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Abstract

Understanding the relationship between the pathophysiology of infec-
tious disease, the biology of the causative agent and the development
of therapeutic and diagnostic approaches is dependent on the synthe-
sis of a wide range of types of information. Provision of a comprehen-
sive and integrated disease phenotype knowledgebase has the potential to
provide novel and orthogonal sources of information for the understand-
ing of infectious agent pathogenesis, and support for research on disease
mechanisms. We have developed PathoPhenoDB, a database contain-
ing pathogen-to-phenotype associations. PathoPhenoDB relies on man-
ual curation of pathogen-disease relations, on ontology-based text min-
ing as well as manual curation to associate phenotypes with infectious
disease. Using Semantic Web technologies, PathoPhenoDB also links
to knowledge about drug resistance mechanisms and drugs used in the
treatment of infectious diseases. PathoPhenoDB is accessible at http:
//patho.phenomebrowser.net/, and the data is freely available through
a public SPARQL endpoint.

Background & Summary

The 2016 Global burden of disease study estimated that infectious diseases as
part of the communicable, maternal, nutritional and neonatal complex (CMNN)
accounted for 19% of global mortality in 2016, and constitute the second most
important cause of deaths globally [28]. They remain the top cause of mortality
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in most of the developing countries, mainly in Africa, at 56% in 2015. The an-
nual infectious disease mortality in the world is reported as 10,598 (per 100,000
people) by the World Health Organization (WHO). Lower respiratory tract in-
fections are the most likely cause of mortality due to infectious disease, followed
by diarrhoeal diseases, tuberculosis and HIV/AIDS which were responsible for
3.2 million, 1.4 million, 1.4 million and 1.1 million deaths respectively in 2015
alone [3]|. Infectious diseases have highly significant economic impact through
morbidity and mortality, especially for the developing countries [5]. They affect
multiple components of human development including income, health, educa-
tion and productivity through lost life years, and cause devastating consequences
worldwide.

Infectious diseases are caused by a wide range of organisms (viruses, bacteria,
fungi, worms, protozoa) that are generally considered as pathogens. Antimicro-
bial drugs are often the first line therapy for infectious diseases. However, drug
resistance accumulates over time due to selection of genetic changes in pathogen
populations when they are exposed to antimicrobial drugs (such as antibiotics,
antifungals, antivirals, antimalarials, and antihelmintics). It now becomes cru-
cial to develop strategies that can identify a pathogen rapidly and determine
successful treatment options based on functional information in the pathogen
relevant to drug resistance mechanisms.

While functional information about pathogens and their interactions with
hosts is increasingly becoming available on a molecular level through large-scale
studies [29], phenotypes observed in a patient are not only mediated through
direct molecular interactions between a pathogen and host but also through the
immune response and physiological and patho-physiological processes affecting
the entire host organism. Phenotypes observed in a patient provide a readout
for all these processes and generally provide a proxy for the mechanism through
with pathogens elicit their signs and symptoms [13]. While there is a wide
range of phenotypes that are shared across multiple infectious diseases as a
result of common immune system processes and immune response to pathogens,
certain host-pathogen interactions may result in specific phenotypes through
which pathogens can be broadly distinguished.

Phenotype-based computational analysis methods can uncover molecular
mechanisms in Mendelian diseases [30], and have been applied to the discov-
ery of disease mechanisms from animal models [16] and to the investigation
of drug mechanisms and drug repurposing [15]. In the area of infectious dis-
ease, similar methods may be applicable, mainly to investigate mechanisms of
virulence and pathogenicity. Application of phenotype-based methods requires
matching phenotypes observed in a particular physiological or pathological state
with the phenotypes known to be associated with pathogens [16, 14], and use
of this information to reveal molecular mechanisms. Currently, there is no com-
prehensive database of pathogen-to-phenotype associations that can be used for
this purpose.

