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28 ABSTRACT

29

30  The development of an organ involves dynamic regulation of gene transcription and complex multi-
31 pathway interactions. To better understand transcriptional regulatory mechanism driving heart
32 devedopment and the consequences of its disruption, we isolated cardiomyocytes (CMs) from wild-
33  type zebrafish embryos at 24, 48 and 72 hours post fertilization corresponding to heart looping,
34  chamber formation and heart maturation, and from mutant lines carrying loss-of -function mutationsin
35 gata5, tbxba and hand2, transcription factors (TFs) required for proper heart development. The
36 integration of CM transcriptomics (RNA-seq) and genome-wide chromatin accessibility maps
37 (ATAC-s=2q) unravelled dynamic regulatory networks driving crucial events of heart development.
38  These networks contained key cardiac TFs including Gatab/6, Nkx2.5, Tbx5/20, and Hand2, and are
39  associated with open chromatin regions enriched for DNA sequence motifs belonging to the family of
40  the corresponding TFs. These networks were disrupted in cardiac TF mutants, indicating their
41  importance in proper heart development. The most prominent gene expression changes, which
42  correlated with chromatin accessibility modifications within their proximal promoter regions,
43  occurred between heart looping and chamber formation, and were associated with metabolic and
44  hematopoietic/cardiac switch during CM maturation. Furthermore, loss of function of cardiac TFs
45  Gatab, Thx5a, and Hand2 affected the cardiac regulatory networks and caused global changes in
46  chromatin accessibility profile. Among regions with differential chromatin accessibility in mutants
47  were highly conserved non-coding elements which represent putative cis regulatory elements with
48  potential role in heart development and disease. Altogether, our results revealed the dynamic
49  regulatory landscape at key stages of heart development and identified molecular drivers of heart
50  morphogenesis.
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52 INTRODUCTION

53

54  The heart muscle or myocardium makes up most of the heart tissues and is mainly responsible for its
55  function. Upon completion of gastrulation, heart muscle cells or cardiomyocytes (CMs) are specified
56 from a pool of mesodermal progenitors at the anterior portion of the embryonic lateral plate
57 mesoderm (Stainier et al. 1993; Stainier and Fishman 1994; Kelly et al. 2014). As development
58  proceeds, heart progenitors migrate to the midline and form a tube structure known as the primitive
59  heart tube (Stainier et al. 1993). This sructure subsequently expands through cell division and
60 addition of more cells originating from the progenitor pool (Kelly et al. 2014; Knight and Yelon
61  2016). Looping of the heart tube then gives rise to distinct chambers of the heart, namely, the atria and
62  ventricles. Although the vertebrate heart can have between two to four chambers, the step-wise
63  morphogenesis of progenitors specification, migration, tube formation, and looping, are highly
64  conserved between species (Jensen et a. 2013).

65

66 CMsare specified early during embryogenesis and undergo various cellular processes of proliferation,
67  migration, and differentiation which collectively give rise to a fully formed and functioning heart.
68  Crucia to regulating each step of heart morphogenesis are cardiac transcription factors (TFs) which
69  include Nkx2.5, Gatab, Thx5, and Hand2 (Clark et al. 2006; Nemer 2008). These TFs are known to
70 play arolein establishing the CM identity of mesodermal progenitor cells, regulating the formation
71  and looping of the heart tube, as well as the specification of atrial and ventricular CMs. Specification
72  and differentiation of the cardiac progenitors are regulated by the interactions between several key
73  TFs - Nkx2.5, Gatab, Thx5, and Hand2. Members of the GATA family of TFs, Gatad, Gatab, and
74  Gatab, are responsible for the earliest step of cardiac progenitor specification (Jiang and Evans 1996;
75  Jiang et al. 1998; Reiter et al. 1999; Singh et al. 2010; Lou et a. 2011; Turbendian et a. 2013). Gata
76  factorsactivate the expression of nkx2.5, another early marker of CMs (Chen and Fishman 1996; Lien
77 et a. 1999). Although not essential for specification of CMs, Nkx2.5 plays an important role in

78 initiating the expression of many cardiac genes in mouse and regulating the numbers of atrial and
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79  ventricular progenitors (Searcy et al. 1998; Targoff et al. 2008). Similarly, another TF expressed in
80 CM progenitors, Hand2, is responsible for proliferation of ventricular progenitors (Y elon et a. 2000).
81 Hand2 aso induces and maintains the expression of Thx5, which is necessary for atrial specification
82  inthe mouse (Liberatore et al. 2000; Bruneau et al. 2001).
83
84  Degspite the established knowledge of key TFs regulating the various steps of heart morphogenesis,
85  considerable challenges to understand the mechanism of heart development still exist as little is
86  known about their molecular mechanism and downstream targets. Transcription is modulated by cis
87  regulatory elementsthat are located in non-coding regions of the genome, which serve as binding sites
88 for TFs (Farnham 2009; Shlyueva et al. 2014). Although these regulatory elements equally contribute
89  to the molecular mechanism controlling development, there is still a lack of systematic resources and
90 understanding of their roles in heart development. Moreover, cardiac TFs have been shown to interact
91  with chromatin-modifying factors, and the loss of function of several histone-modifying enzymes has
92  been found to affect various aspects of cardiac development (Miller et al. 2008; Nimura et a. 20009;
93 Lou et a. 2011; Takeuchi et al. 2011). Therefore, the chromatin landscape is another factor which
94  needs to be considered when studying the process of heart development. Importantly, the lack of
95  understanding how heart development proceeds makes it difficult to determine the cause of different
96 forms of congenital heart disease (CHD). Here we seek to understand the nature of interaction
97  between TFs and epigenomic landscape, how this landscape changes throughout development, and
98  how it affects heart development.
99
100 The study of heart development poses a unique chalenge due to the importance of the organ for
101  survival. The disruption of factors regulating the early steps of heart formation can result in early
102  embryonic lethality. The use of zebrafish as a model organism alleviates this problem by allowing
103  access to developing embryos immediately after fertilization and its ability to survive without a
104  functioning heart up to a comparatively late stage of development (Stainier 2001; Staudt and Stainier

105 2012). To eucidate the dynamics of the transcriptional regulatory landscape during heart
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106  development, we isolated CMs directly from the developing wild-type zebrafish heart at three key
107  stages of morphogenesis: linear heart tube formation (24 hpf), chamber formation and differentiation
108 (48 hpf), and heart maturation (72 hpf). Similarly, we isolated CMs from cardiac TF mutants of gatab,
109 tbx5a and hand2 at 72 hpf. We then combined transcriptome profiling (RNA-seq) with an assay for
110 chromatin accessbility (ATAC-seq) (Buenrostro et al. 2013) to capture the dynamics of regulatory
111  landscape throughout the progression of heart morphogenesis in vivo. Our results unravelled the gene
112  regulatory network driving key processes of heart development.
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114 RESULTS

