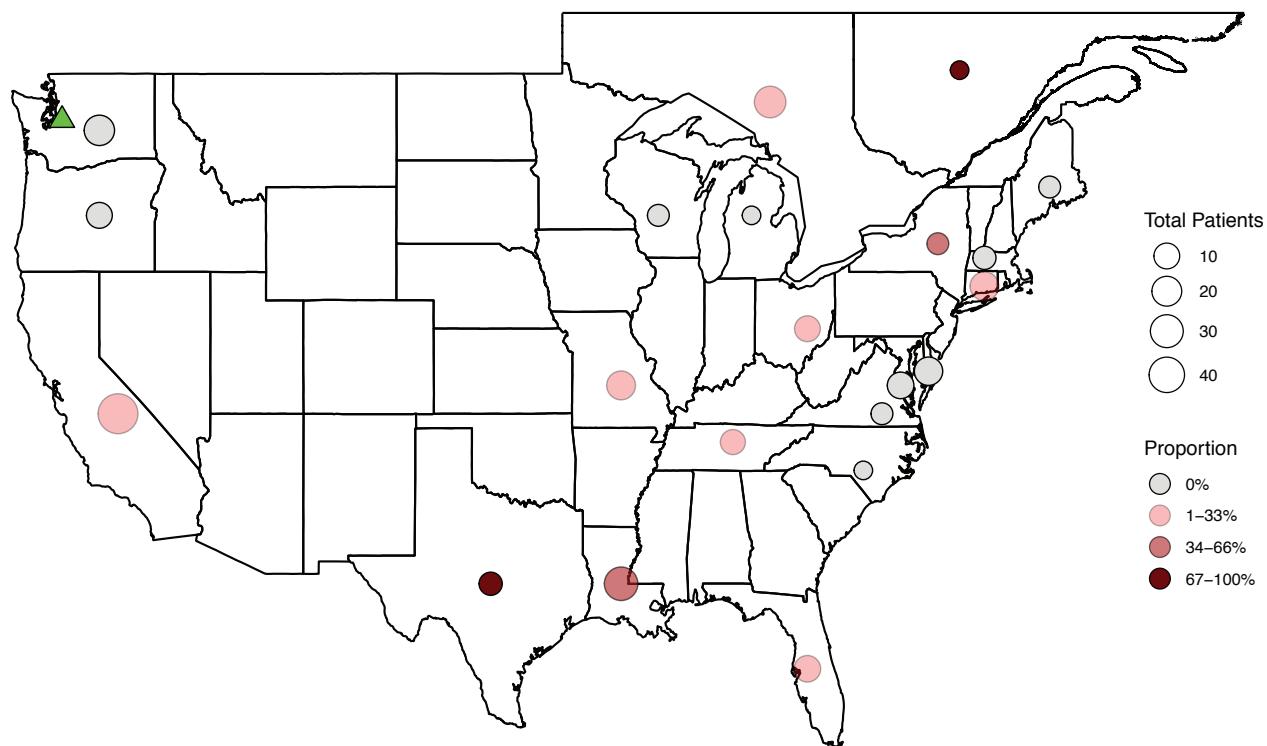



Figure 2. RFLP patterns observed from the AluI restriction digest of the *qacA/B* PCR amplicon. Isolates were classified as *qacA*-positive, *qacAB*₂₇₃-positive, or *qacB*-positive based on the presence of a 198 bp, 273 bp, or 165 bp fragment, respectively (Alam et al., 2003). Ladder: 100 bp (Promega).

Figure 3. Comparison of a) the sequence of *qacA4* (MK040360), a reference *qacA* sequence (AB566410), and a reference *qacB* sequence (AF053772). The associated AluI restriction sites are shown below the nucleotide sequences and the corresponding amino acid sequences are displayed in the boxes above the nucleotide sequences. Structure of b) the predicted efflux pump encoded by *qacA4*, adapted from previous representations of QacA (Paulsen et al., 1996) (Brown et al., 1998). The residues which distinguish QacA4 from the reference QacA are highlighted in red. Those which distinguish QacA from QacB are displayed in blue.


Figure 4. Comparison of the sequences of *qacA4* (MK040360), *qacA5* (MK040361), and *qacA6* (MK040362) and the reference *qacA* sequence (AB566410). The associated AluI restriction sites are shown below the nucleotide sequences and the corresponding amino acid sequences are displayed in the boxes above the nucleotide sequences. The nucleotides which distinguish *qacA4* from the reference *qacA*, *qacA5*, and *qacA6* are highlighted in red. Those which distinguish *qacA5* and/or *qacA6* from *qacA4* and the reference *qacA* are displayed in green.

a)**b)****c)**

Figure 5. Schematic representations of a) the plasmid pAQZ1 (MK046687) containing *qacA4* obtained from the *de novo* assemblies of isolates 91.2 and 107.2, b) the plasmid pAQZ2 (MK046687) retained in isolate 107.2^{cured}, and c) the 11,934 bp segment of pAQZ1 eliminated through the curing experiments. Open reading frames (ORFs) shown in red depict resistance genes, ORFs in orange describe heavy metal efflux genes, ORFs in green represent transcriptional regulator genes, ORFs in blue depict recombinase genes, ORFs in purple describe replication genes, ORFs in white represent hypothetical proteins, and ORFs in yellow depict genes with other functions.

