

1 **DYNAMICS OF CARDIOMYOCYTE TRANSCRIPTOME AND CHROMATIN**
2 **LANDSCAPE DEMARCATES KEY EVENTS OF HEART DEVELOPMENT**
3

4 Pawlak Michał¹, Kedzierska Katarzyna Z.¹, Migdal Maciej¹, Abu Nahia Karim¹, Ramilowski Jordan
5 A.³, Bugajski Łukasz², Hashimoto Kosuke³, Marconi Aleksandra¹, Piwocka Katarzyna², Carninci
6 Piero³, Winata Cecilia L.^{1,4*}

7
8 ¹International Institute of Molecular and Cell Biology in Warsaw, Laboratory of Zebrafish
9 Developmental Genomics, Warsaw, Poland; ²Nencki Institute of Experimental Biology, Laboratory of
10 Cytometry, Warsaw, Poland; ³RIKEN Center for Integrative Medical Sciences, RIKEN Yokohama
11 Institute, Japan; ⁴Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany

12
13 *International Institute of Molecular Biology in Warsaw
14 4 Ks. Trojdena Street
15 02 - 109 Warsaw, Poland
16 cwinata@iimcb.gov.pl

17 **Running title:** Regulatory landscape of heart development
18 **Keywords:** heart development, CHD, chromatin, transcriptomics, ATAC-seq, RNA-seq, genomics,
19 epigenomics, zebrafish, NGS.

20
21
22
23
24
25
26
27

28 **ABSTRACT**

29

30 The development of an organ involves dynamic regulation of gene transcription and complex multi-
31 pathway interactions. To better understand transcriptional regulatory mechanism driving heart
32 development and the consequences of its disruption, we isolated cardiomyocytes (CMs) from wild-
33 type zebrafish embryos at 24, 48 and 72 hours post fertilization corresponding to heart looping,
34 chamber formation and heart maturation, and from mutant lines carrying loss-of-function mutations in
35 *gata5*, *tbx5a* and *hand2*, transcription factors (TFs) required for proper heart development. The
36 integration of CM transcriptomics (RNA-seq) and genome-wide chromatin accessibility maps
37 (ATAC-seq) unravelled dynamic regulatory networks driving crucial events of heart development.
38 These networks contained key cardiac TFs including Gata5/6, Nkx2.5, Tbx5/20, and Hand2, and are
39 associated with open chromatin regions enriched for DNA sequence motifs belonging to the family of
40 the corresponding TFs. These networks were disrupted in cardiac TF mutants, indicating their
41 importance in proper heart development. The most prominent gene expression changes, which
42 correlated with chromatin accessibility modifications within their proximal promoter regions,
43 occurred between heart looping and chamber formation, and were associated with metabolic and
44 hematopoietic/cardiac switch during CM maturation. Furthermore, loss of function of cardiac TFs
45 Gata5, Tbx5a, and Hand2 affected the cardiac regulatory networks and caused global changes in
46 chromatin accessibility profile. Among regions with differential chromatin accessibility in mutants
47 were highly conserved non-coding elements which represent putative *cis* regulatory elements with
48 potential role in heart development and disease. Altogether, our results revealed the dynamic
49 regulatory landscape at key stages of heart development and identified molecular drivers of heart
50 morphogenesis.

51

52 **INTRODUCTION**

53

54 The heart muscle or myocardium makes up most of the heart tissues and is mainly responsible for its
55 function. Upon completion of gastrulation, heart muscle cells or cardiomyocytes (CMs) are specified
56 from a pool of mesodermal progenitors at the anterior portion of the embryonic lateral plate
57 mesoderm (Stainier et al. 1993; Stainier and Fishman 1994; Kelly et al. 2014). As development
58 proceeds, heart progenitors migrate to the midline and form a tube structure known as the primitive
59 heart tube (Stainier et al. 1993). This structure subsequently expands through cell division and
60 addition of more cells originating from the progenitor pool (Kelly et al. 2014; Knight and Yelon
61 2016). Looping of the heart tube then gives rise to distinct chambers of the heart, namely, the atria and
62 ventricles. Although the vertebrate heart can have between two to four chambers, the step-wise
63 morphogenesis of progenitors specification, migration, tube formation, and looping, are highly
64 conserved between species (Jensen et al. 2013).

65

66 CMs are specified early during embryogenesis and undergo various cellular processes of proliferation,
67 migration, and differentiation which collectively give rise to a fully formed and functioning heart.
68 Crucial to regulating each step of heart morphogenesis are cardiac transcription factors (TFs) which
69 include Nkx2.5, Gata5, Tbx5, and Hand2 (Clark et al. 2006; Nemer 2008). These TFs are known to
70 play a role in establishing the CM identity of mesodermal progenitor cells, regulating the formation
71 and looping of the heart tube, as well as the specification of atrial and ventricular CMs. Specification
72 and differentiation of the cardiac progenitors are regulated by the interactions between several key
73 TFs - Nkx2.5, Gata5, Tbx5, and Hand2. Members of the GATA family of TFs, Gata4, Gata5, and
74 Gata6, are responsible for the earliest step of cardiac progenitor specification (Jiang and Evans 1996;
75 Jiang et al. 1998; Reiter et al. 1999; Singh et al. 2010; Lou et al. 2011; Turbendian et al. 2013). Gata
76 factors activate the expression of *nkx2.5*, another early marker of CMs (Chen and Fishman 1996; Lien
77 et al. 1999). Although not essential for specification of CMs, Nkx2.5 plays an important role in
78 initiating the expression of many cardiac genes in mouse and regulating the numbers of atrial and

79 ventricular progenitors (Searcy et al. 1998; Targoff et al. 2008). Similarly, another TF expressed in
80 CM progenitors, Hand2, is responsible for proliferation of ventricular progenitors (Yelon et al. 2000).
81 Hand2 also induces and maintains the expression of Tbx5, which is necessary for atrial specification
82 in the mouse (Liberatore et al. 2000; Bruneau et al. 2001).

83

84 Despite the established knowledge of key TFs regulating the various steps of heart morphogenesis,
85 considerable challenges to understand the mechanism of heart development still exist as little is
86 known about their molecular mechanism and downstream targets. Transcription is modulated by *cis*
87 regulatory elements that are located in non-coding regions of the genome, which serve as binding sites
88 for TFs (Farnham 2009; Shlyueva et al. 2014). Although these regulatory elements equally contribute
89 to the molecular mechanism controlling development, there is still a lack of systematic resources and
90 understanding of their roles in heart development. Moreover, cardiac TFs have been shown to interact
91 with chromatin-modifying factors, and the loss of function of several histone-modifying enzymes has
92 been found to affect various aspects of cardiac development (Miller et al. 2008; Nimura et al. 2009;
93 Lou et al. 2011; Takeuchi et al. 2011). Therefore, the chromatin landscape is another factor which
94 needs to be considered when studying the process of heart development. Importantly, the lack of
95 understanding how heart development proceeds makes it difficult to determine the cause of different
96 forms of congenital heart disease (CHD). Here we seek to understand the nature of interaction
97 between TFs and epigenomic landscape, how this landscape changes throughout development, and
98 how it affects heart development.

99

100 The study of heart development poses a unique challenge due to the importance of the organ for
101 survival. The disruption of factors regulating the early steps of heart formation can result in early
102 embryonic lethality. The use of zebrafish as a model organism alleviates this problem by allowing
103 access to developing embryos immediately after fertilization and its ability to survive without a
104 functioning heart up to a comparatively late stage of development (Stainier 2001; Staudt and Stainier
105 2012). To elucidate the dynamics of the transcriptional regulatory landscape during heart

106 development, we isolated CMs directly from the developing wild-type zebrafish heart at three key
107 stages of morphogenesis: linear heart tube formation (24 hpf), chamber formation and differentiation
108 (48 hpf), and heart maturation (72 hpf). Similarly, we isolated CMs from cardiac TF mutants of *gata5*,
109 *tbx5a* and *hand2* at 72 hpf. We then combined transcriptome profiling (RNA-seq) with an assay for
110 chromatin accessibility (ATAC-seq) (Buenrostro et al. 2013) to capture the dynamics of regulatory
111 landscape throughout the progression of heart morphogenesis *in vivo*. Our results unravelled the gene
112 regulatory network driving key processes of heart development.

113

114 **RESULTS**

115

116 **CM transcriptome reveals strong dynamics at early stages of heart morphogenesis.**

117

118 One of the earliest markers of cardiac lineage are NK2 homeobox 5 (*nkx2.5*), which is expressed in
119 cardiac precursor cells in the anterior lateral plate mesoderm and is required in the second heart field
120 as the heart tube forms (George et al. 2015), and myosin light chain 7 (*myl7*), responsible for
121 sarcomere assembly and specific to differentiated myocardial cells (Chen et al. 2008). To study gene
122 regulatory networks underlying zebrafish heart development, we isolated CMs from zebrafish
123 transgenic lines Tg(*nkx2.5*:GFP) (Witzel et al. 2012) and Tg(*myl7*:EGFP) (D'Amico et al. 2007) using
124 fluorescence-activated cell sorting (FACS, Fig. 1A). Cells were collected at three different stages of
125 heart development which corresponded to linear heart tube formation (24 hpf), chamber formation and
126 differentiation (48 hpf) and adult heart maturation (72 hpf) (Bakkers 2011) (Fig. 1B). Due to its
127 earlier onset of CM-specific GFP expression Tg(*nkx2.5*:GFP) were used to sort CM at 24 hpf,
128 whereas Tg(*myl7*:EGFP) were used for the subsequent developmental stages (48 hpf and 72
129 hpf) (Houk and Yelon 2016). The average fraction of FACS-yielded GFP+ events obtained from
130 embryo cell suspension at all three stages of development were between 1.37 to 2.56% of total singlet
131 events (Supplement. Fig. 1A). To monitor the purity of FACS and establish the identity of the isolated
132 cells, we measured mRNA levels of *nkx2.5*, *myl7* and GFP in both GFP+ and GFP- cells. The
133 expression of the CM markers and GFP were strongly enriched in GFP+ as compared to GFP-
134 fraction (Supplement. Fig. 1B). In contrast, mRNA levels of *neurogenin1* (*ngn1*), a neuronal-specific
135 gene, were higher in GFP- cells. In line with that, RNA-seq expression of *nkx2.5*, *myl7* and *myh6* was
136 strongly enriched in GFP+ as compared to GFP- cells, whereas expression of non-CM markers such
137 as skeletal muscle (*myog*), pancreas (*ins*), pharyngeal arch (*frem2a*), retina (*arr3b*, *otx5*), skin (*tp63*,
138 *coll6a1*), neural system (*neurog1*, *zic3*, *otx1*) and eye (*pou4f2*) was more pronounced in GFP-
139 (Supplement. Fig. 2). Additionally, RNA-seq followed by gene ontology (GO) enrichment analysis of
140 differentially expressed genes between GFP+ and GFP- across all three stages of heart development

141 revealed the overrepresentation of CM-specific biological processes such as cell migration, cardiac
142 development and heart function (Fig. 1C, Supplement Table 1). Among 50 genes with the highest
143 average expression across all developmental stages, 35 are known to have specific functions in CM
144 according to ZFIN database (<https://zfin.org>) and eight are associated with CM-specific functions and
145 human diseases such as cardiac muscle contraction and cardiomyopathy (*ttn.1*, *mybpc3*, *ttn.2*, *acta1b*,
146 *actn2b*), atrial septal defects (*actc1a*, *myh6*) and Laing distal myopathy (*vmhc*) (Fig. 1D) according to
147 the Online Mendelian Inheritance in Man (OMIM) database (<https://www.omim.org/>).

148

149 To explore the dynamics of zebrafish CM transcriptome during heart development we applied
150 principal component analysis (PCA) and RNA-seq sample clustering based on Euclidean distance (see
151 Methods). Both analyses revealed strong dissimilarity in transcriptome profiles between CM at 24 hpf
152 and later stages of heart development. This suggest that the major gene expression profile changes
153 occur in CM between 24 and 48 hpf and correspond to linear heart tube formation and chamber
154 formation as compared to CM at 48 and 72 hpf which showed stronger similarity (Fig. 1E-F).

155

156 Taken together, we have successfully isolated CMs from zebrafish heart *in vivo* at three
157 developmental stages. Our transcriptome analyses identified CM-specific gene expression signatures
158 among highly abundant transcripts and revealed the dynamic nature of gene expression profiles during
159 the course of heart morphogenesis.

160

161 **Chromatin accessibility is correlated with CM gene expression levels during heart development.**

162

163 The chromatin landscape, in combination with TF-mediated regulation, is known to control cell
164 differentiation and organ development (He et al. 2014; Karwacz et al. 2017; Nelson et al. 2017). To
165 characterize chromatin dynamics throughout heart development, we used assay for transposase
166 accessible chromatin with high-throughput sequencing (ATAC-seq) and profiled chromatin
167 accessibility at three developmental stages matching our transcriptome analyses: 24 hpf, 48 hpf, and

168 72 hpf (Buenrostro et al. 2013). To identify genome-wide nucleosome free regions (NFR), ATAC-seq
169 read fragments were partitioned into four populations (Fig. 2A) based on exponential function for
170 fragment distribution pattern at insert sizes below one nucleosome (123 bp) and Gaussian
171 distributions for 1, 2 and 3 nucleosomes as previously described (Buenrostro et al. 2013). The PCA
172 analysis of (Fig. 2B) and clustering using the Euclidian distances between ATAC-seq samples based
173 on their NFR profiles (Fig. 2C) revealed that biological replicas clustered together, whereas, the
174 largest changes in chromatin accessibility were observed between 24 hpf and 48 hpf stages, in
175 agreement with observed transcriptome changes of CMs during heart development. Comparing
176 consensus NFRs across all developmental stages, we observed a large number of common NFRs
177 (16,055), as well as those which were specific to a single developmental stage. The most stage-
178 specific NFRs were found in CMs at 24 hpf (22,656) (Fig. 2D). This prompted us to further
179 investigate the relationship between transcriptome and chromatin accessibility changes in cardiac
180 development. We therefore looked at the distribution of NFRs across genomic features and observed
181 that the highest fraction of NFRs was localized either within promoter regions (~30% of total NFRs),
182 followed by intergenic (~25%) and intronic (20%) regions (Fig. 2E, Supplement Table 2). These
183 ratios remained at comparable levels across all three developmental stages studied. Consistently, NFR
184 consensus heatmaps within transcription start site (TSS) proximal promoter regions (+/- 3 kb) (Fig.
185 2F) compared to distal promoter regions (more than +/- 3 kb of TSS) (Fig. 2G) as well as ATAC-seq
186 read density over the gene bodies of 1000 genes most highly expressed in CMs at all three stages of
187 heart development (Fig. 2H) revealed the enrichment of NFRs around TSS regions. We further
188 observed that chromatin accessibility reflected by the presence of NFR in gene promoter regions was
189 significantly correlated with the expression levels of the corresponding genes to which the promoter
190 belonged to (Spearman rho 0.46 – 0.48) at each stage of heart development (Fig. 2I). Our observations
191 therefore revealed a strong link between chromatin accessibility of promoter regions and gene
192 expression levels.

