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Abstract 32 

During healthy brain aging, different brain regions show anatomical or functional declines at different 33 

rates, and some regions may show compensatory increases in functional activity.  However, few studies 34 

have explored interregional influences of brain activity during the aging process.  We proposed a 35 

causality analysis framework combining high dimensionality independent component analysis (ICA), 36 

Granger causality, and LASSO (least absolute shrinkage and selection operator) regression on 37 

longitudinal brain metabolic activity data measured by Fludeoxyglucose positron emission tomography 38 

(FDG-PET).  We analyzed FDG-PET images from healthy old subjects, who were scanned for at least 39 

five sessions with an averaged intersession interval of about year.  The longitudinal data were 40 

concatenated across subjects to form a time series, and the first order autoregressive model was used to 41 

measure interregional causality among the independent sources of metabolic activity identified using ICA.  42 

Several independent sources with reduced metabolic activity in aging, including the anterior temporal 43 

lobe and orbital frontal cortex, demonstrated causal influences over many widespread brain regions.  On 44 

the other hand, the influenced regions were more distributed, and had smaller age related declines or even 45 

relatively increased metabolic activity.  The current data demonstrated interregional spreads of aging on 46 

metabolic activity at the scale of a year, and have identified key brain regions in the aging process that 47 

have strong influences over other regions. 48 

 49 

Keyword: aging, anterior temporal lobe, Granger causality, LASSO regression, metabolic connectivity, 50 

orbitofrontal cortex.   51 
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1. Introduction 52 

The human brain undergoes development and aging across the entire life-span.  Neuroimaging studies 53 

have demonstrated that different brain regions develop and age in different rates.  The global gray matter 54 

volume decreases linearly after 20s of age, but some regions such as the bilateral insula, superior parietal 55 

gyri, central sulci, and cingulate sulci show faster volumetric declines as measured by voxel-based 56 

morphometry (Good et al., 2001).  Cortical thickness measures show more widespread cortical thinning 57 

patterns during aging (Salat et al., 2004).  In contrast, results from functional MRI studies (fMRI) are 58 

more complex with some brain regions show increased activations in certain tasks rather than declined 59 

activations accompanied with the anatomical declines (Di, Rypma, & Biswal, 2014; Spreng, Wojtowicz, 60 

& Grady, 2010).  In addition, the functional alterations in aging may depend on the task domains and 61 

behavioral performances (Spreng et al., 2010), making it difficult to conclude a region to be functionally 62 

increased or decreased in aging.  A complementary approach is to study brain activity during a state 63 

without specific behavioral involvements, i.e. resting-state.  Studies have been performed earlier using 64 

positron emission tomography (PET) (Kuhl, Metter, Riege, & Phelps, 1982; Martin, Friston, Colebatch, 65 

& Frackowiak, 1991; Zuendorf, Kerrouche, Herholz, & Baron, 2003), and later using resting-state fMRI 66 

(Biswal et al., 2010).  Using a large sample of over 1,000 subjects, Biswal and colleagues have showed 67 

reduced resting-state activity in aging mainly in the default model network and increased activity in the 68 

visual, motor, and subcortical regions (Biswal et al., 2010). 69 

 Functionally related brain regions typically show similar co-developments (Alexander-Bloch, 70 

Raznahan, Bullmore, & Giedd, 2013) or co-declines, therefore yielding cross-subject interregional 71 

covariances.  This has been shown as early as 1980s using regional cerebral blood flow data (Prohovnik, 72 

Håkansson, & Risberg, 1980) and regional metabolic activity data (Horwitz, Duara, & Rapoport, 1984; 73 

Metter, Riege, Kuhl, & Phelps, 1984) measured using PET.  Later, more sophisticated methods, such as 74 

independent component analysis (ICA) and graph theory based analysis, have been applied to PET data to 75 

study the brain metabolic covariance networks (Di et al., 2017; Di & Biswal, and Alzheimer’s Disease 76 
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Neu, 2012).  Correlated metabolic activity or blood flow was typically found between left/right 77 

homotopic regions, and between some within hemisphere regions that are functionally related, e.g. 78 

language related regions in the left hemisphere.  However, different connectivity patterns have been found 79 

between this metabolic covariance connectivity and the resting-state connectivity that has been typically 80 

observed from fMRI data (Di et al., 2017; Di & Biswal, and Alzheimer’s Disease Neu, 2012).  The inter-81 

subject covariance patterns have also been shown using other imaging modalities, such as brain volumes 82 

(Di & Biswal, 2016; Douaud et al., 2014; Mechelli, Friston, Frackowiak, & Price, 2005), cortical 83 

thickness (Lerch et al., 2006), and different resting-state fMRI indices (P. A. Taylor, Gohel, Di, Walter, & 84 