Isolate	<i>aac(6')-Ie</i> / <i>aph(2'')-Ia</i>	<i>ant(4')-Ib</i>	<i>kat</i>	<i>blaZ</i>	<i>mecA</i>	<i>df5C</i>	<i>ermC</i>	<i>gyrA</i> Ser84Phe	<i>norA</i>	<i>mupA</i>	<i>ica4DBC</i>	Sequence Type
73.1	■											ST2
87.7		■								■		ST2
91.2			■							■		ST2
98.1									■			ST2
101.1										■		ST2
107.2												ST2
123.3												ST2
134.11		■		■								ST2
169.1												ST2
73.5			■							■		ST2
134.15					■							ST2
171.1						■				■		ST2
171.10							■			■		ST2
173.6				■						■		ST2

Figure 6. Presence-absence matrix displaying the antimicrobial resistance genes, resistance-associated mutations, and virulence genes identified in the isolates carrying *qacA4*. A green shaded box indicates the resistant or virulence determinant was identified in a given isolate. The sequence type of each isolate as determined by MLST is shown.

Figure 7. Geographic distribution of the patients with at least one *S. epidermidis* isolate carrying *qacA4*. The size of the circles represents the total number of patients enrolled in each state or province, and shade of the circle represents the proportion of the total patients with at least one *S. epidermidis* isolate. The green marker represents isolates carrying *qacA4* collected outside of our study (Roach et al., 2015; Soma et al., 2012).

Table 1. Overview of the cutaneous *Staphylococcus* isolates (n = 1050) included in this study.

MALDI Identification	Total	Percent
<i>S. aureus</i>	30	2.9%
Coagulase Negative <i>Staphylococcus</i>	1020	97.1%
<i>S. epidermidis</i>	558	53.1%
<i>S. hominis</i>	267	25.4%
<i>S. capitis</i>	62	5.9%
<i>S. warneri</i>	47	4.5%
<i>S. haemolyticus</i>	22	2.1%
<i>S. pasteuri</i>	16	1.5%
<i>S. saprophyticus</i>	9	0.9%
<i>S. ludgunensis</i>	8	0.8%
<i>S. cohnii</i>	4	0.4%
<i>S. caprae</i>	4	0.4%
<i>S. pettenkoferi</i>	4	0.4%
<i>S. condiment</i>	3	0.3%
<i>S. schleiferi</i>	3	0.3%
<i>S. simulans</i>	3	0.3%
<i>S. auricularis</i>	2	0.2%
<i>S. equorum</i>	2	0.2%
<i>S. sciuri</i>	1	0.1%
<i>S. xylosus</i>	1	0.1%
<i>Staphylococcus</i> sp.	4	0.4%

Table 2. Comparison of the CHG MIC distributions, measured in $\mu\text{g/mL}$, of the *qacA*-positive, *qacB*-positive, *qacAB*₂₇₃-positive, and *qacA/B*-negative isolates and the CHG MIC distributions of the *smr*-positive and *smr*-negative isolates.

	<i>qacA</i>	<i>qacB</i>	<i>qacAB</i> ₂₇₃	<i>qacA/B</i> –	<i>smr</i> +	<i>smr</i> –
Total Isolates	559	17	56	418	279	771
MIC_{50}	1	1	4	1	1	1
MIC_{90}	2	1	4	1	2	1
Range	0.5 – 4	0.25 – 2	0.5 – 4	0.125 – 2	0.25 – 4	0.125 – 4

Table 3. Comparison of the CHG MIC distributions, measured in $\mu\text{g/mL}$, associated with the eight CHG resistance gene combinations detected in our isolates.

	<i>qacA</i> <i>smr</i> +	<i>qacA</i> <i>smr</i> -	<i>qacB</i> <i>smr</i> +	<i>qacB</i> <i>smr</i> -	<i>qacAB₂₇₃</i> <i>smr</i> +	<i>qacAB₂₇₃</i> <i>smr</i> -	<i>qacA/B</i> - <i>smr</i> +	<i>qacA/B</i> - <i>smr</i> -
Total Isolates	101	458	5	12	50	6	123	295
MIC ₅₀	1	1	1	0.75	4	4	0.5	1
MIC ₉₀	2	2	1.6	1	4	4	1	1
Range	0.5 – 4	0.5 – 4	0.5 – 2	0.25 – 1	4 – 4	0.5 – 4	0.25 – 1	0.125 – 2

Table 4. Comparison of the proportion of *qacA*-positive, *qacB*-positive, *qacAB₂₇₃*-positive, and *qacA/B*-negative isolates resistant to commonly prescribed antimicrobials: ciprofloxacin (CIP), sulfamethoxazole/trimethoprim (SXT), cefoxitin (FOX), erythromycin (ERY), gentamicin (GEN), linezolid (LZD), rifampin (RIF), and vancomycin (VAN).

Antimicrobial	<i>qacA</i>	<i>qacB</i>	<i>qacAB₂₇₃</i>	<i>qacA/B</i> -
FOX*	61.7	52.9	96.4	22.7
ERY*	76.0	88.2	92.9	30.1
CIP*	25.0	5.9	96.4	8.4
GEN*	15.0	0	89.3	2.6
SXT*	60.1	35.3	98.2	22.7
LZD	0	0	0	0
RIF	0.9	0	0	0
VAN	0	0	0	0

* P-value <0.001 for all comparisons. Results were generated using all isolates; results did not change when restricting analyses to one randomly chosen isolate per patient per *qacA/B* group.

Table 5. Comparison of the CHG resistance gene combinations and resistance patterns of isolates 107.2 and 107.2_{cured}. The CHG MIC is measured in µg/mL. “R” denotes the isolate is resistant to the specified antimicrobial and “S” indicates the isolate is susceptible to the specified antimicrobial.

Isolate	MADLI ID	<i>qacA4?</i>	<i>smr?</i>	CHG MIC	FOX	ERY	CIP	GEN	SXT	LZD	RIF	VAN
107.2	<i>S. epidermidis</i>	Yes	No	4	R	R	R	R	R	S	S	S
107.2 _{cured}	<i>S. epidermidis</i>	No	No	1	R	R	R	R	R	S	S	S