193

194 **Co-expression network analysis identifies CM regulatory modules.**

195

196 Analysis of transcriptional profiles across different conditions allows to organize genes with similar
197 expression patterns into functional regulatory modules (Langfelder and Horvath 2008). To better
198 understand the relationship and functionality of cardiac genes involved in the developing zebrafish
199 heart *in vivo*, we identified relevant gene regulatory networks in an unsupervised and unbiased
200 manner using the weighted gene correlation network analysis (WGCNA) based on RNA-seq
201 expression profiles (Langfelder and Horvath 2008). Hierarchical clustering of the
202 similarity/dissimilarity matrix across the entire set of transcriptome samples distinguished 37 gene
203 modules (Fig. 3A, Supplement Table 3), out of which five were enriched in functional terms related to
204 cardiovascular system development and function (Fig. 3B, Supplement Table 4): turquoise (4085
205 genes), brown (2156 genes), green (1166 genes), salmon (756 genes), and sienna3 (75 genes). We
206 refer to these modules as “cardiac modules” from here on. Functional terms enriched in these cardiac
207 modules included specific processes of heart development, such as “embryonic heart tube
208 development” (modules brown, green, and sienna3), “cardioblast differentiation” (green), “heart valve
209 development” (salmon), “heart process” and “heart formation” (turquoise). The relatively small
210 sienna3 module was strongly enriched in GO terms associated with multiple cardiac developmental
211 processes including “heart tube development”, “cardioblast migration” and “heart rudiment
212 development”.

213

214 To unravel potential driver genes with regulatory roles in each of the cardiac modules identified, we
215 searched for transcription factors (TFs) and calculated their connectivity to other genes within a given
216 module (normalized kDiff), as well as how their expression is affected by a CM phenotypic trait (CM
217 correlation) (Fig. 3C). Most of the cardiac modules contained TFs known to direct key processes of
218 heart development, such as *gata1* (brown), *tbx5a*, *sox10* (turquoise), *hand2*, *smad7* (green) as well as
219 *gata5*, *nkx2.5*, *tbx20* (sienna3) (Reiter et al. 1999; Ahn et al. 2000; Montero et al. 2002; Holtzinger
220 and Evans 2007; Schoenebeck et al. 2007; Targoff et al. 2008; Moskowitz et al. 2011; Ounzain et al.
221 2014). Each of the modules exhibited different expression profile dynamics in heart development

222 (termed eigengene expression) across three developmental stages in both GFP+ and GFP- fraction,
223 further called CM+ and CM-, respectively (Fig 3D). Two broad patterns of eigengene expression
224 could be observed: modules with decreasing cardiac gene expression during heart development -
225 brown and green, and modules in which expression increases between 24 and 48 hpf and then
226 decreases between 48 and 72 hpf - salmon, sienna3 and turquoise. In addition, CM+ eigengene
227 expression in sienna3 module was consistently higher than in CM- samples at all stages of
228 development, further suggesting the specificity of this module to CM.

229

230 The presence of key cardiac TFs in each module prompted us to look closer into individual genes
231 within these modules so to identify specific functional patterns related to cardiovascular development.
232 The sienna3 module, which contained cardiac TFs *nkx2.5*, *gata5*, *gata6*, and *tbx20*, also contained
233 many other genes implicated in various aspects of heart morphogenesis including CM migration and
234 differentiation, and heart looping including *popdc2*, *apobec2a*, and *tdgf1* (Xu et al. 1999; Kirk et al.
235 2007; Etard et al. 2010; Wang et al. 2011; Kirchmaier et al. 2012; Sakabe et al. 2012). Additionally,
236 the module also contained many genes known to be involved in cell adhesion and structural
237 constituents of the heart muscle, which were previously implicated in cardiomyopathy when mutated.
238 These included *actc1a*, *myl7*, *myh7ba*, *myh7bb*, *vmhc*, and *ttn.2* (Olson et al. 1998; Xu et al. 2002;
239 Shih et al. 2015). In support of this network, *popdc2* and *gata6* were previously shown to be a direct
240 transcriptional target of Nkx2.5 in mouse embryonic heart (Davis et al. 2000; Molkentin et al. 2000;
241 Dupays et al. 2015). In turn, evidence also exists for the cardiac-specific transcriptional activation of
242 *nkx2.5* by GATA factors (Lien et al. 1999).

243

244 Genes belonging to the developmental signaling pathways Wnt, Notch, TGF- \square and FGF were highly
245 represented in all modules except sienna3 which consisted of mostly specialized CM genes. In
246 particular, genes of both canonical and non-canonical Wnt signaling pathways were almost
247 exclusively distributed between the green and salmon modules. Studies in different organism have
248 shown that the canonical Wnt signaling plays biphasic roles in cardiac development, where it

249 promotes cardiac fate in the early precardiac mesoderm while becoming inhibitory to cardiogenesis
250 processes in later stages (Naito et al. 2006; Ueno et al. 2007; Piven and Winata 2017). The cardiac TF
251 Hand2, known to regulate early cardiac developmental processes, is also present in the green module,
252 suggesting that it might control these pathways. Altogether, we identified regulatory modules
253 exhibiting unique expression patterns throughout heart development, each of which contained relevant
254 TFs. Importantly, these modules represent potential regulatory networks underlying various processes
255 of heart development.

256

257 **Integrative analysis of RNA-seq and ATAC-seq identifies regulatory networks of CM**
258 **maturity.**

259

260 To further explore the relationship between chromatin state and transcriptional regulation of heart
261 development, we integrated co-expression networks generated from RNA-seq with accessible
262 chromatin regions identified by ATAC-seq. Thus, we examined NFRs localized within +/-3kb of the
263 TSS of genes assigned to the same module for the presence of TF motifs (Table 1, Supplement Fig.
264 3). NFRs associated with genes within the module sienna3 (which contained Gata5/6, Nkx2.5, and
265 Tbx20 TFs) were also enriched in motifs belonging to these family of TFs [Gata family
266 (Gata1/2/3/4/6), Nkx family (Nkx2.2, Nkx2.5), Smad3 and T-box family (Tbr1)], whereas salmon
267 module containing *sox3* gene showed overrepresentation of Sox3 motif. Similarly, in two other
268 cardiac modules turquoise and green (containing the TFs Tbx5, Hand2, and Smad7) we found a wide
269 range of significantly enriched ($pvalue \leq 0.05$) TF motifs including Tbx family (Tbx5) and Smad
270 family (Smad2, Smad4), respectively. The presence of the TFs together with the enrichment of their
271 respective recognition motifs strongly suggests their regulatory role within each module. Moreover,
272 we observed an overrepresentation of motifs of TF with profound role in heart development, such as
273 Sox family (Sox10) motifs in salmon module and Tgif family (Tgif1, Tgif2) in both sienna3 and
274 turquoise modules (Montero et al. 2002; Powers et al. 2010) although TFs corresponding to these
275 motifs were not present in the matching modules.

276

277 To establish the relationship between chromatin accessibility and gene expression and provide the link
278 between TF and their effector genes, we combined gene-to-gene correlation with NFR motif
279 annotation and its accessibility within the proximity (+/- 3 kb) of their transcription start site (TSS)
280 (Fig. 4A). To identify genes which were dynamically regulated and associated with regions with
281 differential chromatin accessibility in the course of heart development, we compared normalized
282 changes of gene expression to those of the corresponding NFRs between 24 and 48 hpf as well as 48
283 and 72 hpf (Fig. 4B, Supplement Table 1 and 5). We observed strong up-regulation of expression for
284 a large number of genes within the turquoise and salmon module and down-regulation of genes in
285 brown module and for most genes belonging to the green module. This was generally consistent with
286 the direction of changes in chromatin accessibility e.g. *gpd2*, *sox10* in turquoise module, *commd5* in
287 salmon, *tbx16l*, *pappa2* in brown and *tfr1a*, *aff2* in green; yet we also observed genes with opposite
288 behaviour including *klf6a*, *irf2bp2a* in turquoise module, *sema4ab* in brown and *serinc2* in green
289 module. No significant changes were observed between 48 and 72 hpf (data not shown), suggesting
290 that both gene expression and chromatin accessibility were more stable by heart chamber formation.

291

292 GO and pathway analysis (Croft et al. 2011) of turquoise regulatory network revealed that this module
293 comprised genes involved in mitochondrial oxidation (*mdh2*, *gpd2*), carbohydrate metabolism (*rdh8a*)
294 and ketone body metabolism (*bdh2*) (Fig. 4C-D, Supplement Table 6). We have identified *sox10*,
295 *klf6a* and *irf2bp2a*, which were previously linked to zebrafish heart morphogenesis (Hill et al. 2017),
296 as hub genes linked to their effector genes containing corresponding binding motifs in NFR localized
297 in proximal promoter regions. As the vast majority of genes within the turquoise module exhibited
298 significant increase in gene expression and chromatin accessibility within associated NFRs between
299 24 and 48 hpf, it suggests the presence of a metabolic switch that takes place in CM between those
300 developmental stages. This agrees with previous reports showing that mitochondrial oxidative
301 capacity and fatty acid oxidation potential increase along with CM maturation (Lopaschuk and Jaswal
302 2010).

303

304 Conversely, most of the genes assigned to brown module were downregulated from 48 hpf onwards
305 along with the associated NFR chromatin accessibility (Fig. 4C). Pathway and GO analysis of brown
306 module (Supplement Table 7) revealed the presence of genes implicated in embryonic
307 haematopoiesis. Notably, we have identified a number of hub TFs including *myb* (*v-myb*) and *prdm1a*,
308 *mybl2*, *tbx16l*, *e2f8*, *klf17* as well as their effector genes, such as *lmo2*, *tal1*, *alas2*, *slc4a1a* with
309 profound roles in haematopoiesis (Fig. 4E) (Gering et al. 2003; Paw et al. 2003; Chan et al. 2009;
310 Soza-Ried et al. 2010; Kotkamp et al. 2014). Moreover, ATAC-seq analyses revealed the enrichment
311 of GATA, Fli1, ETS, ERG, and ETV motifs (Table 1) which belong to the regulatory network
312 underlying the specification of hematopoietic and vascular lineages (Gottgens et al. 2002; Pimanda et
313 al. 2007; Loughran et al. 2008; Kaneko et al. 2010). The brown module therefore represents the
314 regulatory network leading to hematopoietic fate, whose suppression presumably promotes the
315 development of CMs identity. Altogether, we identified regulatory networks leading to significant
316 metabolic and cardiac/hematopoietic changes occurring in CMs during early heart morphogenesis
317 (Supplement Table 8), which are regulated at both gene expression and chromatin levels.

318

319 **Disruption of cardiac TFs affects regulatory networks driving CM maturation**

320

321 To further explore cardiac regulatory modules identified in our transcriptomic analyses and validate
322 their importance in normal heart development, we utilized zebrafish mutants of cardiac TFs Gata5,
323 Hand2 and Tbx5a, the disruption of which were previously linked to impaired migration of the
324 cardiac primordia to the embryonic midline, reduced number of myocardial precursors and failure of
325 heart looping, respectively (Reiter et al. 1999; Yelon et al. 2000; Garrity et al. 2002). RNA-seq and
326 ATAC-seq were performed on CMs isolated from homozygous *gata5*^{tm236a/tm236a}, *tbx5a*^{m21/ m21},
327 *hand2*^{s6/s6} mutant 72 hpf embryos in Tg(*myl7*:EGFP) genetic background. Homozygous mutant
328 embryos were selected based on their phenotypes of *cardia bifida* (*gata5*^{tm236a/tm236a}, *hand2*^{s6/s6}) or
329 *heart-string* (*tbx5a*^{m21/ m21}) (Fig. 5A).

330

331 RNA-seq analysis identified a number of genes which were differentially expressed ($\log_2\text{FC} \neq 0$, $\text{padj} \leq$
332 0.05) in response to disruption of Gata5 (287 downregulated, 739 upregulated), Hand2 (288
333 downregulated, 618 upregulated) and Tbx5a (255 downregulated, 584 upregulated) (Fig. 5B,
334 Supplement Table 9). Only a small overlap was observed between genes commonly downregulated in
335 the three mutants (14 genes including *vcanb*, *bmp3* and *coll8a1b*), whereas upregulated genes showed
336 a larger overlap (307 genes e.g. *trim46*, *map4k6*, *mtf1*) between the three mutants. GO enrichment
337 analysis of all TF-downregulated genes revealed the presence of biological processes related to
338 muscle development, muscle function, heart process and sensory perception signalling; upregulated
339 genes were enriched in biological processes related to ion transport and inflammatory response
340 (Supplement Table 10).

341

342 On the other hand, changes within chromatin accessibility of NFRs localized in proximal promoter
343 regions (+/- 3 kb of TSS) of mutants and wild-type embryos were generally less pronounced as
344 compared to those at the gene expression level (Fig. 5B, Supplement Table 9). Moreover, loss of
345 different TFs seems to have a variable effect on the chromatin structure, the largest of which seems to
346 occur in *gata5*^{tm236a/tm236a} mutants (335 regions), where differentially represented proximal NFRs were
347 associated with genes enriched in cardiac muscle development processes (Fig. 5B, Supplement Table
348 10). In *hand2*^{s6/s6} mutants 53 regions were downregulated. Less pronounced chromatin changes could
349 be identified in *tbx5a*^{m21/ m21} mutant (17 regions). Seven overlapping downregulated regions were
350 identified between *gata5*^{tm236a/tm236a} and *hand2*^{s6/s6} mutants associated with *nkx1.21a*, *dmd*, *frzb*, *gpr4*,
351 *vap*, whereas 246 overlapping upregulated regions were identified including those localized in the
352 proximity of *nr4a1*, *mycbp2*, *irf2bp2a*, *rpl3*. No common differentially regulated proximal NFRs
353 were, however, found across all three mutants.

354

355 In order to assess how the loss of function of critical cardiac TFs affects the regulatory networks of
356 heart development, we further explored which fraction of mutant-downregulated genes contributes to

357 the cardiac regulatory modules identified in wild-type analyses. We found that 31% (91 genes), 24%
358 (71 genes) and 31% (79 genes) of total downregulated genes in *gata5*^{tm236a/tm236a}, *hand2*^{s6/s6}, and
359 *tbx5a*^{m21/ m21} mutants were present in cardiac modules, mainly in the brown and green modules (Fig.
360 5C). Among the 14 genes which were commonly downregulated in all three mutants, we found 6
361 which belonged to cardiac modules, 4 of which belonged to green (*nid1b*, *papss2b*, *vcanb*, *bmp3*) and
362 2 to salmon (*plppr3a*, *spon1b*) modules. Genes including *vcan*, *plppr3a* and Bmp family were
363 previously found to play a crucial role in heart morphogenesis and function (Marques and Yelon
364 2009; Kern et al. 2010; Chandra et al. 2018). Similar comparison performed for chromatin
365 accessibility data revealed that 21% (73 regions), 24% (13 regions) and 29% (5 regions) of proximal
366 NFRs which showed decreased accessibility in *gata5*^{tm236a/tm236a}, *hand2*^{s6/s6}, and *tbx5a*^{m21/ m21} mutants
367 were located within the proximal promoters of genes belonging to cardiac modules (Fig. 5C). We also
368 explored mutant-upregulated genes and proximal NFRs and their contribution to cardiac modules
369 (Fig. 5D). It showed that 20% (153 genes), 21% (134 genes) and 20% (119 genes) of total upregulated
370 genes in *gata5*^{tm236a/tm236a}, *hand2*^{s6/s6}, and *tbx5a*^{m21/ m21} mutants were present in cardiac modules,
371 predominantly in the brown and turquoise modules. Consequently, the most prominent changes were
372 observed for proximal NFRs in brown and turquoise modules, and 43 % (292 regions) and 37% (229
373 regions) of total upregulated NFRs contributed to cardiac modules in *gata5*^{tm236a/tm236a} and *hand2*^{s6/s6}.
374 No changes were observed in *tbx5a*^{m21/ m21} mutants.

375
376 We further investigated the interactions between chromatin accessibility changes and gene regulation
377 within cardiac modules in the three cardiac TF mutants. Hierarchical clustering revealed that the vast
378 majority of either downregulated or upregulated cardiac module genes did not exhibit a similar
379 regulation of NFR chromatin accessibility within their promoter regulatory regions (Supplemental
380 Fig. 4). We observed that decrease in proximal promoter NFR were not correlated with gene
381 expression downregulation, except for *c1qtnf5* and *adams9*, the latter being a vcan-degrading
382 protease required for correct heart development and cardiac allostasis (Kern et al. 2010) (Supplement
383 Fig. 5 A, B). Similarly, only 10 genes including *hdr*, *gga3*, *fbxo5*, *rpl27*, *ybx1*, *actb2*, *cotl1*, *maset2*

384 showed increase both in gene expression and NFR chromatin accessibility (Fig. 5E). Altogether, only
385 15 genes showed changes both in expression level and chromatin accessibility (either increasing or
386 decreasing) in *gata5* mutant and 3 genes in *hand2* mutant, whereas no such genes were found in *tbx5a*
387 mutant.