Biswal, 2012; Zhang et al., 2011).  85 

 Given the different rates of declines or relative preservations of different brain regions in aging, 86 

and large scale brain networks working in synchrony during both task execution and resting-state 87 

(Bullmore & Sporns, 2009, 2012; Di, Gohel, Kim, & Biswal, 2013), it is likely that the regions that are 88 

working together affect each other during the aging process.  Specifically, a region that declines faster 89 

may influence another region during functional interactions in everyday basis; therefore would cause the 90 

other region to decline or show a compensatory increase of functional activity.  So, it is critical to study 91 

the causal interregional influences between regions rather than the simple covariance, especially at the 92 

time scale of months to years when brain aging could be observed.  Although regional brain aging is 93 

generally assumed to be linear in trend, the observed regional brain measures might showed fluctuations 94 

along the linear trend (Figure 1).  The causal influence between regions could then be captured by 95 

causality analysis methods such as Granger causality (Granger, 1969).  By using Granger causality we 96 

could examine whether the brain activity in a brain region at time points of months or years earlier can 97 

predict the activity of another brain region at the current time point.  Granger causality at the similar time 98 

scales has been studied on brain morphological progressions in epilepsy (Zhang et al., 2017) and 99 

schizophrenia (Jiang et al., 2018) based on anatomical MRI data.  However, both of these studies are 100 

cross-sectional.  Large-scale multi-site longitudinal open access dataset, such as Alzheimer's Disease 101 
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Neuroimaging Initiative (ADNI), has made it possible to examine causal influences during aging in a 102 

within-subject manner.  Extending our previous work on metabolic covariance networks using 103 

Fludeoxyglucose (FDG) PET images (Di et al., 2017; Di & Biswal, and Alzheimer’s Disease Neu, 2012), 104 

we sought in the current study to examine the interregional causal influences of metabolic activity during 105 

aging.  106 

 107 

Figure 1 An illustration of interregional causal effects during aging.  Regions A and B both show linear 108 

declines during aging at different rates, with additional fluctuations along the linear trends.  The 109 

fluctuations of region A influences those in region B, so that an event in A can be observed one time point 110 

later in B (e.g. the marked peak at age 66 and 67 in A and B, respectively). 111 

 112 

 The aim of the current study is to explore the causal interregional influences of metabolic activity 113 

during normal aging at the time scale of a year.  We leveraged the longitudinal FDG-PET data from the 114 

ADNI dataset, where there were at least five sessions of FDG-PET scans for each subject at a time step of 115 

approximately one year.  First, we examined regional age effects of metabolic activity to identify regions 116 

with accelerated declines, with no apparent age effects, and with relative increases.  Second, we 117 

performed whole brain Granger causality analysis to identify causal influences, where the metabolic 118 

activity in a region at a certain time point can be predicted by the metabolic activity in another region at 119 
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the previous time point.  We predict that the regions that show accelerated declines during aging will 120 

cause other regions to decline, thus showing interregional spreads of age effects. 121 

 122 

2. Materials and methods 123 

2.1 ADNI data 124 

Data used in the preparation of this article were obtained from the ADNI database (ADNI - Alzheimer's 125 

Disease Neuroimaging Initiative: RRID:SCR_003007; adni.loni.usc.edu).  The ADNI was launched in 126 

2003 as a public-private partnership, led by Principal Investigator Michael W. Weiner, MD.  The primary 127 

goal of ADNI has been to test whether serial magnetic resonance imaging (MRI), positron emission 128 

tomography (PET), other biological markers, and clinical and neuropsychological assessment can be 129 

combined to measure the progression of mild cognitive impairment (MCI) and early Alzheimer’s disease 130 

(AD). 131 

 Only data from healthy participants were included in the current analysis.  All participants 132 

showed no signs of depression, mild cognitive impairment, or dementia, with Mini-Mental State Exam 133 

(MMSE) scores between 24 and 30 and Clinical Dementia Rating (CDR) score of 0.  We manually 134 

selected longitudinal FDG-PET images from the ADNI database, with participants who had at least five 135 

sessions of FDG-PET images available.  As a result, 72 subjects (25 females) were included in the current 136 

analysis with a total of 432 PET scan sessions.  The numbers of available sessions ranged from 5 to 9 137 

(Figure 2A).  The average age at the first session was 75.8 years (62 to 86 years).  For each session, we 138 

calculated a mean image or adopted the only image to represent the session.  The intersession interval 139 

with a subject varied from 3 months to up to 8 years for a few rare cases (Figure 2B).  The mean and 140 

median of the intersession intervals were 1.02 and 0.98 years, respectively.  141 
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 142 