We have developed PathoPhenoDB, a database of pathogen-to-phenotype
associations intended to support infectious disease research. PathoPhenoDB
is a database which relies on pathogen—disease associations curated manually
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from public resources and the scientific literature. We further expanded the
pathogen—disease associations by complementary textmined data [20]. PathoPhen-
oDB links pathogens to their phenotypes based on manually-curated and text-
mined disease—phenotype associations. Furthermore, PathoPhenoDB links pathogens
to drugs [23] that are known to treat infections by the pathogen, and further
links pathogens to drug resistance genes and proteins [19] as well as to the drugs
against which these genes or proteins convey resistance so that the information

in PathoPhenoDB can be utilized directly for research on drug resistance mech-
anisms. PathoPhenoDB is freely available on http://patho.phenomebrowser.

net, and the data can be obtained through a public SPARQL endpoint.

Methods

Data collection and integration

We developed PathoPhenoDB by considering the FAIR data principles [38]. We
gathered a list of possible human pathogens for all infectious disease listed in
the DO [22]. We identified possible pathogens for these diseases from public
databases and scientific literature. In the cases where we could not find an
exact match of a pathogen in the NCBI taxonomy, we mapped the pathogen
to their parent class. For example, instead of assigning Spirillium minus to
Sodoku disease, we assigned the higher taxon Spirillium to Sodoku disease due
to Spirillium minus not being listed in the NCBI taxonomy.

We extracted disease phenotypes manually from DO and largely from PubMed
abstracts by using ontology-based text mining [17], and we then linked the phe-
notypes to the pathogens. Briefly, we identified co-occurrences between disease
names from DO and phenotype names from the Human Phenotype Ontology
(HPO) [33] (downloaded on 14/May/2018) and the Mammalian Phenotype On-
tology (MP) (downloaded on 14/May/2018) [9] in abstracts. We selected the
significant disease—phenotype co-occurrences based on an ontology-based nor-
malized point-wise mutual information [17]. To integrate the HPO and MP
ontologies we use the PhenomeNET ontology [16].

We extracted drug information from the SIDER database [23] by resolv-
ing the cross-references between UMLS concept identifiers and DO identifiers.
We gathered information about drug resistance from the Antibiotic Resistance
Ontology (ARO) [19]. For this purpose, we matched the ARO accession and iter-
ated through the ontology hierarchy using the subclass and confers-resistance-to
relationships in ARO to retrieve the drugs. Using the Entrez API, we then iden-
tified the DNA accession that conveys drug resistance in the NCBI nucleotide
database to retrieve the organism and its NCBI Taxonomy identifier. While, dis-
eases are linked to pathogens, drugs, and phenotypes, the pathogens are linked
to their drug resistance proteins, DNA accession and drugs to which they are
resistant.
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Semantic similarity computation

We calculate the semantic similarities by using Resnik’s semantic similarity
measure [32]. We rank pathogens based on their similarity scores to the query
to find candidate pathogens. The Resnik semantic similarity measurement is
formally defined as:

sim(ci,c2) = max —[logp(c)] (1)
ceS(e1,c2)
where p(c) is the probability of a pathogen being annotated with ¢. We used
the Best-Match Average strategy to calculate the average of of all maximum
similarities and compare two sets of phenotypes:

Z;ilmaxlgjgnsim(cli, CQj) + Z?zlmaxlgigm sim(ch—, ng)
m+n
(2)

Additionally, we use the OPA2Vec framework [35] to generate ontology em-
beddings for the pathogens, and we use a t-SNE dimensionality reduction [26]
to visualize the resulting embeddings and their relations.

simpara(gi, g2) =

Implementation and availability

We developed the web application for our database using Python Django frame-
work [1] for the backend and ReactJS [2] for the frontend services. We store
only identifiers for the links in our database and retrieve all the annotations
and additional data such as names from the AberOWL [34] ontology repository
using its REST API. For this purpose, we created compressed versions of DO,
PhenomeNET and NCBITAXON [10] ontologies.