388

389 Taken together, we have identified a group of genes which were responsive to loss of Gata5, Hand2
390 and Tbx5a functions, among which, approximately one third belonged to cardiac regulatory networks.
391 This suggests their crucial role in heart development and CM maturation downstream of these cardiac
392 TFs. At the same time, it also provides a strong validation of the cardiac modules as gene regulatory
393 networks underlying specific processes of heart development.

394

395 **Evolutionary conserved enhancers ensure proper heart development**

396

397 One important observation was that gene expression changes in all three mutants were, to a large
398 extent, uncorrelated with changes in chromatin accessibility, at least in proximal promoter regulatory
399 regions. This led us to question whether loss of Gata5, Hand2, and/or Tbx5a cardiac TFs may cause
400 global chromatin changes at genomic sites other than proximal gene promoters, and whether the
401 observed changes in gene expression could be attributed to distal regulatory elements such as
402 enhancers. To this end, we have identified distal NFRs (more than +/- 3 kb of TSS) and their
403 differential accessibility between wild-type at 72 hpf and the mutants. We identified 59, 14 and 33
404 downregulated and 551, 321 and 2 regions upregulated ($p_{adj} \leq 0.05$) in *gata5*^{tm236a/tm236a}, *hand2*^{s6/s6},
405 and *tbx5a*^{m21/ m21} mutants, respectively (Fig. 6A). Amongst downregulated regions, 1 region was in
406 common between *gata5*^{tm236a/tm236a} and *tbx5a*^{m21/ m21} mutants (Fig. 6B). On the other hand, much
407 stronger overlap was observed between *gata5*^{tm236a/tm236a} and *hand2*^{s6/s6} mutants for upregulated
408 regions (183 regions) whereas no overlap was found between *gata5*^{tm236a/tm236a} and *tbx5*^{m21/ m21}. One
409 region at chromosome 21 (Chr21:15013048-15013154) was commonly upregulated in all 3 mutants.
410 To further explore the genomic localisation of differentially regulated distal NFRs and identify

411 evolutionary conserved putative enhancers, we visualized them onto zebrafish genome and compared
412 them with database of highly conserved non-coding elements (HCNE) between zebrafish and human
413 (Engstrom et al. 2008) (Fig. 6C, Supplement Table 11). A total of 22 regions revealed conservancy
414 between zebrafish and human genomic sequences among which 3 were downregulated in *tbx5a* and
415 *hand2* mutants, whereas 19 of them showed significantly increased accessibility in *hand2* and *gata5*
416 mutants. Among 3 most downregulated HCNE were those localized on chromosome 1, between
417 *hand2* and *fbxo8* genes (Chr1:37584384-37584724) as well as those localized in the introns of
418 *ppp3ccb* (Chr10:20246264-20246845) and *akt7a* (Chr20:4714760-4715050) genes (Fig. 6D). We also
419 identified HCNE-NFRs which increased in accessibility in *gata5* mutant (Chr1:8598642-8598893)
420 and genomic region at chromosome 10 (Chr10:8580509-8581153) which was commonly regulated in
421 *hand2* and *gata5* mutants (Fig. 6E). Therefore, we have determined a number of distal NFRs which
422 accessibility is affected by mutations of cardiac TFs among which we pinpointed highly conserved
423 NFRs serving as potential enhancers that may play key roles in heart development.

424

425 **DISCUSSION**

426

427 Heart development is a complex process involving multiple layers of interactions at molecular,
428 cellular and tissue levels, with the former being controlled by a wide range of regulatory proteins
429 including TFs, signalling proteins as well as epigenetic factors, such as histone and DNA
430 modifications, chromatin remodelling and transcriptional enhancers. We used FACS to obtain CM-
431 enriched cell fractions from developing heart during crucial events of heart morphogenesis. GFP-
432 positive cells were sorted from transgenic Tg(*nkx2.5*:EGFP), Tg(*myl7*:EGFP) zebrafish embryos. In
433 zebrafish, at 6-9 somite stage (~12-14 hpf), *nkx2.5* expression only partially overlaps the anterior
434 lateral plate mesoderm (ALPM) in its medial part (Schoenebeck et al. 2007), whereas at 17 somite
435 stage (~17-18 hpf) the most posterior *nkx2.5*+ cells of the bilateral cardiac primordia do not express
436 *myl7*, a marker of terminal myocardial differentiation, suggesting the presence of *nkx2.5*+ cells that do
437 not contribute to the myocardium (Yelon et al. 1999). This is in line with other studies in zebrafish,
438 pinpointing the presence of specific *nkx2.5*+ second heart field (SHF) progenitors that give rise to the
439 fraction of ventricular myocardium and outflow tract (OFT) (Guner-Ataman et al. 2013).
440 Nevertheless, it has been shown that at prim-5 stage (24-30 hpf), *nkx2.5* is expressed both in
441 ventricular and atrial myocardium exactly overlapping the expression of *myl7* (Yelon et al. 1999). We
442 applied an integrative approach combining transcriptomics (RNA-seq) and genome-wide chromatin
443 accessibility maps (ATAC-seq). This strategy revealed several key observations. Firstly, the most
444 prominent gene expression changes occurred between linear heart tube formation (24 hpf) and
445 chamber formation (48 hpf). This major shift in molecular profile likely reflects the continuous
446 process of CM differentiation throughout which progenitors are migrating and differentiate into CMs
447 once they are incorporated into the growing heart tube (Kelly et al. 2014). Importantly, the genes
448 which belong to sienna3 and turquois modules showed significant increase in expression between the
449 two developmental stages. In particular, sienna3 genes were enriched in the largest number of GO
450 terms related to cardiac function and contained at least three TFs known for their crucial roles in
451 specification of CMs and their function in heart contraction (Singh et al. 2005; Singh et al. 2010;

452 Laforest and Nemer 2011; Zhang et al. 2014; Pawlak et al. 2018), which suggests the prominent role
453 of this network in CM differentiation and heart tube formation during this developmental period.

454

455 Secondly, we observed that both gene expression profile and chromatin landscape changed most
456 significantly between 24 hpf and 48 hpf, suggesting that the changes in gene expression profiles
457 during this stage were likely regulated at the chromatin level. Besides validating the biological
458 relevance of our ATAC-seq dataset, this observation suggests that active chromatin remodelling
459 occurs throughout development, and that the regions with differential accessibility represent *cis*
460 regulatory hubs driving the biological processes associated with differentiating CMs.

461

462 Thirdly, the identified modules of co-regulated genes represent sub-networks underlying specific
463 biological processes associated with heart development. Further integration of these gene networks
464 with ATAC-seq data allowed us to link TFs to their putative target genes, which was supported by the
465 enrichment of DNA binding motif for specific TFs within NFRs in proximal promoters of the genes
466 within each particular module. Collectively, our analyses of the regulatory networks and their
467 representative expression patterns revealed increased expression of genes defining CM structure and
468 function, whereas the expression and proximal promoter chromatin accessibility of hematopoietic
469 genes were suppressed during CM differentiation. A particularly intriguing finding was that sorted
470 GFP-positive cells also expressed hematopoietic determinants at the earliest stage observed (24 hpf).
471 These were strongly grouped into a single expression module (brown) and strongly correlated
472 between gene expression dynamics and chromatin accessibility in proximal promoters that decreased
473 between 24 hpf and 48 hpf. One possible explanation is that the expression of hemato-vascular genes
474 was contributed by cells giving rise to the pharyngeal arch mesoderm which also express *nkx2.5* used
475 as our selection marker. Nevertheless, our transcriptome profile, as well as microscopic observations,
476 suggests that the majority of the GFP-positive cell populations are likely CMs, which is further
477 supported by the finding that the highest-expressed genes were implicated in CM development and
478 function. Another equally plausible hypothesis is that a group of cells exist within the pool of CM

479 progenitors which possess alternative potential to become the blood or vascular lineage. Numerous
480 evidences from mouse studies suggested the presence of bipotential cardiac progenitor populations
481 which co-expressed cardiac and hematopoietic markers in the developing heart tube (Caprioli et al.
482 2011; Nakano et al. 2013; Zamir et al. 2017). The presence of hematopoietic markers in our
483 experiment therefore suggests the presence of such cells in zebrafish and that, similar to mammals, the
484 hematopoietic cell fate is suppressed with the progression of CM differentiation, a process which
485 occurs between linear heart tube formation and chamber differentiation. To clearly distinguish
486 between these possibilities, it would be necessary to obtain molecular profiles of individual cells so to
487 determine whether hemato-vascular progenitors exist as a separate population expressing specific
488 markers or rather, as a common progenitor population expressing both CM and hemato-vascular
489 markers. Further, this also highlights the limitations of currently available marker genes, and calls for
490 higher resolution analyses of gene expression in specific cell types which is possible with the single
491 cell sequencing technology.

492

493 Finally, by performing parallel analyses in CMs isolated from mutants of cardiac TFs Gata5, Hand2
494 and Tbx5a, we uncovered changes in gene expression profiles and chromatin accessibility within
495 cardiac regulatory networks. Comparing mutants and wild-type CMs, we observed only a minor
496 correlation between changes in gene expression and chromatin accessibility within proximal promoter
497 NFRs, suggesting that transcriptional regulation of genes involved in heart development might be
498 affected by distal regulatory elements. Alternatively, changes in gene expression between wild-type
499 and TF mutants could be related to impaired TF binding to constitutively accessible proximal NFRs.
500 Moreover, due to the inability to distinguish mutant phenotype prior to 72 hpf, we could only perform
501 mutant analyses at this developmental stage. This late stage of development means that we could not
502 rule out the possibility that the effects we observe might be secondary in nature. Regardless that we
503 could not provide definitive associations between distal regulatory elements and their target genes due
504 to lack of chromatin interaction data, we identified a substantial number of gene-distal located NFRs
505 which were altered in accessibility in mutants that may serve as potential distal transcriptional

506 regulatory elements. Some of these elements were found to be highly conserved between zebrafish
507 and human, suggesting that they might be critical developmental enhancers (Woolfe et al. 2005;
508 Polychronopoulos et al. 2017).

509

510 Altogether, we characterized the dynamics of gene expression and chromatin landscape during heart
511 development and identified genetic regulatory hubs driving biological processes in CMs at different
512 stages of heart morphogenesis. We unravelled the alterations in the global transcriptional regulatory
513 landscape resulting from disruptions to developmental program caused by the loss of cardiac TFs.
514 Collectively, our study identified potential target genes and regulatory elements implicated in heart
515 development and disease.

516

517 **METHODS**

518

519 **Collection of embryos**

520

521 Zebrafish transgenic lines Tg(*nkx2.5*:EGFP), Tg(*myl7*:EGFP) in AB wild-type and *gata5*^{tm236a/+}
522 (Reiter et al. 1999), *tbx5a*^{m21/+} (Garrity et al. 2002), *hand2*^{s6/+} (Yelon et al. 2000) mutant background
523 were maintained in the zebrafish facilities of the International Institute of Molecular and Cell Biology
524 in Warsaw (License no. PL14656251), according to standard procedures and ethical practices
525 recommended. Embryos were grown in embryo medium at 28°C, staged according to standard
526 morphological criteria (Kimmel et al. 1995), and harvested at three different developmental stages:
527 prim-5 (24 hpf), long-pec (48 hpf) and protruding-mouth (72 hpf).

528

529 **CM collection by fluorescence-activated cell sorting (FACS)**

530

531 Cell suspension was prepared from 500 zebrafish embryos and larvae as previously described (Winata
532 et al. 2013). Cells were verified microscopically for the viability by using trypan blue solution and
533 used for further procedures when more than 90% of viable cell were obtained in the suspension.
534 Fluorescent (GFP+) and non-fluorescent cells (GFP-) were sorted by using FACSaria II cytometer
535 (BD Biosciences, USA). Cells were inspected for their relative size, granularity and relative
536 fluorescence. Cell suspension obtained from wild-type embryo was used to assess the
537 autofluorescence. GFP+ and GFP- fractions were verified for their viability by staining with
538 propidium iodide (Sigma-Aldrich, USA) followed by FACS.

539

540 **qPCR**

541

542 Total RNA was extracted from 100,000 GFP+ and GFP- cells obtained from zebrafish embryos by
543 using TRIzol LS (Thermo Fisher Scientific, USA) according to the manufacturer protocol and

544 followed by DNase I (Life Technologies, USA) treatment. Transcriptor first strand cDNA synthesis
545 kit (Roche Life Science, Germany) was used to obtain cDNA. Relative mRNA expression was
546 quantified by using FastStart SYBR green master mix on the Light Cycler 96 instrument (Roche Life
547 Science, Germany) with specific sets of primers (Supplement Table 12).

548

549 **RNA-seq**

550

551 For RNA sequencing 100,000 of GFP+ and GFP- cells from zebrafish embryos were sorted directly to
552 TRIzol LS (Thermo Fisher Scientific, USA). After ethanol precipitation RNA was depleted of DNA
553 by using DNase I treatment and purified on columns by using RNA Clean & ConcentratorTM-5 (Zymo
554 Research, USA). RNA integrity was measured by RNA ScreenTape on the Agilent 2200 TapeStation
555 system (Agilent Technologies, USA). RNA Integrity Number (RIN) was in the range from 8.5 to 10
556 for all the samples used for RNA-seq. Ribosomal RNA removal from 10 ng of total RNA was
557 performed using RiboGone Kit (Clontech Laboratories, USA). cDNA synthesis for next-generation
558 sequencing (NGS) was performed by SMARTer Universal Low Input RNA Kit (Clontech
559 Laboratories, USA) as recommended by the manufacturer. DNA libraries were purified with
560 Agencourt AMPure XP PCR purification beads (Beckman Coulter, USA) and DNA fragment
561 distribution was assessed by using D1000 ScreenTape and Agilent 2200 TapeStation system (Agilent
562 Technologies, USA). KAPA library quantification kit (Kapa Biosystems, USA) was used for qPCR-
563 based quantification of the libraries obtained. Paired-end sequencing (2×75bp reads) was performed
564 with NextSeq 500 sequencing system (Illumina, USA). The sequencing coverage was at least 75
565 million reads and 35 million reads for GFP+ and GFP-, respectively. GFP+ samples obtained from
566 embryos at 24, 48 and 72 hpf were duplicated. Pearson correlation of biological replicates and read
567 distribution over the zebrafish genome features were performed (Supplement Fig. 6 A, B)

568

569 **Assay for transposase-accessible chromatin with high throughput sequencing (ATAC-seq)**

570

571 For ATAC-seq 60,000 of GFP+ cells from zebrafish embryos were sorted to Hank's solution (1×
572 HBSS, 2mg/mL BSA, 10 mM Hepes pH 8.0), centrifuged for 5 minutes at 500 × g and prepared for
573 chromatin tagmentation as previously described (PMID: 24097267). NEBNext High-Fidelity 2 × PCR
574 Master Mix (New England Biolabs, USA) and custom HPLC-purified primers containing Illumina-
575 compatible indexes were used to prepare DNA sequencing libraries as previously described
576 (Buenrostro et al. 2015). DNA libraries were purified with Agencourt AMPure XP PCR purification
577 beads (Beckman Coulter, USA) and DNA fragment distribution was assessed by using D1000
578 ScreenTape and Agilent 2200 TapeStation system (Agilent Technologies, USA). KAPA library
579 quantification kit (Kapa Biosystems, USA) was used for qPCR-based quantification of the libraries
580 obtained. Paired-end sequencing (2×75bp reads) was performed with NextSeq500 sequencing system
581 (Illumina, USA). The sequencing coverage was at least 90 million reads.