Figure 2 Histograms of the numbers of sessions for each subject (A) and the intersession intervals for all 143 

the sessions and subjects (B).  The participants were typically studied at 0, 6, 12, 24, 36 months related to 144 

the first visit, and yearly follow-ups.  Therefore, the intersession intervals are likely to be around six 145 

months or one year. 146 

 147 

 The FDG-PET images were acquired from multiple sites with different PET imaging protocols.  148 

However, the imaging parameters were mostly similar across different sessions within a subject.  Since 149 

the current analyses were all within-subject, the impacts of different imaging parameters from different 150 

sites can be effectively minimized.  More information about the PET protocol can be found in (Jagust et 151 

al., 2010).  All the images and subjects included in the current analysis can be found at: 152 

https://osf.io/4a3vt/. 153 

2.2. PET data preprocessing 154 

The PET data were preprocessed using SPM12  (SPM: RRID:SCR_007037; 155 

https://www.fil.ion.ucl.ac.uk/spm/) under MATLAB R2017b.  For each subject, if there were more than 156 

one PET image in a session, all the PET images in the session were realigned to the first image and the 157 

mean image of the session was calculated.  The mean images (or the only image) across all the sessions of 158 

a subject were then realigned to the one in the first session.  The cross-session mean image was 159 

normalized directly to the PET template in SPM in standard Montreal Neurological Institute (MNI) space, 160 
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and then all the images were normalized to MNI space using the same set of parameters.  We chose the 161 

direct normalization approach rather than using an anatomical MRI as a mediator, because the spatial 162 

resolutions of the PET images were adequate and the direct normalization has its own advantage 163 

compared with the anatomical MRI mediated method (Vince D. Calhoun et al., 2017).  The images were 164 

then spatially smoothed using a Gaussian kernel with 8 mm FWHM (full width at half maximum).  Lastly, 165 

each image was divided by its mean signal within an intracranial volume mask.  166 

2.3. Independent component analysis  167 

We first performed spatial ICA to separate the whole brain metabolic maps into independent sources of 168 

local metabolic variations (Di & Biswal, and Alzheimer’s Disease Neu, 2012).  We extracted a relatively 169 

high number of ICs, so that the resulting ICs could represent more local variations than large scale 170 

networks (Fu et al., 2018, 2019; Smith et al., 2013).  This data-driven approach is an alternative to atlas-171 

based parcellation, and may be more representative to local variations of metabolic activity.  The ICA was 172 

performed using Group ICA of fMRI Toolbox (GIFT: RRID:SCR_001953; 173 

http://mialab.mrn.org/software/gift) (V D Calhoun, Adali, Pearlson, & Pekar, 2001).  The preprocessed 174 

FDG-PET images from different sessions and subjects were concatenated into a single time series, and 175 

fed into the ICA analysis.  Eighty one components were recommended by the minimum description 176 

length (MDL) algorithm implemented in GIFT.  After extraction of the 81 components, the ICs were 177 

visually inspected and grouped into eight domains (Supplementary materials) as well as 21 noise 178 

components.  There were in total 60 ICs included in the following analysis.  For each IC, the associated 179 

time series were obtained to represent metabolic activity of this source in different subjects and sessions.  180 

The 81 IC maps are available at: https://osf.io/4a3vt/. 181 

2.4. Regional age effects 182 

For each subject, a general linear model (GLM) was built to examine aging effects.  The GLM included 183 

two regressors, a constant term and a linear age effect.  The GLM analysis was performed on each IC, and 184 

the β values of the age effect were obtained.  Group level analysis was then performed on each IC using a 185 
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one sample t test model to examine the group averaged effect of age.  A FDR (false discovery rate) 186 

corrected p < 0.05 was used to identify ICs that had significant age effects after correcting for all the 60 187 

comparisons.  Thereafter, the ICs were sorted into three groups, with significant (relative) increased 188 

metabolic activity, with no significant changes, and with significant decreased metabolic activity in aging. 189 

2.5. Interregional causality analysis 190 

We adopted Granger causality to examine the interregional causal influence of metabolic activity.  191 

Specifically, we treated the longitudinal FDG-PET data as time series, and used autoregressive model to 192 

predict the value of time point t in a region y by the previous time points of another region x, when 193 

controlling for its own previous time points.  In the current data, the time step is approximately one year.  194 