PathoPhenoDB is available at http://patho.phenomebrowser.net and its
content is accessible through a public SPARQL endpoint. The source code is
available at https://github.com/bio-ontology-research-group/pathophenodb
and every release of the data is deposited in a research data repository (Data
Citation 1).

Data records

PathoPhenoDB is a database of human pathogens, the diseases and phenotypes
they elicit in human organisms, and information related to drug treatments
and mechanisms of drug resistance. Specifically, PathoPhenoDB contains asso-
ciations between pathogens and diseases, between pathogens and phenotypes,
between drugs that are approved to treat particular pathogens, and it identi-
fies genes or proteins within pathogens that can convey resistance to particular
drugs. Figure 1 provides a high-level overview of the information in PathoPhen-
oDB. PathoPhenoDB is constructed through a combination of manual curation
of scientific literature, text mining, information extraction, and data integration
approaches using Semantic Web technologies.
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Figure 1: Schematic overview of the types of entities and their relations in
PathoPhenoDB

In PathoPhenoDB, we consider a pathogen to be any kind of bacterium,
virus, fungus, protozoan, parasite, or other type of organism that is known to
be able to cause a disease or abnormal phenotype in humans. With this broad
view of pathogens, PathoPhenoDB includes 32 types of parasitic insects, 115
fungi, 208 bacteria, 47 protozoa, 175 viruses, and 115 taxa of parasitic worms.
Our database currently covers a total of 1,170 pathogen—disease associations
between 508 infectious diseases and 692 taxa of pathogens. For a total of 130
infectious diseases and 399 pathogen—disease associations, we also include in-
formation about drugs that can treat the disease and pathogen. We further
include information on known mechanisms of drug resistance for 30 pathogens
representing 78 pathogen—disease associations. While PathoPhenoDB is largely
based on manually curated information, we also extracted pathogen—disease as-
sociations from the biomedical literature [20] and use this information to enrich
the content of our database. Statistics relevant to the textmined content is
available from the web site http://patho.phenomebrowser.net.

We use the Human Disease Ontology (DO) [22] as a reference for infectious
diseases in humans and base all our disease-related information on the DO. To
associate pathogens with phenotypes, we follow a data integration approach and
deductive inference where we utilize pathogen—disease associations to propagate
phenotypes associated with infectious disease in DO [17] to the pathogens that
cause the diseases. In PathoPhenoDB, we utilize 1,140 of 1,143 pathogen—
disease associations to assign phenotypes for 476 (out of 508) infectious diseases
to pathogens. For example, we use the phenotypes assigned to the DO class
Plasmodium malariae malaria (DOID:14324), which includes phenotypes such
as “episodic fever”, “hemolysis” and “anura”, and assign all phenotypes of this
disease to Plasmodium malariae (NCBITaxon:5858) based on the association
between Plasmodium malariae and Plasmodium malariae malaria.

As vocabulary for phenotypes we use a combination of the Human Phe-
notype Ontology (HPO) [33] and the Mammalian Phenotype Ontology (MP)
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[37]. While both ontologies are formally distinct and use different identifiers,
they can be integrated and aligned through cross-species phenotype ontologies
such as PhenomeNET [16] or UberPheno [25]. For our database, we use the
PhenomeNET ontology as it has been applied in a variety of phenotype-driven
studies of molecular mechanisms [4, 24]. The 692 pathogens in PathoPhen-
oDB are associated with 1,719 distinct phenotypes from HPO and 479 distinct
phenotypes from MP. On average, each pathogen is directly associated with 20
phenotypes.

Using ontologies to represent phenotypes enables deductive inferences using
the ontology axioms [27, 18]. To exploit these inferences, we represent the data
in PathoPhenoDB using the RDF format (described in the methods section) and
it is available for querying by using SPARQL endpoint from the web site. We use
the Relation Ontology (RO) [36] and the Semanticscience Integrated Ontology
[8] to represent the relations between the entities. For the relations in Figure
1, the has_phenotype relation corresponds to R0_0002200, has_pathogen to
R0O:0002556 and the is_treated_by relation to R0:0002302.

