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Secondary trait loss is widespread and has profound consequences, from generating 

diversity to driving adaptation. Sexual trait loss is particularly common1. Its genomic 

impact is challenging to reconstruct because most reversals occurred in the distant 

evolutionary past and must be inferred indirectly2, and questions remain about the 

extent of disruption caused by pleiotropy, altered gene expression and loss of 

homeostasis3. We tested the genomic signature of recent sexual signal loss in Hawaiian 

field crickets, Teleogryllus oceanicus. Song loss is controlled by a sex-linked Mendelian 

locus, flatwing, which feminises male wings by erasing sound-producing veins. This 

variant spread rapidly under pressure from an eavesdropping parasitoid fly. We 

sequenced, assembled and annotated the T. oceanicus genome, produced a high-density 

linkage map, and localised flatwing on the X chromosome. We characterised pleiotropic 

effects of flatwing, including changes in embryonic gene expression and alteration of 

another sexual signal, chemical pheromones. Song loss is associated with pleiotropy, 

hitchhiking and genome-wide regulatory disruption which feminises flatwing male 

pheromones. The footprint of recent adaptive trait loss illustrates R. A. Fisher’s 

influential prediction that variants with large mutational effect sizes can invade 

genomes during the earliest stages of adaptation to extreme pressures, despite having 

severely disruptive genomic consequences. 

 

Male crickets sing to attract and court females and to fight with rivals, but approximately 15 

years ago, silent T. oceanicus males arose and spread in populations on the Hawaiian 

archipelago4,5 (Fig. 1a). They were first detected in 2003 in a population on Kauai, where 

they rapidly spread to near-fixation from undetectable starting frequencies, under selection 

imposed by a lethal parasitoid fly, Ormia ochracea (Fig. 1b)4. Female flies acoustically locate 

male crickets by eavesdropping on their songs, but silent flatwing males have feminised 

wings lacking structures used to produce sound and are thus protected (Fig. 1c). The genetic 

mutation(s) underlying the flatwing phenotype show Mendelian segregation and X-linkage6,7, 

and the propagation of flatwing males to near-fixation in the Kauai population represents one 

of the fastest rates of evolution known in the wild, having occurred in fewer than 20 

generations4. All males found in a comprehensive survey of this population in October 2018 

were flatwing (38 flatwing males, no normal-wing males found or heard singing by JGR and 

NWB), but the continued existence of the population indicates that silent males still find 

mates and must compensate for their inability to sing. The selective environment promoting 
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the rapid spread of flatwing crickets is understood, but the mechanistic basis of the phenotype 

remain an open question. How did such a spectacularly disruptive phenotypic change invade 

the genome of crickets so quickly? Foundational evolutionary theory predicts that adaptive 

variants which invade genomes and spread under positive selection should tend to be small in 

effect size and exert few pleiotropic consequences, although exceptions are predicted during 

the earliest stages of adaptation8,9. Empirical studies have been unable to address this in 

naturally-evolving systems. 

 

The locus controlling the expression of flatwing morphology could have arisen through de 

novo mutation(s) coinciding with the time of the phenotype’s first observation in 2003, it 

could have invaded the genome of the Kauai population via migration from an unknown 

location elsewhere in Hawaii (flatwing morphs have not been observed outside of the 

Hawaiian islands), or it could have existed for much longer in the population but at extremely 

low levels, evading detection by researchers. Studies of insecticide resistance in insects and 

of melanic morphs of Lepidoptera provide some precedent. While some museum specimens 

collected before the invention of organophosphates have been shown to contain insecticide-

resistance alleles10, in other cases, resistance alleles arose de novo, and also invaded 

populations and spread under selection11. In the peppered moth, a canonical example of rapid 

evolution in the wild, melanism had a single recent origin approximately corresponding to the 

start of the industrial revolution12,13, but melanic morphs are common in many insects and 

may persist at low frequencies due to negative pleiotropy, at least until favourable selective 

conditions occur14. In T. oceanicus, parasitoid pressure pre-dated the appearance of flatwing 

in the Kauai population4, thus the de novo or introduction scenarios are most plausible. 

 

We studied the genomic signature of song loss in the population on Kauai where flatwing 

crickets were first discovered, and in which rapid spread has been most thoroughly 

documented4. We sequenced the T. oceanicus genome, generating an assembly of 2.045 Gb 

consistent with flow cytometry size estimates7, with a scaffold N50 of 62.6 kb (Extended 

Data Table 1). We established an F3 mapping population using crosses designed to maximise 

recombination on the X chromosome, which is only diploid in females (Extended Data Fig. 

1). Mapping offspring and parents were sequenced using RADseq, and a map was assembled 

containing 19 linkage groups. T. oceanicus has a haploid chromosome number of (13+X). 

We identified linkage group 1 (LG1) as the X chromosome by applying coverage and 
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heterozygosity filters and dummy coding putative X-markers prior to constructing the map. 

LG1 was the largest linkage group, with a female recombination length of 379 cM and a male 

length of 195 cM (Extended Data Fig. 2). After resolving chimeric scaffolds (Extended Data 

Table 2), 35.6% of the genome was anchored to a linkage map using a LOD5 cutoff 

(Extended Data Table 3) (Fig. 2a). 

 

We performed gene prediction and annotation using custom pipelines incorporating ab initio, 

homology, and transcriptome-based approaches (Extended Data Fig. 3). Evidence from 

different gene prediction and annotation methods was weighted and filtered to predict a final, 

conservative set of 19,157 genes, 75% of which had functional annotation (Extended Data 

Table 4, Extended Data Fig. 4). Gene density was assessed (Fig. 2a track i), and we tested 

whether the putative X linkage group showed a different distribution of repeat content 

relative to the other linkage groups, across eight common categories of repeats. It did not 

(Fig. 2a track iii, Extended Data Table 5, Extended Data Fig. 5). T. oceanicus gene features 

were compared to 10 other insect species (Extended Data Table 6), and we contrasted 

transposable element classifications with three other recently published insect genomes 

(Extended Data Table 7). The T. oceanicus genome and metadata associated with it are 

curated in ChirpBase (www.chirpbase.org), a GenomeHubs Ensembl genome browser15 that 

we created as an openly available, community-based genomics resource for researchers 

working on singing insects. 

 

Flatwing was definitively mapped to the putative X chromosome (Fig. 2b) using markers 

supported by a LOD10 cutoff and a mixed model, ANOVA-based approach designed to 

control for uneven genomic relatedness caused by family structure in the mapping crosses. To 

cope with the particularly high marker association on the putative X chromosome caused by 

the Mendelian mode of inheritance of flatwing and the different effective population size of 

the X compared to autosomes, we identified the QTL using only the top 1% of markers after 

FDR correction, yielding a prominent peak occupying approximately one third of the X 

chromosome (Fig. 2c). Flatwing morphology is observable in males during mid- to late-instar 

stages of juvenile development, so we examined early embryonic gene expression differences 

associated with flatwing. Females carrying the genotype cannot be visually distinguished and 

embryos cannot be readily sexed, so we used replicate laboratory lines homozygous for 

flatwing or normal-wing genotypes to detect widespread differential gene expression in the 
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developing thoraces of embryonic crickets. We found 830 genes differentially expressed 

(DE), 204 of which had a log2 fold-change > 1, and a predominant pattern of down-regulation 

in flatwing crickets (Extended Data Table 8, Extended Data Fig. 6). DE genes associated with 

flatwing were widely distributed across linkage groups and unmapped scaffolds (Fig. 2a track 

iv). 

 

These physically dispersed expression effects suggest that flatwing acts as a master regulatory 

switch during early development, with a broad cascade of downstream effects. Pathways 

reconstructed using differential expression data are consistent with such a mode of action. For 

example adherin junction activity was enriched, which affects epithelial patterning during 

early development (Extended Data Tables 9 & 10). Using a stringent and redundant approach 

combining information from gene sets identified in the QTL study, RNA-seq experiment and 

a previously-published bulked segregant analysis7, we identified 51 annotated protein-coding 

genes located within LG1 as top flatwing-associated candidates (Extended Data Table 11). 

GO enrichment analysis indicated that positive regulation of developmental process was 

overrepresented in this candidate gene set, with three genes in particular (NBL1, GOGA4, 

UNC89) known to play a fundamental role in the regulation of cell differentiation (Extended 

Data Table 12). 

 

In most pterygote insects, wings are derived from imaginal discs formed during development 

by the invagination of embryonic ectoderm16. Previous work mainly in Drosophila 

melanogaster has established that the developmental elaboration of wing venation patterns 

requires the involvement of numerous transcription factors and complex coordination across 

numerous signalling pathways17. Here, we found that 8 of 51 flatwing associated candidate 

genes have reported involvement in D. melanogaster wing development. For example, 

stat92E expands the proximodistal axis of the wing imaginal disc, subdividing and patterning 

it18. Collier encodes a transcription factor required for wing disc patterning19, and Myoglianin 

expression is required for normal wing disc development20. ROR1 encodes a transmembrane 

tyrosine-protein kinase receptor involved in phosphorylating MAP kinases21, and reduction of 

MAPK activity through ROR1 silencing can lead to a loss of wing venation phenotype17. The 

protein krasavietz is encoded by PKRA, and establishes planar cell polarity in the wing22, 

disruption of which can lead to wing distortion23. Knockouts and mutants in Pelle, Gen5, and 

Plexin-A4 show wing shape and venation alterations with features similar to flatwing24-26.  
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We tested the consequences of the rapid invasion of flatwing into the T. oceanicus genome by 

focusing on a distinct, close-range sexual signalling modality that operates alongside acoustic 

signalling in field crickets. Cuticular hydrocarbons (CHCs) are long-chain, waxy molecules 

expressed on insect cuticles. CHCs are thought to have evolved for dessication resistance, 

and they tend to be expressed as a bouquet of numerous individual hydrocarbon compounds. 