582

583 **Light sheet fluorescence microscopy (LSFM)**

584

585 Embryos collected from transgenic lines Tg(*nxk2.5*:GFP) and Tg(*myl7*:GFP) were maintained in
586 embryo medium containing 0.003% 1-phenyl-2-thiourea (PTU) to inhibit the development of pigment
587 cells. Embryos collected from wild-type at 24, 48 and 72 hpf were mounted in 1% low-melting
588 agarose (Sigma-Aldrich, USA) in a glass capillary. LSFM was used to perform optical sectioning of
589 the cardiomyocytes containing GFP reporter. Images were analysed with Imaris 8 software (Bitplane,
590 Switzerland).

591

592 **Bioinformatics analysis**

593

594 Raw RNA-seq and ATAC-seq reads were quality checked using FastQC (0.11.5)
595 (<http://www.bioinformatics.babraham.ac.uk/projects/fastqc/>) and MultiQC (1.1) (Ewels et al. 2016).
596 Illumina adapters were removed using Trimmomatic (0.36) (Bolger et al. 2014). Reads matching
597 ribosomal RNA were removed using rRNAst (Hasegawa et al. 2014). Reads quality filtering was

598 performed using SAMtools (1.4) (Li et al. 2009) with parameters -b -h -f 3 -F 3340 -q 30. RNA-seq
599 reads were aligned to the zebrafish reference genome (GRCz10) using STAR (2.5) (Dobin et al. 2013)
600 (Supplement Fig. 7). Bowtie2 (2.2.9) (Langmead and Salzberg 2012) was used to map ATAC-seq
601 reads to the entire GRCz10 genome except *hand2*^{s6/s6} in which ~200kb region spanning *hand2* gene
602 was excluded from the analysis due to large deletion carried by those mutants as previously described
603 (Yelon et al. 2000) (Supplement Fig. 8). Read distribution was assessed with Picard (2.10.3). NFR
604 regions were identified as previously described (Buenrostro et al. 2013). Peaks of chromatin open
605 regions were called using MACS2 (2.1.0) (Zhang et al. 2008) with parameters --nomodel --shift -100
606 --extsize 200 --broad -g 1.21e9 -q 0.05 -B --keep-dup all. Enriched motifs in NFRs were identified
607 using the HOMER findMotifsGenome tool with parameters findMotifs.pl modules/\$modir/target.fa
608 fasta modules/\$modir -mset vertebrates -p 8 -S 200 -fastaBg modules/\$modir/background.fa to check
609 against vertebrates motif collection (Heinz et al. 2010). The background collection of sequences was
610 constructed for each investigated gene module by taking complementing set of NFRs around TSSs of
611 that module. Downstream bioinformatics analysis were performed in R 3.4 using following
612 Bioconductor and CRAN (Huber et al. 2015) packages: GenomicFeatures (Lawrence et al. 2013),
613 GenomicAlignments (Lawrence et al. 2013), DESeq2 (Love et al. 2014), pheatmap, LSD,
614 ComplexHeatmap, biomaRt (Durinck et al. 2009), dplyr, WGCNA (Langfelder and Horvath 2008),
615 ggplot2, reshape2, org.Dr.eg.db, clusterProfiler (Yu et al. 2012), ATACseqQC (Ou et al. 2018),
616 ChIPseeker (Yu et al. 2015), DiffBind (Ross-Innes et al. 2012), ggbio (Yin et al. 2012). RNA-seq
617 gene counts and ATAC-seq NFR read counts for all samples were transformed to regularized log (rld)
618 (Supplement Table 13, 14). Gene network visualisation and statistical analysis of gene networks was
619 performed using Cytoscape (Cline et al. 2007). Metascape was used to visualise the output of GO
620 enrichment analysis (Tripathi et al. 2015).

621

622 **FIGURE AND TABLE LEGEND**

623

624 **Table 1. HOMER-identified TF motifs found in NFR of cardiac co-expression modules.**

625 HOMER-identified motifs with the highest prevalence in NFRs localized +/-3kb around the TSSs of
626 selected cardiac module genes are listed. P-value < 0.05. Known vertebrate TF motifs were used for
627 analysis.

628

629 **Figure 1. CM transcriptome landscape during heart development.** (A) Schematics of
630 experimental design. (B) Light sheet fluorescence microscope (LSFM) images of GFP-labeled CMs
631 of developing zebrafish heart. p - posterior, an - anterior, v - ventral , d – dorsal. Dotted line indicates
632 exact area of the LSFM image. (C) Network of 20 top-score GO clusters enriched in genes commonly
633 upregulated in GFP+ across heart development. Size nodes refer to the number of genes contributing
634 to the same GO and nodes that share the same cluster ID are close to each other, $p_{adj} \leq 0.05$. (D)
635 Heatmap of top 50 highly expressed genes between 24-72 hpf based on normalized expression value
636 (regularized log, rld). (E) Graphical representation of PCA of CM RNA-seq data. (F) Heatmap and
637 clustering of RNA-seq sample-to-sample Euclidean distances.

638

639 **Figure 2. Cross-talk between transcriptome and chromatin accessibility profile across stages of**
640 **cardiac development.** (A) ATAC-seq read distribution and characterization of NFR fractions. (B)
641 PCA of NFR chromatin accessibility during heart development. (C) Euclidian distances between
642 chromatin accessibility within NFR. (D) Comparison of NFR presence and overlap across stages of
643 heart development. (E) Genomic annotation of CM NFR consensus at different stages of heart
644 development. (F) CM NFR consensus coverage heatmap of TSS proximal (+/-3kb of TSS) regions
645 centred on ATAC-seq peak summits. (G) CM NFR consensus coverage heatmap of TSS distal (more
646 than +/-3kb of TSS) regions centred on ATAC-seq peak summits. (H) Metaplot of ATAC-seq read
647 density over the gene bodies of 1000 genes most highly expressed in CMs at each developmental

648 stage. TES – transcription end site. **(I)** Spearman correlation of normalized log (rld) RNA-seq gene
649 expression and ATAC-seq chromatin accessibility in corresponding NFR regions (+/-3kb of TSS).

650

651 **Figure 3. Cardiac co-expression regulatory networks.** **(A)** Hierarchical clustering of gene
652 expression similarity/dissimilarity matrix. **(B)** Cardiovascular-related GO enrichment in five cardiac
653 modules. **(C)** Module gene connectivity plot of selected TFs. Twenty TFs with the highest normalized
654 kDiff are shown. **(D)** Cardiac module eigengene expression during heart development.

655

656 **Figure 4. Dynamic regulatory networks of differentiating CMs.** **(A)** Strategy used to establish
657 gene-chromatin regulatory network. **(B)** Changes (\log_2FC) of gene expression compared to those in
658 chromatin accessibility of cardiac module genes during heart development. Only significant ($fdr <$
659 0.05) genes are shown. **(C)** Regulatory networks of heart development. Arrows indicate the direction
660 of interaction. Colours and the intensity of the circle edges indicate changes of chromatin
661 accessibility, whereas those inside the circle show expression changes. Only significant ($padj \leq 0.05$)
662 genes are shown. Hub TFs are indicated in red font. **(D)** Visualization of ATAC-seq and RNA-seq
663 read coverage of selected genomic regions related to turquoise module. **(E)** Visualization of ATAC-
664 seq and RNA-seq read coverage of selected genomic regions related to brown module. Time points,
665 NFRs and TF binding motifs within NFRs are indicated.

666

667 **Figure 5. Loss-of-function mutations of cardiac TFs alters regulatory networks involved in**
668 **heart development.** **(A)** LSFM images of GFP-labeled CMs of wild-type and TF mutants zebrafish
669 hearts at 72 hpf. Dotted line indicates exact area of the LSFM image. **(B)** Venn diagrams and GO
670 enrichment analysis of TF-mutant downregulated (blue) and upregulated (red) genes and chromatin
671 accessibility of proximal promoter NFRs (+/-3 kb of TSS), $padj \leq 0.05$. **(C)** Percent distribution of
672 cardiac module downregulated genes/proximal NFR chromatin accessibility as compared to total
673 number of TF mutants downregulated genes/proximal NFR chromatin accessibility. **(D)** Percent
674 distribution of cardiac module upregulated genes/proximal NFR chromatin accessibility as compared

675 to total number of TF mutants upregulated genes/proximal NFR chromatin accessibility. **(E)** Cardiac
676 module genes with differentially regulated expression and chromatin accessibility of proximal
677 promoter NFRs (+/-3 kb of TSS) in *gata5*, *hand2* and *tbx5a* mutants.

678

679 **Figure 6. Identification of putative cardiac enhancers.** **(A)** volcano plot of differentially accessible
680 distal NFRs between wild-type and TF mutants at 72 hpf. $\text{padj} \leq 0.05$ are indicated in green, number
681 of downregulated NFRs is indicated in blue and upregulated in red. **(B)** Venn diagram of mutant
682 down- and upregulated distal NFRs (more than +/- 3 kb of TSS), $\text{padj} \leq 0.05$. **(C)** Graphical
683 representation of differentially accessible distal NFRs genomic localization onto zebrafish
684 chromosomes. NFRs overlapping with HCNE (+/- 500 bp) and their accessibility $\log_2\text{FC}$ in
685 comparison to wild-type is indicated, $\text{padj} < 0.05$. **(D)** Genome track of ATAC-seq peaks for wild-type
686 (black), *tbx5a*-/- (green) and *gata5*-/- (blue) for 3 most downregulated NFRs overlapping with HCNE
687 (+/- 500 bp) ; **(e)** Genome track of ATAC-seq peaks for wild-type (black), *hand2*-/- (pink) and *gata5*-
688 /- (blue) of 3 most upregulated NFRs overlapping with HCNE (+/- 500 bp).

689

690 **DATA ACES**

691

692 RNA-seq and ATAC-seq data have been submitted to the NCBI Gene Expression Omnibus database
693 (<https://www.ncbi.nlm.nih.gov/geo/>) under accession number GSE120238.

694

695 **ACKNOWLEDGMENTS**

696

697 We thank D. Garrity for sharing *tbx5a*^{m21/+} and D. Yelon for *hand2*^{s6/+} zebrafish mutant lines and D.
698 Stainier for sharing Tg(*nxf2.5*:GFP) and Tg(*myl7*:GFP). We thank V. Korzh and members of the
699 Winata lab for fruitful discussions. This work was supported by EU/FP7 - Research Potential
700 FISHMED, grant number: 316125, National Science Centre, Poland, OPUS grant number:
701 2014/13/B/NZ2/03863. MP is supported by Foundation for Polish Science and Ministry of Science
702 and Higher Education, Poland and SONATA grant number 2014/15/D/NZ5/03421. MM is a recipient
703 of the Postgraduate School of Molecular Medicine doctoral fellowship for the program “Next
704 generation sequencing technologies in biomedicine and personalized medicine”.

705

706 **DISCLOSURE DECLARATION**

707

708 Authors declare no conflict of interest.

709

710 **CONTRIBUTIONS**

711 MP, KK, MM, JR performed bioinformatics and statistical analysis. MP, KK, AM collected embryos,
712 performed *in vivo* experiments and collected biological material. MP and KAN prepared NGS
713 libraries and performed RNA-seq and ATAC-seq. MP performed LSFM. LB and KP performed
714 FACS. MP, CW, JR, KH contributed to genomic data analysis. MP, KK, MM, JR, PC, CW
715 contributed to the design of the study and interpreted data. MP prepared the figures. MP and CW
716 conceived the study and wrote the manuscript. CW is the corresponding senior author.

717

718 REFERENCES

719

720 Ahn DG, Ruvinsky I, Oates AC, Silver LM, Ho RK. 2000. tbx20, a new vertebrate T-box gene
721 expressed in the cranial motor neurons and developing cardiovascular structures in zebrafish.
722 *Mech Dev* **95**: 253-258.

723 Bakkers J. 2011. Zebrafish as a model to study cardiac development and human cardiac disease.
724 *Cardiovasc Res* **91**: 279-288.

725 Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data.
726 *Bioinformatics* **30**: 2114-2120.

727 Bruneau BG, Nemer G, Schmitt JP, Charron F, Robitaille L, Caron S, Conner DA, Gessler M, Nemer
728 M, Seidman CE et al. 2001. A murine model of Holt-Oram syndrome defines roles of the T-
729 box transcription factor Tbx5 in cardiogenesis and disease. *Cell* **106**: 709-721.

730 Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ. 2013. Transposition of native
731 chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding
732 proteins and nucleosome position. *Nat Methods* **10**: 1213-1218.

733 Buenrostro JD, Wu B, Chang HY, Greenleaf WJ. 2015. ATAC-seq: A Method for Assaying
734 Chromatin Accessibility Genome-Wide. *Curr Protoc Mol Biol* **109**: 21 29 21-29.

735 Caprioli A, Koyano-Nakagawa N, Iacovino M, Shi X, Ferdous A, Harvey RP, Olson EN, Kyba M,
736 Garry DJ. 2011. Nkx2-5 represses Gata1 gene expression and modulates the cellular fate of
737 cardiac progenitors during embryogenesis. *Circulation* **123**: 1633-1641.

738 Chan YH, Chiang MF, Tsai YC, Su ST, Chen MH, Hou MS, Lin KI. 2009. Absence of the
739 transcriptional repressor Blimp-1 in hematopoietic lineages reveals its role in dendritic cell
740 homeostatic development and function. *J Immunol* **183**: 7039-7046.

741 Chandra M, Escalante-Alcalde D, Bhuiyan MS, Orr AW, Kevil C, Morris AJ, Nam H, Dominic P,
742 McCarthy KJ, Miriyala S et al. 2018. Cardiac-specific inactivation of LPP3 in mice leads to
743 myocardial dysfunction and heart failure. *Redox Biol* **14**: 261-271.

744 Chen JN, Fishman MC. 1996. Zebrafish tinman homolog demarcates the heart field and initiates
745 myocardial differentiation. *Development* **122**: 3809-3816.

746 Chen Z, Huang W, Dahme T, Rottbauer W, Ackerman MJ, Xu X. 2008. Depletion of zebrafish
747 essential and regulatory myosin light chains reduces cardiac function through distinct
748 mechanisms. *Cardiovasc Res* **79**: 97-108.

749 Clark KL, Yutzy KE, Benson DW. 2006. Transcription factors and congenital heart defects. *Annu
750 Rev Physiol* **68**: 97-121.

751 Cline MS, Smoot M, Cerami E, Kuchinsky A, Landys N, Workman C, Christmas R, Avila-Campilo I,
752 Creech M, Gross B et al. 2007. Integration of biological networks and gene expression data
753 using Cytoscape. *Nat Protoc* **2**: 2366-2382.

754 Croft D, O'Kelly G, Wu G, Haw R, Gillespie M, Matthews L, Caudy M, Garapati P, Gopinath G,
755 Jassal B et al. 2011. Reactome: a database of reactions, pathways and biological processes.
756 *Nucleic Acids Res* **39**: D691-697.

757 D'Amico L, Scott IC, Jungblut B, Stainier DY. 2007. A mutation in zebrafish hmgr1b reveals a role
758 for isoprenoids in vertebrate heart-tube formation. *Curr Biol* **17**: 252-259.

759 Davis DL, Wessels A, Burch JB. 2000. An Nkx-dependent enhancer regulates cGATA-6 gene
760 expression during early stages of heart development. *Dev Biol* **217**: 310-322.

761 Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR.
762 2013. STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* **29**: 15-21.

