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Abstract

During healthy brain aging, different brain regions show anatomical or functional declines at different
rates, and some regions may show compensatory increasesin functional activity. However, few studies
have explored interregional influences of brain activity during the aging process. We proposed a
causality analysis framework combining high dimensionality independent component analysis (ICA),
Granger causality, and LASSO (least absolute shrinkage and sel ection operator) regression on
longitudinal brain metabolic activity data measured by Fludeoxyglucose positron emission tomography
(FDG-PET). We analyzed FDG-PET images from healthy old subjects, who were scanned for at |east
five sessions with an averaged intersession interval of about year. The longitudinal data were
concatenated across subjects to form atime series, and the first order autoregressive model was used to
measure interregional causality among the independent sources of metabolic activity identified using ICA.
Several independent sources with reduced metabolic activity in aging, including the anterior temporal
lobe and orbital frontal cortex, demonstrated causal influences over many widespread brain regions. On
the other hand, the influenced regions were more distributed, and had smaller age related declines or even
relatively increased metabolic activity. The current data demonstrated interregional spreads of aging on
metabolic activity at the scale of a year, and have identified key brain regionsin the aging process that

have strong influences over other regions.

Keyword: aging, anterior temporal lobe, Granger causality, LASSO regression, metabolic connectivity,

orbitofrontal cortex.
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1. Introduction

The human brain undergoes devel opment and aging across the entire life-span. Neuroimaging studies
have demonstrated that different brain regions develop and age in different rates. The global gray matter
volume decreases linearly after 20s of age, but some regions such as the bilateral insula, superior parietal
gyri, centra sulci, and cingulate sulci show faster volumetric declines as measured by voxel -based
morphometry (Good et al., 2001). Cortical thickness measures show more widespread cortical thinning
patterns during aging (Salat et al., 2004). In contrast, results from functional MRI studies (fMRI) are
more complex with some brain regions show increased activationsin certain tasks rather than declined
activations accompanied with the anatomical declines (Di, Rypma, & Biswal, 2014; Spreng, Wojtowicz,
& Grady, 2010). In addition, the functional alterationsin aging may depend on the task domains and
behavioral performances (Spreng et a., 2010), making it difficult to conclude aregion to be functionally
increased or decreased in aging. A complementary approach isto study brain activity during a state
without specific behavioral involvements, i.e. resting-state. Studies have been performed earlier using
positron emission tomography (PET) (Kuhl, Metter, Riege, & Phelps, 1982; Martin, Friston, Colebatch,
& Frackowiak, 1991; Zuendorf, Kerrouche, Herholz, & Baron, 2003), and later using resting-state fMRI
(Biswal et a., 2010). Using alarge sample of over 1,000 subjects, Biswal and colleagues have showed
reduced resting-state activity in aging mainly in the default model network and increased activity in the
visual, motor, and subcortical regions (Biswal et al., 2010).

Functionally related brain regions typically show similar co-devel opments (Alexander-Bloch,
Raznahan, Bullmore, & Giedd, 2013) or co-declines, therefore yielding cross-subject interregional
covariances. This has been shown as early as 1980s using regional cerebral blood flow data (Prohovnik,
Hakansson, & Risberg, 1980) and regional metabolic activity data (Horwitz, Duara, & Rapoport, 1984;
Metter, Riege, Kuhl, & Phelps, 1984) measured using PET. Later, more sophisticated methods, such as
independent component analysis (ICA) and graph theory based analysis, have been applied to PET datato