T. oceanicus CHCs are sexually dimorphic and function as sexual signals during male and 

female mate choice27-29, and they have been found to vary between flatwing and normal-wing 

male crickets30. We characterised the CHC profiles of F3 mapping individuals, all of which 

were raised in a common garden environment, by extracting their CHCs and using gas 

chromatography – mass spectrometry (GCMS) to measure the abundance of 26 individual 

compounds (Fig. 3a) (Extended Data Table 13). By performing dimension reduction using 

principal components (PC) analysis of the CHC profiles, we first established that, in our 

mapping population, males carrying flatwing showed noticeable and significantly different 

CHC profiles from normal-wing males (Fig. 3b) (multivariate analysis of variance on 6 

principal components with eigenvalues > 1 describing male CHC blends: F6,191 = 29.769, p < 

0.001) (Extended Data Table 14). 

 

QTL analysis was then performed on the first six CHC PCs to determine whether flatwing-

associated variation in male CHC profiles mapped to identifiable genomic regions. The 

putative X chromosome, LG1, was of particular interest, because we hypothesized that the 

striking variation between CHC profiles of flatwing and normal-wing males could be a 

pleiotropic effect of flatwing. Genetic mapping of CHCs was performed blind to male 

morphotype. PC1, which explained over a third of the variance in male CHC profiles, 

mapped to a ca. 2.5 cM region strongly co-localised with flatwing (Fig. 3c). PCs 4 and 6 also 

had co-localizing peaks (Extended Data Fig. 7). As dimension reduction for CHCs can 

obscure phenotypic patterns in the original individual chemical compounds, we mapped each 

of the 26 compounds separately. Of these, 9 showed significant peaks co-localising with 

flatwing (Fig. 3d). We recovered no autosomal QTL peaks for PCs 1-6, and only one QTL 

peak for one compound on one autosome (compound 11, 7-C31ene, on LG8). However, the 

latter peak was weakly supported, with only a single marker showing an association at FDR-

corrected p < 0.001.  
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We interrogated genes on scaffolds under the CHC QTL peaks following a similar procedure 

used to produce the flatwing candidate gene set (Extended Data Table 15). Of 55 protein-

coding genes, a subset of 6 were implicated for every CHC trait with a significant QTL peak, 

and these 6 genes were also present in the flatwing candidate gene set. These are strong 

candidates for testing the pleiotropic consequence of evolved acoustic sexual signal loss on 

chemical sexual signals. Our final step was to explore the nature of the phenotypic shift in 

flatwing male CHC profiles. It is unknown how flatwing males’ profiles compare to those of 

females30, but given the generally feminising effect of flatwing on male wing morphology, 

we predicted that flatwing males’ CHC profiles would also be feminised. We compared them 

to the profiles of normal-wing males and females using discriminant function analysis on 

profiles from all three groups. Discriminant function 1 (eigenvalue = 2.526) explained 78.8 % 

of the variance, and indicated that flatwing male crickets’ CHC profiles are strongly 

feminised (Fig. 3e). Their CHCs appear to be correspondingly less attractive to females31.  

 

The rapid emergence and spread of flatwing crickets on Kauai has been described as one of 

the fastest rates of evolutionary adaptation ever documented in the wild32. Nearly a century 

ago in 1930, R. A. Fisher8 developed a ‘geometric’ model that describes the genomic 

landscape of such early-stage adaptation and predicts what mutational features are associated 

with adaptive change. In doing so, he reconciled the prevailing, gradualist view of evolution 

with seemingly inconsistent units of discrete Mendelian inheritance that were being 

discovered and characterised at the time. Fisher’s key insight was that the process of 

evolutionary adaptation tends to favour mutations of small effect, with impacts narrowly 

limited to the phenotypic variants directly under selection33. However, he built exceptions to 

this general rule into his model when selection is severe, and the genomic signature of song 

loss in Hawaiian T. oceanicus uniquely confirms and illustrates this insight. Adaptation was 

recent, abrupt and proceeded rapidly in this system. Prior work on T. oceanicus has found 

differences in the level of phenotypic plasticity, gene expression, and other reproductive 

characteristics such as male testis size between male normal-wing and flatwing genotypes34-

36, and our present findings reveal the genomic footprint of strong, associated effects on 

sexual signalling in an entirely different sensory channel. These consequences of rapid 

adaptive trait loss are early-acting, genome-wide, and impact a range of important fitness 

traits. The suite of characters affected in flatwing crickets is reminiscent of feminised 

alternative male morphs in ruff (Calidris pugnax) in which supergene architecture controls 
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size, ornament and behavioural traits simultaneously37, and in feminised bulb mites38. What is 

surprising is that an evolved loss of function could lead to such similarly wide-ranging 

phenotypic impacts so quickly. The genomic signature of recent, rapid trait loss in T. 

oceanicus confirms Fisher’s predictions about adaptive evolution – by demonstrating the 

exception to his rule. 

 

METHODS 

Cricket rearing and maintenance. Laboratory stocks of Teleogryllus oceanicus were established 

from eggs laid by wild-caught females from a population on the Hawaiian island of Kauai in 2012, 

and a population near Daintree, Australia in 2011. Stocks were maintained in the laboratory within 16 

L plastic containers containing cardboard egg cartons for shelter. All crickets were reared in a single, 

temperature-controlled chamber a 25 °C, on a 12:12 light:dark cycle. They were maintained regularly 

and fed ad libitum with Burgess Excel Junior and Dwarf rabbit pellets and provided water in a moist 

cotton pad that also served as an oviposition substrate. Throughout all experiments, all crickets were 

reared in a common-garden environment in the same temperature-controlled chamber.  

Genome sequencing. Three Illumina sequencing libraries were prepared using genomic DNA 

extracted from the head capsule and muscle tissue of a single T. oceanicus female using a DNeasy 

Blood & Tissue kit (Qiagen). The female was sourced from the Kauai stock population. gDNA was 

quality-checked using Nanodrop and Qubit prior to Illumina library preparation and sequencing at 

Edinburgh Genomics. We prepared three standard paired-end TruSeq libraries with insert sizes of 180 

bp, 300 bp, and 600 bp. We supplemented reads from the above three Illumina libraries with 

additional sequences from two TruSeq Nano Pippin selected libraries with insert sizes of 350 bp and 

550 bp, one 8 kb Nextera gel-plus mate-pair library, and 1 PacBio library. For these libraries, gDNA 

from a separate, single female cricket from the same laboratory population was extracted using a high 

molecular weight Genera Puregene Cell Kit (Qiagen). The first three TruSeq libraries were sequenced 

on 5 lanes of an Illumina HiSeq 2000 v3 to yield 100 bp paired-end reads. NanoPippin libraries and 

the Nextera mate-pair library were sequenced on 2 Illumina HiSeq 2500 lanes to yield 250 bp paired-

end reads. To construct the PacBio library, we purified the extraction with 1x AMPure beads 

(Agencourt) and performed quality control using Nanodrop and Qubit. Average DNA size and 

degradation was assessed using a high sensitivity genomic kit on a fragment analyzer. Size-selected 

and non-size-selected libraries were made by shearing gDNA using g-TUBEs (Covaris). Size 

selection was performed using the BluePippin DNA Size Selection System with 0.75% cassettes and 

cutoffs between 7 and 20 kb. Preparation of both libraries then proceeded using the same protocol. 

We treated DNA for 15 min at 37 °C with Exonuclease V11. DNA ends were repaired by incubating 
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for 20 min at 37 °C with Pacific Biosciences damage repair mix. Samples were then incubated with 

end repair mix for 5 min at 25 °C followed by washing with 0.5x AMPure and 70% ethanol. DNA 

adapters were ligated overnight at 25 °C. Incubation at 65 °C for 10 min was used to terminate 

ligation reactions, and then samples were treated with exonuclease for 1 hr at 37 °C. We purified the 

SMRTbell library using 0.5x AMPure beads and checked quality and quantity using Qubit assays. 

Average fragment size was quantified using a fragment analyser. For sequencing, primers were 

annealed to the SMRTbell library at values determined using PacBio’s Binding Calculator. A 

complex was formed using DNA polymerase (P6/C4 chemistry), bound to MagBeads, and then used 

to set up 43 SMRT cells for sequencing to achieve 10X coverage. Sequencing was performed using 

240 min movie times. 

Genome assembly. Raw reads from all Illumina libraries were trimmed using cutadapt v.1.8.339 to 

remove adapters, primers and poor quality bases, and then error-corrected using BLESS40. PacBio 

reads <1,000 bp were discarded. The original fragment length of the 350 bp library was shorter than 

the sequenced paired read length of 500bp, so reads from this library were merged using Vsearch 

v.1.10.141. Platanus v.1.2.442 was used to assemble error-corrected reads from all Illumina libraries 

except the mate-pair library; reads from the latter were added at the scaffolding stage. Next, we 

selected the contigs >1,000 bp and combined these with the PacBio data to generate a hybrid 

assembly using PBJelly v.15.2.2043. Pilon v.2.144 was used to improve local base accuracy, and 

BUSCO v.2.145 was used to assess genome quality through gene completeness.  

Repeat annotation. We used de novo and homology-based approaches to identify repetitive regions. 

We first built a de novo repeat library using RepeatModeler46, with dependencies RECON and 

RepeatScout47. To scan and classify interspersed repeats and low complexity DNA sequences at the 

DNA level, we searched the cricket genome sequence against the Dfam consensus database48, 

RepBase49, and the de novo repeat library using RMBlast50 and RepeatMasker51. Protein-level repeats 

were identified by searching against the TE Protein Database using RepeatProteinMask51. 

Unclassified repetitive elements were further classified by TEclass52, a programme using a support 

vector machine learning algorithm. Tandem repeats were also identified in the cricket genome using 

Tandem Repeat Finder53. 

Gene prediction. Before running gene prediction pipelines, repetitive regions identified above were 

masked using an in-house Perl script. We built a pipeline including ab initio, homology and 

transcriptome-based methods to predict protein-coding genes in the cricket genome (Extended Data 

Fig. 3). For ab initio prediction, SNAP54, Glimmer-HMM55, GENEID56, and BRAKER157 were used 

to generate preliminary gene sets from the repeat-masked genome. Specifically, reads obtained from 

the T. oceanicus transcriptome were aligned against the repeat masked genome with TopHat258. 