To account for the variability of intersession interval, the intervals between time points t and t – 1 were 195 

added as a covariate or regressed out in the analysis (see below for details).  Another consideration is the 196 

order of the model, i.e. how many previous time points are used to predict the current time point.  In this 197 

study, we used only the first order model to measure the causal influence of only one previous time point, 198 

which represents a time step of about one year.  The limited number of time points in a subject prevents 199 

us to use higher order models.  The advantage of using only the first order model is that the sign 200 

information of the beta estimate enables us to differentiate positive and negative predictions.  The model 201 

can be expressed in the following form: 202 

εβββ +⋅+⋅+= −− 12110 ttt xyy  203 

where y represents the predicted time series in one brain region, and x represents the predicting time series 204 

of another brain region.  yt-1 represent the time series of yt which moved one time point ahead, thus 205 

representing a autoregression model of time series y.  The effect of interest is the predicting value of xt-1, 206 

which is β2. 207 

 We concatenated the time series across all the subjects to form a long time series for analysis 208 

(Figure 3).  Therefore, the model is considered fixed effect model.  The time series of a subject were first 209 

z transformed to minimize inter-subject variation, where mi represents the total number of time points in a 210 
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subject i.  For each subject, we included the time points 2 to m of the time series of a region as the 211 

predicted variable yt.  The autoregressive variable yt-1 included the time points 1 to m – 1 of the time 212 

series of the same region.  The predicting variable xt-1 was the time points 1 to m – 1 from another region 213 

x.  After concatenation, there were in total 360 data points in the time series.  214 

 215 

Figure 3 Illustration of the construction of the variables used in the causality analysis. X represents the 216 

predicting region, and y represents the predicted region.  The superscript represents different subjects, 217 

with a total number of n.  The subscript represents the scan session in a subject, with a total number of mi 218 

for a subject i. 219 

 220 

 The model could be applied to each pair of the ICs from the 60 ICs.  The intersession interval 221 

between time t and time t – 1 were included in the model as a covariate.  We first performed such analysis 222 

on each pair of ICs to obtain the predicting effect (β2) and corresponding p values, which formed a 60 x 223 

60 matrix of causal effects.  FDR correction at p < 0.05 was used to correct for multiple comparisons of 224 

the in total 3,540 (60 x 59) effects, where autoregressive effects along the diagonal were not tested. 225 

 This pair-wise approach may identify influences from different regions with shared variance 226 

although maybe only one region has direct influence with the tested region.  To overcome this, when 227 

predicting a region xi
t, one can add all the other ICs to identify which region can predict xi

t.  The model is 228 

then as following for a predicted region xi: 229 

εβββββ +⋅++⋅+⋅+⋅+= −−−−
p
tpttt

i
t xxxxx 1

3
13

2
12

1
110 ...  230 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 25, 2019. ; https://doi.org/10.1101/490292doi: bioRxiv preprint 

https://doi.org/10.1101/490292
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 

 

Since all the ICs were included in the model, there was no need to differentiate the variables of x and y.  231 

Therefore, we use x to denote all the time series variables.  The superscripts of x now represent different 232 

ICs, where p represents the total number of the IC.  Before entering in to the model, a time series 233 

representing the intersession interval between time point t and t – 1 were regressed out from all the xt-1 234 

time series to account for the intersession interval variability.  Estimating the multivariate model may be 235 

challenging, especially when some of the IC time series may be highly correlated.  It can be assumed that 236 

only a small number of ICs may influence the predicted IC.  In this scenario, one can use regularization 237 

method to estimate the sparse influence effects, such as using LASSO (least absolute shrinkage and 238 

selection operator) (Tang, Bressler, Sylvester, Shulman, & Corbetta, 2012; Tibshirani, 1996).  The 239 

motivation of choosing LASSO over other regularization methods is that the LASSO regularization can 240 

force some parameters in the model to be zero thus resulting in only a small number of non-zero 241 

parameters.  This is important in the current context, because the aim is to identify a small number of 242 

interregional influences.  Since this model examines the prediction of the time series of one IC by the 243 

time series of all the other ICs, the analysis only needed to be performed for 60 times (compared with 60 244 

x 59 times in the pair-wise analysis) to cover all the ICs. 245 

 The LASSO regression was performed using the lasso function implemented in MATLAB.  To 246 

determine an optimal regularization factor λ, we used a set of λ from 0 (no regularization) to 0.5 with a 247 

step of 0.001.  The identified non-zero influences dropped dramatically as the increase of λ.  We identify 248 

the λ where the number of non-zero influences were the closest to the number of significant effects when 249 

using FDR correction in the pair-wise analysis, and reported all the non-zero influencing effects. 250 

 The resulting 60 x 60 influencing matrix can be treated as a directed network graph, where the 251 