study the brain metabolic covariance networks (Di et a., 2017; Di & Biswal, and Alzheimer’s Disease
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77  Neu, 2012). Correlated metabolic activity or blood flow was typically found between left/right
78  homotopic regions, and between some within hemisphere regions that are functionally related, e.g.
79  language related regionsin the left hemisphere. However, different connectivity patterns have been found
80  between this metabolic covariance connectivity and the resting-state connectivity that has been typically
81 observed from fMRI data (Di et a., 2017; Di & Biswal, and Alzheimer’s Disease Neu, 2012). Theinter-
82  subject covariance patterns have also been shown using other imaging modalities, such as brain volumes
83 (Di & Biswal, 2016; Douaud et al., 2014; Mechelli, Friston, Frackowiak, & Price, 2005), cortical
84  thickness (Lerch et a., 2006), and different resting-state fMRI indices (P. A. Taylor, Gohel, Di, Walter, &
85  Biswal, 2012; Zhang et d ., 2011).
86 Given the different rates of declines or relative preservations of different brain regionsin aging,
87  and large scale brain networks working in synchrony during both task execution and resting-state
38 (Bullmore & Sporns, 2009, 2012; Di, Gohel, Kim, & Biswal, 2013), it islikely that the regions that are
89  working together affect each other during the aging process. Specifically, aregion that declines faster
90  may influence ancther region during functional interactions in everyday basis; therefore would cause the
91  other region to decline or show a compensatory increase of functional activity. So, it iscritical to study
92  thecausal interregional influences between regions rather than the simple covariance, especialy at the
93  time scale of monthsto years when brain aging could be observed. Although regional brain aging is
94  generally assumed to be linear in trend, the observed regional brain measures might showed fluctuations
95  dongthelinear trend (Figure 1). The causal influence between regions could then be captured by
96  causality analysis methods such as Granger causality (Granger, 1969). By using Granger causality we
97  could examine whether the brain activity in abrain region at time points of months or years earlier can
98  predict the activity of another brain region at the current time point. Granger causality at the similar time
99  scales has been studied on brain morphological progressionsin epilepsy (Zhang et al., 2017) and

100  schizophrenia (Jiang et al., 2018) based on anatomical MRI data. However, both of these studies are

101  cross-sectional. Large-scale multi-site longitudinal open access dataset, such as Alzheimer's Disease
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102 Neuroimaging Initiative (ADNI), has made it possible to examine causal influences during aging in a
103  within-subject manner. Extending our previous work on metabolic covariance networks using
104  Fudeoxyglucose (FDG) PET images (Di et a., 2017; Di & Biswal, and Alzheimer’s Disease Neu, 2012),

105  we sought in the current study to examine the interregional causal influences of metabolic activity during

106  aging.
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108 Figure 1 Anillustration of interregional causal effects during aging. Regions A and B both show linear
109 declines during aging at different rates, with additional fluctuations along the linear trends. The

110  fluctuations of region A influencesthose in region B, so that an event in A can be observed one time point

111 later in B (e.g. the marked peak at age 66 and 67 in A and B, respectively).
112
113 The aim of the current study is to explore the causal interregional influences of metabolic activity

114  during normal aging at the time scale of ayear. We leveraged the longitudinal FDG-PET data from the
115  ADNI dataset, where there were at least five sessions of FDG-PET scans for each subject at atime step of
116  approximately oneyear. First, we examined regional age effects of metabolic activity to identify regions
117  with accelerated declines, with no apparent age effects, and with relative increases. Second, we

118  performed whole brain Granger causality analysisto identify causal influences, where the metabolic

119  activity in aregion at a certain time point can be predicted by the metabolic activity in another region at
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120  theprevioustime point. We predict that the regions that show accelerated declines during aging will

121 cause other regions to decline, thus showing interregional spreads of age effects.

122

123 2. Materialsand methods

124 2.1 ADNI data

125  Dataused in the preparation of this article were obtained from the ADNI database (ADNI - Alzheimer's
126  Disease Neuroimaging Initiative: RRID:SCR_003007; adni.loni.usc.edu). The ADNI was launched in
127 2003 as apublic-private partnership, led by Principal Investigator Michael W. Weiner, MD. The primary
128  goa of ADNI has been to test whether serial magnetic resonance imaging (MRI), positron emission

129  tomography (PET), other biological markers, and clinical and neuropsychological assessment can be
130  combined to measure the progression of mild cognitive impairment (MCl) and early Alzheimer’s disease
131 (AD).

132 Only data from healthy participants were included in the current analysis. All participants

133 showed no signs of depression, mild cognitive impairment, or dementia, with Mini-Mental State Exam
134  (MMSE) scores between 24 and 30 and Clinical Dementia Rating (CDR) score of 0. We manually

135  selected longitudinal FDG-PET images from the ADNI database, with participants who had at least five
136  sessions of FDG-PET images available. Asaresult, 72 subjects (25 females) were included in the current
137  analysiswith atotal of 432 PET scan sessions. The numbers of available sessions ranged from 5to 9
138  (Figure 2A). The average age at thefirst session was 75.8 years (62 to 86 years). For each session, we
139  calculated a mean image or adopted the only image to represent the session. The intersession interval
140  with asubject varied from 3 months to up to 8 years for afew rare cases (Figure 2B). The mean and

141 median of theintersession intervals were 1.02 and 0.98 years, respectively.
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143 Figure 2 Histograms of the numbers of sessions for each subject (A) and the intersession intervals for al

144  thesessions and subjects (B). The participants weretypically studied at O, 6, 12, 24, 36 months related to

145 thefirst visit, and yearly follow-ups. Therefore, the intersession intervals are likely to be around six
146 months or one year.