SAMTOOLS59 was used to sort and index the resulting Binary Alignment Map (BAM) format file. 
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This BAM file was processed in BRAKER157, which used transcriptome data to train GENEMARK-

ET60, generate initial gene structures, and then subsequently train AUGUSTUS61 and finally integrate 

RNA-seq information into final gene predictions. For other ab initio gene prediction programmes, 

gene sets from Locusta migratoria62, Acyrthosipon pisum63, and Drosophila melanogaster64 were used 

for model training. For homology-based prediction, we aligned protein sequences of five insect 

species (L. migratoria62, Drosophila melanogaster, Anoplophora glabripennis65, Nilaparvata 

lugens66, and Cimex lectularius67) to the repeat-masked cricket genome using TBLASTN (E < 10-5)50. 

The boundaries of potential genes were further identified using BLAST2GENE68. We then ran 

GENEWISE269 to obtain accurate spliced alignments and generate a final, homology-based gene set. 

For prediction based on transcriptome data, the de novo transcriptome assembly generated by Trinity70 

was filtered based on gene expression level, and then passed to Program to Assemble Spliced 

Alignments (PASA)71. PASA performed transcript alignments to the cricket genome, generated a new 

transcript assembly, and predicted gene structures. All gene sets predicted by ab initio, homology, and 

transcriptome-based methods were then combined into a weighted consensus gene set using 

EVidenceModeler (EVM)72. We removed genes likely to be spurious, those with low EVM support, 

partial genes with coding lengths shorter than 150 bp, and genes only supported by a minority (≤ 2) of 

ab initio methods73. PASA was used to further update the filtered consensus gene set to produce a 

finalised official gene set. The completeness of this final gene set was assessed by both BUSCO v.2.1 

(using the arthropoda dataset)45 and transcriptome data. 

Functional assignment. Putative gene functions were assigned based on InterPro74, SwissProt75, 

TrEMBL75 and RefSeq non-redundant (NR) protein and Kyoto Encyclopedia of Genes and Genomes 

(KEGG) gene databases. Briefly, we first obtained protein sequences from the final gene set using 

EVM72. Functional annotation and gene ontology terms were assigned to genes based on protein 

sequence, using InterProScan 576. These proteins were also blasted against SwissProt, TrEMBL and 

NR databases (PLASTP, E < 10-5), and assigned their best hits as functional annotations. Gene 

ontology (GO) terms were assigned using GO annotations downloaded from the GO Consortium77,78. 

BLAST2GO79 was implemented to further assign unassigned genes using NCBI databases, and 

KEGG Orthology (KO) terms were assigned using BlastKOALA80. 

Genome anchoring. ALLMAPS81 was used to detect chimeric scaffolds, anchor the cricket genome 

to the linkage map (see below), and construct pseudo-molecules (reconstructed portions of 

chromosomal sequence). We first built a consensus genetic map based on male and female genetic 

distances obtained from linkage maps, in which equal weighting was applied for both sexes. Then, 

scaffolds for which more than four markers mapped to multiple linkage groups were designated as 

chimeric scaffolds, and split. After this correction was applied, scaffolds anchored to the linkage maps 

were oriented and ordered based on the consensus genetic map. We used a custom Perl script to order 
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unanchored scaffolds according to their length, and liftOver82 to convert genome coordinates based on 

anchoring results. 

Genome browser development (ChirpBase). We created ChirpBase, an open-access community 

genomics resource for singing insects, such as field crickets and katydids. The resource can be 

accessed at www.chirpbase.org where users may view and download genomic data and scripts 

presented in this study in addition to uploading data. An index page links to an ensembl page, where 

assembly statistics can be visualised using a Challis plot or compared in tabular format. A plot 

illustrating codon usage is presented, as well as a visualisation of BUSCO scores. Additional pages 

linking from this include a basic local alignment search tool (BLAST) page and a download page 

where raw data can be accessed. We used the GenomeHubs framework to set up ChirpBase14. Briefly, 

the databased is hosted using a Linux container (LXC) on a remote computer, linked to a cluster via 

an intermediate import computer. A MySQL docker container was started in the LXC, where a 

database ini file resided to guide additions to the database. An Ensembl-easy mirror Docker container 

was run to import the database into the MySQL container, uploading data designated in the ini file 

from the LXC to the database. The MySQL container links to an Ensembl EasyMirror container, 

BLAST container, and a download container.  

Linkage and QTL mapping crosses. We constructed a linkage map for T. oceanicus using a series 

of crosses to maximise recombination on the X chromosome (Extended Data Fig. 1), combined with 

restriction-site associated DNA sequencing (RAD-seq) to identify markers. Flatwing segregates on 

the X chromosome in both Kauai and Oahu populations6,7, so mapping was performed with F3 

offspring to increase recombination on the X. We set up two parental mapping families by crossing a 

flatwing sire from the Kauai population with a virgin dam from the Daintree, Australia population. 

Daintree females were used in the cross because flatwings do not exist in that population, and other 

sexually-selected traits such as song and cuticular hydrocarbons show significant divergence between 

Australian and Hawaiian populations83, which maximised our opportunity to genetically map 

segregating variation in other phenotypes. Female F1 offspring from parental crosses were 

heterozygous for flatwing, enabling recombination on the X. Full-sib matings were then performed 

with F1 males, all of which were normal-wing. The resulting F2 female offspring were a segregating 

mix of homozygous normal-wing genotypes on the X, or heterozygous with respect to wing morph. 

Recombination between flatwing and normal-wing genotypes was similarly possible in the 

heterozygous F2 females, but their phenotype is not externally detectable. To further increase 

recombination on the X, we performed another generation of crossing by mating F2 females with full-

sib flatwing males from the same generation. Screening male morph types in the resulting F3 offspring 

enabled us to identify F2 crosses involving heterozygous females, as all male offspring of 

homozygous normal-wing females expressed normal-wing morphology. The crossing procedure 
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resulted in 10 F3 mapping families from the original two parental families, for a total of 192 females, 

113 normal-wing males, and 86 flatwing males.  

Marker identification using RAD-seq. RAD-seq was used to identify single nucleotide 

polymorphisms (SNPs) in F3 offspring (n = 391), P0 dams and sires (n = 4), and the F2 sires and dams 

(n = 19) that were used to produce mapping individuals in the F3 generation. For each individual, 

gDNA extraction and quality control was performed as described above prior to library preparation. 

gDNA was digested using SbfI (New England BioLabs). We barcoded individuals by ligating P1 

adapters (8 nM), then sheared and size selected 300-700 bp fragments. After ligating P2 adapters to 

sheared ends, parents were sequenced to an average coverage of 120x and offspring to 30x on an 

Illumina HiSeq 2000.  

Construction of linkage map. Reads from all paired end RAD libraries were demultiplexed by 

sample using process_radtags from Stacks84, mapped against the reference genome assembly using 

BWA-MEM85 and duplicates marked using PicardTools MarkDuplicates 

(http://broadinstitute.github.io/picard). Variants were called using samtools mpileup (version 1.3, 

parameters -d 2000 -t DP,DPR,DV,DP4,SP -Aef -gu) and bcftools call (version 1.3, parameters -vmO 

z -f GQ). The resulting variants were filtered using vcfutils.pl (included with bcftools) with minimum 

quality 50 and a minimum read depth of 150 (-Q 50 -d 150) to only retain high quality variants. The 

vcf format was converted to the required lepmap2 input format using a custom script of the 

RADmapper pipeline (RAD_vcf_to_lepmap_with_sexmarker_conversion.py, 

https://github.com/EdinburghGenomics/RADmapper). During this conversion samples that did not fit 

relatedness expectations and samples from family J (which lacked a genotyped father) and P0 parents 

were excluded from linkage map creation. Putative X-linked markers (male_het <=1, female_het > 

20, het_sire <=1) were converted to biallelic markers in the relevant male offspring and sires using a 

dummy allele (Extended Data Table 17). The linkage map was then created using the following steps 

and parameters in lepmap2 (Filtering: dataTolerance 0.05 keepAlleles=1; SeparateChromosomes: 

losLimit=10 sizeLimit=10 informativeMask=3;JoinSingles: lodLimit=5;OrderMarkers: 

filterWindow=10 polishWindow=100; OrderMarkers evaluateOrder: filterWindow=10 

polishWindow=100). The resulting linkage map files were merged with the marker and sample 

information using a custom script from the RADmapper pipeline (LG_to_marker.py). 

QTL mapping. To identify the flatwing locus on the putative X chromosome (LG1), we performed 

ANOVA for each marker using the lm package in R (v. 3.1). Individual p-values were corrected to 

account for multiple testing using Bonferroni correction and markers supported by a LOD10 cutoff 

were plotted. QTL for all 26 cuticular hydrocarbon (CHC) peaks as well as the principle components 

from the CHC analysis were mapped to the linkage groups using mixed linear models in ASReml 4. 

Mapping used a GWAS-type approach, taking into account genetic relatedness between individuals86. 
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The markers mapped to the autosomal linkage groups 2-19 were filtered to contain only bi-allelic SNP 

markers with a MAF <=0.01 and <5% missing samples per marker. In addition, all grandparental, 

parental and female samples were removed together with samples that clustered with the wrong 

family or did not have CHC data. Only male samples were selected, as our aim was to map male 

CHCs (not sex-related associations) on the putative X (LG1) and autosomes using principle 

components from the CHC analysis as well as individual compounds as traits. The remaining 21,047 

markers were used to calculate pairwise genetic relatedness with the first normalisation87. The 

resulting inverse relatedness matrix was used as random effect in a model: CHC trait ~ mu marker r! 

Giv(animal). P-values for all markers were extracted from the results and corrected for multiple 

testing using Bonferroni correction. The same model was used to assess LG1 separately with the same 

set of samples, for which 6,537 markers were used after filtering. 