115

116 CM transcriptomereveals strong dynamicsat early stages of heart mor phogenesis.

117

118  One of the earliest markers of cardiac lineage are NK2 homeobox 5 (nkx2.5), which is expressed in
119  cardiac precursor cellsin the anterior lateral plate mesoderm and is required in the second heart field
120 as the heart tube forms (George et al. 2015), and myosin light chain 7 (myl7), responsible for
121  sarcomere assembly and specific to differentiated myocardial cells (Chen et a. 2008). To study gene
122  regulatory networks underlying zebrafish heart development, we isolated CMs from zebrafish
123  transgenic lines Tg(nxk2.5:GFP) (Witzel et a. 2012) and Tg(myl7:EGFP) (D'Amico et a. 2007) using
124  fluorescence-activated cell sorting (FACS, Fig. 1A). Cells were collected at three different stages of
125  heart development which corresponded to linear heart tube formation (24 hpf), chamber formation and
126  differentiation (48 hpf) and adult heart maturation (72 hpf) (Bakkers 2011) (Fig. 1B). Due to its
127  earlier onset of CM-specific GFP expression Tg(nxk2.5:GFP) were used to sort CM at 24 hpf,
128  whereas Tg(myl7:EGFP) were used for the subsequent developmental stages (48 hpf and 72
129  hpf)(Houk and Yelon 2016). The average fraction of FACS-yielded GFP+ events obtained from
130 embryo cell suspension at al three stages of development were between 1.37 to 2.56% of total singlet
131  events(Supplement. Fig. 1A). To monitor the purity of FACS and establish the identity of the isolated
132  cells, we measured mRNA levels of nkx2.5, myl7 and GFP in both GFP+ and GFP- cells. The
133  expression of the CM markers and GFP were strongly enriched in GFP+ as compared to GFP-
134  fraction (Supplement. Fig. 1B). In contrast, mRNA levels of neurogeninl (ngnl), a neuronal-specific
135  gene, were higher in GFP- cells. In line with that, RNA-seq expression of nkx2.5, myl7 and myh6 was
136  strongly enriched in GFP+ as compared to GFP- cells, whereas expression of non-CM markers such
137  as skeletal muscle (myog), pancreas (ins), pharyngeal arch (frem2a), retina (arr3b, otx5), skin (tp63,
138  coll6al), neural system (neurogl, zic3, otxl) and eye (poudf2) was more pronounced in GFP-
139  (Supplement. Fig. 2). Additionally, RNA-seq followed by gene ontology (GO) enrichment analysis of

140  differentially expressed genes between GFP+ and GFP- across al three stages of heart development
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141  revealed the overrepresentation of CM-specific biological processes such as cell migration, cardiac
142  development and heart function (Fig. 1C, Supplement Table 1). Among 50 genes with the highest
143  average expression across all developmental stages, 35 are known to have specific functions in CM
144  according to ZFIN database (https://zfin.org) and eight are associated with CM-specific functions and
145  human diseases such as cardiac muscle contraction and cardiomyopathy (ttn.1, mybpc3, ttn.2, actalb,
146  actn2b), atrial septal defects (actcla, myh6) and Laing distal myopathy (vmhc) (Fig. 1D) according to
147  the Online Mendelian Inheritance in Man (OMIM) database (https://www.omim.org/).

148

149 To explore the dynamics of zebrafish CM transcriptome during heart development we applied
150  principal component analysis (PCA) and RNA-seq sample clustering based on Euclidean distance (see
151  Methods). Both analyses revealed strong dissimilarity in transcriptome profiles between CM at 24 hpf
152  and later stages of heart development. This suggest that the major gene expression profile changes
153  occur in CM between 24 and 48 hpf and correspond to linear heart tube formation and chamber
154  formation as compared to CM at 48 and 72 hpf which showed stronger similarity (Fig. 1E-F).

155

156  Taken together, we have successfully isolated CMs from zebrafish heart in vivo at three
157  developmental stages. Our transcriptome analyses identified CM-specific gene expression signatures
158  among highly abundant transcripts and revealed the dynamic nature of gene expression profiles during
159  the course of heart morphogenesis.

160

161  Chromatin accessbility is correlated with CM gene expression levels during heart development.
162

163  The chromatin landscape, in combination with TF-mediated regulation, is known to control cell
164  differentiation and organ development (He et al. 2014; Karwacz et al. 2017; Nelson et a. 2017). To
165  characterize chromatin dynamics throughout heart development, we used assay for transposase
166  accessible chromatin with high-throughput sequencing (ATAC-seq) and profiled chromatin

167  accessibility at three developmental stages matching our transcriptome analyses: 24 hpf, 48 hpf, and
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168 72 hpf (Buenrogtro et al. 2013). To identify genome-wide nucleosome free regions (NFR), ATAC-seq
169 read fragments were partitioned into four populations (Fig. 2A) based on exponential function for
170  fragment distribution pattern at insert sizes below one nucleosome (123 bp) and Gaussian
171  distributions for 1, 2 and 3 nucleosomes as previously described (Buenrogtro et a. 2013). The PCA
172  analysis of (Fig. 2B) and clustering using the Euclidian distances between ATAC-seq samples based
173  on their NFR profiles (Fig. 2C) revealed that biological replicas clustered together, whereas, the
174  largest changes in chromatin accessibility were observed between 24 hpf and 48 hpf stages, in
175 agreement with observed transcriptome changes of CMs during heart development. Comparing
176  consensus NFRs across all developmental stages, we observed a large number of common NFRs
177  (16,055), as well as those which were specific to a single developmental stage. The most stage-
178  specific NFRs were found in CMs a 24 hpf (22,656) (Fig. 2D). This prompted us to further
179  invedigate the relationship between transcriptome and chromatin accessibility changes in cardiac
180  development. We therefore looked at the distribution of NFRs across genomic features and observed
181  that the highest fraction of NFRs was localized either within promoter regions (~30% of total NFRs),
182  followed by intergenic (~25%) and intronic (20%) regions (Fig. 2E, Supplement Table 2). These
183  ratiosremained at comparable levels across all three developmental stages studied. Consistently, NFR
184  consensus heatmaps within transcription start site (TSS) proximal promoter regions (+/- 3 kb) (Fig.
185  2F) compared to distal promoter regions (more than +/- 3 kb of TSS) (Fig. 2G) as well as ATAC-seq
186  read density over the gene bodies of 1000 genes most highly expressed in CMs at all three stages of
187  heart development (Fig. 2H) revealed the enrichment of NFRs around TSS regions. We further
188  observed that chromatin accessibility reflected by the presence of NFR in gene promoter regions was
189  significantly correlated with the expression levels of the corresponding genes to which the promoter
190  belonged to (Spearman rho 0.46 — 0.48) at each stage of heart development (Fig. 21). Our observations
191 therefore revedled a strong link between chromatin accessibility of promoter regions and gene
192  expression levels.