ICs represent the nodes and the causal influences represent directed edges of the graph.  We calculated in-252 

degree and out-degree of the 60 nodes to characterize the importance of an IC in the whole brain 253 

influencing graph.  To ensure that the degree calculation was not affected by arbitrary defined threshold, 254 

we also explored the graphs from other λ values to verify the identified hub regions are still present.  To 255 
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visualize the network topology, we identified the giant component where all the nodes in the component 256 

were somehow connected (without considering the direction of the influences).  The giant components 257 

were visualized using the force layout. 258 

 259 

3. Results 260 

3.1. Age effect on regional metabolic activity 261 

We first examined the age effects on the regional metabolic activity for the 60 ICs.  Statistical significant 262 

ICs at p < 0.05 after FDR correction are shown in Figure 4.  Eighteen ICs showed significant reduced 263 

metabolic activity, including one IC that covered the inferior portion of the cerebellum (IC 1), three ICs 264 

that coved visual cortex (IC 17, 32, and 53), three ICs that covered the posterior parietal cortex (IC 21, 27, 265 

and 28), five ICs that covered the anterior portion of the temporal lobe and insula (IC 24, 44, 63, 66, and 266 

77), one IC that covered the thalamus and basal ganglia (IC 23), two ICs that covered the orbital frontal 267 

cortex and frontal pole (IC 3 and 48), and three ICs that covered the cingulate cortex and neighboring 268 

midline cortical regions (IC 7, 37, and 46).  The left panel of Figure 5 illustrates the negative age effects 269 

of an example IC (IC 48).  It can be seen that there is a general linear trend of decrease of metabolic 270 

activity.  But each subject showed fluctuations of metabolic activity along the linear trend.  In contrast, 6 271 

ICs showed increased metabolic activity.  It should be noted that due to the nature of PET imaging, the 272 

global signal for each PET image has to be normalized.  Therefore, it is difficult to say whether the 273 

positive age effect represents increased metabolic activity, or a relative increase with reference to the 274 

global effect.  The ICs with relative increased metabolic activity during aging included one IC covering 275 

the inferior and posterior portion of the cerebellum (IC 13), two subcortical ICs covering the basal ganglia, 276 

insula, amygdala, and thalamus (IC 19 and 52), and three ICs of sensorimotor regions (IC 36, 50, and 68).  277 

The right panel of Figure 5 illustrates the positive age effects of an example IC (IC 19).  There were 36 278 

ICs that did not show statistically significant age effects at p < 0.05 after FDR correction.  The middle 279 
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panel of Figure 5 illustrates the age effects of an example IC (IC 56) with no statistical significant age 280 

effect.   281 

 282 

Figure 4 The independent components (ICs) that showed statistically significant decreased (blue) and 283 

increased (red) metabolic activity during aging after controlling for global effect at p < 0.05 with false 284 

discovery rate (FDR) correction.   The numbers to the bottom right represent the IC number.   285 

 286 

 287 

Figure 5 Examples of aging effects of metabolic activity of three independent components (ICs) that had 288 

negative, non-significant, and positive aging effects.  Each colored line represents one subject.  T and p 289 

values represent group-level one sample t test statistics.  A.u., arbitrary unit. 290 
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 291 

3.2. Interregional causal influences of metabolic activity 292 

We first applied pairwise autoregressive model to obtain a 60 x 60 matrix of the interregional causal 293 

influences of metabolic activity between each pair of the ICs (Figure 6A).  When using a statistical 294 

threshold of p < 0.05 of FDR correction, 14 positive and 13 negative causal influences were identified 295 

(Figure 6B).  We next performed LASSO regression with xt of an IC as the predicted variable and xt-1 of 296 

all the ICs as the predicting variables using a range of λ.  We identified the λ value where the number of 297 

non-zero effects was the closest to the number of significant effects in the pairwise analysis.  The 298 

resulting influencing effects at λ = 0.162 (Figure 6C) look in general similar to the significant effects 299 

identified by the pairwise analysis, although some subtle differences can be noted.  There were 15 300 

positive and 13 negative causal influences identified using LASSO regression (Table 1).   301 

 302 

Figure 6 A, Pairwise matrix of interregional causal influence of metabolic activity.  The columns 303 

represent influencing independent components (ICs), while the rows represent influenced ICs.  B, Ternary 304 

matrix of significant positive or negative interregional causal influences thresholded at p < 0.05 after false 305 

discovery rate (FDR) correction.  C, Ternary matrix of positive or negative interregional causal influences 306 

identified at λ = 0.162 using LASSO (least absolute shrinkage and selection operator) regression.  307 

 308 

 Among the 28 causal influences from LASSO regression, the first giant component was 309 

comprised of 26 causal influences involving 25 ICs (Figure 7).  The IC maps were color coded based on 310 
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their regional age effects to illustrate the relationships between regional metabolic activity changes and 311 

the signs of causal influences.  It can be seen that the influences between two decreased regions or two 312 

increased regions in aging were in general positive, but the influences between one increased and one 313 

decreased regions were in general negative.  For example, the bilateral anterior temporal IC (IC# 63 in 314 