Pure-breeding lines and embryo sampling for RNA-seq. Lines homozygous for the flatwing and 

normal-wing genotypes were produced following previously described methods34. Briefly, one 

generation of crosses was performed, starting with the laboratory population derived from Kauai and 

crossing males of either wing phenotype to virgin females of unknown genotype. Because the 

phenotypic effects of flatwing are sex-limited, family-level screening of the resulting male offspring 

was performed to select homozygous flatwing and homozygous normal-wing lines, resulting in a final 

selection of three pure-breeding lines for each morph genotype. Developing embryos were sampled 

from eggs laid by females from each line. Females were maintained in laboratory culture as above, 

and their oviposition substrates were monitored. Eggs were removed from the substrate and 

immediately preserved in 500 µL of RNAlater (Qiagen) at the stage when eye pigmentation first 

develops, ca. 2 weeks after laying. This time point corresponds approximately to embryonic stage 13-

14 in the related grylline species Gryllus bimaculatus88. After removing the outer egg chorion, the 

thoracic segment of each nymph was microdissected. Nymphs cannot be sexed based on external 

morphology until a later stage of juvenile development, and as chromosomal sex determination is 

XX/XO, screening for sex-specific markers is not possible. To minimise potential variation in sex 

ratio of samples between lines, and ensure a sufficient volume of tissue to extract RNA, thoracic 

tissue from n = 8 nymphs was pooled for each replicate, and 6 biological replicates were produced for 

each morph type (2 per line). 

RNA-seq and gene expression profiling. Total RNA was extracted using the TRIzol plus RNA 

purification kit (Life Technologies) and DNAse treated using PureLink (Invitrogen). RNA was 

quantified and quality checked using Qubit assessment (Invitrogen) and Bioanalyser RNA Nano 

Chips (Agilent), respectively. To isolate mRNA we depleted samples with RiboZero. After verifying 

depletion, cDNA libraries were constructed using the ScriptSeq protocol (Epicentre) with AMPure XP 

beads for purification. Following barcoding and multiplexing, final quality was checked and qPCR 

performed using Illumina’s Library Quantification Kit (Kapa). Sequencing was performed on an 
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Illumina HiSeq 2000 v3, with 1% PhiX DNA spike-in controls to produce 100 base paired-end reads. 

CASAVA v.1.8.2 was used to demultiplex reads and produce raw fastq files, which were then 

processed with Cutadapt v.1.2.138 and Sickle v.1.20089 to remove adaptor sequences and trim low-

quality bases. Further quality assessment was performed in FastQC. Expression analysis of RNA-seq 

data was performed broadly following the protocol published by Pertea et al. (2016)90. Reads were 

aligned to the genome using HISAT2 with strand-specific settings, and transcripts compiled for each 

sample in StringTie, using the gene annotation file as a reference, which were then merged across all 

samples to produce a single annotated reference transcriptome. Sample transcript abundances were 

estimated with the parameter -e specified to restrict abundance estimation to annotated transcripts. 

Differential expression analysis was performed at the gene level following normalisation of counts by 

trimmed mean of M-values (TMM), using a generalised linear model (GLM) with negative binomial 

distribution and a single predictor variable of ‘morph’ in the edgeR package91 in R v.3.4.1. Only genes 

with an expression level greater than 1 count per million in at least 3 samples were included in the 

analysis. Significance-testing was performed using likelihood ratio tests, and genes were considered 

significantly differentially expressed between morph genotypes if FDR-adjusted P-values were below 

a threshold of 0.05.  

Screening for top candidate genes associated with flatwing. We adjusted P-values for significant 

marker associations in the flatwing QTL mapping procedure using Bonferroni correction with a cut-

off of P < 0.001. Three sources of information were used to comprehensively and robustly detect a set 

of top candidate genes associated with the flatwing phenotype. We detected genes (i.e. any 

overlapping portion of a predicted gene sequence cf. Extended Data Table 6) located in 1 kb flanking 

regions of all significant QTL markers after FDR correction as above, and defined these as QTL-

associated candidates. We then subsetted these genes to retain only those located in the 1 kb flanking 

regions of the most significant (top 1%) of all QTL markers, and defined these as Top 1%-associated 

candidates. We also obtained the flatwing-associated sequences from a previously published bulk 

segregant analysis (BSA) of Kauai flatwings7, and defined the BSA reference sequences containing 

flatwing-associated SNPs as flatwing-associated BSA sequences. We mapped these BSA sequences to 

the T. oceanicus reference genome using BWA-MEM with default parameters85. Coordinates of 

mapped sequences were extracted from the resulting BAM files using SAMTOOLS59 and custom Perl 

scripts, and we only retained those sequences that were anchored to LG1. Genes within 1 kb of these 

retained sequences were defined as BSA-associated candidates. Finally, we extracted differentially 

expressed genes from the embryonic thoracic transcriptome analysis above, and defined these as 

DEG-associated candidates. To ensure a reliable final candidate gene set for flatwing, we only 

retained genes supported by at least two of these four gene sets. We used KEGG pathway mapping 

(colour pathway) to reconstruct pathways and obtain reference pathway IDs92. To characterise 

significantly enriched GO terms and KEGG pathways in DEGs, we implemented the hypergeometric 
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test in enrichment analyses. P values for each GO and KEGG map term were calculated and FDR-

adjusted in R. 

Cuticular hydrocarbon extraction and gas chromatography-mass spectrometry. We extracted 

CHCs from F3 mapping individuals prior to extracting gDNA for RADseq. Extraction and analysis of 

CHCs followed previous methodology83, which is briefly described here. Subjects were flash-frozen 

for several minutes at -20 °C and then thawed. They were individually placed into 4 mL borosilicate 

glass vials (QMX Laboratories) and immersed for 5 minutes in 4 mL of HPLC-grade hexane (Fisher 

Scientific), then removed from the vials and stored for later processing. We evaporated a 100 μL 

aliquot of each sample overnight in a 300 μL autosampler vial (Fisher Scientific). CHC extracts were 

transported to the University of Exeter for gas chromatography mass spectrometry (GC/MS) using an 

Agilent 7890 GC linked to an Agilent 5975B MS. Extracts were reconstituted in 100 μL of hexane 

with a 10 ppm pentadecane internal standard, and 2 μL of this was injected into the GC/MS using a 

CTC PAL autosampler at 5 °C. The carrier gas was helium and we used DB-WAX columns with a 30 

m x 0.25 mm internal diameter and 0.25 μm film. Injection was performed in split-less mode. The 

column profile was optimised for separation of the CHC extract83 to start at 50 °C for 1 minute, 

followed by a temperature ramp of 20 °C per minute until finally holding at 250 °C for a total run 

time of 90 minutes. The inlet temperature was 250 °C and the MS transfer line was 230 °C. We 

recorded electron-impact mass spectra using a 70 eV ionization voltage at 230 °C, and a C7-C40 alkane 

standard was run as a standard to enable the later calculation of peak retention indices. 

Quantification and analysis of CHC profiles. For each individual, we used MSD CHEMSTATION 

software (v.E.02.00.493) to integrate the area under each of 26 CHC peaks (Extended Data Table 13) 

following Pascoal et al. (2016)83. Peak abundances were standardized using the internal pentadecane 

standard and log10 transformed prior to analysis. After accounting for samples that failed during 

extraction or during the GC run (n = 9), plus one normal-wing male CHC profile that was identified as 

an outlier and removed during analysis (Extended Data Fig. 8), we analyzed a total of n = 86 flatwing 

males, n = 112 normal-wing males, and n = 185 females of unknown genotype. To test whether CHC 

profiles differed between males of either wing morph, we first performed dimension reduction using 

principal components analysis (PCA) on male data only. JMP Trial 14.1.0 (SAS Institute Inc.) was 

used to draw a 3D scatterplot of the first three PCs. To assess statistical significance, we performed a 

MANOVA using all principal components with eigenvalue > 1.00 (n = 6). This indicated a highly 

significant difference among male morphs which formed the basis of QTL mapping described above. 

To visualise the difference between flatwing and normal-wing male CHC profiles with respect to 

female CHC profiles, we performed a discriminant function analysis (DFA) for all samples and all 26 

peaks. DFA highlights the maximal difference between pre-defined groups, with maximum group 

differences indicated by the first DF axis. Statistical analyses of CHC data were done in SPSS (v.23). 
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Data Availability. Raw reads from Illumina and PacBio genome sequencing libraries, embryo 

RNAseq reads, RADseq reads used in the linkage map and QTL analyses, CHC phenotype data will 

be made publicly available upon acceptance. Custom scripts are available online at 

http://www.chirpbase.org if not stated otherwise.  
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Figures 

 

 

 

Fig. 1 | Rapid evolutionary loss of song in Hawaiian crickets. a, The field cricket T. oceanicus is 
thought to have migrated to the Hawaiian archipelago from other islands in Oceania, and is attacked by 
the fatal, acoustically-orienting parasitoid fly Ormia ochracea on Kauai, Oahu and Hawaii. We studied 
crickets from a population in Kauai, highlighted in dark blue, where parasitoid infestation rates have 
historically been highest. b, Adult female fly and mature parasitoid larva. Gravid female flies locate 
hosts by eavesdropping on singing male crickets, then they eject larvae that burrow into the host and 
consume its viscera before emerging to pupate. Infestation is fatal, and the flies exert significant natural 
selection against male song. c, Normal-wing males (left) of this field cricket species produce 
advertisement, courtship and aggressive songs by elevating and rubbing together forewings that bear 
specialised sound-producing venation. A toothed file on the right wing engages with a thickened ridge 
of tissue on the opposite, causing resonators to vibrate and produce sound. Two principal resonators are 
highlighted on this male’s right forewing: the harp in purple and the mirror in turquoise. Flatwing males 
(right) have wings that are feminised and lack, or have severely reduced, resonators. They still make 
wing motions characteristic of singing despite the structural inability to produce sound93, but their 
silence protects them from the fly4. The flatwing phenotype segregates as a single-locus mutation on 
the X chromosome, and 100% of males from the population studied on Kauai now exhibit flatwing 
morphology. (Photo credits: N.W. Bailey)  
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Fig. 2 | Teleogryllus oceanicus 

genome and regions associated 

with the flatwing phenotype. 