193

194  Co-expression network analysisidentifiesCM regulatory modules.
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195

196  Analysis of transcriptiona profiles across different conditions allows to organize genes with similar
197  expression patterns into functional regulatory modules (Langfelder and Horvath 2008). To better
198  understand the relationship and functionality of cardiac genes involved in the developing zebrafish
199  heart in vivo, we identified relevant gene regulatory networks in an unsupervised and unbiased
200 manner using the weighted gene correlation network analysis (WGCNA) based on RNA-seq
201 expression profiles (Langfelder and Horvath 2008). Hierarchical clustering of the
202  similarity/dissimilarity matrix across the entire set of transcriptome samples distinguished 37 gene
203  modules (Fig. 3A, Supplement Table 3), out of which five were enriched in functional termsrelated to
204  cardiovascular system development and function (Fig. 3B, Supplement Table 4): turquoise (4085
205  genes), brown (2156 genes), green (1166 genes), salmon (756 genes), and sienna3 (75 genes). We
206  refer to these modules as “cardiac modules’ from here on. Functional terms enriched in these cardiac
207 modules included specific processes of heart development, such as “embryonic heart tube
208  development” (modules brown, green, and sienna3), “cardioblast differentiation” (green), “heart valve
209  deveopment” (salmon), “heart process” and “heart formation” (turquoise). The relatively small
210 sienna3 module was strongly enriched in GO terms associated with multiple cardiac developmental
211  processes including “heart tube development”, “cardioblast migration” and “heart rudiment
212  development”.

213

214  Tounravel potential driver genes with regulatory roles in each of the cardiac modules identified, we
215  searched for transcription factors (TFs) and calculated their connectivity to other genes within a given
216  module (normalized kDiff), as well as how their expression is affected by a CM phenotypic trait (CM
217  correlation) (Fig. 3C). Most of the cardiac modules contained TFs known to direct key processes of
218  heart development, such as gatal (brown), tbx5a, sox10 (turquoise), hand2, smad7 (green) as well as
219  gatab, nkx2.5, thx20 (sienna3) (Reiter et al. 1999; Ahn et al. 2000; Montero et al. 2002; Holtzinger
220  and Evans 2007; Schoenebeck et a. 2007; Targoff et al. 2008; Moskowitz et al. 2011; Ounzain et al.

221  2014). Each of the modules exhibited different expression profile dynamics in heart development
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222 (termed eigengene expression) across three developmental stages in both GFP+ and GFP- fraction,
223  further called CM+ and CM-, respectively (Fig 3D). Two broad patterns of eigengene expression
224 could be observed: modules with decreasing cardiac gene expression during heart development -
225  brown and green, and modules in which expression increases between 24 and 48 hpf and then
226  decreases between 48 and 72 hpf - salmon, sienna3 and turquoise. In addition, CM+ eigengene
227  expression in sienna3 module was consistently higher than in CM- samples at al stages of
228  development, further suggesting the specificity of thismoduleto CM.

229

230  The presence of key cardiac TFs in each module prompted us to look closer into individual genes
231  within these modules so to identify specific functional patterns related to cardiovascular development.
232  The sienna3 module, which contained cardiac TFs nkx2.5, gatab, gata6, and thx20, also contained
233  many other genes implicated in various aspects of heart morphogenesis including CM migration and
234  differentiation, and heart looping including popdc2, apobec2a, and tdgfl (Xu et al. 1999; Kirk et al.
235  2007; Etard et a. 2010; Wang et a. 2011; Kirchmaier et al. 2012; Sakabe et al. 2012). Additionally,
236  the module also contained many genes known to be involved in cell adhesion and structural
237  congtituents of the heart muscle, which were previoudly implicated in cardiomyopathy when mutated.
238  These included actcla, myl7, myh7ba, myh7bb, vmhc, and ttn.2 (Olson et al. 1998; Xu et al. 2002;
239  Shih et a. 2015). In support of this network, popdc2 and gata6 were previously shown to be a direct
240  transcriptional target of Nkx2.5 in mouse embryonic heart (Davis et al. 2000; Molkentin et al. 2000;
241  Dupays et a. 2015). In turn, evidence also exigts for the cardiac-specific transcriptional activation of
242  nkx2.5 by GATA factors (Lien et al. 1999).

243

244 Genes belonging to the developmental signaling pathways Wnt, Notch, TGF-I1 and FGF were highly
245  represented in al modules except sienna3 which consised of mostly specialized CM genes. In
246  particular, genes of both canonical and non-canonical Wnt signaling pathways were almost
247  exclusively distributed between the green and salmon modules. Studies in different organism have

248  shown that the canonical Wnt signaling plays biphasic roles in cardiac development, where it

10
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249  promotes cardiac fate in the early precardiac mesoderm while becoming inhibitory to cardiogenesis
250  processesin later stages (Naito et al. 2006; Ueno et a. 2007; Piven and Winata 2017). The cardiac TF
251  Hand2, known to regulate early cardiac developmental processes, is also present in the green module,
252  suggedting that it might control these pathways. Altogether, we identified regulatory modules
253  exhibiting unique expression patterns throughout heart development, each of which contained relevant
254  TFs Importantly, these modules represent potential regulatory networks underlying various processes
255  of heart development.

256

257 Integrative analyss of RNA-seq and ATAC-seq identifies regulatory networks of CM
258  maturation.

259

260 To further explore the relationship between chromatin state and transcriptional regulation of heart
261  deveopment, we integrated co-expression networks generated from RNA-seq with accessible
262  chromatin regions identified by ATAC-seq. Thus, we examined NFRs localized within +/-3kb of the
263  TSS of genes assigned to the same module for the presence of TF motifs (Table 1, Supplement Fig.
264  3). NFRs associated with genes within the module sienna3 (which contained Gata5/6, Nkx2.5, and
265 Thx20 TFs) were aso enriched in motifs belonging to these family of TFs [Gata family
266  (Gatal/2/3/4/6), Nkx family (Nkx2.2, Nkx2.5), Smad3 and T-box family (Tbrl)], whereas salmon
267 module containing sox3 gene showed overrepresentation of Sox3 motif. Similarly, in two other
268  cardiac modules turquoise and green (containing the TFs Tbx5, Hand2, and Smad7) we found a wide
269  range of significantly enriched (pvalue < 0.05) TF motifs including Tbx family (Tbx5) and Smad
270  family (Smad2, Smad4), respectively. The presence of the TFs together with the enrichment of their
271  respective recognition motifs strongly suggests their regulatory role within each module. Moreover,
272  we observed an overrepresentation of motifs of TF with profound role in heart development, such as
273  Sox family (Sox10) motifs in salmon module and Tgif family (Tgifl, Tgif2) in both sienna3 and
274 turquoise modules (Montero et a. 2002; Powers et al. 2010) athough TFs corresponding to these

275  motifs were not present in the matching modules.