763 Dupays L, Shang C, Wilson R, Kotecha S, Wood S, Towers N, Mohun T. 2015. Sequential Binding of
764 MEIS1 and NKX2-5 on the Popdc2 Gene: A Mechanism for Spatiotemporal Regulation of
765 Enhancers during Cardiogenesis. *Cell Rep* **13**: 183-195.

766 Durinck S, Spellman PT, Birney E, Huber W. 2009. Mapping identifiers for the integration of
767 genomic datasets with the R/Bioconductor package biomaRt. *Nat Protoc* **4**: 1184-1191.

768 Engstrom PG, Fredman D, Lenhard B. 2008. Ancora: a web resource for exploring highly conserved
769 noncoding elements and their association with developmental regulatory genes. *Genome Biol*
770 **9**: R34.

771 Etard C, Roostalu U, Strahle U. 2010. Lack of Apobec2-related proteins causes a dystrophic muscle
772 phenotype in zebrafish embryos. *J Cell Biol* **189**: 527-539.

773 Ewels P, Magnusson M, Lundin S, Kaller M. 2016. MultiQC: summarize analysis results for multiple
774 tools and samples in a single report. *Bioinformatics* **32**: 3047-3048.

775 Farnham PJ. 2009. Insights from genomic profiling of transcription factors. *Nat Rev Genet* **10**: 605-
776 616.

777 Garrity DM, Childs S, Fishman MC. 2002. The heartstrings mutation in zebrafish causes heart/fin
778 Tbx5 deficiency syndrome. *Development* **129**: 4635-4645.

779 George V, Colombo S, Targoff KL. 2015. An early requirement for nkx2.5 ensures the first and
780 second heart field ventricular identity and cardiac function into adulthood. *Dev Biol* **400**: 10-
781 22.

782 Gering M, Yamada Y, Rabbitts TH, Patient RK. 2003. Lmo2 and Scl/Tal1 convert non-axial
783 mesoderm into haemangioblasts which differentiate into endothelial cells in the absence of
784 Gata1. *Development* **130**: 6187-6199.

785 Gottgens B, Nastos A, Kinston S, Piltz S, Delabesse EC, Stanley M, Sanchez MJ, Ciau-Uitz A,
786 Patient R, Green AR. 2002. Establishing the transcriptional programme for blood: the SCL
787 stem cell enhancer is regulated by a multiprotein complex containing Ets and GATA factors.
EMBO J **21**: 3039-3050.

789 Guner-Ataman B, Paffett-Lugassy N, Adams MS, Nevis KR, Jahangiri L, Obregon P, Kikuchi K,
790 Poss KD, Burns CE, Burns CG. 2013. Zebrafish second heart field development relies on
791 progenitor specification in anterior lateral plate mesoderm and nkx2.5 function. *Development*
792 **140**: 1353-1363.

793 Hasegawa A, Daub C, Carninci P, Hayashizaki Y, Lassmann T. 2014. MOIRAI: a compact workflow
794 system for CAGE analysis. *BMC Bioinformatics* **15**: 144.

795 He A, Gu F, Hu Y, Ma Q, Ye LY, Akiyama JA, Visel A, Pennacchio LA, Pu WT. 2014. Dynamic
796 GATA4 enhancers shape the chromatin landscape central to heart development and disease.
797 *Nat Commun* **5**: 4907.

798 Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, Cheng JX, Murre C, Singh H, Glass CK.
799 2010. Simple combinations of lineage-determining transcription factors prime cis-regulatory
800 elements required for macrophage and B cell identities. *Mol Cell* **38**: 576-589.

801 Hill JT, Demarest B, Gorski B, Smith M, Yost HJ. 2017. Heart morphogenesis gene regulatory
802 networks revealed by temporal expression analysis. *Development* **144**: 3487-3498.

803 Holtzinger A, Evans T. 2007. Gata5 and Gata6 are functionally redundant in zebrafish for
804 specification of cardiomyocytes. *Dev Biol* **312**: 613-622.

805 Houk AR, Yelon D. 2016. Strategies for analyzing cardiac phenotypes in the zebrafish embryo.
806 *Methods Cell Biol* **134**: 335-368.

807 Huber W, Carey VJ, Gentleman R, Anders S, Carlson M, Carvalho BS, Bravo HC, Davis S, Gatto L,
808 Girke T et al. 2015. Orchestrating high-throughput genomic analysis with Bioconductor. *Nat
809 Methods* **12**: 115-121.

810 Jensen B, Wang T, Christoffels VM, Moorman AF. 2013. Evolution and development of the building
811 plan of the vertebrate heart. *Biochim Biophys Acta* **1833**: 783-794.

812 Jiang Y, Evans T. 1996. The Xenopus GATA-4/5/6 genes are associated with cardiac specification
813 and can regulate cardiac-specific transcription during embryogenesis. *Dev Biol* **174**: 258-270.

814 Jiang Y, Tarzami S, Burch JB, Evans T. 1998. Common role for each of the cGATA-4/5/6 genes in
815 the regulation of cardiac morphogenesis. *Dev Genet* **22**: 263-277.

816 Kaneko H, Shimizu R, Yamamoto M. 2010. GATA factor switching during erythroid differentiation.
817 *Curr Opin Hematol* **17**: 163-168.

818 Karwacz K, Miraldi ER, Pokrovskii M, Madi A, Yosef N, Wortman I, Chen X, Watters A, Carriero
819 N, Awasthi A et al. 2017. Critical role of IRF1 and BATF in forming chromatin landscape
820 during type 1 regulatory cell differentiation. *Nat Immunol* **18**: 412-421.

821 Kelly RG, Buckingham ME, Moorman AF. 2014. Heart fields and cardiac morphogenesis. *Cold
822 Spring Harb Perspect Med* **4**.

823 Kern CB, Wessels A, McGarity J, Dixon LJ, Alston E, Argraves WS, Geeting D, Nelson CM, Menick
824 DR, Apte SS. 2010. Reduced versican cleavage due to Adams9 haploinsufficiency is
825 associated with cardiac and aortic anomalies. *Matrix Biol* **29**: 304-316.

826 Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF. 1995. Stages of embryonic
827 development of the zebrafish. *Dev Dyn* **203**: 253-310.

828 Kirchmaier BC, Poon KL, Schwerte T, Huisken J, Winkler C, Jungblut B, Stainier DY, Brand T.
829 2012. The Popeye domain containing 2 (popdc2) gene in zebrafish is required for heart and
830 skeletal muscle development. *Dev Biol* **363**: 438-450.

831 Kirk EP, Sunde M, Costa MW, Rankin SA, Wolstein O, Castro ML, Butler TL, Hyun C, Guo G,
832 Otway R et al. 2007. Mutations in cardiac T-box factor gene TBX20 are associated with
833 diverse cardiac pathologies, including defects of septation and valvulogenesis and
834 cardiomyopathy. *Am J Hum Genet* **81**: 280-291.

835 Knight HG, Yelon D. 2016. Utilizing Zebrafish to Understand Second Heart Field Development. In
836 *Etiology and Morphogenesis of Congenital Heart Disease: From Gene Function and Cellular
837 Interaction to Morphology*, doi:10.1007/978-4-431-54628-3_25 (ed. T Nakanishi, et al.), pp.
838 193-199, Tokyo.

839 Kotkamp K, Mossner R, Allen A, Onichtchouk D, Driever W. 2014. A Pou5f1/Oct4 dependent Klf2a,
840 Klf2b, and Klf17 regulatory sub-network contributes to EVL and ectoderm development
841 during zebrafish embryogenesis. *Dev Biol* **385**: 433-447.

842 Laforest B, Nemer M. 2011. GATA5 interacts with GATA4 and GATA6 in outflow tract
843 development. *Dev Biol* **358**: 368-378.

844 Langfelder P, Horvath S. 2008. WGCNA: an R package for weighted correlation network analysis.
845 *BMC Bioinformatics* **9**: 559.

846 Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. *Nat Methods* **9**: 357-
847 359.

848 Lawrence M, Huber W, Pages H, Aboyoun P, Carlson M, Gentleman R, Morgan MT, Carey VJ.
849 2013. Software for computing and annotating genomic ranges. *PLoS Comput Biol* **9**:
850 e1003118.

851 Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R,
852 Genome Project Data Processing S. 2009. The Sequence Alignment/Map format and
853 SAMtools. *Bioinformatics* **25**: 2078-2079.

854 Liberatore CM, Searcy-Schrick RD, Yutzey KE. 2000. Ventricular expression of tbx5 inhibits normal
855 heart chamber development. *Dev Biol* **223**: 169-180.

856 Lien CL, Wu C, Mercer B, Webb R, Richardson JA, Olson EN. 1999. Control of early cardiac-
857 specific transcription of Nkx2-5 by a GATA-dependent enhancer. *Development* **126**: 75-84.

858 Lopaschuk GD, Jaswal JS. 2010. Energy metabolic phenotype of the cardiomyocyte during
859 development, differentiation, and postnatal maturation. *J Cardiovasc Pharmacol* **56**: 130-140.

860 Lou X, Deshwar AR, Crump JG, Scott IC. 2011. Smard3b and Gata5 promote a cardiac progenitor
861 fate in the zebrafish embryo. *Development* **138**: 3113-3123.

862 Loughran SJ, Kruse EA, Hacking DF, de Graaf CA, Hyland CD, Willson TA, Henley KJ, Ellis S,
863 Voss AK, Metcalf D et al. 2008. The transcription factor Erg is essential for definitive
864 hematopoiesis and the function of adult hematopoietic stem cells. *Nat Immunol* **9**: 810-819.

865 Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-
866 seq data with DESeq2. *Genome Biol* **15**: 550.

867 Marques SR, Yelon D. 2009. Differential requirement for BMP signaling in atrial and ventricular
868 lineages establishes cardiac chamber proportionality. *Dev Biol* **328**: 472-482.

869 Miller SA, Huang AC, Miazgowicz MM, Brassil MM, Weinmann AS. 2008. Coordinated but
870 physically separable interaction with H3K27-demethylase and H3K4-methyltransferase

activities are required for T-box protein-mediated activation of developmental gene expression. *Genes Dev* **22**: 2980-2993.

Molkentin JD, Antos C, Mercer B, Taigen T, Miano JM, Olson EN. 2000. Direct activation of a GATA6 cardiac enhancer by Nkx2.5: evidence for a reinforcing regulatory network of Nkx2.5 and GATA transcription factors in the developing heart. *Dev Biol* **217**: 301-309.

Montero JA, Giron B, Arrechedera H, Cheng YC, Scotting P, Chimal-Monroy J, Garcia-Porrero JA, Hurle JM. 2002. Expression of Sox8, Sox9 and Sox10 in the developing valves and autonomic nerves of the embryonic heart. *Mech Dev* **118**: 199-202.

Moskowitz IP, Wang J, Peterson MA, Pu WT, Mackinnon AC, Oxburgh L, Chu GC, Sarkar M, Berul C, Smoot L et al. 2011. Transcription factor genes Smad4 and Gata4 cooperatively regulate cardiac valve development. [corrected]. *Proc Natl Acad Sci U S A* **108**: 4006-4011.

Naito AT, Shiojima I, Akazawa H, Hidaka K, Morisaki T, Kikuchi A, Komuro I. 2006. Developmental stage-specific biphasic roles of Wnt/beta-catenin signaling in cardiomyogenesis and hematopoiesis. *Proc Natl Acad Sci U S A* **103**: 19812-19817.

Nakano H, Liu X, Arshi A, Nakashima Y, van Handel B, Sasidharan R, Harmon AW, Shin JH, Schwartz RJ, Conway SJ et al. 2013. Haemogenic endocardium contributes to transient definitive haematopoiesis. *Nat Commun* **4**: 1564.

Nelson AC, Mould AW, Bikoff EK, Robertson EJ. 2017. Mapping the chromatin landscape and Blimp1 transcriptional targets that regulate trophoblast differentiation. *Sci Rep* **7**: 6793.

Nemer M. 2008. Genetic insights into normal and abnormal heart development. *Cardiovasc Pathol* **17**: 48-54.

Nimura K, Ura K, Shiratori H, Ikawa M, Okabe M, Schwartz RJ, Kaneda Y. 2009. A histone H3 lysine 36 trimethyltransferase links Nkx2-5 to Wolf-Hirschhorn syndrome. *Nature* **460**: 287-291.

Olson TM, Michels VV, Thibodeau SN, Tai YS, Keating MT. 1998. Actin mutations in dilated cardiomyopathy, a heritable form of heart failure. *Science* **280**: 750-752.

Ou J, Liu H, Yu J, Kelliher MA, Castilla LH, Lawson ND, Zhu LJ. 2018. ATACseqQC: a Bioconductor package for post-alignment quality assessment of ATAC-seq data. *BMC Genomics* **19**: 169.

Ounzain S, Pezzuto I, Micheletti R, Burdet F, Sheta R, Nemir M, Gonzales C, Sarre A, Alexanian M, Blow MJ et al. 2014. Functional importance of cardiac enhancer-associated noncoding RNAs in heart development and disease. *J Mol Cell Cardiol* **76**: 55-70.

Paw BH, Davidson AJ, Zhou Y, Li R, Pratt SJ, Lee C, Trede NS, Brownlie A, Donovan A, Liao EC et al. 2003. Cell-specific mitotic defect and dyserythropoiesis associated with erythroid band 3 deficiency. *Nat Genet* **34**: 59-64.

Pawlak M, Niescierowicz K, Winata CL. 2018. Decoding the Heart through Next Generation Sequencing Approaches. *Genes (Basel)* **9**.

Pimanda JE, Ottersbach K, Knezevic K, Kinston S, Chan WY, Wilson NK, Landry JR, Wood AD, Kolb-Kokocinski A, Green AR et al. 2007. Gata2, Fli1, and Scl form a recursively wired gene-regulatory circuit during early hematopoietic development. *Proc Natl Acad Sci U S A* **104**: 17692-17697.

Piven OO, Winata CL. 2017. The canonical way to make a heart: beta-catenin and plakoglobin in heart development and remodeling. *Exp Biol Med (Maywood)* **242**: 1735-1745.

Polychronopoulos D, King JWD, Nash AJ, Tan G, Lenhard B. 2017. Conserved non-coding elements: developmental gene regulation meets genome organization. *Nucleic Acids Res* **45**: 12611-12624.

Powers SE, Taniguchi K, Yen W, Melhuish TA, Shen J, Walsh CA, Sutherland AE, Wotton D. 2010. Tgif1 and Tgif2 regulate Nodal signaling and are required for gastrulation. *Development* **137**: 249-259.

Reiter JF, Alexander J, Rodaway A, Yelon D, Patient R, Holder N, Stainier DY. 1999. Gata5 is required for the development of the heart and endoderm in zebrafish. *Genes Dev* **13**: 2983-2995.

923 Ross-Innes CS, Stark R, Teschendorff AE, Holmes KA, Ali HR, Dunning MJ, Brown GD, Gojis O,
924 Ellis IO, Green AR et al. 2012. Differential oestrogen receptor binding is associated with
925 clinical outcome in breast cancer. *Nature* **481**: 389-393.

926 Sakabe NJ, Aneas I, Shen T, Shokri L, Park SY, Bulyk ML, Evans SM, Nobrega MA. 2012. Dual
927 transcriptional activator and repressor roles of TBX20 regulate adult cardiac structure and
928 function. *Hum Mol Genet* **21**: 2194-2204.

929 Schoenebeck JJ, Keegan BR, Yelon D. 2007. Vessel and blood specification override cardiac
930 potential in anterior mesoderm. *Dev Cell* **13**: 254-267.

931 Searcy RD, Vincent EB, Liberatore CM, Yutzey KE. 1998. A GATA-dependent nkx-2.5 regulatory
932 element activates early cardiac gene expression in transgenic mice. *Development* **125**: 4461-
933 4470.

934 Shih YH, Zhang Y, Ding Y, Ross CA, Li H, Olson TM, Xu X. 2015. Cardiac transcriptome and
935 dilated cardiomyopathy genes in zebrafish. *Circ Cardiovasc Genet* **8**: 261-269.