a, Circos plot providing an overview 
of the genome. Linkage groups 
(LGs) upon which genome scaffolds 
were anchored are shown in 
different colours, with unplaced 
scaffolds in gray. LG1 was 
identified as the X chromosome 
based on heterozygosity and 
coverage filters (see Main Text). 
Tracks (i): gene density, (ii): linkage 
group pseudomolecules, (iii): 
transposable element density, (iv): 
genes DE in the thoracic tissues of 
embryos homozygous for flatwing 
vs. normal-wing genotypes. Longer 
bars are DE genes for which log2FC 
> 1 between genotypes, and short 
grey bars are all other DE genes. 
Colours indicate the magnitude of 
upregulation (red) versus 
downregulation (blue) in flatwing 
compared to normal-wing embryos.  
b, Genome-wide Manhattan plot of 
the flatwing QTL. Alternating 
shades of grey and blue indicate 
different LGs. The horizontal 
dashed line indicates an FDR-
corrected significance threshold of 
(P < 0.001), and the top 1% most 
significant QTL markers are plotted 
in red. c, Enlarged plot for LG1 (X 
chromosome) showing the flatwing-
associated peak.   
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Fig. 3 | Pleiotropic effects of flatwing cause feminisation of chemical sexual signals. a, Diagram of 
a T. oceanicus cuticular hydrocarbon (CHC) chromatogram, with the 26 measured peaks indicated by 
blue wedges. The asterisk indicates the internal standard (pentadecane). b, Space-filling scatterplot of 
the first three principal components describing male CHC profiles, illustrating differences between 
flatwing and normal-wing males (variance explained for PC1: 35.18%, PC2: 10.14%, PC3: 9.58%). c, 
Comparison of QTL on the putative X chromosome for CHCs (top; first principal component mapped) 
and flatwing (bottom, same as Fig. 2C). Grey shading indicates the extent (in cM) of the CHC peak, 
showing overlap with the flatwing QTL. Dashed lines indicate FDR-corrected significance of p < 0.001, 
red points the top 1% significant flatwing QTL markers. Note the different y-axis scales. d, Univariate 
analyses revealed nine individual CHC components which also co-localised with flatwing. The original 
flatwing QTL is plotted at the top of each column. Grey shading spans the genetic region of co-
localisation. Numbers refer to compounds indicated in a, and dashed lines indicate an FDR-corrected 
significance threshold of p < 0.001. e, Discriminant function scores describing variation in CHC profiles 
among female, flatwing male and normal-wing male mapping individuals. Discriminant function 1 
explained 78.8% of the variance in CHC profiles between groups. Means ± 2 s.d. are indicated by open 
black-and-white circles and lines, respectively.  
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Extended Data Table 1 | T. oceanicus genome metrics 

Maximum scaffold length 
(bp) 

2,637,780 

Complete BUSCO  
(Ref total = 1,066) 

1,001 

% complete BUSCO 
(genome) 

93.9% 

% complete BUSCO 
(gene set)a 

83.2% 

Scaffold metrics All contigs Contigs > 1,000 bp 

Total bases (gb) 2,045,067,382 2,044,651,628 

N50 (bp) 62,615 62,685 

Sequences in N50 6,139 6,136 

GC content (%) 40 40 

Mean scaffold length (bp) 10,335 10,355 

Sequencing library yields Read pairs Yield (GB) 

Illumina TruSeq 180 277,076,641 55.42 

Illumina TruSeq 300 243,927,180 48.79 

Illumina TruSeq 600 238,275,727 47.66 

Illumina TruSeq Nano 350 70,959,741 14.19 

Illumina TruSeq Nano 550 63,415,263 12.68 

Illumina Nextera mate-pair 229,431,023 45.89 

PacBio RSII 5,771,779 21.74 

a Final gene number identified in Extended Data Table 6 
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Extended Data Figure 1 | Cross design for 

linkage and QTL mapping. Flatwing 
segregates as a single-locus X-linked trait, so 
only X chromosomes are illustrated. A 
hypothetical flatwing locus is shaded in red. 
Females and males are XX/XO in T. oceanicus, 
so we performed three generations of crossing 
to enhance our ability to map flatwing. 
Homozygous normal-wing dams were obtained 
from a laboratory population of the same 
species originally derived from a population 
that has never contained flatwing (dark blue 
chromosomes). In the parental generation, 
these normal-wing dams were crossed to 
flatwing sires from Kauai (light grey 
chromosome, with hypothetical flatwing locus 
shaded in red). Dam genotypes were 
undetectable at generation F2 due to flatwing’s 
sex-limited expression, so only full-sib crosses 
for which the flatwing male phenotype 
segregated in the subsequent F3 generation 
were retained for phenotyping and QTL 
mapping (solid arrows).  
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Extended Data Figure 2 | Reconstructed pseudomolecules for LG1 (putative X chromosome) 

using LOD5-supported markers. Female and male pseudomolecules are shown on the left and right, 
respectively, and lines connect the physical positions of markers on each pseudomolecule to map 
positions.  
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Extended Data Table 2 | List of chimeric scaffolds identified and corrected 

in the T. oceanicus genome 

Chimeric scaffold Coordinates Corrected scaffold Linkage 

group 

 Start Stop 

Contig112_pilon 1 280481 Contig112_pilon.1 LG13 

Contig112_pilon 285560 415702 Contig112_pilon.2 LG4 

Contig115174_pilon 1 4504 Contig115174_pilon.1 LG3 

Contig115174_pilon 4505 9682 Contig115174_pilon.2 LG5 

Contig11656_pilon 1 69510 Contig11656_pilon.1 LG3 

Contig11656_pilon 71880 189927 Contig11656_pilon.2 LG2 

Contig122717_pilon 1 791 Contig122717_pilon.1 LG12 

Contig122717_pilon 792 1738 Contig122717_pilon.2 LG13 

Contig12684_pilon 1 94718 Contig12684_pilon.1 LG14 

Contig12684_pilon 94719 233653 Contig12684_pilon.2 LG16 

Contig157093_pilon 1 21374 Contig157093_pilon.1 LG1 

Contig157093_pilon 21375 29205 Contig157093_pilon.2 LG2 

Contig16901_pilon 1 14926 Contig16901_pilon.1 LG16 

Contig16901_pilon 18394 186701 Contig16901_pilon.2 LG11 

Contig17374_pilon 1 391141 Contig17374_pilon.1 LG11 

Contig17374_pilon 392712 614243 Contig17374_pilon.2 LG3 

Contig19418_pilon 1 216097 Contig19418_pilon.1 LG10 

Contig19418_pilon 220070 446236 Contig19418_pilon.2 LG12 

Contig24478_pilon 1 10308 Contig24478_pilon.1 LG19 

Contig24478_pilon 13057 232760 Contig24478_pilon.2 LG13 

Contig25912_pilon 1 178241 Contig25912_pilon.1 LG12 

Contig25912_pilon 180760 432977 Contig25912_pilon.2 LG11 

Contig3004_pilon 1 113166 Contig3004_pilon.1 LG10 

Contig3004_pilon 113846 201707 Contig3004_pilon.2 LG1 

Contig30253_pilon 1 75616 Contig30253_pilon.1 LG6 

Contig30253_pilon 75924 107012 Contig30253_pilon.2 LG10 

Contig30890_pilon 1 42473 Contig30890_pilon.1 LG7 

Contig30890_pilon 42474 357127 Contig30890_pilon.2 LG4 

Contig32501_pilon 1 79400 Contig32501_pilon.1 LG8 
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Contig32501_pilon 81158 104315 Contig32501_pilon.2 LG5 

Contig34163_pilon 1 276874 Contig34163_pilon.1 LG14 

Contig34163_pilon 278116 477845 Contig34163_pilon.2 LG8 

Contig34793_pilon 1 35174 Contig34793_pilon.1 LG13 

Contig34793_pilon 35175 226445 Contig34793_pilon.2 LG4 

Contig37346_pilon 1 181531 Contig37346_pilon.1 LG1 

Contig37346_pilon 185444 510953 Contig37346_pilon.2 LG5 

Contig44873_pilon 1 96939 Contig44873_pilon.1 LG3 

Contig44873_pilon 100500 540225 Contig44873_pilon.2 LG2 

Contig53403_pilon 1 162159 Contig53403_pilon.1 LG1 

Contig53403_pilon 163594 231179 Contig53403_pilon.2 LG12 

Contig6264_pilon 1 582129 Contig6264_pilon.1 LG1 

Contig6264_pilon 582130 671930 Contig6264_pilon.2 LG16 

Contig6264_pilon 675095 875693 Contig6264_pilon.3 LG1 

Contig67999_pilon 1 75111 Contig67999_pilon.1 LG8 

Contig67999_pilon 80918 230728 Contig67999_pilon.2 LG16 

Contig7355_pilon 1 31398 Contig7355_pilon.1 LG4 

Contig7355_pilon 31626 89218 Contig7355_pilon.2 LG7 
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Extended Data Table 3 | Summary statistics describing scaffold  

anchoring on T. oceanicus LOD5 linkage map markers 

  Anchored Oriented Unplaced 

Markers (unique) 104,713 88,665 741 

Markers per Mb 143.9 154.5 0.6 

Scaffolds 8,169 5,997 189,726 

Scaffolds with 1 marker 686 0 187 

Scaffolds with 2 markers 587 471 63 

Scaffolds with 3 markers 578 368 37 

Scaffolds with >=4 markers 6,318 5,158 50 

Total bases 
727,468,034 

(35.6%) 
573,790,325 

(28.1%) 
1,317,555,539 

(64.4%) 
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Extended Data Figure 3 | Workflow diagram of repeat annotation (top) and gene prediction 

(bottom) pipelines. Description of packages and parameters plus references are provided in the 
Methods section. 
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Extended Data Table 4 | Functional annotation of  

T. oceanicus genes 

 
  Number Proportion of 

all genes (%) 

Total 19,157 - 

Annotated InterPro 12,318 64.3 

Swissprot 11,754 61.4 

TrEMBL 13,999 73.1 

NR 13,989 73.0 

Gene Ontology 13,177 68.7 

KEGG 9,579 50.0 

All annotated 14,367 75.0 

Unknown 4,790 25.0 
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Extended Data Figure 4 | Venn diagram of genes predicted for T. oceanicus using different 

methods. Counts refer to the gene set that was obtained prior to final upgrade and filtering using 
PASA71, so the total gene number above is slightly higher than the final gene set. A detailed description 
of each pipeline is presented in the Methods.   
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a Sorted by the proportion of repetitive elements in linkage groups, from most to fewest