147

148 The FDG-PET images were acquired from multiple sites with different PET imaging protocols.

149  However, the imaging parameters were mostly similar across different sessions within a subject. Since

150  thecurrent analyses were al within-subject, the impacts of different imaging parameters from different

151  sitescan be effectively minimized. More information about the PET protocol can be found in (Jagust et
152  a., 2010). All theimages and subjects included in the current analysis can be found at:

153  https.//osf.io/4a3vt/.

154  2.2. PET data preprocessing

155  The PET datawere preprocessed using SPM12 (SPM: RRID:SCR_007037;

156 https.//www.fil.ion.ucl.ac.uk/spm/) under MATLAB R2017b. For each subject, if there were more than

157  one PET imagein asession, al the PET images in the session were realigned to the first image and the
158  mean image of the session was calculated. The mean images (or the only image) across all the sessions of
159  asubject were then realigned to the one in the first session. The cross-session mean image was

160  normalized directly to the PET template in SPM in standard Montreal Neurological Institute (MNI) space,
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161  and then all theimages were normalized to MNI space using the same set of parameters. We chose the
162  direct normalization approach rather than using an anatomical MRI as a mediator, because the spatial

163  resolutions of the PET images were adequate and the direct normalization hasits own advantage

164  compared with the anatomical MRI mediated method (Vince D. Calhoun et a., 2017). The images were
165  then spatially smoothed using a Gaussian kernel with 8 mm FWHM (full width at half maximum). Lastly,
166  each image was divided by its mean signal within an intracranial volume mask.

167  2.3.Independent component analysis

168  Wefirst performed spatial ICA to separate the whole brain metabolic maps into independent sources of
169  local metabolic variations (Di & Biswal, and Alzheimer’s Disease Neu, 2012). We extracted arelatively
170  high number of I1Cs, so that the resulting ICs could represent more local variations than large scale

171 networks (Fu et al., 2018, 2019; Smith et al., 2013). This data-driven approach is an aternative to atlas-
172  based parcellation, and may be more representative to local variations of metabolic activity. The ICA was
173 performed using Group ICA of fMRI Toolbox (GIFT: RRID:SCR_001953;

174  http://mialab.mrn.org/software/qift) (V D Calhoun, Adali, Pearlson, & Pekar, 2001). The preprocessed

175  FDG-PET images from different sessions and subjects were concatenated into a single time series, and
176  fedintothe ICA analysis. Eighty one components were recommended by the minimum description

177  length (MDL) algorithm implemented in GIFT. After extraction of the 81 components, the ICs were

178  visualy inspected and grouped into eight domains (Supplementary materials) as well as 21 noise

179  components. Therewerein total 60 ICsincluded in the following analysis. For each IC, the associated
180  time series were obtained to represent metabolic activity of this source in different subjects and sessions.
181  The 81 IC maps are available at: https://osf.io/4a3vt/.

182  2.4. Regional age effects

183  For each subject, ageneral linear model (GLM) was built to examine aging effects. The GLM included
184  two regressors, a constant term and alinear age effect. The GLM analysis was performed on each IC, and

185  the g values of the age effect were obtained. Group level analysis was then performed on each IC using a
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186  onesamplet test model to examine the group averaged effect of age. A FDR (false discovery rate)

187  corrected p < 0.05 was used to identify 1Cs that had significant age effects after correcting for al the 60
188  comparisons. Thereafter, the ICs were sorted into three groups, with significant (relative) increased

189  metabolic activity, with no significant changes, and with significant decreased metabolic activity in aging.
190 2.5. Interregional causality analysis

191  We adopted Granger causality to examine the interregional causal influence of metabolic activity.

192  Specifically, wetreated the longitudinal FDG-PET data as time series, and used autoregressive model to
193  predict the value of time point t in aregion y by the previous time points of another region x, when

194  controlling for its own previoustime points. In the current data, the time step is approximately one year.
195  Toaccount for the variability of intersession interval, the intervals between time pointst and t — 1 were
196  added as acovariate or regressed out in the analysis (see below for details). Another consideration isthe
197  order of the model, i.e. how many previous time points are used to predict the current time point. In this
198  study, we used only the first order model to measure the causal influence of only one previous time point,
199  which represents atime step of about one year. The limited number of time points in a subject prevents
200  ustouse higher order models. The advantage of using only the first order model isthat the sign

201  information of the beta estimate enables us to differentiate positive and negative predictions. The model

202  can be expressed in the following form:

203 Ye=Pot P Yeat B X tE

204  wherey represents the predicted time seriesin one brain region, and x represents the predicting time series
205  of another brain region. yi.; represent the time series of y; which moved one time point ahead, thus

206  representing a autoregression model of time seriesy. The effect of interest is the predicting value of X,
207  whichisp..