936 Shlyueva D, Stampfel G, Stark A. 2014. Transcriptional enhancers: from properties to genome-wide
937 predictions. *Nat Rev Genet* **15**: 272-286.

938 Singh MK, Christoffels VM, Dias JM, Trowe MO, Petry M, Schuster-Gossler K, Burger A, Ericson J,
939 Kispert A. 2005. Tbx20 is essential for cardiac chamber differentiation and repression of
940 Tbx2. *Development* **132**: 2697-2707.

941 Singh MK, Li Y, Li S, Cobb RM, Zhou D, Lu MM, Epstein JA, Morrisey EE, Gruber PJ. 2010. Gata4
942 and Gata5 cooperatively regulate cardiac myocyte proliferation in mice. *J Biol Chem* **285**:
943 1765-1772.

944 Soza-Ried C, Hess I, Netuschil N, Schorpp M, Boehm T. 2010. Essential role of c-myb in definitive
945 hematopoiesis is evolutionarily conserved. *Proc Natl Acad Sci U S A* **107**: 17304-17308.

946 Stainier DY. 2001. Zebrafish genetics and vertebrate heart formation. *Nat Rev Genet* **2**: 39-48.

947 Stainier DY, Fishman MC. 1994. The zebrafish as a model system to study cardiovascular
948 development. *Trends Cardiovasc Med* **4**: 207-212.

949 Stainier DY, Lee RK, Fishman MC. 1993. Cardiovascular development in the zebrafish. I. Myocardial
950 fate map and heart tube formation. *Development* **119**: 31-40.

951 Staudt D, Stainier D. 2012. Uncovering the molecular and cellular mechanisms of heart development
952 using the zebrafish. *Annu Rev Genet* **46**: 397-418.

953 Takeuchi JK, Lou X, Alexander JM, Sugizaki H, Delgado-Olguin P, Holloway AK, Mori AD, Wylie
954 JN, Munson C, Zhu Y et al. 2011. Chromatin remodelling complex dosage modulates
955 transcription factor function in heart development. *Nat Commun* **2**: 187.

956 Targoff KL, Schell T, Yelon D. 2008. Nkx genes regulate heart tube extension and exert differential
957 effects on ventricular and atrial cell number. *Dev Biol* **322**: 314-321.

958 Tripathi S, Pohl MO, Zhou Y, Rodriguez-Frandsen A, Wang G, Stein DA, Moulton HM, DeJesus P,
959 Che J, Mulder LC et al. 2015. Meta- and Orthogonal Integration of Influenza "OMICs" Data
960 Defines a Role for UBR4 in Virus Budding. *Cell Host Microbe* **18**: 723-735.

961 Turbendian HK, Gordillo M, Tsai SY, Lu J, Kang G, Liu TC, Tang A, Liu S, Fishman GI, Evans T.
962 2013. GATA factors efficiently direct cardiac fate from embryonic stem cells. *Development*
963 **140**: 1639-1644.

964 Ueno S, Weidinger G, Osugi T, Kohn AD, Golob JL, Pabon L, Reinecke H, Moon RT, Murry CE.
965 2007. Biphasic role for Wnt/beta-catenin signaling in cardiac specification in zebrafish and
966 embryonic stem cells. *Proc Natl Acad Sci U S A* **104**: 9685-9690.

967 Wang B, Yan J, Peng Z, Wang J, Liu S, Xie X, Ma X. 2011. Teratocarcinoma-derived growth factor 1
968 (TDGF1) sequence variants in patients with congenital heart defect. *Int J Cardiol* **146**: 225-
969 227.

970 Winata CL, Kondrychyn I, Kumar V, Srinivasan KG, Orlov Y, Ravishankar A, Prabhakar S, Stanton
971 LW, Korzh V, Mathavan S. 2013. Genome wide analysis reveals Zic3 interaction with distal
972 regulatory elements of stage specific developmental genes in zebrafish. *PLoS Genet* **9**:
973 e1003852.

974 Witzel HR, Jungblut B, Choe CP, Crump JG, Braun T, Dobreva G. 2012. The LIM protein Ajuba
975 restricts the second heart field progenitor pool by regulating Isl1 activity. *Dev Cell* **23**: 58-70.

976 Woolfe A, Goodson M, Goode DK, Snell P, McEwen GK, Vavouri T, Smith SF, North P, Callaway
977 H, Kelly K et al. 2005. Highly conserved non-coding sequences are associated with vertebrate
978 development. *PLoS Biol* **3**: e7.

979 Xu C, Liguori G, Persico MG, Adamson ED. 1999. Abrogation of the Cripto gene in mouse leads to
980 failure of postgastrulation morphogenesis and lack of differentiation of cardiomyocytes.
981 *Development* **126**: 483-494.

982 Xu X, Meiler SE, Zhong TP, Mohideen M, Crossley DA, Burggren WW, Fishman MC. 2002.
983 Cardiomyopathy in zebrafish due to mutation in an alternatively spliced exon of titin. *Nat
984 Genet* **30**: 205-209.

985 Yelon D, Horne SA, Stainier DY. 1999. Restricted expression of cardiac myosin genes reveals
986 regulated aspects of heart tube assembly in zebrafish. *Dev Biol* **214**: 23-37.

987 Yelon D, Ticho B, Halpern ME, Ruvinsky I, Ho RK, Silver LM, Stainier DY. 2000. The bHLH
988 transcription factor hand2 plays parallel roles in zebrafish heart and pectoral fin development.
989 *Development* **127**: 2573-2582.

990 Yin T, Cook D, Lawrence M. 2012. ggbio: an R package for extending the grammar of graphics for
991 genomic data. *Genome Biol* **13**: R77.

992 Yu G, Wang LG, Han Y, He QY. 2012. clusterProfiler: an R package for comparing biological
993 themes among gene clusters. *OMICS* **16**: 284-287.

994 Yu G, Wang LG, He QY. 2015. ChIPseeker: an R/Bioconductor package for ChIP peak annotation,
995 comparison and visualization. *Bioinformatics* **31**: 2382-2383.

996 Zamir L, Singh R, Nathan E, Patrick R, Yifa O, Yahalom-Ronen Y, Arraf AA, Schultheiss TM, Suo
997 S, Han JJ et al. 2017. Nkx2.5 marks angioblasts that contribute to hemogenic endothelium of
998 the endocardium and dorsal aorta. *Elife* **6**.

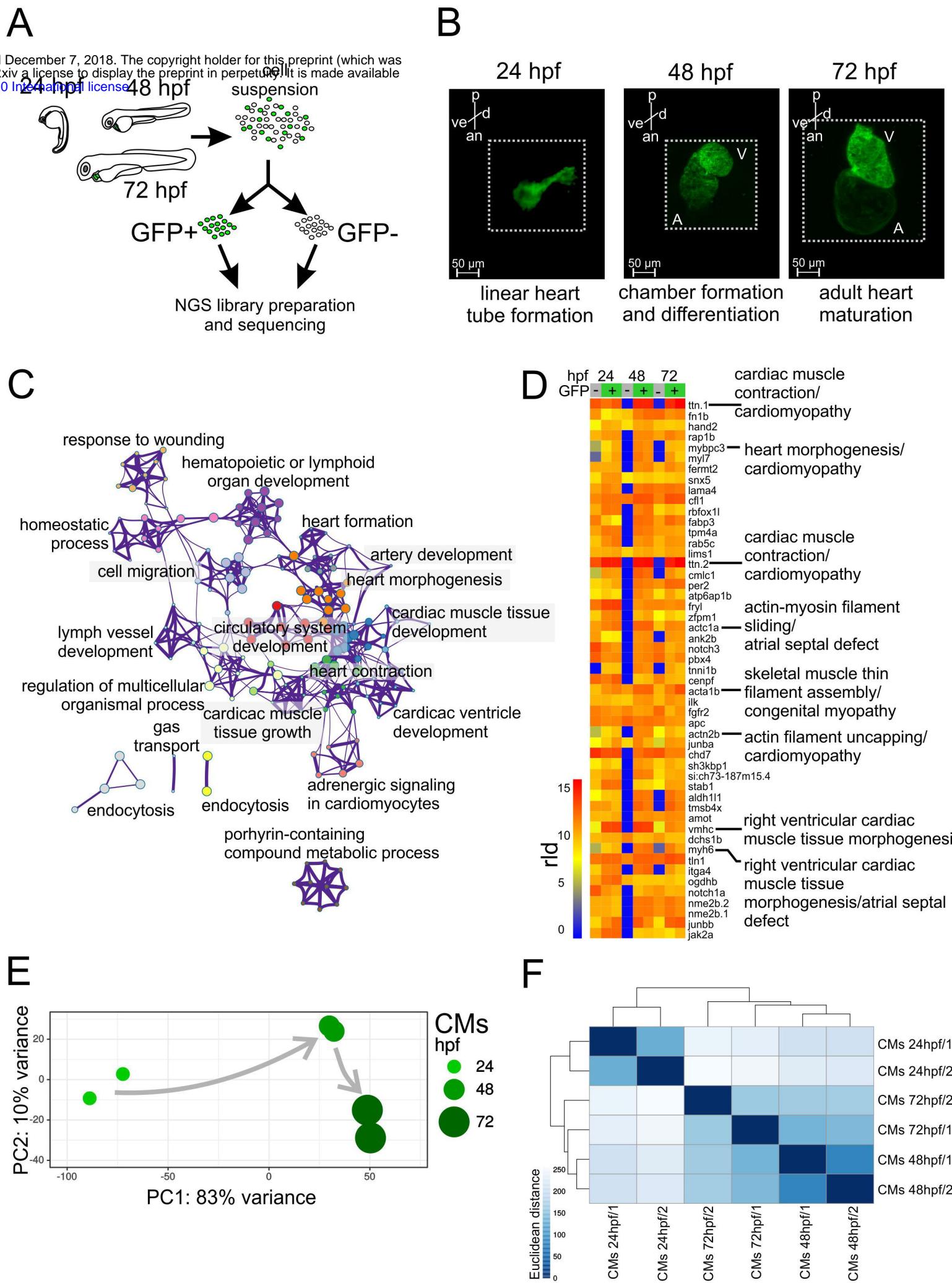
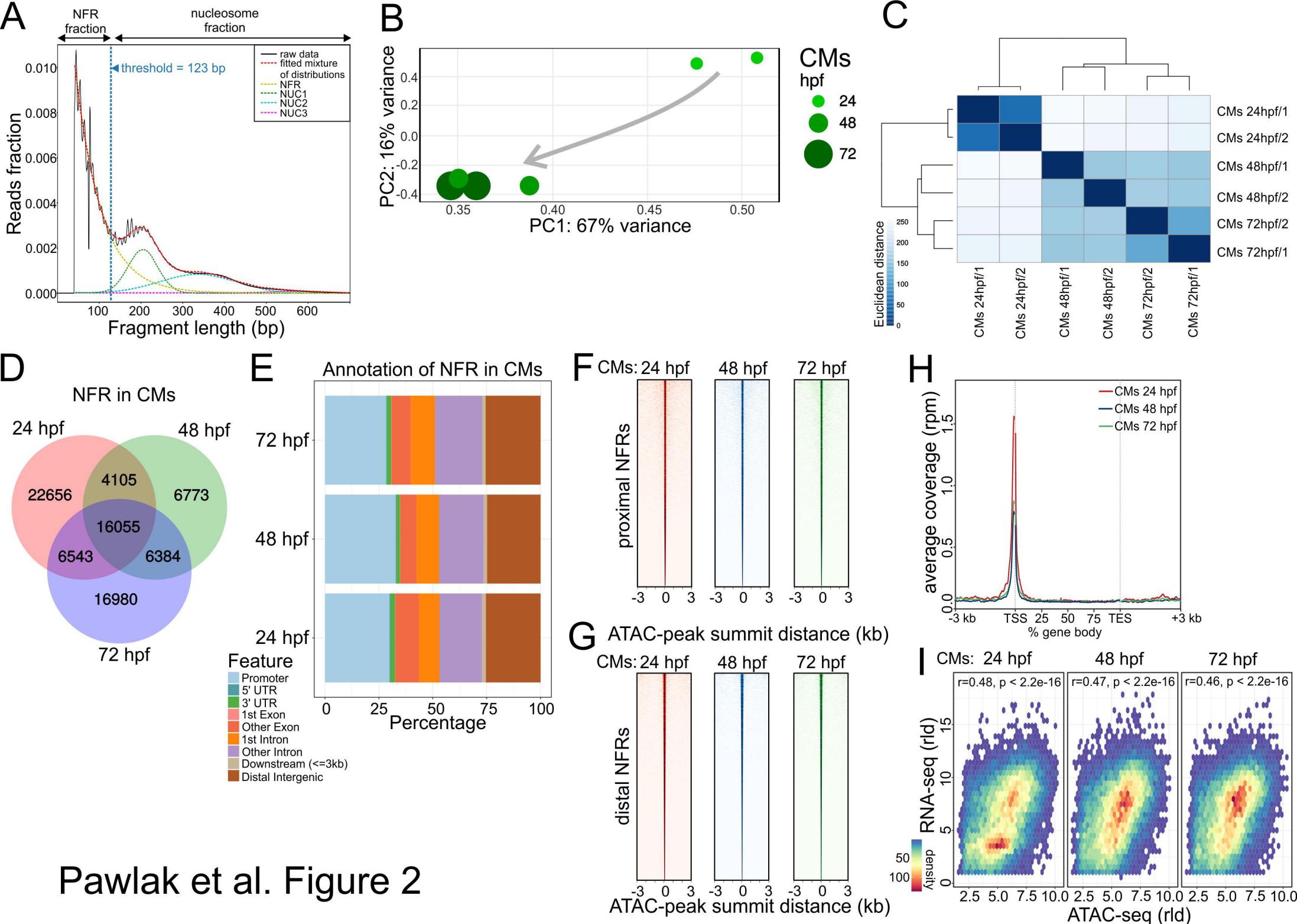
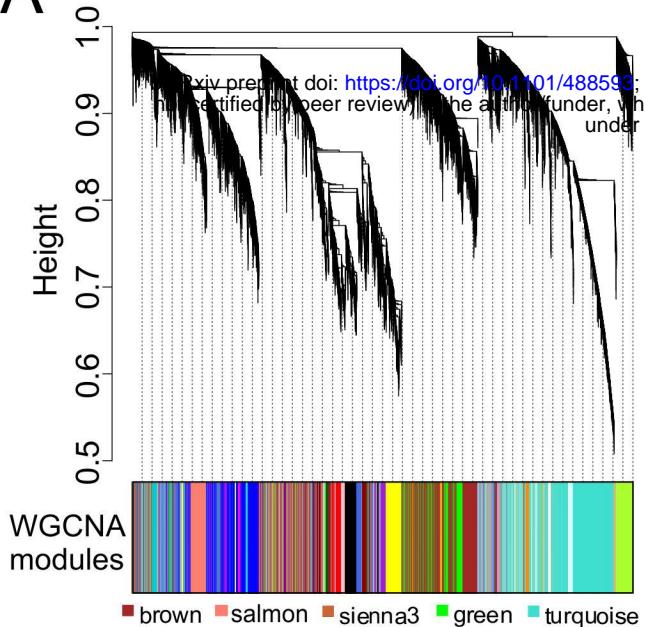
999 Zhang L, Nomura-Kitabayashi A, Sultana N, Cai W, Cai X, Moon AM, Cai CL. 2014. Mesodermal
1000 Nkx2.5 is necessary and sufficient for early second heart field development. *Dev Biol* **390**:
1001 68-79.