11
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276

277  To establish the relationship between chromatin accessibility and gene expression and provide the link
278  between TF and their effector genes, we combined gene-to-gene correlation with NFR motif
279  annotation and its accessibility within the proximity (+/- 3 kb) of their transcription start site (TSS)
280 (Fig. 4A). To identify genes which were dynamically regulated and associated with regions with
281  differential chromatin accessibility in the course of heart development, we compared normalized
282  changes of gene expression to those of the corresponding NFRs between 24 and 48 hpf as well as 48
283  and 72 hpf (Fig. 4B, Supplement Table 1 and 5). We observed strong up-regulation of expression for
284  alarge number of genes within the turquoise and salmon module and down-regulation of genes in
285  brown module and for most genes belonging to the green module. This was generally consistent with
286  thedirection of changes in chromatin accessibility e.g. gpd2, sox10 in turquoise module, commd5 in
287  salmon, tbx16l, pappa2 in brown and tfrla, aff2 in green; yet we also observed genes with opposite
288  behaviour including kiféa, irf2bp2a in turquoise module, semadab in brown and serinc2 in green
289  module. No significant changes were observed between 48 and 72 hpf (data not shown), suggesting
290 that both gene expression and chromatin accessibility were more stable by heart chamber formation.
291

292 GO and pathway analysis (Croft et al. 2011) of turquoise regulatory network revealed that this module
293  comprised genesinvolved in mitochondrial oxidation (mdh2, gpd2), carbohydrate metabolism (rdh8a)
294  and ketone body metabolism (bdh2) (Fig. 4C-D, Supplement Table 6). We have identified sox10,
295  Kf6a and irf2bp2a, which were previously linked to zebrafish heart morphogenesis (Hill et a. 2017),
296  ashub genes linked to their effector genes containing corresponding binding motifs in NFR localized
297  in proximal promoter regions. As the vast majority of genes within the turquoise module exhibited
298  dignificant increase in gene expression and chromatin accessibility within associated NFRs between
299 24 and 48 hpf, it suggests the presence of a metabolic switch that takes place in CM between those
300 devedopmental stages. This agrees with previous reports showing that mitochondrial oxidative
301 capacity and fatty acid oxidation potential increase along with CM maturation (Lopaschuk and Jaswal

302  2010).

12
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303

304  Conversely, most of the genes assigned to brown module were downregulated from 48 hpf onwards
305  aong with the associated NFR chromatin accessibility (Fig. 4C). Pathway and GO analysis of brown
306 module (Supplement Table 7) revedled the presence of genes implicated in embryonic
307  haematopoiesis. Notably, we have identified a number of hub TFsincluding myb (v-myb) and prdmila,
308 mybl2, thx16l, e2f8, kifl7 as well as their effector genes, such as Imo2, tall, alas?, slc4ala with
309 profound roles in haematopoiesis (Fig. 4E) (Gering et a. 2003; Paw et a. 2003; Chan et al. 2009;
310 Soza-Ried et a. 2010; Kotkamp et al. 2014). Moreover, ATAC-seq analyses revealed the enrichment
311 of GATA, Flil, ETS, ERG, and ETV moatifs (Table 1) which belong to the regulatory network
312  underlying the specification of hematopoietic and vascular lineages (Gottgens et al. 2002; Pimanda et
313  a. 2007; Loughran et al. 2008; Kaneko et al. 2010). The brown module therefore represents the
314  regulatory network leading to hematopoietic fate, whose suppression presumably promotes the
315 development of CMs identity. Altogether, we identified regulatory networks leading to significant
316 metabolic and cardiac/hematopoietic changes occurring in CMs during early heart morphogenesis
317  (Supplement Table 8), which areregulated at both gene expression and chromatin levels.

318

319 Disruption of cardiac TFsaffectsregulatory networksdriving CM matur ation

320

321  To further explore cardiac regulatory modules identified in our transcriptomic analyses and validate
322  their importance in normal heart development, we utilized zebrafish mutants of cardiac TFs Gatab,
323 Hand2 and Thbx5a, the disruption of which were previously linked to impaired migration of the
324  cardiac primordiato the embryonic midline, reduced number of myocardial precursorsand failure of
325  heart looping, respectively (Reiter et al. 1999; Yelon et al. 2000; Garrity et al. 2002). RNA-seq and
326 ATAC-seq were performed on CMs isolated from homozygous gata5™>@m236a  hysgm2/ m2t
327  hand2®® mutant 72 hpf embryos in Tg(myl7:EGFP) genetic background. Homozygous mutant
328  embryos were selected based on their phenotypes of cardia bifida (gata5™*¥"2%%2 hand2%*) or

329  heart-string (tbx5a™Y ™) (Fig. 5A).
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330

331 RNA-seqanalysisidentified a number of genes which were differentially expressed (log,FC#£0, padj <
332 0.05) in response to disruption of Gatab (287 downregulated, 739 upregulated), Hand2 (288
333  downregulated, 618 upregulated) and Thx5a (255 downregulated, 584 upregulated) (Fig. 5B,
334  Supplement Table 9). Only a small overlap was observed between genes commonly downregulated in
335  thethree mutants (14 genes including vcanb, bmp3 and col 18alb), whereas upregulated genes showed
336  alarger overlap (307 genes e.g. trimd6, map4k6, mtfl) between the three mutants. GO enrichment
337 analysis of all TF-downregulated genes revealed the presence of biological processes related to
338 muscle development, muscle function, heart process and sensory perception signalling; upregulated
339 genes were enriched in biological processes related to ion transport and inflammatory response
340  (Supplement Table 10).

341

342  On the other hand, changes within chromatin accessibility of NFRs localized in proximal promoter
343  regions (+/- 3 kb of TSS) of mutants and wild-type embryos were generally less pronounced as
344  compared to those at the gene expression level (Fig. 5B, Supplement Table 9). Moreover, loss of
345  different TFs seems to have a variable effect on the chromatin structure, the largest of which seemsto

346  occur in gatas™m2Amaea

mutants (335 regions), where differentially represented proximal NFRs were
347  associated with genes enriched in cardiac muscle development processes (Fig. 5B, Supplement Table
348  10). In hand2®® mutants 53 regions were downregulated. Less pronounced chromatin changes could
349  be identified in tbx5a™Y ™ mutant (17 regions). Seven overlapping downregulated regions were
350 identified between gata5™>*%¥"?%a gnd hand2*®'® mutants associated with nkx1.21a, dmd, frzb, gpr4,
351  vap, whereas 246 overlapping upregulated regions were identified including those localized in the
352  proximity of nrdal, mycbp2, irf2bp2a, rpl3. No common differentially regulated proximal NFRs
353  were, however, found across all three mutants.