208 We concatenated the time series across al the subjects to form along time series for analysis

209  (Figure3). Therefore, the model is considered fixed effect model. Thetime series of a subject were first
210  ztransformed to minimize inter-subject variation, where m; represents the total number of time pointsin a

9
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subject i. For each subject, we included the time points 2 to m of the time series of aregion as the
predicted variabley;. The autoregressive variabley;.; included the time points 1 to m — 1 of the time
series of the same region. The predicting variable x.; was the time points 1 to m — 1 from another region

X. After concatenation, there werein total 360 data pointsin the time series.

1 1 1 2 2
1 1 1 2 2

| y 1 ‘ y 2 | o |y I‘|‘|:|'7)'|'| y 1 | y 2 | |y m2- 1 _
1 1 1 2 Gl

Figure 3 lllustration of the construction of the variables used in the causality analysis. X represents the
predicting region, and y represents the predicted region. The superscript represents different subjects,
with atotal number of n. The subscript represents the scan session in a subject, with atotal number of mi

for asubject i.

The model could be applied to each pair of the ICs from the 60 ICs. The intersession interval
between time t and timet — 1 wereincluded in the model as a covariate. Wefirst performed such analysis
on each pair of 1Csto obtain the predicting effect (,) and corresponding p values, which formed a 60 x
60 matrix of causal effects. FDR correction at p < 0.05 was used to correct for multiple comparisons of
thein total 3,540 (60 x 59) effects, where autoregressive effects along the diagonal were not tested.

This pair-wise approach may identify influences from different regions with shared variance
athough maybe only one region has direct influence with the tested region. To overcome this, when
predicting aregion X, one can add all the other ICs to identify which region can predict X;. The model is

then as following for a predicted region X:

Xti ::B0+181'Xt1—1+:82’Xt2—1+ﬁ3'xt3—1+"-+ﬁp 'Xt81+8

10
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231 Sincedl the ICswereincluded in the model, there was no need to differentiate the variables of x and y.
232 Therefore, we use x to denote all the time series variables. The superscripts of x now represent different
233 ICs, where p represents the total number of the IC. Before entering in to the model, atime series

234 representing the intersession interval between time point t and t — 1 were regressed out from all the x4
235  time seriesto account for the intersession interval variability. Estimating the multivariate model may be
236  challenging, especially when some of the IC time series may be highly correlated. It can be assumed that
237  only asmall number of ICs may influence the predicted IC. In this scenario, one can use regularization
238  method to estimate the sparse influence effects, such as using LASSO (least absolute shrinkage and

239  selection operator) (Tang, Bressler, Sylvester, Shulman, & Corbetta, 2012; Tibshirani, 1996). The

240  motivation of choosing LASSO over other regularization methodsis that the LASSO regularization can
241  force some parametersin the model to be zero thus resulting in only a small number of non-zero

242  parameters. Thisisimportant in the current context, because the aim is to identify a small number of
243 interregiond influences. Since this model examines the prediction of the time series of one IC by the
244  timeseries of al the other ICs, the analysis only needed to be performed for 60 times (compared with 60
245  x59timesin the pair-wise analysis) to cover al the ICs.

246 The LASSO regression was performed using the lasso function implemented in MATLAB. To
247  determine an optimal regularization factor 4, we used a set of 4 from O (no regularization) to 0.5 with a
248  step of 0.001. The identified non-zero influences dropped dramatically asthe increase of . We identify
249  the/ where the number of non-zero influences were the closest to the number of significant effects when
250  using FDR correction in the pair-wise analysis, and reported all the non-zero influencing effects.

251 The resulting 60 x 60 influencing matrix can be treated as a directed network graph, where the
252  ICsrepresent the nodes and the causal influences represent directed edges of the graph. We calculated in-
253  degree and out-degree of the 60 nodes to characterize the importance of an IC in the whole brain

254 influencing graph. To ensure that the degree calculation was not affected by arbitrary defined threshold,

255  we also explored the graphs from other 4 values to verify the identified hub regions are still present. To

11
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256 visualize the network topology, we identified the giant component where all the nodes in the component
257  were somehow connected (without considering the direction of the influences). The giant components
258  werevisualized using the force layout.