Extended Data Table 5 | Distribution of repetitive elements for each scaffolded T. oceanicus 

linkage group 

Linkage 

group  

Transposable 

elements (kb) 
% Ranka 

Tandem 

repeats (kb) 
% Ranka 

Combined 

(kb) 
% Ranka 

LG1 65992 38.6 8 1832 1.1 20 67823 39.7 11 

LG2 26518 35.7 17 1123 1.5 14 27641 37.2 17 

LG3 12908 36.3 14 572 1.6 13 13480 37.9 14 

LG4 16514 42.0 2 848 2.2 4 17362 44.2 2 

LG5 10253 36.2 15 500 1.8 11 10753 37.9 15 

LG6 23187 35.0 18 925 1.4 17 24113 36.4 18 

LG7 17533 36.3 13 936 1.9 8 18469 38.2 13 

LG8 12770 38.8 6 617 1.9 7 13387 40.7 6 

LG9 9952 38.2 9 659 2.5 2 10611 40.7 7 

LG10 9359 38.2 10 545 2.2 5 9904 40.5 8 

LG11 18920 34.1 19 804 1.5 15 19724 35.6 19 

LG12 4850 42.7 1 297 2.6 1 5148 45.4 1 

LG13 12684 37.4 12 624 1.8 10 13308 39.2 12 

LG14 12629 36.2 16 483 1.4 16 13112 37.6 16 

LG15 1298 41.7 3 53 1.7 12 1351 43.5 3 

LG16 6292 31.5 20 243 1.2 19 6535 32.7 20 

LG17 337 39.5 5 10 1.2 18 347 40.7 5 

LG18 699 38.2 11 42 2.3 3 741 40.5 9 

LG19 3 27.4 21 0 0.4 21 3 27.8 21 

Unplaced 526597 40.0 4 25416 1.9 6 552013 41.9 4 

Total 789295 38.6 7 36531 1.8 9 825826 40.4 10 
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Extended Data Figure 5 | Proportions of eight major categories of 

transposable elements detected in the T. oceanicus genome.  

DNA = DNA transposons 
LTR = long terminal repeats 
LINE = long interspersed nuclear elements 
SINE = short interspersed nuclear elements 
Retro = retrotransposon  
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a Originally reported average transcript length 
b Originally reported medians 
c Adapted from63  

Extended Data Table 6 | Comparison of gene features among ten insect species 

Species  Genome 

assembly 

size (Gb) 

Gene 

number 

Single 

exon  
gene 

number 

% Average 

gene 

length  

Average 

CDS 

length 
(bp) 

Average 

exon 

number 
per  

transcript 

Average 

exon 

length 
(bp) 

Ref. 

Field cricket 
 

Teleogryllus 

oceanicus 2.0 19,157 1,266 6.6 12,232 1,184 6.2 395 this study 

Migratory locust 
 

Locusta migratoria 6.5 17,307 3,079 17.8 54,341a 1,160 5.8 201 62 

American 
Cockroach 

 

Periplaneta 
americana 3.4 21,336 2,704 12.7 12,963b - 4 b 247 b 94 

Fruit fly 

 

Drosophila 
melanogaster 0.1 13,689 2,761 20.2 4,261 1,621 4.0 408  64c 

Asian  

long-horned beetle 
 

Anoplophora 

glabripennis 0.7 16,200 1,194 7.4 18,596 1,744 6.6 265 65 

Bed bug 

 

Cimex lectularius 0.7 13,751 1,410 10.3 29,076 1,846 10.2 265 95 

Brown 
planthopper 

 

Nilaparvata lugens 1.1 21,442 2,179 10.2 22,015 1,440 6.9 289 66 

Dampwood termite 

 

Zootermopsis 
nevadensis 0.5 15,129 370 2.4 24,927 1,890 9.4 365 96 

Yellow fever 

mosquito 

 
Aedes aegypti 1.3 19,585 1,158 5.9 36,583 2,144 6.4 481 97 

Asian Tiger 

mosquito 
 

Aedes albopictus 2.2 38,706 2,305 6.0 25,506 1,950 5.3 440 98 
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Extended Data Table 7 | Transposable element classification in T. oceanicus contrasted with three 

published genomes 

  T. oceanicus L. migratoriaa D. melanogastera H. sapiensa 

Types Repeat size 
(bp) 

% of 
genome 

Repeat size 
(bp) 

% of 
genome 

Repeat size 
(bp) 

% of 
genome 

Repeat size (bp) % of 
genome 

DNA 259181458 12.7 1,480,538,225 22.7 4,849,763 2.9 99,797,428 3.2 

LINE 215705991 10.5 1,332,720,207 20.4 12,119,904 7.2 637,919,432 20.3 

LTR 127951980 6.3 508,675,263 7.8 21,849,378 13.0 267,738,295 8.5 

nonLTR 5233875 0.3 63,892,419 1.0 - - - - 

Retro 71828043 3.5 153,548,453 2.4 - - - - 

SINE 32344731 1.6 141,176,698 2.2 52,841 0.0 397,225,496 12.7 

Simple repeat 63555524 3.1 13,026,240 0.2 2,733 0.0 26,240,511 0.8 

Unknown 38615245 1.9 406,097,360 6.2 11,211,970 6.6 1,298,163 0.0 

Total 789295269 38.6 3,840,808,141 58.9 50,785,143 30.0 1,434,373,137 46.0 

DNA = DNA transposons 
LTR = long terminal repeats 
LINE = long interspersed nuclear elements 
SINE = short interspersed nuclear elements 
Retro = retrotransposon 
a Data from61 
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Extended Data Table 8 | Thoracic gene expression 

variation between embryonic crickets carrying 

flatwing vs. normal-wing genotypes 

 
Total number of genes passing expression filtering 10,961 
Total DE genes  830 
      Up-regulated in flatwing 328 
      Down-regulated in flatwing 502 
DE genes with log2FC > 1 204 
      Up-regulated in flatwing 25 
      Down-regulated in flatwing 179 
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Extended Data Figure 6 | MA plot of thoracic genes DE between T. oceanicus embryos that were 

homozygous for flatwing vs. normal-wing. Red points indicate significantly differentially-expressed 
genes after filtering (see Methods), with positive values on the y-axis indicating genes downregulated 
in flatwing samples compared to normal-wing samples, and negative values indicating genes that are 
upregulated in flatwing samples. Log scales are base 2.   
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Extended Data Table 9 | GO analysis of thoracic DEGs between embryos  

carrying flatwing vs. normal-wing genotypes 

GO Type Function No. of 
DEGs 

P-adj. 

GO:0003824 molecular_function catalytic activity 216 0.006 

GO:0016787 molecular_function hydrolase activity 80 0.027 

GO:0044087 biological_process regulation of cellular component 
biogenesis 

20 0.004 

GO:0051493 biological_process regulation of cytoskeleton 
organization 

12 0.023 

GO:0090066 biological_process regulation of anatomical structure 
size 

12 0.009 

GO:0097435 biological_process supramolecular fiber organization 12 0.023 

GO:0032535 biological_process regulation of cellular component size 11 0.004 

GO:0032956 biological_process regulation of actin cytoskeleton 
organization 

11 0.001 

GO:0032970 biological_process regulation of actin filament-based 
process 

11 0.001 

GO:1902903  biological_process regulation of supramolecular fiber 
organization 

11 0.002 

GO:0043254 biological_process regulation of protein complex 
assembly 

10 0.035 

GO:0110053 biological_process regulation of actin filament 
organization 

10 0.001 

GO:0008064 biological_process regulation of actin polymerization or 
depolymerization 

8 0.006 

GO:0030832 biological_process regulation of actin filament length 8 0.006 

GO:0030833 biological_process regulation of actin filament 
polymerization 

8 0.006 

GO:0032271 biological_process regulation of protein polymerization 8 0.015 

GO:0015630 cellular_component microtubule cytoskeleton 6 0.001 

GO:0005248 molecular_function voltage-gated sodium channel activity 5 0.004 

GO:0010927 biological_process cellular component assembly 
involved in morphogenesis 

5 0.010 

GO:0034706 cellular_component sodium channel complex 4 0.007 
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Extended Data Table 10 | KEGG pathway enrichment of thoracic DEGs between embryos 

carrying flatwing vs. normal-wing genotypes 

IDa Pathway No. of 

genes 

P-valueb P-adj.c 

map04520 Adherens junction 13 <0.001 0.025 

map03030 DNA replication 9 0.001 0.264 

map05100 Bacterial invasion of epithelial cells 9 0.007 0.408 

map05130 Pathogenic Escherichia coli infection 9 0.005 0.408 

map01100 Metabolic pathways 59 0.013 0.552 

map04960 Aldosterone-regulated sodium reabsorption 5 0.012 0.552 

map04064 NF-kappa B signaling pathway 5 0.021 0.687 

map04711 Circadian rhythm - fly 3 0.024 0.715 

map00230 Purine metabolism 18 0.038 0.744 

map03430 Mismatch repair 5 0.035 0.744 

map04111 Cell cycle - yeast 10 0.033 0.744 

map04115 p53 signaling pathway 6 0.037 0.744 

map04670 Leukocyte transendothelial migration 7 0.037 0.744 

map04927 Cortisol synthesis and secretion 5 0.031 0.744 

map03410 Base excision repair 5 0.044 0.765 

map04022 cGMP-PKG signaling pathway 11 0.048 0.765 

map04530 Tight junction 12 0.043 0.765 

a Pathways describing human disease not shown    

b Fisher's exact test    

      c FDR-corrected   
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Extended Data Table 11 | Top candidate genes associated with flatwing 

Coordinates  

 

Gene ID 

 

 

Descriptiona 

 

 

Sourceb Scaffold  Start Stop 

Contig10220_pilon 78887 163134 TOT000182.1 YGD6 Zinc-type alcohol dehydrogenase-like protein 
C1773.06c 

Top 1% 

Contig11287_pilon 199864 215783 TOT001075.1 HNF4 Transcription factor HNF-4 homolog Top 1% 