354

355  In order to assess how the loss of function of critical cardiac TFs affects the regulatory networks of

356  heart development, we further explored which fraction of mutant-downregulated genes contributes to
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357  the cardiac regulatory modules identified in wild-type analyses. We found that 31% (91 genes), 24%
358 (71 genes) and 31% (79 genes) of total downregulated genes in gata5™>%¥™m?%a  hand2%®'$ and
359  thx5a™Y ™ mutants were present in cardiac modules, mainly in the brown and green modules (Fig.
360 5C). Among the 14 genes which were commonly downregulated in all three mutants, we found 6
361  which belonged to cardiac modules, 4 of which belonged to green (nidlb, papss2b, vcanb, bmp3) and
362 2 to samon (plppr3a, sponlb) modules. Genes including vcan, plppr3a and Bmp family were
363  previoudy found to play a crucial role in heart morphogenesis and function (Marques and Yelon
364  2009; Kern et a. 2010; Chandra et al. 2018). Similar comparison performed for chromatin
365  accessibility data revealed that 21% (73 regions), 24% (13 regions) and 29% (5 regions) of proximal
366  NFRs which showed decreased accessibility in gata5™> Mm% hand2%'® and thxs5a™ ™ mutants
367  were located within the proximal promoters of genes belonging to cardiac modules (Fig. 5C). We also
368  explored mutant-upregulated genes and proximal NFRs and their contribution to cardiac modules
369  (Fig. 5D). It showed that 20% (153 genes), 21% (134 genes) and 20% (119 genes) of total upregulated
370  genes in gata5™*¥M36  hand2%®, and tbx5a™Y ™! mutants were present in cardiac modules,
371  predominantly in the brown and turquoise modules. Consequently, the most prominent changes were

372  observed for proximal NFRs in brown and turquoise modules, and 43 % (292 regions) and 37% (229

tm236a/tm236a H/s6
5 27,

373  regions) of total upregulated NFRs contributed to cardiac modules in gata and hand

374  No changes were observed in thx5a™ ™

mutants.

375

376  We further investigated the interactions between chromatin accessibility changes and gene regulation
377  within cardiac modules in the three cardiac TF mutants. Hierarchical clustering revealed that the vast
378 majority of either downregulated or upregulated cardiac module genes did not exhibit a similar
379  regulation of NFR chromatin accessibility within their promoter regulatory regions (Supplemental
380 Fig. 4). We observed that decrease in proxima promoter NFR were not correlated with gene
381  expression downregulation, except for clgtnfs5 and adamts9, the latter being a vcan-degrading

382  protease required for correct heart development and cardiac allostasis (Kern et al. 2010) (Supplement

383  Fig. 5 A, B). Similarly, only 10 genes including hdr, gga3, foxo5, rpl27, ybx1, actb2, cotl1, rnaset2

15


https://doi.org/10.1101/488593
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/488593; this version posted December 7, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

384  showed increase both in gene expression and NFR chromatin accessibility (Fig. 5E). Altogether, only
385 15 genes showed changes both in expression level and chromatin accessibility (either increasing or
386  decreasing) in gatab mutant and 3 genes in hand2 mutant, whereas no such genes were found in thx5a
387  mutant.

388

389  Taken together, we have identified a group of genes which were responsive to loss of Gatab, Hand2
390 and Thxb5afunctions, among which, approximately one third belonged to cardiac regulatory networks.
391  Thissuggeststheir crucial role in heart development and CM maturation downstream of these cardiac
392 TFs At the sametime, it also provides a strong validation of the cardiac modules as gene regulatory
393  networks underlying specific processes of heart development.

394

395  Evolutionary conserved enhancersensure proper heart development

396

397  One important observation was that gene expression changes in all three mutants were, to a large
398  extent, uncorrelated with changes in chromatin accessibility, at least in proximal promoter regulatory
399 regions. This led us to question whether loss of Gatab, Hand2, and/or Thx5a cardiac TFs may cause
400 global chromatin changes at genomic sites other than proxima gene promoters, and whether the
401  observed changes in gene expression could be attributed to distal regulatory elements such as
402  enhancers. To this end, we have identified distal NFRs (more than +/- 3 kb of TSS) and their
403  differential accessibility between wild-type at 72 hpf and the mutants. We identified 59, 14 and 33
404  downregulated and 551, 321 and 2 regions upregulated (padj < 0.05) in gata5™2*%dm236a hands/s,
405  and thx5a™ ™ mutants, respectively (Fig. 6A). Amongst downregulated regions, 1 region was in
406  common between gata5™*¥"=% and thx5™Y ™! mutants (Fig. 6B). On the other hand, much

5tm236altm236a

407  stronger overlap was observed between gata ol

and hand mutants for upregulated

408  regions (183 regions) whereas no overlap was found between gata5™*¥"2%2 gnd thx5 ™Y ™. One
409  region at chromosome 21 (Chr21:15013048-15013154) was commonly upregulated in all 3 mutants.

410 To further explore the genomic localisation of differentially regulated distal NFRs and identify
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411  evolutionary conserved putative enhancers, we visualized them onto zebrafish genome and compared
412  them with database of highly conserved non-coding elements (HCNE) between zebrafish and human
413  (Engstrom et al. 2008) (Fig. 6C, Supplement Table 11). A total of 22 regions revealed conservancy
414  between zebrafish and human genomic sequences among which 3 were downregulated in thx5a and
415  hand2 mutants, whereas 19 of them showed significantly increased accessibility in hand2 and gatab
416  mutants. Among 3 most downregulated HCNE were those localized on chromosome 1, between
417  hand2 and fbxo8 genes (Chrl:37584384-37584724) as well as those localized in the introns of
418  ppp3cch (Chrl0:20246264-20246845) and akt7a (Chr20:4714760-4715050) genes (Fig. 6D). We aso
419  identified HCNE-NFRs which increased in accessibility in gata5 mutant (Chrl:8598642-8598893)
420  and genomic region at chromosome 10 (Chr10:8580509-8581153) which was commonly regulated in
421  hand2 and gata5 mutants (Fig. 6E). Therefore, we have determined a number of distal NFRs which
422  accessihility is affected by mutations of cardiac TFs among which we pinpointed highly conserved
423  NFRsserving as potential enhancersthat may play key rolesin heart development.

424
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425 DISCUSSION

426

427  Heart development is a complex process involving multiple layers of interactions at molecular,
428  cdlular and tissue levels, with the former being controlled by a wide range of regulatory proteins
429 including TFs, signalling proteins as well as epigenetic factors, such as histone and DNA
430 modifications, chromatin remodelling and transcriptional enhancers. We used FACS to obtain CM-
431  enriched cell fractions from developing heart during crucial events of heart morphogenesis. GFP-
432  positive cells were sorted from transgenic Tg(nxk2.5:EGFP), Tg(myl 7:EGFP) zebrafish embryos. In
433  zebrafish, at 6-9 somite stage (~12-14 hpf), nkx2.5 expression only partially overlaps the anterior
434  |ateral plate mesoderm (ALPM) in its medial part (Schoenebeck et al. 2007), whereas at 17 somite
435  stage (~17-18 hpf) the most posterior nkx2.5+ cells of the bilateral cardiac primordia do not express
436  myl7, amarker of terminal myocardial differentiation, suggesting the presence of nkx2.5+ cells that do
437  not contribute to the myocardium (Y elon et al. 1999). Thisis in line with other studies in zebrafish,
438  pinpointing the presence of specific nkx2.5+ second heart field (SHF) progenitors that give rise to the
439  fraction of ventricular myocardium and outflow tract (OFT) (Guner-Ataman et al. 2013).
440  Nevertheless, it has been shown that a prim-5 stage (24-30 hpf), nkx2.5 is expressed both in
441  ventricular and atrial myocardium exactly overlapping the expression of myl7 (Y elon et al. 1999). We
442  applied an integrative approach combining transcriptomics (RNA-seq) and genome-wide chromatin
443  accessibility maps (ATAC-seq). This drategy revealed several key observations. Firstly, the most
444  prominent gene expression changes occurred between linear heart tube formation (24 hpf) and
445  chamber formation (48 hpf). This mgjor shift in molecular profile likely reflects the continuous
446  process of CM differentiation throughout which progenitors are migrating and differentiate into CMs
447  once they are incorporated into the growing heart tube (Kelly et al. 2014). Importantly, the genes
448  which belong to sienna3 and turquois modules showed significant increase in expression between the
449  two developmental stages. In particular, sienna3 genes were enriched in the largest number of GO
450 terms related to cardiac function and contained at least three TFs known for their crucial roles in