259

260 3. Results

261  3.1. Ageeffect on regional metabolic activity

262 Wefirst examined the age effects on the regional metabolic activity for the 60 ICs. Statistical significant
263  ICsat p <0.05 after FDR correction are shown in Figure 4. Eighteen ICs showed significant reduced
264  metabolic activity, including one IC that covered the inferior portion of the cerebellum (IC 1), three ICs
265 that coved visua cortex (IC 17, 32, and 53), three ICs that covered the posterior parietal cortex (1C 21, 27,
266 and 28), five ICs that covered the anterior portion of the temporal lobe and insula (1C 24, 44, 63, 66, and
267  77),onelC that covered the thalamus and basal ganglia (IC 23), two ICs that covered the orbital frontal
268  cortex and frontal pole (IC 3 and 48), and three ICs that covered the cingulate cortex and neighboring

269  midline cortical regions (IC 7, 37, and 46). The left panel of Figure 5 illustrates the negative age effects
270  of anexample IC (IC 48). It can be seen that thereis ageneral linear trend of decrease of metabolic

271  activity. But each subject showed fluctuations of metabolic activity aong the linear trend. In contrast, 6
272 ICsshowed increased metabolic activity. It should be noted that due to the nature of PET imaging, the
273  global signa for each PET image hasto be normalized. Therefore, it is difficult to say whether the

274  positive age effect represents increased metabolic activity, or arelative increase with reference to the

275  global effect. The ICswith relative increased metabolic activity during aging included one IC covering
276  theinferior and posterior portion of the cerebellum (1C 13), two subcortical 1Cs covering the basal ganglia,
277  insula, amygdala, and thalamus (IC 19 and 52), and three ICs of sensorimotor regions (IC 36, 50, and 68).
278  Theright panel of Figure 5 illustrates the positive age effects of an example IC (IC 19). There were 36

279  ICsthat did not show statistically significant age effects at p < 0.05 after FDR correction. The middle

12
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280  pane of Figure 5illustrates the age effects of an example IC (IC 56) with no statistical significant age

281  effect.

Decreased local metabolic activity during aging

282

283 Figure 4 The independent components (ICs) that showed statistically significant decreased (blue) and
284 increased (red) metabolic activity during aging after controlling for global effect at p < 0.05 with false
285 discovery rate (FDR) correction. The numbers to the bottom right represent the IC number.

286

s 2 1C19:

Poge < 0.05,

Metabolic activity (a.u.)

)87 Time since first scan (year)

288 Figure 5 Examples of aging effects of metabolic activity of three independent components (1Cs) that had
289 negative, non-significant, and positive aging effects. Each colored line represents one subject. T and p
290 values represent group-level one samplet test statistics. A.u., arbitrary unit.
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291

292  3.2.Interregional causal influences of metabolic activity

293  Wefirst applied pairwise autoregressive model to obtain a 60 x 60 matrix of the interregional causal
294  influences of metabolic activity between each pair of the ICs (Figure 6A). When using a statistical

295  threshold of p < 0.05 of FDR correction, 14 positive and 13 negative causal influences were identified
296  (Figure 6B). We next performed LASSO regression with x; of an I1C as the predicted variable and x;; of
297  all the ICsasthe predicting variables using arange of . We identified the / value where the number of
298  non-zero effects was the closest to the number of significant effectsin the pairwise analysis. The

299  resulting influencing effects at A = 0.162 (Figure 6C) ook in general similar to the significant effects
300 identified by the pairwise analysis, although some subtle differences can be noted. There were 15

301  positive and 13 negative causal influencesidentified using LASSO regression (Table 1).