Contig12423_pilon 12805 162659 TOT001854.1 OSM3 Osmotic avoidance abnormal protein 3 Top 1% 

Contig12752_pilon 14326 68612 TOT002129.1 ROR1 Inactive tyrosine-protein kinase transmembrane 
receptor ROR1 

Top 1% 

Contig12919_pilon 275064 329308 TOT002239.1 CLOCK Circadian locomotor output cycles protein kaput Top 1% 
DEG 

Contig13810_pilon 43734 77412 TOT002877.1 CRTAP Cartilage-associated protein Top 1% 

Contig140_pilon 14528 100227 TOT003072.1 PP4R1 Serine/threonine-protein phosphatase 4 
regulatory subunit 1 

Top 1% 

Contig17198_pilon 217974 328434 TOT004721.1 SCN60 Sodium channel protein 60E Top 1% 

Contig17198_pilon 398116 526355 TOT004722.1 SCN60 Sodium channel protein 60E Top 1% 

Contig17528_pilon 151965 161397 TOT004867.1 OBSTE Protein obstructor-E Kauai 
DEG 

Contig17791_pilon 294998 303418 TOT005017.1 PKRA Protein krasavietz DEG 
QTL 

Contig18506_pilon 5030 106086 TOT005335.1 STRN3 Striatin-3 Top 1% 

Contig20777_pilon 197732 433721 TOT006213.1 COLL Transcription factor collier Top 1% 
BSA 

Contig23358_pilon 266813 357642 TOT006927.1 E78C Ecdysone-induced protein 78C (Eip78C) Top 1% 

Contig23647_pilon 61437 289082 TOT006991.1 RAVR1 Ribonucleoprotein PTB-binding 1 Top 1% 

Contig24519_pilon 221508 332371 TOT007217.1 A0A167
WTZ1 

Endo-1,3(4)-beta-glucanase Top 1% 

Contig24519_pilon 569981 635619 TOT007221.1 SEPIA Pyrimidodiazepine synthase Top 1% 

Contig30320_pilon 33122 79411 TOT008755.1 PTPC1 Protein tyrosine phosphatase domain-containing 
protein 1 

Top 1% 

Contig3077_pilon 487713 492969 TOT008894.1 REXO4 RNA exonuclease 4 Top 1% 

Contig31374_pilon 378769 413960 TOT009065.1 CPT2 Carnitine O-palmitoyltransferase 2, 
mitochondrial 

Top 1% 

Contig31374_pilon 461061 489320 TOT009067.1 FRM4B FERM domain-containing protein 4B Top 1% 

Contig32190_pilon 94344 248306 TOT009274.1 RN207 RING finger protein 207 Top 1% 

Contig35402_pilon 14084 125884 TOT010060.1 ABCG1 ATP-binding cassette sub-family G member 1 Top 1% 

Contig37346_pilon.1 133394 180067 TOT010542.1 SCYL1 N-terminal kinase-like protein Top 1% 

Contig40107_pilon 150347 172207 TOT011176.1 THUM3 THUMP domain-containing protein 3 DEG, 
QTL 

Contig4430_pilon 60074 108676 TOT012009.1 LAR Tyrosine-protein phosphatase Lar Top 1% 

Contig4497_pilon 323 114981 TOT012126.1 MYO5A Unconventional myosin-Va Top 1% 

Contig48084_pilon 4534 15580 TOT012711.1 KPEL Serine/threonine-protein kinase pelle Top 1% 

Contig48322_pilon 73569 78934 TOT012764.1 CAH10 Carbonic anhydrase-related protein 10 Top 1% 
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Contig52923_pilon 4299 134158 TOT013504.1 RENT2 Regulator of nonsense transcripts 2 Top 1% 
DEG 

Contig52923_pilon 172817 234071 TOT013505.1 NBL1 Neuroblastoma suppressor of tumorigenicity 1 Top 1% 

Contig53931_pilon 135337 200203 TOT013689.1 TADBP TAR DNA-binding protein 43 Top 1% 

Contig55532_pilon 2641 6823 TOT013967.1 SOSSC SOSSC_BOVIN Top 1% 

Contig5817_pilon 13001 94458 TOTO14395.1 A0A1B6
LWD6 

Uncharacterized protein Top 1% 

Contig6025_pilon 181847 338853 TOT014693.1 PAX6 Paired box protein Pax-6 Top 1% 

Contig6181_pilon 7490 15461 TOT014894.1 MYCT Proton myo-inositol cotransporter Top 1% 

Contig6371_pilon 72321 126646 TOT015146.5 GOGA4 Golgin subfamily A member 4 Top 1% 

Contig6636_pilon 248427 279756 TOT015511.1 A0A067
RPQ2 

LRR domain-containing protein Top 1% 

Contig6636_pilon 332473 344815 TOT015512.1 IPR0110
11 

Uncharacterized protein Top 1% 

Contig66512_pilon 19778 188429 TOT015537.1 LASP1 LIM and SH3 domain protein F42H10.3 Top 1% 
DEG 

Contig6932_pilon 94582 114944 TOT015868.1 ABCB8 ATP-binding cassette sub-family B member 8, 
mitochondrial 

Top 1% 

Contig6932_pilon 132941 150338 TOT015869.1 APMAP Adipocyte plasma membrane-associated protein Top 1% 

Contig7020_pilon 57223 96643 TOT015999.1 SPS1 Selenide, water dikinase Top 1% 

Contig7210_pilon 172512 326460 TOT016305.1 MYO myoglianin Top 1% 

Contig7490_pilon 12720 16839 TOT016652.1 GCN5 Histone acetyltransferase GCN5 Top 1% 

Contig8190_pilon 192630 256540 TOT017431.1 AT133 Probable cation-transporting ATPase 13A3 Top 1% 

Contig82459_pilon 106133 176987 TOT017512.1 UNC89 Muscle M-line assembly protein unc-89 DEG 
QTL 

Contig83863_pilon 1777 51856 TOT017662.1 A0A017
RSC4 

Uncharacterized protein Top 1% 

Contig92683_pilon 43257 76189 TOT018508.1 A0A0T6
B8G7 

Uncharacterized protein Top 1% 

Contig33215_pilon 67326 419738 TOT009518.1 PLXA4 Plexin-A4 QTL 
BSA 

Contig43580_pilon 106377 137341 TOT011864.1 RNF41 E3 ubiquitin-protein ligase NRDP1 QTL 
BSA 

a Functional descriptions and references provided in Main Text 
b The criterion for inclusion as a top candidate was that a gene had to receive support for association  
  with the flatwing phenotype from at least two of the following four sources: 
 QTL = portion of the gene was located within a 1 kb flanking region of a significantly-  
      associated (FDR-corrected) marker in the flatwing QTL analysis 
  Top1% = portion of the gene was located within a 1 kb flanking region of a SNP in the top  
      1% of significantly-associated markers in the flatwing QTL analysis (Top1% candidates 
      automatically received “QTL” support) 
 BSA = portion of the gene was located within a 1 kb flanking region of a significantly- 
      associated marker from the previously-published bulked segregant analysis of Kauai        
      flatwing males7 which was also anchored to LG1 
 DEG = gene was significantly differentially expressed between pure-breeding normal-wing  
      genotypes and flatwing genotypes, in embryonic thoracic tissue (track iv of Fig. 2a in Main  
      Text) 
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Extended Data Table 12 | GO analysis of candidate flatwing-associated genes (CGs) 

GO Type Function No. of 

CGs 

P-adj. 

(χ2 test) 

GO:0010720 biological_process positive regulation of cell development 3 <0.001 

GO:0045597 biological_process positive regulation of cell differentiation 3 0.002 

GO:0060284 biological_process regulation of cell development 3 0.042 

GO:0003707 molecular_function steroid hormone receptor activity 2 <0.001 

GO:0009755 biological_process hormone-mediated signaling pathway 2 0.006 

GO:0030545 molecular_function receptor regulator activity 2 0.035 

GO:0043401 biological_process steroid hormone mediated signaling 
pathway 

2 0.002 

GO:0045666 biological_process positive regulation of neuron differentiation 2 0.040 

GO:0048018 molecular_function receptor ligand activity 2 0.022 
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Extended Data Table 13 | Identification of Teleogryllus oceanicus cuticular  

hydrocarbon profile peaks using gas chromatography - mass spectrometry 

Peaka Kováts retention indexb Identification Diagnostic ions 

standard  pentadecane  

1 2840 4MeC28 365, 71 

2 2893 10MeC28 281, 155 

3 2910 13MeC29 252, 196 

4 3028 C30:1 434 

5 3043 4MeC30 436, 393, 71  

6 3064 7,x-diMeC30 365, 112 

7 3075 unidentified  

8 3086 C31:1 434 

9 3110 11MeC31 308, 168 

10 3119 7,8MeC31 364, 112 

11 3130 7-C31ene 434, 528c, 145c, 383c 

12 3142 C31:1 434 

13 3152 C31:2 432 

14 3161 C31:2 432 

15 3174 C31:2 432 

16 3188 C31:2 432 

17 3242 4MeC32 421, 71 

18 3252 unidentified  

19 3268 C32:2 446 

20 3288 C33:1 462 

21 3331 C33:1 462 

22 3347 C33:2 460 

23 3355 C33:2 460 

24 3365 C33:2 460 

25 3379 3,x-C33:2 460, 647c, 89c 

26 3391 C33:2 460 
a Peak identification is based on Table S4 of Pascoal et al. (2016)83, reproduced here. 
  The 26 quantified peaks are presented in sequential order in the table and in Fig. 3A 
  of the main text. 

b Calculation of the Kováts retention index using n-alkane standards (C7 - C40) is 
  described in Majlát et al. (1974)99 
c Ions used when identifying with dimethyl-disulphide derivation 
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Extended Data Table 14 | Principal components with eigenvalues > 

1 from PCA on male CHC profiles; MANOVA results examine the 

effect of male morph on scores for each PC (multivariate model: 

Wilks’ λ = 0.517, F6,191 = 29.769, p < 0.001). 
 