451  specification of CMs and their function in heart contraction (Singh et al. 2005; Singh et al. 2010;
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452  Laforest and Nemer 2011; Zhang et a. 2014; Pawlak et al. 2018), which suggests the prominent role
453  of thisnetwork in CM differentiation and heart tube formation during this developmental period.

454

455  Secondly, we observed that both gene expression profile and chromatin landscape changed most
456  significantly between 24 hpf and 48 hpf, suggesting that the changes in gene expression profiles
457  during this stage were likely regulated at the chromatin level. Besides validating the biological
458  relevance of our ATAC-s2q dataset, this observation suggests that active chromatin remodelling
459  occurs throughout development, and that the regions with differential accessibility represent cis
460  regulatory hubsdriving the biological processes associated with differentiating CMs.

461

462  Thirdly, the identified modules of co-regulated genes represent sub-networks underlying specific
463  biological processes associated with heart development. Further integration of these gene networks
464  with ATAC-seq data allowed usto link TFsto their putative target genes, which was supported by the
465  enrichment of DNA binding motif for specific TFs within NFRs in proximal promoters of the genes
466  within each particular module. Collectively, our analyses of the regulatory networks and their
467  representative expression patterns revealed increased expression of genes defining CM structure and
468  function, whereas the expression and proximal promoter chromatin accessibility of hematopoietic
469  genes were suppressed during CM differentiation. A particularly intriguing finding was that sorted
470  GFP-positive cells also expressed hematopoietic determinants at the earliest stage observed (24 hpf).
471  These were strongly grouped into a single expression module (brown) and strongly correlated
472  between gene expression dynamics and chromatin accessibility in proximal promoters that decreased
473  between 24 hpf and 48 hpf. One possible explanation is that the expression of hemato-vascular genes
474  was contributed by cells giving rise to the pharyngeal arch mesoderm which also express nkx2.5 used
475  asour selection marker. Nevertheless, our transcriptome profile, as well as microscopic observations,
476  suggests that the majority of the GFP-positive cell populations are likely CMs, which is further
477  supported by the finding that the highest-expressed genes were implicated in CM development and

478  function. Another equally plausible hypothesis is that a group of cells exist within the pool of CM
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479  progenitors which possess alternative potential to become the blood or vascular lineage. Numerous
480  evidences from mouse studies suggested the presence of bipotential cardiac progenitor populations
481  which co-expressed cardiac and hematopoietic markers in the developing heart tube (Caprioli et al.
482  2011; Neakano et a. 2013; Zamir et al. 2017). The presence of hematopoietic markers in our
483  experiment therefore suggests the presence of such cells in zebrafish and that, smilar to mammals, the
484  hematopoietic cell fate is suppressed with the progression of CM differentiation, a process which
485  occurs between linear heart tube formation and chamber differentiation. To clearly distinguish
486  between these possibilities, it would be necessary to obtain molecular profiles of individual cells so to
487  determine whether hemato-vascular progenitors exist as a separate population expressing specific
488  markers or rather, as a common progenitor population expressing both CM and hemato-vascular
489  markers. Further, this also highlights the limitations of currently available marker genes, and calls for
490  higher resolution analyses of gene expression in specific cell types which is possible with the single
491  cell sequencing technology.

492

493  Finaly, by performing parallel analyses in CMs isolated from mutants of cardiac TFs Gatab, Hand2
494  and Thx5a, we uncovered changes in gene expression profiles and chromatin accessibility within
495  cardiac regulatory networks. Comparing mutants and wild-type CMs, we observed only a minor
496  correlation between changes in gene expression and chromatin accessibility within proximal promoter
497  NFRs, suggesting that transcriptional regulation of genes involved in heart development might be
498  affected by distal regulatory elements. Alternatively, changes in gene expression between wild-type
499  and TF mutants could be related to impaired TF binding to constitutively accessible proxima NFRs.
500 Moreover, dueto the inability to distinguish mutant phenotype prior to 72 hpf, we could only perform
501 mutant analyses at this developmental stage. This late stage of development means that we could not
502  rule out the possibility that the effects we observe might be secondary in nature. Regardless that we
503  could not provide definitive associations between distal regulatory elements and their target genes due
504  to lack of chromatin interaction data, we identified a substantial number of gene-distal located NFRs

505 which were altered in accessibility in mutants that may serve as potential distal transcriptional
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506 regulatory elements. Some of these elements were found to be highly conserved between zebrafish
507 and human, suggesting that they might be critical developmental enhancers (Woolfe et al. 2005;
508  Polychronopouloset al. 2017).

509

510  Altogether, we characterized the dynamics of gene expression and chromatin landscape during heart
511  development and identified genetic regulatory hubs driving biological processes in CMs at different
512  sages of heart morphogenesis. We unravelled the alterations in the global transcriptional regulatory
513  landscape resulting from disruptions to developmental program caused by the loss of cardiac TFs.
514  Caollectively, our study identified potential target genes and regulatory elements implicated in heart
515  development and disease.

516
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517 METHODS

518

519  Collection of embryos

520

521  Zebrafish transgenic lines Tg(nxk2.5:EGFP), Tg(myl7:EGFP) in AB wild-type and gata5™>¢%*
522  (Reiter et a. 1999), thx5a™* (Garrity et a. 2002), hand2** (Yelon et a. 2000) mutant background
523  were maintained in the zebrafish facilities of the International Institute of Molecular and Cell Biology
524 in Warsaw (License no. PL14656251), according to standard procedures and ethical practices
525 recommended. Embryos were grown in embryo medium at 28°C, staged according to standard
526  morphological criteria (Kimmel et a. 1995), and harvested at three different developmental stages:
527  prim-5 (24 hpf), long-pec (48 hpf) and protruding-mouth (72 hpf).