From From

10 20 30 40 50 80 10 20 30 40 50 80 10 20 30 40 50 ]

302 A. Pairwise: Raw B. Pairwise: p < 0.05 FDR C. LASSO: A = 0.162

303 Figure 6 A, Pairwise matrix of interregional causal influence of metabolic activity. The columns
304  represent influencing independent components (ICs), while the rows represent influenced ICs. B, Ternary
305  matrix of significant positive or negative interregional causal influences thresholded at p < 0.05 after false

306  discovery rate (FDR) correction. C, Ternary matrix of positive or negative interregional causal influences

307 identified at A = 0.162 using LASSO (least absolute shrinkage and selection operator) regression.
308
309 Among the 28 causal influences from LA SSO regression, the first giant component was

310  comprised of 26 causal influencesinvolving 25 ICs (Figure 7). The IC maps were color coded based on
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311  their regional age effectsto illustrate the relationships between regional metabolic activity changes and
312  thesignsof causal influences. It can be seen that the influences between two decreased regions or two
313  increased regionsin aging werein general positive, but the influences between one increased and one
314  decreased regions were in general negative. For example, the bilateral anterior temporal IC (IC#63in
315  Figure 6) positively influenced the medial parietal 1C (IC# 27), but negatively influenced the basal

316  ganglialC (IC#19). Itisconsistent with the direction of the spread of age effects. Therewerealso ICs
317  that without apparent age effects, where the signs of causal influences with other regions did not show

318  clear pattern.

319

320  Figure7 Interregiona causal influences network at 4 of 0.162 using LASSO (least absolute shrinkage and
321 selection operator) regression. The colors of the independent component maps represent increased (red),

322 decreased (blue), and non-significant (green) age effects on metabolic activity. The colors of the arrows

15
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represent positive (red) and negative (blue) interregional influences, respectively. The maps highlighted

with yellow circle represent hub regionsin the network.

To better illustrate the topology of the interregional influencing network and to highlight the
regions that are more influencing or influenced to other regions, we plotted the first giant components of
the interregional influencing network using force layout at /4 = 0.162, and also at more liberal thresholds
of . =0.142 and A = 0.122 (Figure 8). The node sizes represent the out-degree or in-degree of anodein
the network in the upper and middle panels, respectively. It can be seen that the nodes with large out-
degree were in general the regions with decreased metabolic activity (blue nodes). The red arrows
highlighted the two nodes that had 5 out-degrees at 4 = 0.162 and remained among the highest out-degree
nodes at the lower 4 values. These two nodes were also highlighted in Figure 7, which covered the
bilateral orbitofrontal cortex (IC# 48) and the bilateral anterior temporal |obe (IC# 63). Whilein terms of
in-degree, there were no clear regions that had exceptionally high in-degree compared with other nodes.
The node with high in-degree had no apparent age effects (green nodes) or had increased metabolic
activity with age (brown nodes). The distributions of nodal out- and in-degree confirmed that the out-
degree distributions had heavy tailed distributions compared with the in-degree distributions (lower

panelsin Figure 8).
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340

341 Figure 8 The giant component of the causal interregional influencing network of metabolic activity at

342 different /. levels with the sizes of the nodes reflecting out-degree (top row) and in-degree (middle row).

343 The bottom row shows the degree distributions of the whole influencing network at the three / levels.

344 Brown and blue arrows indicate positive and negative influences identified using LASSO regression.

345 Blue, green, and brown regions indicate positive, none, and negative age effects on regional metabolic
346 activity. The red arrows highlight the two influencing nods at different A levels.

347

348

349 4. Discussion
350 By applying autoregressive model on longitudinal FDG-PET data, the current study demonstrated causal
351 interregiona influences of metabolic activity during normal aging. Several 1Cs with significant reduced

352  metabalic activity in aging, including the orbital frontal cortex and anterior temporal lobe, causally
17
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influenced many other ICs. In contrast, the influenced |Cs were more widespread and with less local
aging effects or even with relatively increased metabolic activity. To the best of our knowledge, thisis
the first study to demonstrate longitudinal interregiona causal influences of brain activity during aging at
thetime scale of a year.

Consistent with our predictions of interregiona spreads of age effects, the influencing 1Cs usually
had decreased metabolic activity. On the other hand, the influenced regions were not restricted to the
regions with reduced metabolic activity in aging. Indeed, the ICs that had relatively greater in-degree
values than other 1Cs were usually without apparent age effects, or even with relatively increased
metabolic activity, e.g. the basal ganglia and thalamus. Therefore, the causal interregional influencesin
general reflected the spread of age effects from brain regions that had aready declined to regionsthat are
declining or relatively preserved. We note that the absence of regional age effects should be interpreted
with caution, because the removal of global effects during calculation of regional age effects could have
removed significant age effects that were similar to the global effects.