Figure 6) positively influenced the medial parietal IC (IC# 27), but negatively influenced the basal 315 

ganglia IC (IC# 19).  It is consistent with the direction of the spread of age effects.  There were also ICs 316 

that without apparent age effects, where the signs of causal influences with other regions did not show 317 

clear pattern.   318 

 319 

Figure 7 Interregional causal influences network at λ of 0.162 using LASSO (least absolute shrinkage and 320 

selection operator) regression.  The colors of the independent component maps represent increased (red), 321 

decreased (blue), and non-significant (green) age effects on metabolic activity.  The colors of the arrows 322 
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represent positive (red) and negative (blue) interregional influences, respectively.  The maps highlighted 323 

with yellow circle represent hub regions in the network.  324 

 325 

 To better illustrate the topology of the interregional influencing network and to highlight the 326 

regions that are more influencing or influenced to other regions, we plotted the first giant components of 327 

the interregional influencing network using force layout at λ = 0.162, and also at more liberal thresholds 328 

of λ = 0.142 and λ = 0.122 (Figure 8).  The node sizes represent the out-degree or in-degree of a node in 329 

the network in the upper and middle panels, respectively.  It can be seen that the nodes with large out-330 

degree were in general the regions with decreased metabolic activity (blue nodes).  The red arrows 331 

highlighted the two nodes that had 5 out-degrees at λ = 0.162 and remained among the highest out-degree 332 

nodes at the lower λ values.  These two nodes were also highlighted in Figure 7, which covered the 333 

bilateral orbitofrontal cortex (IC# 48) and the bilateral anterior temporal lobe (IC# 63).  While in terms of 334 

in-degree, there were no clear regions that had exceptionally high in-degree compared with other nodes.  335 

The node with high in-degree had no apparent age effects (green nodes) or had increased metabolic 336 

activity with age (brown nodes).  The distributions of nodal out- and in-degree confirmed that the out-337 

degree distributions had heavy tailed distributions compared with the in-degree distributions (lower 338 

panels in Figure 8).  339 
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 340 

Figure 8 The giant component of the causal interregional influencing network of metabolic activity at 341 

different λ levels with the sizes of the nodes reflecting out-degree (top row) and in-degree (middle row).  342 

The bottom row shows the degree distributions of the whole influencing network at the three λ levels.  343 

Brown and blue arrows indicate positive and negative influences identified using LASSO regression.  344 

Blue, green, and brown regions indicate positive, none, and negative age effects on regional metabolic 345 

activity.  The red arrows highlight the two influencing nods at different λ levels.  346 

 347 

 348 

4. Discussion 349 

By applying autoregressive model on longitudinal FDG-PET data, the current study demonstrated causal 350 

interregional influences of metabolic activity during normal aging.  Several ICs with significant reduced 351 

metabolic activity in aging, including the orbital frontal cortex and anterior temporal lobe, causally 352 
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influenced many other ICs.  In contrast, the influenced ICs were more widespread and with less local 353 

aging effects or even with relatively increased metabolic activity.  To the best of our knowledge, this is 354 

the first study to demonstrate longitudinal interregional causal influences of brain activity during aging at 355 

the time scale of a year.  356 

 Consistent with our predictions of interregional spreads of age effects, the influencing ICs usually 357 

had decreased metabolic activity.  On the other hand, the influenced regions were not restricted to the 358 

regions with reduced metabolic activity in aging.  Indeed, the ICs that had relatively greater in-degree 359 

values than other ICs were usually without apparent age effects, or even with relatively increased 360 

metabolic activity, e.g. the basal ganglia and thalamus.  Therefore, the causal interregional influences in 361 

general reflected the spread of age effects from brain regions that had already declined to regions that are 362 

declining or relatively preserved.  We note that the absence of regional age effects should be interpreted 363 

with caution, because the removal of global effects during calculation of regional age effects could have 364 

removed significant age effects that were similar to the global effects. 365 

 The interpretation of the causal influences need to consider both the sign of the causal influences 366 

and the regional age effects.  A positive influence indicates that the metabolic activity in region A at the 367 

current time point positively predicts the metabolic activity in region B at the next time point.  While a 368 

negative influence indicates a negative prediction.  If the two regions are both decreasing during aging, 369 

then a positive influence may indicate a spread of metabolic activity decline between the two regions.  On 370 

the other hand, if region A decreases but region B shows relatively increased metabolic activity, and there 371 

is a negative influence between A and B, then it may indicate a compensation of region B that is resulted 372 

from the declined function of region A.  A close look at the patterns of the directions of the local and 373 

interregional effects indicated that most of the effects observed were consistent with the spatial spread or 374 

compensation interpretations.  That is, the influences between two decreased regions were all positive, 375 

and the influences between one decreased region and one increased regions were all negative.   376 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 25, 2019. ; https://doi.org/10.1101/490292doi: bioRxiv preprint 

https://doi.org/10.1101/490292
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 