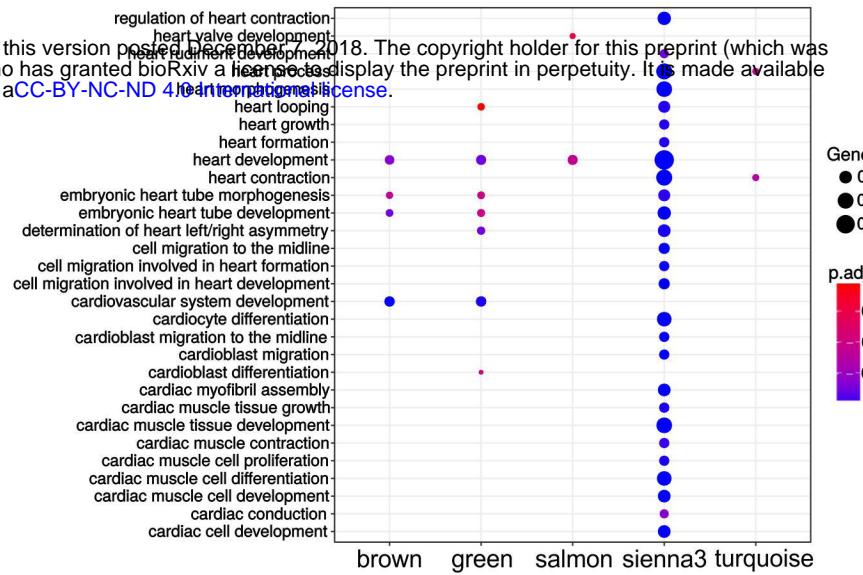
1002 Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nusbaum C, Myers RM, Brown
1003 M, Li W et al. 2008. Model-based analysis of ChIP-Seq (MACS). *Genome Biol* **9**: R137.

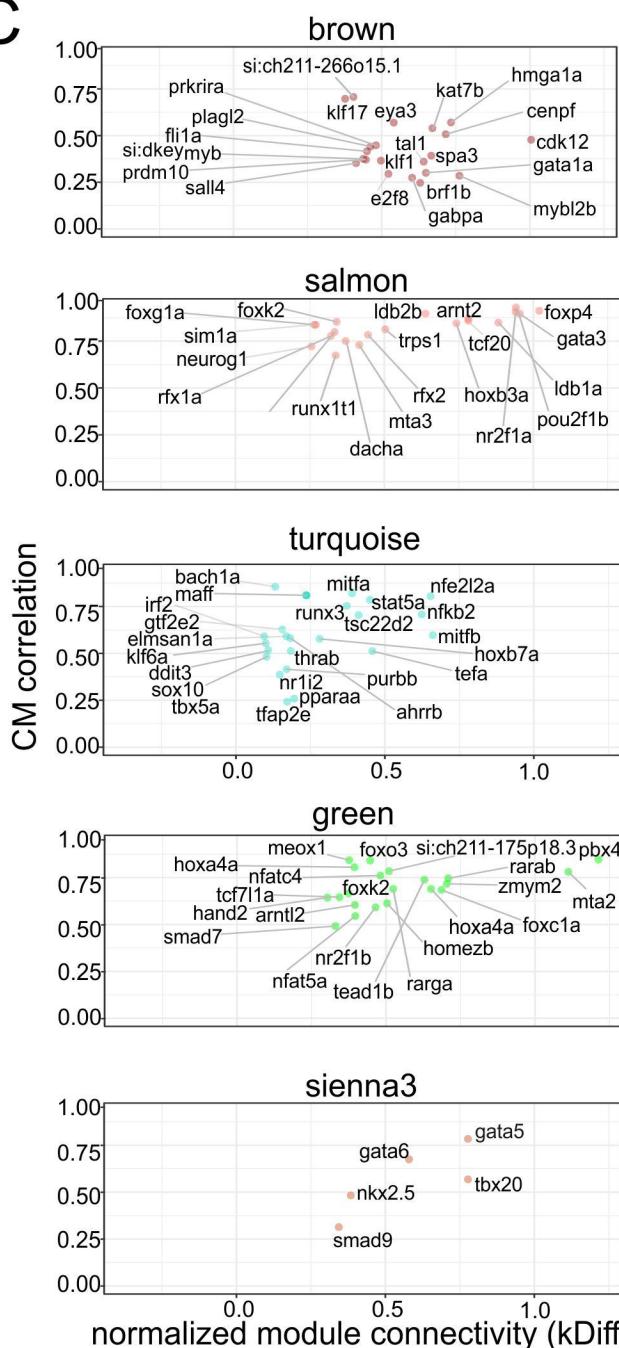
1004

brown					green				
Motif Name	P-value	Target Sequences with Motif (of 4698)	% of Target Sequences with Motif	% of Background Sequences with Motif	Motif Name	P-value	Target Sequences with Motif (of 4698)	% of Target Sequences with Motif	% of Background Sequences with Motif
Smad3	1.E-02	1172	24.94%	23.07%	Smad4	1.E-04	545	19.93%	16.96
bHLH	1.E-02	904	19.24%	17.83%	Smad2	1.E-02	495	18.11%	15.85
Fli1	1.E-09	786	16.73%	13.44%	Sox3	1.E-02	420	15.36%	13.41
ETV1	1.E-05	729	15.51%	12.97%	Sox6	1.E-02	407	14.89%	12.87
NFY	1.E-06	702	14.94%	12.41%	Sox10	1.E-02	387	14.16%	12.41
Sox3	1.E-02	700	14.90%	13.63%	Gata4	1.E-02	284	10.39%	8.84
ERG	1.E-03	672	14.30%	12.16%	Gata6	1.E-02	255	9.33%	7.79
GATA3	1.E-03	664	14.13%	12.30%	Sox2	1.E-02	218	7.97%	6.7
ETS1	1.E-07	619	13.17%	10.60%	Sox4	1.E-03	212	7.75%	6.12
EHF	1.E-02	581	12.36%	11.16%	Gata2	1.E-03	201	7.35%	5.75
bioRxiv preprint doi: https://doi.org/10.1101/488593 ; this version posted December 7, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.									
salmon					sienna3				
Motif Name	P-value	Target Sequences with Motif (of 4698)	% of Target Sequences with Motif	% of Background Sequences with Motif	Motif Name	P-value	Target Sequences with Motif (of 4698)	% of Target Sequences with Motif	% of Background Sequences with Motif
Sox3	1.E-08	332	18.24%	13.21%	Tgif1	1.E-02	77	45.03%	33.41%
Sox10	1.E-07	307	16.87%	12.34%	Tgif2	1.E-02	77	45.03%	34.57%
NeuroG2	1.E-02	299	16.43%	14.17%	Meis1	1.E-02	46	26.90%	18.63%
Sox6	1.E-04	293	16.10%	12.60%	Nkx2.5	1.E-02	44	25.73%	17.61%
Atoh1	1.E-02	215	11.81%	9.78%	Bapx1	1.E-02	42	24.56%	16.10%
Sox15	1.E-06	202	11.10%	7.65%	Nkx2.2	1.E-02	41	23.98%	16.70%
Sox2	1.E-06	178	9.78%	6.64%	GATA3	1.E-03	38	22.22%	13.17%
NeuroD1	1.E-02	159	8.74%	7.17%	Mef2b	1.E-09	33	19.30%	5.66%
Sox4	1.E-04	157	8.63%	6.08%	Tbr1	1.E-02	33	19.30%	12.02%
Maz	1.E-02	141	7.75%	6.03%	Gata6	1.E-03	29	16.96%	8.61%
turquoise									
Motif Name	P-value	Target Sequences with Motif (of 4698)	% of Target Sequences with Motif	% of Background Sequences with Motif					
SCL	1.E-06	3906	45.22%	42.29%					
Tgif2	1.E-20	3467	40.14%	34.68%					
Tgif1	1.E-20	3353	38.82%	33.42%					
Nanog	1.E-04	3311	38.34%	35.88%					
Pitx1	1.E-08	3055	35.37%	31.99%					
THRb	1.E-03	2376	27.51%	25.78%					
Tbx5	1.E-06	2270	26.28%	23.71%					
Nkx6.1	1.E-02	2166	25.08%	23.66%					
AR-halfsite	1.E-02	2120	24.55%	23.18%					
Smad3	1.E-02	2076	24.04%	22.37%					

Table 1. Pawlak et al.

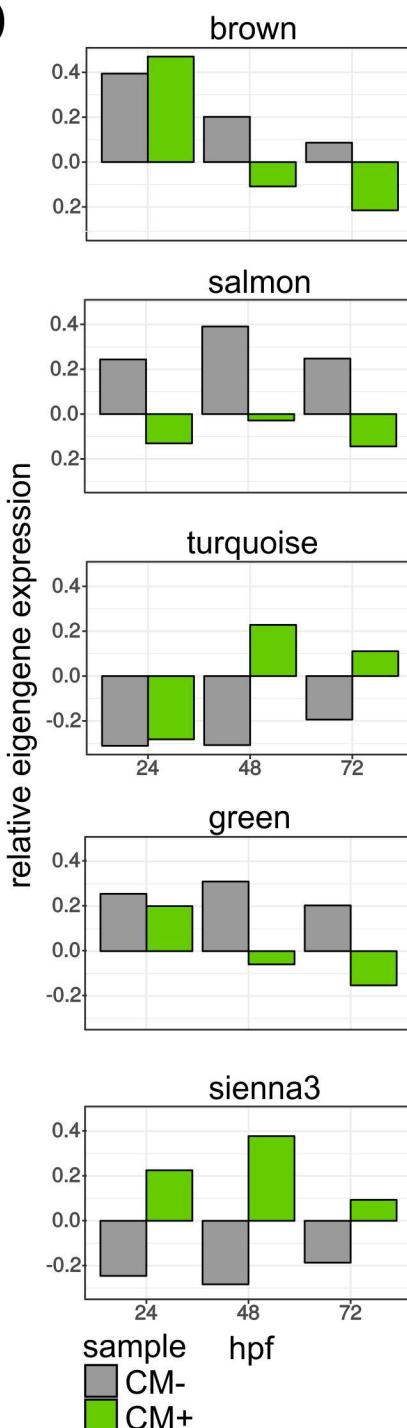
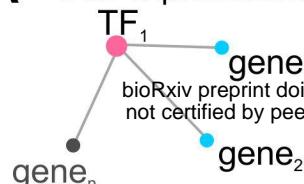

Figure 1. Pawlak et al.

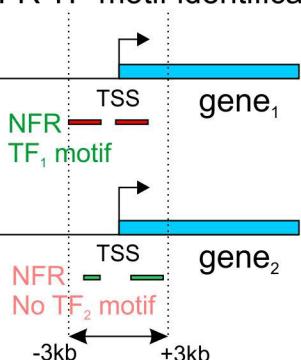

A

B

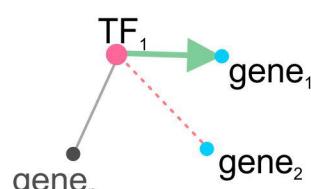
C

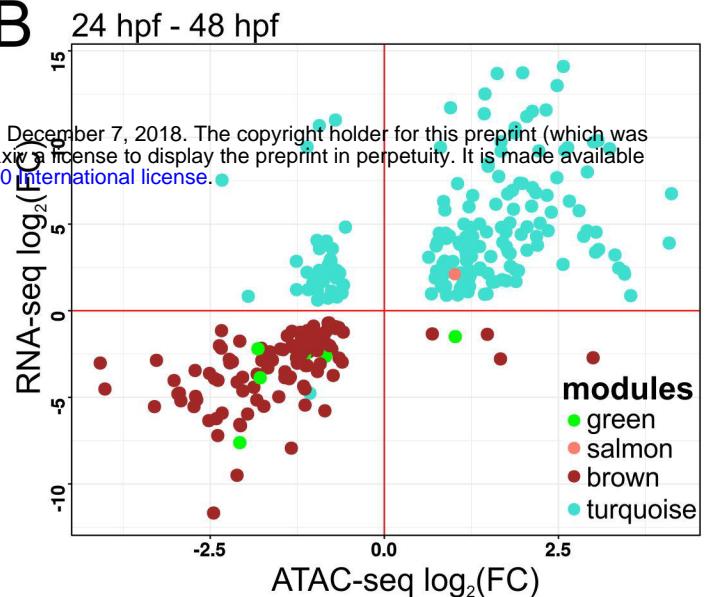
D

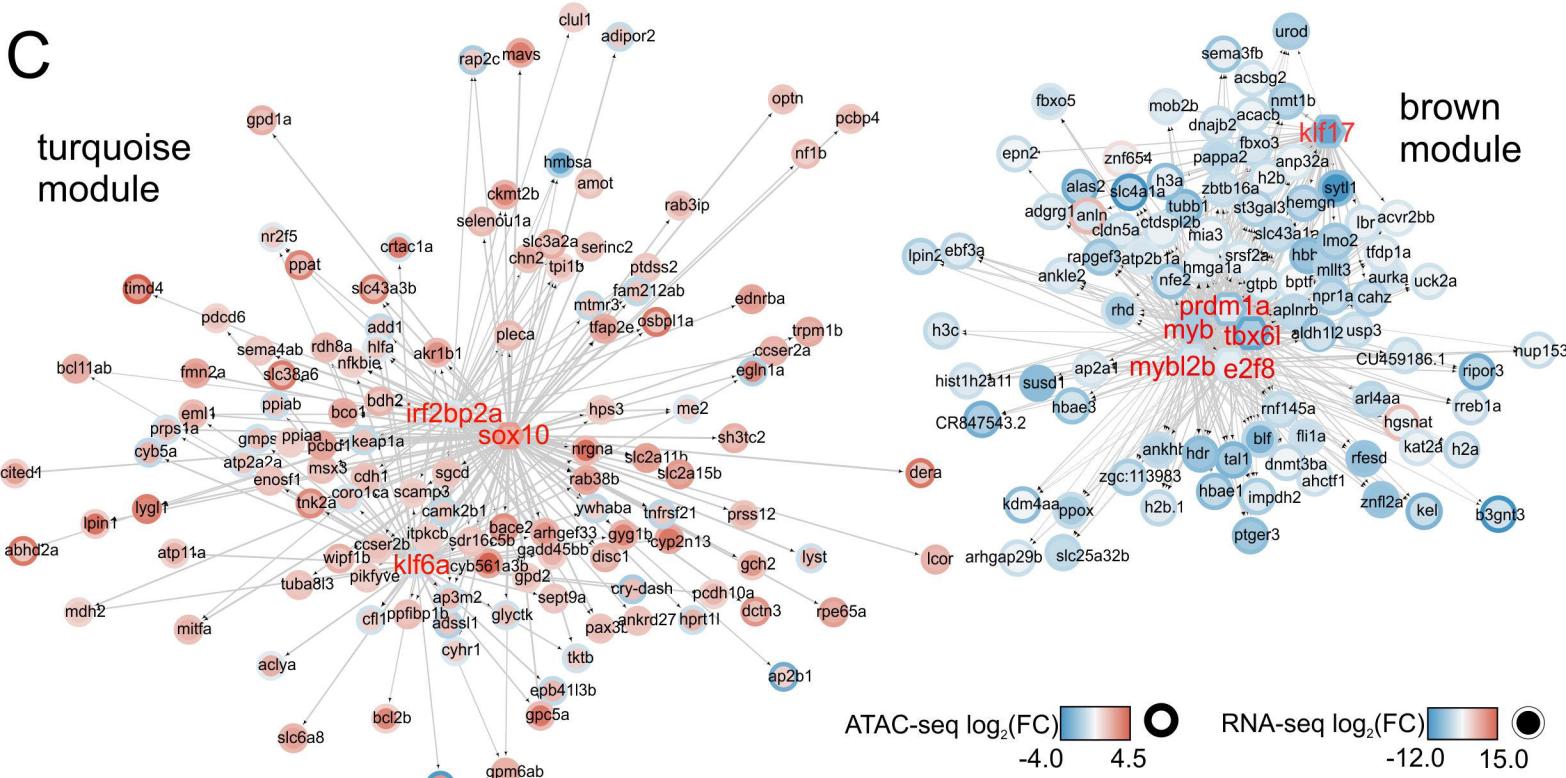

Figure 3. Pawlak et al.