528

529  CM caollection by fluor escence-activated cell sorting (FACS)

530

531  Cell suspension was prepared from 500 zebrafish embryos and larvae as previously described (Winata
532 et d. 2013). Cells were verified microscopically for the viability by using trypan blue solution and
533  used for further procedures when more than 90% of viable cell were obtained in the suspension.
534  Fluorescent (GFP+) and non-fluorescent cells (GFP-) were sorted by using FACSAria Il cytometer
535 (BD Biosciences, USA). Cells were inspected for their relative size, granularity and relative
536  fluorescence. Cell suspension obtained from wild-type embryo was used to assess the
537  autofluorescence. GFP+ and GFP- fractions were verified for their viability by staining with
538  propidium iodide (Sigma-Aldrich, USA) followed by FACS.

539

540 QgPCR

541

542  Tota RNA was extracted from 100,000 GFP+ and GFP- cells obtained from zebrafish embryos by

543 using TRIzol LS (Thermo Fisher Scientific, USA) according to the manufacturer protocol and
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544  followed by DNase | (Life Technologies, USA) treatment. Transcriptor first strand cDNA synthesis
545 kit (Roche Life Science, Germany) was used to obtain cDNA. Relative mRNA expression was
546  quantified by using FagtStart SY BR green master mix on the Light Cycler 96 instrument (Roche Life
547  Science, Germany) with specific sets of primers (Supplement Table 12).

548

549  RNA-seq

550

551  For RNA sequencing 100,000 of GFP+ and GFP- cells from zebrafish embryos were sorted directly to
552  TRIzol LS (Thermo Fisher Scientific, USA). After ethanol precipitation RNA was depleted of DNA
553 by using DNase | treatment and purified on columns by using RNA Clean & Concentrator™-5 (Zymo
554  Research, USA). RNA integrity was measured by RNA ScreenTape on the Agilent 2200 TapeStation
555  system (Agilent Technologies, USA). RNA Integrity Number (RIN) was in the range from 8.5 to 10
556  for dl the samples used for RNA-seq. Ribosomal RNA removal from 10 ng of tota RNA was
557  performed using RiboGone Kit (Clontech Laboratories, USA). cDNA synthesis for next-generation
558 sequencing (NGS) was performed by SMARTer Universal Low Input RNA Kit (Clontech
559  Laboratories, USA) as recommended by the manufacturer. DNA libraries were purified with
560 Agencourt AMPure XP PCR purification beads (Beckman Coulter, USA) and DNA fragment
561  distribution was assessed by using D1000 ScreenTape and Agilent 2200 TapeStation system (Agilent
562  Technologies, USA). KAPA library quantification kit (Kapa Biosystems, USA) was used for gPCR-
563  based quantification of the libraries obtained. Paired-end sequencing (2x75bp reads) was performed
564  with NextSeq 500 sequencing system (Illumina, USA). The sequencing coverage was at least 75
565  million reads and 35 million reads for GFP+ and GFP-, respectively. GFP+ samples obtained from
566  embryos at 24, 48 and 72 hpf were duplicated. Pearson correlation of biological replicates and read
567  distribution over the zebrafish genome features were performed (Supplement Fig. 6 A, B)

568

569  Assay for transposase-accessible chromatin with high throughput sequencing (ATAC-seq)

570
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571  For ATAC-seq 60,000 of GFP+ cells from zebrafish embryos were sorted to Hank’s solution (1x
572  HBSS, 2mg/mL BSA, 10 mM Hepes pH 8.0), centrifuged for 5 minutes at 500 x g and prepared for
573  chromatin tagmentation as previously described (PMID: 24097267). NEBNext High-Fidelity 2 x PCR
574  Master Mix (New England Biolabs, USA) and cusom HPLC-purified primers containing Illumina-
575 compatible indexes were used to prepare DNA sequencing libraries as previously described
576  (Buenrostro et a. 2015). DNA libraries were purified with Agencourt AMPure XP PCR purification
577  beads (Beckman Coulter, USA) and DNA fragment distribution was assessed by using D1000
578  ScreenTape and Agilent 2200 TapeStation system (Agilent Technologies, USA). KAPA library
579  quantification kit (Kapa Biosystems, USA) was used for gPCR-based quantification of the libraries
580  obtained. Paired-end sequencing (2x75bp reads) was performed with NextSeg500 sequencing system
581  (lllumina, USA). The sequencing coverage was at least 90 million reads.

582

583  Light sheet fluorescence microscopy (L SFM)

584

585  Embryos collected from transgenic lines Tg(nxk2.5:GFP) and Tg(myl7:GFP) were maintained in
586  embryo medium containing 0.003% 1-phenyl-2-thiourea (PTU) to inhibit the development of pigment
587  cells. Embryos collected from wild-type at 24, 48 and 72 hpf were mounted in 1% low-melting
588  agarose (Sigma-Aldrich, USA) in a glass capillary. LSFM was used to perform optical sectioning of
589 the cardiomyocytes containing GFP reporter. Images were analysed with Imaris 8 software (Bitplane,
590  Switzerland).

591

592  Bioinformaticsanalysis

593

594 Raw RNA-seq and ATAC-s=q reads were quality checked using FastQC (0.11.5)
595  (http://www.bioinformatics.babraham.ac.uk/projects/fastqce/) and MultiQC (1.1) (Ewels et al. 2016).
596  Illumina adapters were removed using Trimmomatic (0.36) (Bolger et al. 2014). Reads matching

597  ribosomal RNA were removed using rRNAdust (Hasegawa et al. 2014). Reads quality filtering was
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598  performed using SAMtools (1.4) (Li et al. 2009) with parameters -b -h -f 3 -F 3340 -q 30. RNA-seq
599  readswere aligned to the zebrafish reference genome (GRCz10) using STAR (2.5) (Dobin et al. 2013)
600  (Supplement Fig. 7). Bowtie2 (2.2.9) (Langmead and Salzberg 2012) was used to map ATAC-seq

601  reads to the entire GRCz10 genome except hand2®*

in which ~200kb region spanning hand2 gene
602  was excluded from the analysis due to large deletion carried by those mutants as previously described
603  (Yelon et a. 2000) (Supplement Fig. 8). Read distribution was assessed with Picard (2.10.3). NFR
604  regions were identified as previously described (Buenrostro et al. 2013). Peaks of chromatin open
605  regions were called using MACS2 (2.1.0) (Zhang et al. 2008) with parameters --nomodel --shift -100
606  --extsize 200 --broad -g 1.21€9 -gq 0.05 -B --keep-dup all. Enriched motifs in NFRs were identified
607  using the HOMER findMotifsGenome tool with parameters findMotifs.pl modules/$modir/target.fa
608 fasta modules/$modir -mset vertebrates -p 8 -S 200 -fastaBg modul es/$modir/background.fa to check
609 against vertebrates motif collection (Heinz et al. 2010). The background collection of sequences was
610  constructed for each investigated gene module by taking complementing set of NFRs around TSSs of
611 that module. Downstream bioinformatics analysis were performed in R 3.4 using following
612  Bioconductor and CRAN (Huber et a. 2015) packages: GenomicFeatures (Lawrence et al. 2013),
613  GenomicAlignments (Lawrence et al. 2013), DESeg2 (Love et a. 2014), pheatmap, LSD,
614  ComplexHeatmap, biomaRt (Durinck et a. 2009), dplyr, WGCNA (Langfelder and Horvath 2008),
615  ggplot2, reshape2, org.Dr.eg.db, clusterProfiler (Yu et al. 2012), ATACseqQC (Ou et al. 2018),
616  ChlPseeker (Yu et a. 2015), DiffBind (Ross-Innes et a. 2012), ggbio (Yin et a. 2012). RNA-seq
617  gene countsand ATAC-seq NFR read countsfor all samples were transformed to regularized log (rld)
618  (Supplement Table 13, 14). Gene network visualisation and statistical analysis of gene networks was
619  performed using Cytoscape (Cline et a. 2007). Metascape was used to visualise the output of GO
620  enrichment analysis (Tripathi et al. 2015).
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622 FIGURE AND TABLE LEGEND