 

 The current analysis identified several hubs that influenced other brain regions, most prominently 377 

the anterior temporal lobe and orbital frontal cortex.  The anterior temporal lobe (IC 63) is connected to 378 

several major white matter tracts such the cingulum, inferior longitudinal fasciculus, and uncinate 379 

fasciculus (Catani & Thiebaut de Schotten, 2008), which could support its influencing role to other 380 

regions such as the subcortical regions, inferior frontal cortex, and left temporal cortex.  To better 381 

characterize its functional correlates, we submitted the IC map into NeuroVault (NeuroVault, 382 

RRID:SCR_003806; https://neurovault.org), and decoded the functions of these maps using large-scale 383 

meta-analytic data from Neurosynth (NeuroSynth, RRID:SCR_006798; http://neurosynth.org/) (Rubin et 384 

al., 2017).  The first five functional terms were all about language and semantic processing (See 385 

Supplementary Table S2).  Studies also showed that electrical stimulation of the anterior temporal lobe 386 

can improve proper name recalls in aging (Ross, McCoy, Coslett, Olson, & Wolk, 2011), and 387 

bilingualism can protect the integrity of anterior temporal lobe in aging (Abutalebi et al., 2014).  Taken 388 

together, the results suggest that language process might be an important factor modulating brain aging.   389 

 The orbital frontal cortex (IC 48) is connected to the uncinate fasciculus and inferior fronto-390 

occipital fasciculus (Catani & Thiebaut de Schotten, 2008), which could support its influences to the 391 

posterior visual regions.  The functional words related to the orbitofrontal IC were mainly about 392 

emotional processing (Supplementary Table S2).  In older population, smaller orbitofrontal volumes are 393 

shown to be associated with depression (Lai, Payne, Byrum, Steffens, & Krishnan, 2000; W. D. Taylor et 394 

al., 2003).  Taken together, emotional process might also be an important factor modulating brain aging.  395 

However, although previous studies have shown associations between resting-state brain activity and task 396 

activations (Di, Kannurpatti, Rypma, & Biswal, 2013; Yuan et al., 2013), the extent to what resting-state 397 

brain activity can reflect certain brain functions are still largely unknown.  Further studies might need to 398 

design proper tasks to better link functions to brain activations. 399 

 A limitation of the current analysis is the potential confounding effect due to partial volume 400 

(Bonte et al., 2017; Rousset, Ma, & Evans, 1998), i.e. whether an observed effect is due to the changes of 401 
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bona fide metabolic activity or the changes of underlying gray matter volume.  However, the following 402 

reasons make the partial volume confounding less problematic.  First, the current analysis adopted within 403 

subject comparison, which has already minimized the partial volume effects due to inter subject 404 

anatomical variability.  Second, we applied ICA analysis to identify independent sources of metabolic 405 

variability.  Some components that were likely due to enlargement of ventricle and are spatially 406 

overlapped with the included ICs, have been already removed.  For example, there was an IC largely 407 

located in ventricle area (IC 79 in supplementary Figure S9) but with substantial overlaps with the ICs of 408 

the thalamus and basal ganglia (supplementary Figure S5).  The IC 79 had the second strongest negative 409 

age effect among all the ICs.  The included ICs that had spatial overlap with this IC showed no age effects 410 

or even positive age effects, suggesting that the partial volume effects associated with enlarged ventricle 411 

have been minimized in these ICs.  Third, even though the observed causal influences may still somehow 412 

contributed by the residual partial volume effects, the causal influences of volumetric reductions may still 413 

be important findings for understanding brain aging.  The structural MRI images are available in the 414 

ADNI dataset, but were not always acquired at the same time point as the PET images, making the 415 

incorporation of MRI images in the model difficult.  Future studies should certainly consider taking into 416 

account of anatomical information in the analysis.  Indeed, it may be theoretically more important to 417 

study the interaction or causal influences between brain anatomy and functions in aging.  According to 418 

the compensation model, the reduction of gray matter will lead to elevated functional responses, which 419 

then give rise to less affected behavioral performances (Gregory et al., 2018; Reuter-Lorenz & Park, 2014; 420 

Shafto & Tyler, 2014).  A direct examination of causal influences among local and interregional gray 421 

matter structures, functions, and behavioral performances may provide more insight to the dynamic of 422 

compensation process in aging. 423 

 One strength of the current analysis approach is that we adopted multivariate methods and 424 