The interpretation of the causal influences need to consider both the sign of the causal influences
and the regional age effects. A positive influence indicates that the metabolic activity in region A at the
current time point positively predicts the metabolic activity in region B at the next time point. While a
negative influence indicates a negative prediction. If the two regions are both decreasing during aging,
then a positive influence may indicate a spread of metabolic activity decline between the two regions. On
the other hand, if region A decreases but region B shows relatively increased metabolic activity, and there
is a negative influence between A and B, then it may indicate a compensation of region B that is resulted
from the declined function of region A. A close look at the patterns of the directions of the local and
interregional effects indicated that most of the effects observed were consistent with the spatial spread or
compensation interpretations. That is, the influences between two decreased regions were all positive,

and the influences between one decreased region and one increased regions were all negative.
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377 The current analysisidentified several hubs that influenced other brain regions, most prominently
378  theanterior temporal lobe and orbital frontal cortex. The anterior temporal lobe (1C 63) is connected to
379  several maor white matter tracts such the cingulum, inferior longitudinal fasciculus, and uncinate

380 fasciculus (Catani & Thiebaut de Schotten, 2008), which could support its influencing role to other

381  regions such asthe subcortical regions, inferior frontal cortex, and left temporal cortex. To better

382  characterizeits functional correlates, we submitted the IC map into NeuroVault (NeuroVault,

383  RRID:SCR_003806; https://neurovault.org), and decoded the functions of these maps using large-scale

384  meta-analytic data from Neurosynth (NeuroSynth, RRID:SCR_006798; http://neurosynth.org/) (Rubin et
385 a., 2017). Thefirst five functional terms were all about language and semantic processing (See

386  Supplementary Table S2). Studies aso showed that electrical stimulation of the anterior temporal lobe
387  canimprove proper name recalls in aging (Ross, McCoy, Coslett, Olson, & Wolk, 2011), and

388  bilingualism can protect the integrity of anterior temporal lobe in aging (Abutalebi et al., 2014). Taken
389  together, the results suggest that language process might be an important factor modulating brain aging.
390 The orbital frontal cortex (IC 48) is connected to the uncinate fasciculus and inferior fronto-

391  occipital fasciculus (Catani & Thiebaut de Schotten, 2008), which could support its influences to the

392  posterior visual regions. The functional words related to the orbitofrontal IC were mainly about

393  emotiona processing (Supplementary Table S2). In older population, smaller orbitofrontal volumes are
394  shown to be associated with depression (Lai, Payne, Byrum, Steffens, & Krishnan, 2000; W. D. Taylor et
395  al., 2003). Taken together, emotional process might also be an important factor modulating brain aging.
396  However, athough previous studies have shown associations between resting-state brain activity and task
397  activations (Di, Kannurpatti, Rypma, & Biswal, 2013; Yuan et al., 2013), the extent to what resting-state
398  brain activity can reflect certain brain functions are still largely unknown. Further studies might need to
399  design proper tasksto better link functions to brain activations.

400 A limitation of the current analysisis the potential confounding effect due to partial volume

401 (Bonteet a., 2017; Rousset, Ma, & Evans, 1998), i.e. whether an observed effect is due to the changes of
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bona fide metabolic activity or the changes of underlying gray matter volume. However, the following
reasons make the partial volume confounding less problematic. First, the current analysis adopted within
subject comparison, which has already minimized the partial volume effects due to inter subject
anatomical variability. Second, we applied ICA analysisto identify independent sources of metabolic
variability. Some components that were likely due to enlargement of ventricle and are spatially
overlapped with the included ICs, have been aready removed. For example, there wasan IC largely
located in ventricle area (IC 79 in supplementary Figure S9) but with substantial overlaps with the ICs of
the thalamus and basal ganglia (supplementary Figure S5). The IC 79 had the second strongest negative
age effect among all the ICs. Theincluded ICs that had spatia overlap with this IC showed no age effects
or even positive age effects, suggesting that the partial volume effects associated with enlarged ventricle
have been minimized in these ICs. Third, even though the observed causal influences may still somehow
contributed by the residual partial volume effects, the causal influences of volumetric reductions may still
be important findings for understanding brain aging. The structural MRI images are available in the
ADNI dataset, but were not always acquired at the same time point as the PET images, making the
incorporation of MRI images in the model difficult. Future studies should certainly consider taking into
account of anatomical information in the analysis. Indeed, it may be theoretically more important to
study the interaction or causal influences between brain anatomy and functionsin aging. According to
the compensation model, the reduction of gray matter will lead to elevated functional responses, which
then giverise to less affected behaviora performances (Gregory et al., 2018; Reuter-Lorenz & Park, 2014;
Shafto & Tyler, 2014). A direct examination of causal influences among local and interregional gray
matter structures, functions, and behavioral performances may provide more insight to the dynamic of
compensation processin aging.