623

624 Table 1. HOMER-identified TF motifs found in NFR of cardiac co-expresson modules.
625 HOMER-identified motifs with the highest prevalence in NFRs localized +/-3kb around the TSSs of
626  selected cardiac module genes are listed. P-value < 0.05. Known vertebrate TF motifs were used for
627 andysis.

628

629 Figure 1. CM transcriptome landscape during heart development. (A) Schematics of
630 experimental design. (B) Light sheet fluorescence microscope (LSFM) images of GFP-labeled CMs
631  of developing zebrafish heart. p - posterior, an - anterior, v - ventral , d — dorsal. Dotted line indicates
632  exact areaof the LSFM image. (C) Network of 20 top-score GO clugters enriched in genes commonly
633  upregulated in GFP+ across heart development. Size nodes refer to the number of genes contributing
634  to the same GO and nodes that share the same cluster ID are close to each other, padj < 0.05. (D)
635 Heatmap of top 50 highly expressed genes between 24-72 hpf based on normalized expression value
636  (regularized log, rid). (E) Graphical representation of PCA of CM RNA-seq data. (F) Heatmap and
637  clugtering of RNA-seq sample-to-sample Euclidean distances.

638

639  Figure 2. Crosstalk between transcriptome and chromatin accessibility profile across stages of
640 cardiac development. (A) ATAC-seq read distribution and characterization of NFR fractions. (B)
641  PCA of NFR chromatin accessibility during heart development. (C) Euclidian distances between
642  chromatin accessibility within NFR. (D) Comparison of NFR presence and overlap across stages of
643  heart development. (E) Genomic annotation of CM NFR consensus at different stages of heart
644  deveopment. (F) CM NFR consensus coverage heatmap of TSS proximal (+/-3kb of TSS) regions
645  centred on ATAC-seq peak summits. (G) CM NFR consensus coverage heatmap of TSS distal (more
646  than +/-3kb of TSS) regions centred on ATAC-seq peak summits. (H) Metaplot of ATAC-seq read

647  density over the gene bodies of 1000 genes most highly expressed in CMs at each developmental
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648  stage. TES — transcription end site. (1) Spearman correlation of normalized log (rld) RNA-seq gene
649  expression and ATAC-seq chromatin accessibility in corresponding NFR regions (+/-3kb of TSS).
650

651 Figure 3. Cardiac co-expression regulatory networks. (A) Hierarchical clustering of gene
652  expression similarity/dissimilarity matrix. (B) Cardiovascular-related GO enrichment in five cardiac
653  modules. (C) Module gene connectivity plot of selected TFs. Twenty TFs with the highest normalized
654  kDiff are shown. (D) Cardiac module eigengene expression during heart development.

655

656  Figure 4. Dynamic regulatory networks of differentiating CMs. (A) Strategy used to establish
657  gene-chromatin regulatory network. (B) Changes (log,FC) of gene expression compared to those in
658  chromatin accessibility of cardiac module genes during heart development. Only significant (fdr <
659  0.05) genes are shown. (C) Regulatory networks of heart development. Arrows indicate the direction
660 of interaction. Colours and the intensity of the circle edges indicate changes of chromatin
661  accessibility, whereas those inside the circle show expression changes. Only significant (padj < 0.05)
662  genes are shown. Hub TFs are indicated in red font. (D) Visualization of ATAC-seq and RNA-seq
663  read coverage of selected genomic regions related to turquoise module. (E) Visuaization of ATAC-
664  seq and RNA-seq read coverage of selected genomic regions related to brown module. Time points,
665 NFRsand TF binding motifs within NFRs are indicated.

666

667  Figure 5. Loss-of-function mutations of cardiac TFs alters regulatory networks involved in
668  heart development. (A) LSFM images of GFP-labeled CMs of wild-type and TF mutants zebrafish
669  hearts a 72 hpf. Dotted line indicates exact area of the LSFM image. (B) Venn diagrams and GO
670  enrichment analysis of TF-mutant downregulated (blue) and upregulated (red) genes and chromatin
671  accessibility of proximal promoter NFRs (+/-3 kb of TSS), padj < 0.05. (C) Percent distribution of
672  cardiac module downregulated genes/proximal NFR chromatin accessibility as compared to total
673 number of TF mutants downregulated genes/proximal NFR chromatin accessibility. (D) Percent

674  distribution of cardiac module upregulated genes/proximal NFR chromatin accessibility as compared
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675  to total number of TF mutants upregulated genes/proximal NFR chromatin accessibility. (E) Cardiac
676 module genes with differentially regulated expression and chromatin accessibility of proximal
677  promoter NFRs (+/-3 kb of TSS) in gatab, hand2 and tbx5a mutants.

678

679  Figure6. Identification of putative cardiac enhancers. (A) volcano plot of differentialy accessible
680  distal NFRs between wild-type and TF mutants at 72 hpf. padj < 0.05 are indicated in green, number
681  of downregulated NFRs is indicated in blue and upregulated in red. (B) Venn diagram of mutant
682 down- and upregulated distal NFRs (more than +/- 3 kb of TSS), padj < 0.05. (C) Graphical
683  representation of differentially accessible distal NFRs genomic localization onto zebrafish
684  chromosomes. NFRs overlapping with HCNE (+/- 500 bp) and their accessibility log,FC in
685  comparison to wild-typeisindicated, padj <0.05. (D) Genome track of ATAC-seq peaks for wild-type
686  (black), thx5a-/- (green) and gata5-/- (blue) for 3 most downregulated NFRs overlapping with HCNE
687  (+/- 500 bp) ; (e) Genome track of ATAC-seq peaks for wild-type (black), hand2-/- (pink) and gata5-
688 /- (blue) of 3 most upregulated NFRs overlapping with HCNE (+/- 500 bp).

689
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690 DATA ACESS

691

692  RNA-seq and ATAC-seq data have been submitted to the NCBI Gene Expression Omnibus database
693  (https://www.ncbi.nim.nih.gov/geo/) under accession number GSE120238.
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