As we gathered pathogen—disease and disease—phenotype associations us-
ing two different methods — text mining and manual curation — we use the
has_annotation relation from SIO (SI0:000255) to reify annotation asser-
tions; in particular, we generate annotation objects that consists of a relation,
an annotation value of the relation, and an evidence code that represents the
level of evidence for the annotation. For example, to represent the informa-
tion that Actinomadura madurae (NCBITaxon:1993) may cause Actinomyco-
sis (DOID:8478), as obtained from text mining, we generate a new annotation
object consisting of the pathogen of (RO:0002556) relation to Actinomycosis
(DOID:8478) and the has evidence (R0:0002558) relation to manual assertion
(EC0:0000203) in the Evidence and Conclusion Ontology (ECO) [12]. In addi-
tion to reusing relations from established ontologies, we generate new relations
(resistant to, resistance-conferring protein, resistance-conferring genomic fea-
ture) to capture information on drug resistance.

The data in PathoPhenoDB is updated when new data becomes available
or issues with existing data are resolved. To report issues such as incorrect or
missing associations, we maintain an issue tracker. Data is released in RDF
format and every release of the data is deposited in the Zenodo data repository
(Data Citation 1).

Technical Validation

Figure 2 presents the search in PathoPhenoDB for a particular phenotype, Brain
atrophy. The query retrieves all the infectious diseases associated with brain at-
rophy and their causative pathogens. Due to the use of inference and Semantic
Web technologies, PathoPhenoDB can identify both direct and indirect associ-
ations between pathogens and phenotypes. We classify an association as direct
if it is explicit asserted during the curation. We classify an association as in-
direct if it is inferred based on a direct association and application of inference
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over the subclass hierarchy of the ontologies. For example, PathoPhenoDB
does not cover any infectious disease that is directly associated with Tozocara
(NCBITaxon:6264). However, a query for Torocara will return all the disease
and phenotype associations linked to its subclasses, including Tozxocara canis
(NCBITaxon:6265) and Tozocara canti (NCBITaxon:6266) as indirect associa-
tions. Using this kind of inference, PathoPhenoDB can provide useful and rele-
vant knowledge on the entities of interest while using the background knowledge
contained in the class hierarchy of the ontologies.

In addition to querying our database using Semantic Web technologies, the
information in PathoPhenoDB can also be used to perform approximate queries
using semantic similarity measures [32]. We test the similarity-based retrieval of
pathogens by generating synthetic sets of phenotypes that consist of randomly
chosen subsets of phenotypes associated with an infectious disease, and trying
to identify the pathogen causing the disease based on semantic similarity over
phenotype ontologies. Figure 3 shows the performance of recovering pathogens
through semantic similarity when providing a varying number of symptoms.
The model achieves a ROCAUC of over 86% using a single phenotype as query
and does not significantly improve with more phenotypes added. We speculate
that this is the result of pathogens falling in distinct phenotypic groups and that
semantic similarity does not appropriately weight the distinguishing phenotypes
within the group (because they are too general). We further use a data-driven
semantic similarity measure based on ontology embeddings [35] to visualize the
pathogens and their phenotypes in a 2-dimensional space using a t-SNE dimen-
sionality reduction [26]; phenotypically related pathogens are closer together in
this space. Figure 4 shows the resulting plot. We also make this figure available
on our website to enable interactive exploration of pathogens based on their
phenotype similarity.

Usage notes

Infectious disease research and diagnosis of infectious disease is rapidly chang-
ing with the application of sequencing technologies. Current routine clinical
pathogen identification methods often do not identify the most effective and
specific treatment options [6], or are not able to identify the causative pathogens
rapidly. Recent achievements in next generation sequencing technologies (NGS)
have led clinical microbiology to move in the direction of molecular diagnostic
approaches [7]. NGS, in particular metagenomics and metatranscriptomics, can
address the limitations of traditional microbial diagnostic methods by offering
unbiased identification of organisms and can also be used to identify drug resis-
tance and other functional information. Furthermore, metagenomics enables us
to detect non-culturable organisms and multiple infections, and already shows
great potential to be used in the rapid and accurate identification of pathogens
[11, 31].