One strength of the current analysis approach is that we adopted multivariate methods and
LASSO toinclude all the ICs in the predicting models, which in theory can prevent identifying 1Cs that

have indirect predicting effects to the target (Smith et al., 2011; Tang et al., 2012). On the other hand,
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there are a so several simplifications of the Granger causality analysis, such as the inclusion of only the
first order model and the assumption of equal time steps. Since the current study is the first to explore the
causality in the aging process, the time lag of the aging progression is still largely unknown and bear
further studies. But practically dueto the limited availability of longitudinal data, this question is difficult
to solve at the current stage. Regarding the variable time steps of the time series, we added the
intersession interval as a covariate to minimize the effects, which is similar to a previous work (Jiang et
al., 2018). More sophisticated models, such as generative model and differential equation based method
(G. Ziegler, Penny, Ridgway, Ourselin, & Friston, 2015; Gabriel Ziegler, Ridgway, Blakemore,

Ashburner, & Penny, 2017), may be used in future to better characterize the causa effects.

5. Conclusion

By applying Granger causality analysis on longitudinal FDG-PET images of healthy old participants at a
time step of one year, the current analysis revealed interregional causal influences during aging. Severa
regions with reductionsin local metabolic activity during aging, including the bilateral anterior temporal
lobe and orbitofrontal cortex, showed causal influences to other regions, supporting an interregional
spread of age effectsin the brain. The current analysis and results could add new insights to the

neurocognitive aging literature about interregional interactions during the aging process.
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(least absolute shrinkage and selection operator) regression.

Table 1 List of interregional causal influences of metabolic activity identified at A = 0.162 using LASSO

From — To

IC Sig IC

# Label n # Label

52 Thaamus, brainstem - 27 Precuneus
Supplementary motor area, paracentral

36 lobule + 52 Thalamus, brainstem
Insula, inferior frontal gyrus, superior Temporal pole, media orbitofrontal

44  temporal pole + 77 cortex

63 Tempora pole + 40 Left middletemporal gyrus

63 Temporal pole + 27 Precuneus
Insula, inferior frontal gyrus, superior

44  temporal pole - 20 Rightinferior and middle frontal gyrus

63 Tempora pole - 38 Left thalamus, caudate, lingual gyrus
Insula, inferior frontal gyrus, superior

44  temporal pole - 16 Superior and middlie fronta gyrus

39 Superior parietal lobule, precuneus + 20 Rightinferior and middle frontal gyrus

Posterior cingulate cortex, precuneus,

19 Basa ganglia, amygdala, insula - 46 lingua gyrus

63 Tempora pole - 19 Basal ganglia, amygdala, insula

63 Tempora pole - 34 Inferior frontal gyrus
Lobule VII crus, Lobule VI hemisphere,

81 vermis - 6 LobuleVII crus

39 Superior parietal |obule, precuneus + 19 Basal ganglia, amygdala, insula

19 Basal ganglia, amygdala, insula - 17 Lingua gyrus, calcarine sulcus, cuneus
Orbitofrontal cortex, superior temporal

48 pole + 39 Superior parietal |obule, precuneus

28 Inferior parietal |obule, precuneus + 17 Lingual gyrus, calcarine sulcus, cuneus
Orbitofrontal cortex, superior temporal

48 pole + 47 Postcentral gyrus, inferior parietal lobule
Orbitofrontal cortex, superior temporal

48 pole + 56 Superior and middle occipital gyrus

28 Inferior parietal |obule, precuneus + 56 Superior and middle occipital gyrus

28 Inferior parietal |obule, precuneus + 43 LobuleVIl and VIII, hemisphere
Orbitofrontal cortex, superior temporal

48 pole + 11 Lingual gyrus, calcarine sulcus, cuneus
Orbitofrontal cortex, superior temporal

48 pole + 69 |Inferior occipital and fusiform gyrus

80 Inferior parietal lobule - 56 Superior and middle occipital gyrus
Left inferior frontal gyrus, left middle

5 occipital gyrus - 28 Inferior parietal lobule, precuneus

78 Postcentral gyrus - 12 Superior and middle occipital gyrus
Left inferior frontal gyrus, left middle

5 occipital gyrus + 80 |Inferior parietal lobule

30


https://doi.org/10.1101/490292
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/490292; this version posted June 25, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Left inferior frontal gyrus, left middle
5 occipital gyrus - 66 Left inferior temporal gyrus
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