LASSO to include all the ICs in the predicting models, which in theory can prevent identifying ICs that 425 

have indirect predicting effects to the target (Smith et al., 2011; Tang et al., 2012).  On the other hand, 426 
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there are also several simplifications of the Granger causality analysis, such as the inclusion of only the 427 

first order model and the assumption of equal time steps.  Since the current study is the first to explore the 428 

causality in the aging process, the time lag of the aging progression is still largely unknown and bear 429 

further studies.  But practically due to the limited availability of longitudinal data, this question is difficult 430 

to solve at the current stage.  Regarding the variable time steps of the time series, we added the 431 

intersession interval as a covariate to minimize the effects, which is similar to a previous work (Jiang et 432 

al., 2018).  More sophisticated models, such as generative model and differential equation based method 433 

(G. Ziegler, Penny, Ridgway, Ourselin, & Friston, 2015; Gabriel Ziegler, Ridgway, Blakemore, 434 

Ashburner, & Penny, 2017), may be used in future to better characterize the causal effects.   435 

 436 

5. Conclusion 437 

By applying Granger causality analysis on longitudinal FDG-PET images of healthy old participants at a 438 

time step of one year, the current analysis revealed interregional causal influences during aging.  Several 439 

regions with reductions in local metabolic activity during aging, including the bilateral anterior temporal 440 

lobe and orbitofrontal cortex, showed causal influences to other regions, supporting an interregional 441 

spread of age effects in the brain.  The current analysis and results could add new insights to the 442 

neurocognitive aging literature about interregional interactions during the aging process.  443 
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Table 1 List of interregional causal influences of metabolic activity identified at λ = 0.162 using LASSO 629 

(least absolute shrinkage and selection operator) regression.  630 

From → To 
IC 
# Label 

Sig
n 

IC 
#  Label 

52 Thalamus, brainstem - 27 Precuneus 

36 
Supplementary motor area, paracentral 
lobule + 52 Thalamus, brainstem 

44 
Insula, inferior frontal gyrus, superior 
temporal pole + 77 

Temporal pole, medial orbitofrontal 
cortex 

63 Temporal pole + 40 Left middle temporal gyrus 
63 Temporal pole + 27 Precuneus 

44 
Insula, inferior frontal gyrus, superior 
temporal pole - 20 Right inferior and middle frontal gyrus 

63 Temporal pole - 38 Left thalamus, caudate, lingual gyrus 

44 
Insula, inferior frontal gyrus, superior 
temporal pole - 16 Superior and middle frontal gyrus 

39 Superior parietal lobule, precuneus + 20 Right inferior and middle frontal gyrus 

19 Basal ganglia, amygdala, insula - 46 
Posterior cingulate cortex, precuneus, 
lingual gyrus 

63 Temporal pole - 19 Basal ganglia, amygdala, insula 
63 Temporal pole - 34 Inferior frontal gyrus 

81 
Lobule VII crus, Lobule VI hemisphere, 
vermis - 6 Lobule VII crus 

39 Superior parietal lobule, precuneus + 19 Basal ganglia, amygdala, insula 
19 Basal ganglia, amygdala, insula - 17 Lingual gyrus, calcarine sulcus, cuneus 

48 
Orbitofrontal cortex, superior temporal 
pole + 39 Superior parietal lobule, precuneus 

28 Inferior parietal lobule, precuneus + 17 Lingual gyrus, calcarine sulcus, cuneus 

48 
Orbitofrontal cortex, superior temporal 
pole + 47 Postcentral gyrus, inferior parietal lobule 

48 
Orbitofrontal cortex, superior temporal 
pole + 56 Superior and middle occipital gyrus 

28 Inferior parietal lobule, precuneus + 56 Superior and middle occipital gyrus 
28 Inferior parietal lobule, precuneus + 43 Lobule VII and VIII, hemisphere 

48 
Orbitofrontal cortex, superior temporal 
pole + 11 Lingual gyrus, calcarine sulcus, cuneus 

48 
Orbitofrontal cortex, superior temporal 
pole + 69 Inferior occipital and fusiform gyrus 

80 Inferior parietal lobule - 56 Superior and middle occipital gyrus 

5 
Left inferior frontal gyrus, left middle 
occipital gyrus - 28 Inferior parietal lobule, precuneus 

78 Postcentral gyrus - 12 Superior and middle occipital gyrus 

5 
Left inferior frontal gyrus, left middle 
occipital gyrus + 80 Inferior parietal lobule 
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5 
Left inferior frontal gyrus, left middle 
occipital gyrus - 66 Left inferior temporal gyrus 

 631 

 632 
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