While NGS-based approaches have the potential to identify a wide range
of pathogens in a single sequencing run, they may identify multiple different
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PathoPhenoDB Search

A database of pathogens and their phenotypes for diagnostic support in infections.

Examples:
- Disease - Chlamydia
- Pathogen - Variola virus
» Phenotype - Skin rash

brain atrophy

Label brain atrophy
Class http://purl.obolibrary.org/obo/MP_0012506

Definition acquired diminution of the size of the brain associated with wasting as from death and reabsorbtion of cells, diminished cellular proliferation, decreased cellular
volume, pressure, ischemia, malnutrition, reduced function or malfunction, or hormonal changes

Associated Diseases Associated Pathogens
IRI Label source IRI Label
Associations of subclasses Associations of subclasses
Cerebral cortical atrophy Cerebral cortical atrophy (http:/ipurl.obolibrary.org/obo/HP_0002120)

(http://purl.obolibrary.org/obo/HP_0002120)
http://purl.obolibrary.org/obo/NCBITaxon_64605  Sparganum

http://purl.obolibrary.org/obo/DOID_10080 sparganosis literature

http://purl.obolibrary.org/obo/NCBITaxon_99802  Spirometra erinaceieuropaei
Cerebral atrophy (http://purl.obolibrary.org/obo/HP_0002059) http://purl.obolibrary.org/obo/NCBITaxon_46899  Spirometra mansonoides
hitp://purl.obolibrary.org/obo/DOID_0050490  parenchymatous literature hitp://purl.obolibrary.org/obo/NCBITaxon_6199  Cestoda

neurosyphilis
http://purl.obolibrary.org/obo/NCBITaxon_46580  Spirometra

Associations of equivalent classes http://purl.obolibrary.org/obo/NCBITaxon_64606  Sparganum proliferum

Brain atrophy (http:/purl.obolibrary.org/obo/HP_0012444)
Cerebral atrophy (http:/purl.obolibrary.org/obo/HP_0002059)

http://purl.obolibrary.org/obo/NCBITaxon_160 Treponema pallidum

Associations of equivalent classes
Brain atrophy (http://purl.obolibrary.org/obo/HP_0012444)

http://purl.obolibrary.org/obo/NCBITaxon_160 Treponema pallidum

Figure 2: Search in PathoPhenoDB.

microorganisms that have the potential to cause infections. Identification of the
causative pathogen among the set of pathogens identified through metagenomics
approaches, is an additional challenge. In the future, matching the phenotypes
observed in a patient to phenotype in PathoPhenoDB may provide additional
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ROC curves for different number of pathogen symptoms
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1 symptom (AUC = 0.8623)
2 symptoms (AUC = 0.8792)
3 symptoms (AUC = 0.8742)
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o4 o 4 symptoms (AUC= 0.8821)
e 5 symptoms (AUC= 0.8781)
i 10 symptoms (AUC= 0.8783)
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—— 20 symptoms (AUC= 0.8811)
25 symptoms (AUC= 0.8810)
0.0 + . . . .
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate (1-Specificity)
Figure 3: Pathogen recovery with different number of symptoms.

features that can be combined with information from NGS to improve diagnosis
and treatment of infectious disease.

As a more direct application of PathoPhenoDB, we envision its use in inves-
tigating molecular mechanisms underlying infectious diseases, specifically host-
pathogen interactions. Phenotypes indirectly encode the molecular interactions
between hosts and pathogens and therefore may be used to study the molecular
basis of infectious disease.
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Figure 4: t-SNE plot of pathogens. Pathogens are represented using their on-
tology embeddings that have been generated using their associated phenotypes.
Viruses are colored in blue, bacteria in orange, all other pathogens in green.
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