Principal 

component 

Eigenvalue % Variance 

explained 

F1,196 P R2 

1 9.408 36.18 25.885 <0.001 0.131 
2 2.635 10.136 18.040 <0.001 0.092 
3 2.490 9.576 21.454 <0.001 0.109 
4 1.888 7.261 0.001 0.979 0.000 
5 1.315 5.058 25.741 <0.001 0.131 
6 1.020 3.925 4.079 0.043 0.021 
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Extended Data Figure 7 | Genomic regions associated with different principal components 

describing male CHC profiles. Manhattan plot for LG1 (putative X chromosome) showing a, the PC4-
associated QTL, b, PC6-associated QTL and c, the flatwing QTL for comparison. The horizontal dashed 
lines indicate FDR-corrected significance threshold of P < 0.001, and the top 1% most significant 
flatwing-associated QTL markers are plotted in red in c. The light grey rectangle spans the genetic 
region in which flatwing-associated markers and CHC principal component-associated markers co-
localize.  
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Extended Data Table 15 | Candidate gene set associated with each CHC phenotype (individual or principal component) that yielded a significant QTL on the 

putative X (LG1), with the flatwing QTL for comparison 

Coordinates 
Gene ID 

Trait 

Description Individual Compounds PCs Flat-

wing Scaffold  Start Stop 1 5 7 8 9 12 15 18 21 1 4 6 

Contig10220_pilon 78887 163134 TOT000182.1 √ √ √ √    √ √  √ √ √ YGD6 Zinc-type alcohol dehydrogenase- like protein C1773.06c 
Contig11287_pilon 199864 215783 TOT001075.1 √ √ √ √ √ √ √ √ √ √ √ √ √ HNF4 Transcription factor HNF-4 homolog 
Contig12423_pilon 12805 162659 TOT001854.1 √ √ √ √ √ √ √ √ √ √ √ √ √ OSM3 Osmotic avoidance abnormal protein 3 
Contig14561_pilon 436209 450946 TOT003337.1        √      CAS Transcription factor castor 
Contig16800_pilon 571706 708271 TOT004499.1        √      SMAD3 Mothers against decapentaplegic homolog 3 
Contig17198_pilon 217974 328434 TOT004721.1  √          √ √ SCN60 Sodium channel protein 60E 
Contig17198_pilon 398116 526355 TOT004722.1 √    √   √   √  √ SCN60 Sodium channel protein 60E 
Contig17589_pilon 46372 264973 TOT004897.1       √ √      SSBP3 Single-stranded DNA-binding protein 3 
Contig17589_pilon 70840 324258 TOT004898.1       √ √      ATG10 Ubiquitin- like-conjugating enzyme ATG10 
Contig17791_pilon 294998 303418 TOT005017.1 √ √      √ √    √ PKRA Protein krasavietz 
Contig18309_pilon 75967 136785 TOT005266.1  √            STA5B Signal transducer and activator of transcription 5B 
Contig191692_pilon 10444 19353 TOT005602.1        √      GNAI Guanine nucleotide-binding protein G(i) subunit alpha 
Contig20777_pilon 197732 433721 TOT006213.1 √ √     √ √ √ √ √  √ COLL Transcription factor collier 
Contig23454_pilon 18213 89940 TOT006946.1  √      √      ARD17 Arrestin domain-containing protein 17 
Contig23647_pilon 61437 289082 TOT006991.1 √ √ √ √    √ √  √ √ √ RAVR1 Ribonucleoprotein PTB-binding 1 
Contig24519_pilon 569981 635619 TOT007221.1        √     √ SEPIA Pyrimidodiazepine synthase 
Contig27628_pilon 259968 507152 TOT008051.1        √      PROH3 Prohormone-3 
Contig29117_pilon 70169 396634 TOT008443.1  √ √ √    √      CCKAR Cholecystokinin receptor type A 
Contig29877_pilon 36855 181557 TOT008655.1  √            E41LA Band 4.1- like protein 4A 
Contig3077_pilon 487713 492969 TOT008894.1 √ √ √ √ √ √ √ √ √ √ √ √ √ REXO4 RNA exonuclease 4 
Contig3077_pilon 528735 564924 TOT008896.1  √            P4K2B Phosphatidylinositol 4-kinase type 2 
Contig31374_pilon 461061 489320 TOT009067.1 √ √ √ √ √ √ √ √ √ √ √ √ √ FRM4B FERM domain-containing protein 4B 
Contig32190_pilon 94344 248306 TOT009274.1 √ √ √ √    √ √  √ √ √ RN207 RING finger protein 207 
Contig3429_pilon 122631 136033 TOT009790.1 √       √      A0A1B6JV12 Uncharacterized protein 
Contig3536_pilon 221796 347378 TOT010046.1  √      √      GNAO Guanine nucleotide-binding protein G(o) subunit alpha 
Contig35402_pilon 14084 125884 TOT010060.1  √ √     √   √ √ √ ABCG1 ATP-binding cassette sub-family G member 1 
Contig3552_pilon 175659 203623 TOT010094.1  √      √      OSBL9 Oxysterol-binding protein-related protein 9 
Contig37346_pilon.1 133394 180067 TOT010542.1 √ √ √ √ √ √ √ √ √ √ √ √ √ SCYL1 N-terminal kinase- like protein 
Contig40569_pilon 70324 81832 TOT011293.1 √       √      NXT1 NTF2-related export protein 
Contig43774_pilon 63974 228355 TOT011905.1        √      HMCN1 Hemicentin-1 
Contig4430_pilon 60074 108676 TOT012009.1 √ √ √    √ √ √ √   √ LAR Tyrosine-protein phosphatase Lar 
Contig4451_pilon 20121 45182 TOT012039.1  √            LAR4 La-related protein Larp4B 
Contig48084_pilon 4534 15580 TOT012711.1  √      √     √ KPEL Serine/threonine-protein kinase pelle 
Contig48322_pilon 73569 78934 TOT012764.1        √     √ CAH10 Carbonic anhydrase-related protein 10 
Contig5051_pilon 34769 44241 TOT013154.1        √      CMYA5 Cardiomyopathy-associated protein 5 
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Contig52923_pilon 172817 234071 TOT013505.1 √ √ √ √   √ √ √  √ √ √ NBL1 Neuroblastoma suppressor of tumorigenicity 1 
Contig53931_pilon 135337 200203 TOT013689.1 √ √ √    √ √ √  √  √ TADBP TAR DNA-binding protein 43 
Contig5490_pilon 190540 238169 TOT013863.1  √      √      UNC89 Muscle M-line assembly protein unc-89 
Contig5490_pilon 145320 153034 TOT013873.1        √      A0A067RCZ8 Uncharacterized protein 
Contig5542_pilon 24715 684526 TOT013934.1  √      √      GALT2 Polypeptide N-acetylgalactosaminyltransferase 2 
Contig55532_pilon 2641 6823 TOT013967.1  √      √     √ SOSSC SOSS complex subunit C 
Contig5817_pilon 13001 94458 TOT014395.1   √     √     √ A0A1B6LWD6 Uncharacterized protein 
Contig6025_pilon 181847 338853 TOT014693.1 √ √ √ √    √ √  √ √ √ PAX6 Paired box protein Pax-6 
Contig6181_pilon 7490 15461 TOT014894.1  √      √    √ √ MYCT Proton myo-inositol cotransporter 
Contig6371_pilon 72321 126646 TOT015146.5 √ √ √    √ √ √  √ √ √ GOGA4 Golgin subfamily A member 4 
Contig63833_pilon 68993 231055 TOT015158.1        √      HUWE1 E3 ubiquitin-protein ligase HUWE1 
Contig6636_pilon 248427 279756 TOT015511.1 √ √ √    √ √ √  √  √ A0A067RPQ2 LRR domain-containing protein 
Contig66512_pilon 19778 188429 TOT015537.1 √ √     √ √ √  √  √ LASP1 LIM and SH3 domain protein F42H10.3 
Contig6932_pilon 94582 114944 TOT015868.1  √      √     √ ABCB8 ATP-binding cassette sub-family B member 8, mitochondrial 
Contig6932_pilon 132941 150338 TOT015869.1  √      √     √ APMAP Adipocyte plasma membrane-associated protein 
Contig7210_pilon 172512 326460 TOT016305.1 √ √ √    √ √ √ √ √  √ MYO myoglianin 
Contig745_pilon 6060 59826 TOT016600.1        √      E41L5 Band 4.1- like protein 5 
Contig7490_pilon 12720 16839 TOT016652.1 √ √ √    √ √ √  √ √ √ GCN5 Histone acetyltransferase GCN5 
Contig8263_pilon 12087 12734 TOT017545.1  √  √    √   √ √  TWF Twinfilin 
Contig92683_pilon 43257 76189 TOT018508.1 √ √ √ √ √ √ √ √ √ √ √ √ √ A0A0T6B8G7 Uncharacterized protein 
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Extended Data Table 16 | Allele replacement table for identifying the X chromosome in the 

T. oceanicus linkage map 
Dam Sire Sire 

assumed 

Sire 

rewrite 

male 

current 

male 

rewrite 

male 

current 

male 

rewrite 

0/1 0/0 0/. 0/2 0/0 0/2 1/1 1/2 

0/1 1/1 1/. 1/2 0/0 0/2 1/1 1/2 

0/1 2/2 2/. NA  -  -  -  - 
0/2 0/0 0/. 0/1 0/0 0/1 2/2 1/2 

0/2 1/1 1/. NA  -  -  -  - 

0/2 2/2 2/. 2/1 0/0 0/1 2/2 2/1 

1/2 0/0 0/. NA  -  -  -  - 

1/2 1/1 1/. 1/3 1/1 1/3 2/2 2/3 
1/2 2/2 2/. 2/3 1/1 1/3 2/2 2/3 
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Extended Data Figure 8 | Histograms illustrating the identification of a CHC sample outlier. 

Sample B7, a normal-wing male, is indicated by the enlarged red dot in each plot. The sample was 
observed on visual inspection to deviate substantially from the distribution of principal component 1 
scores for all other mapping individuals. Further inspection revealed this also to be the case in the 
majority of cases when the sample was assessed for each CHC peak individually. It was thus excluded 
from further analysis.  
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