A

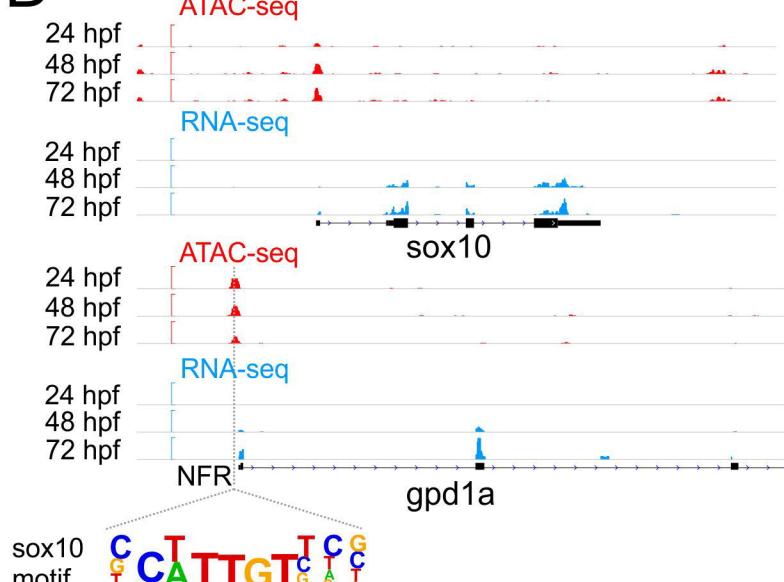

I. co-expression network


II. NFR TF-motif identification

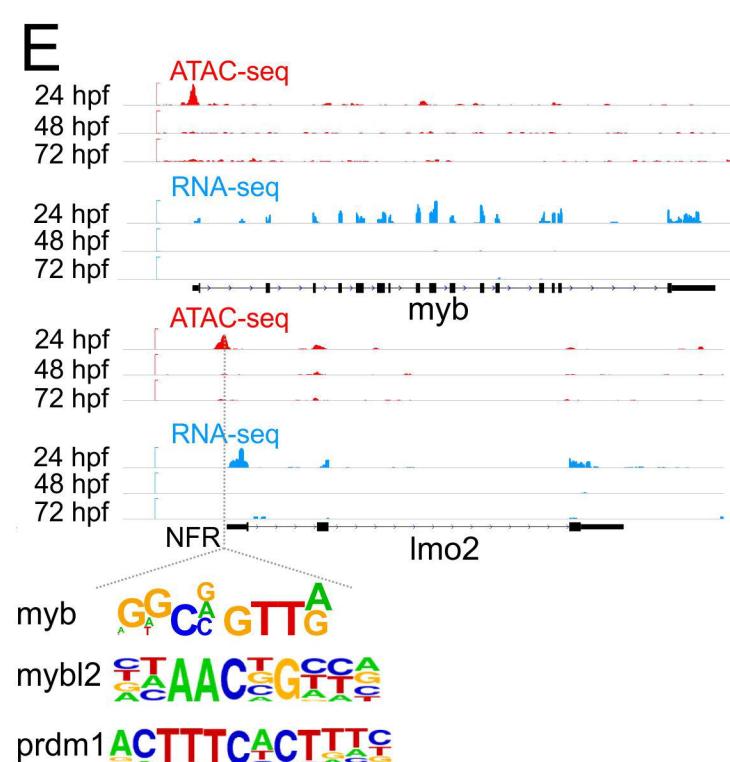
III. TF-effector gene regulatory network



B

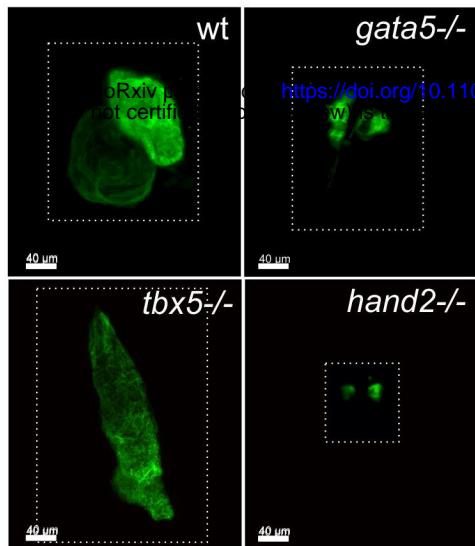

C

turquoise module

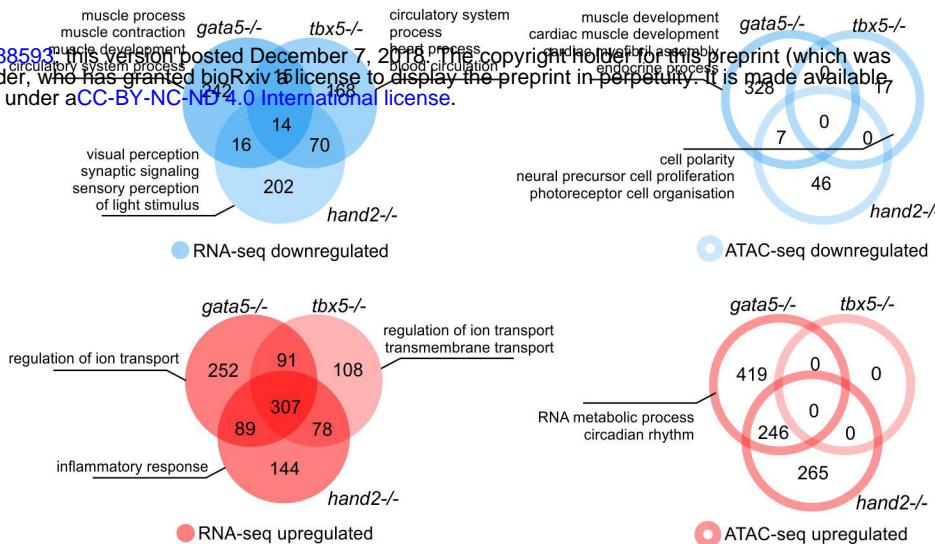


brown module

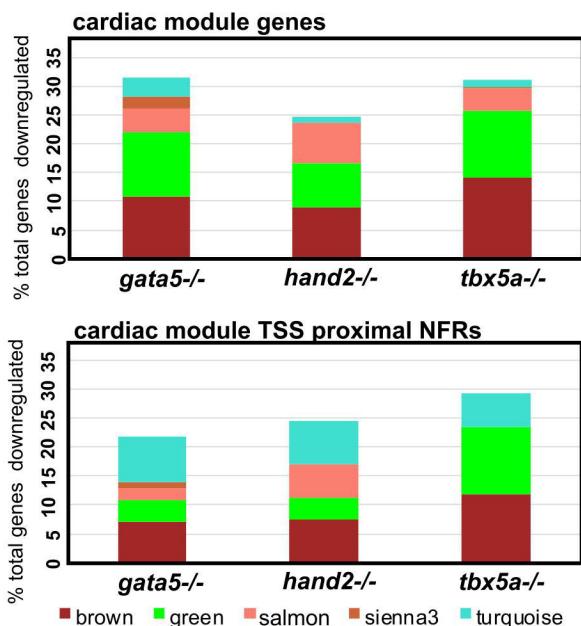
D

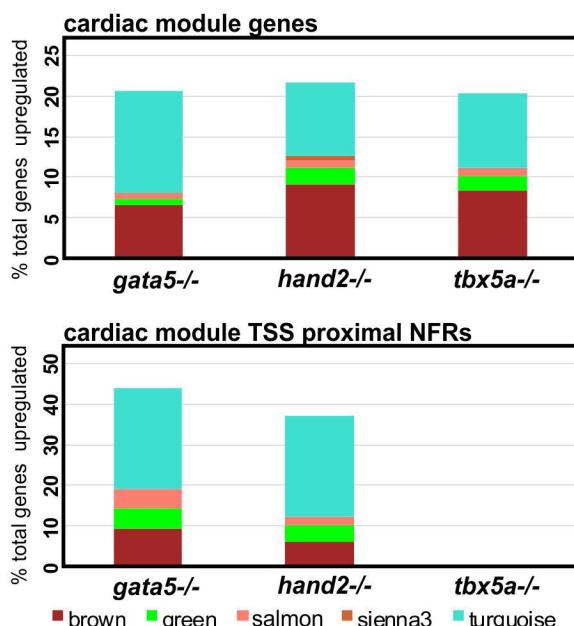


E



Pawlak et al. Figure 4


A


B

C

D

E

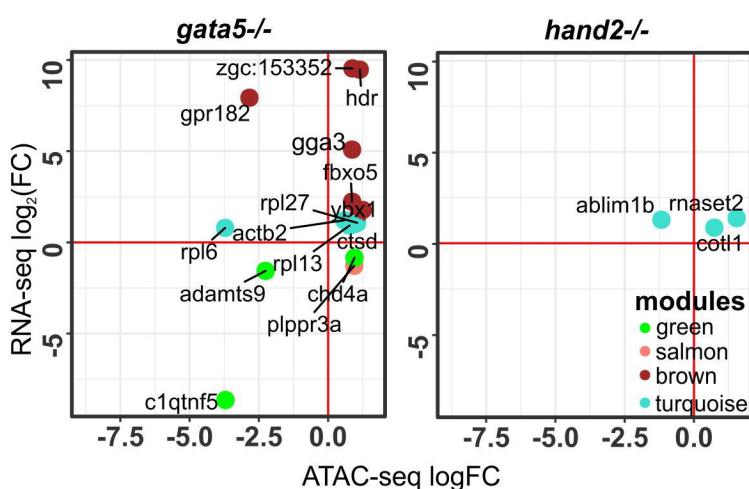
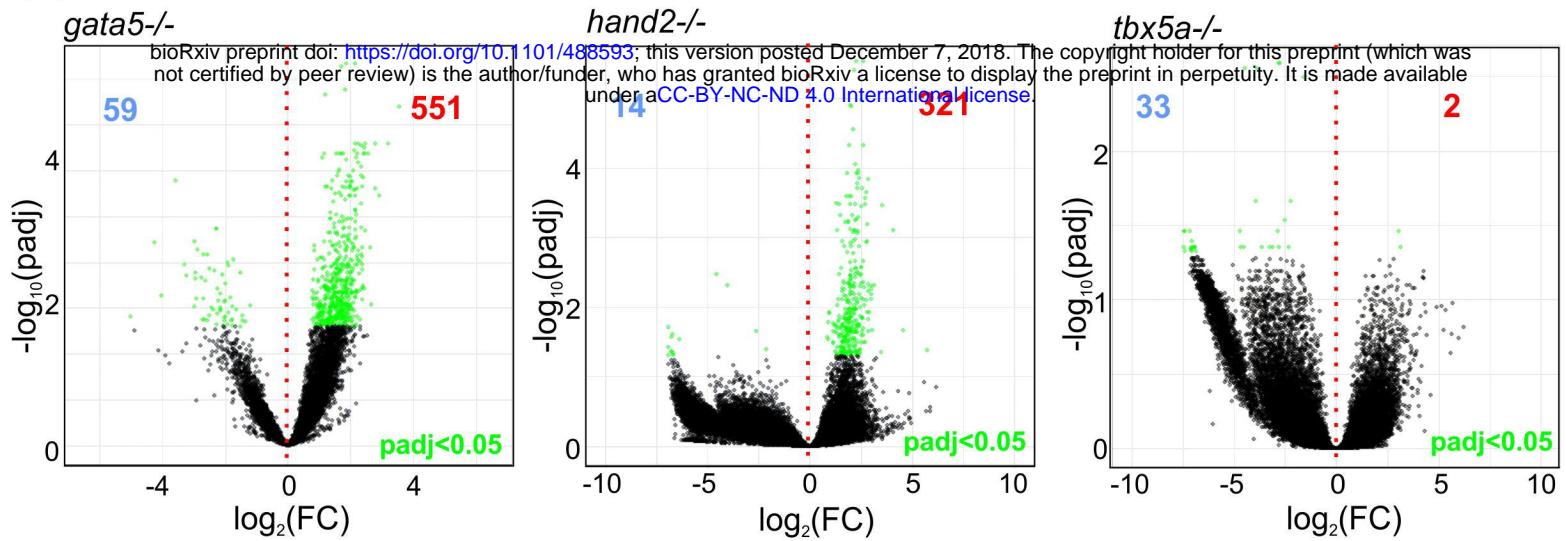
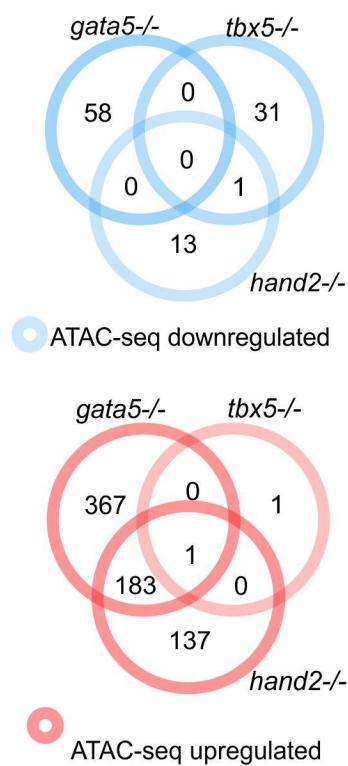
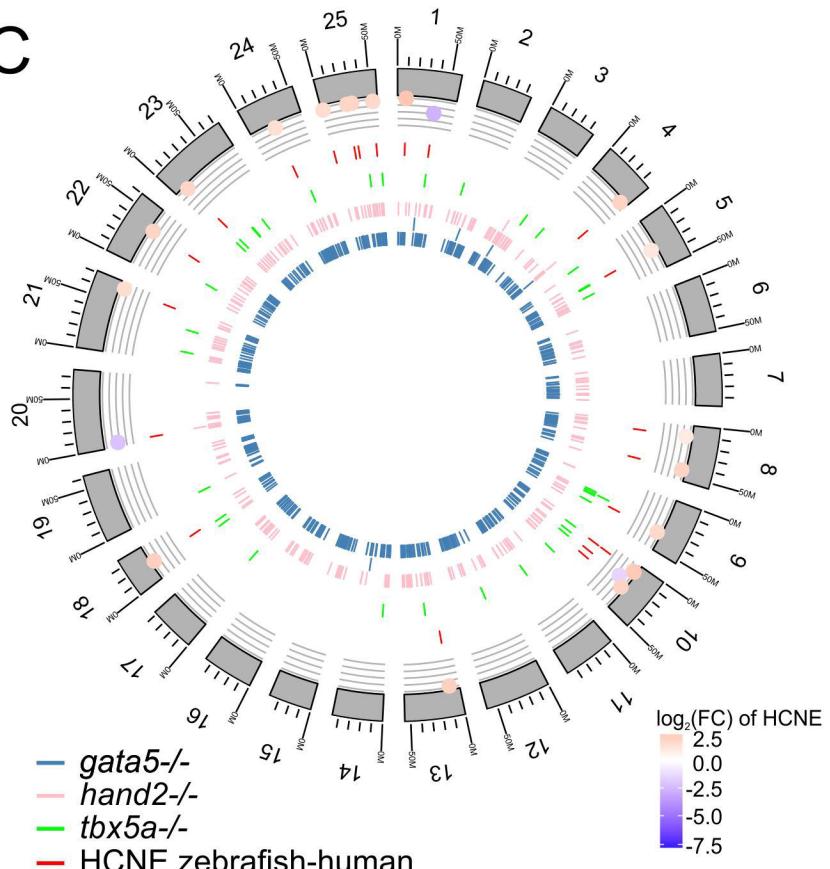
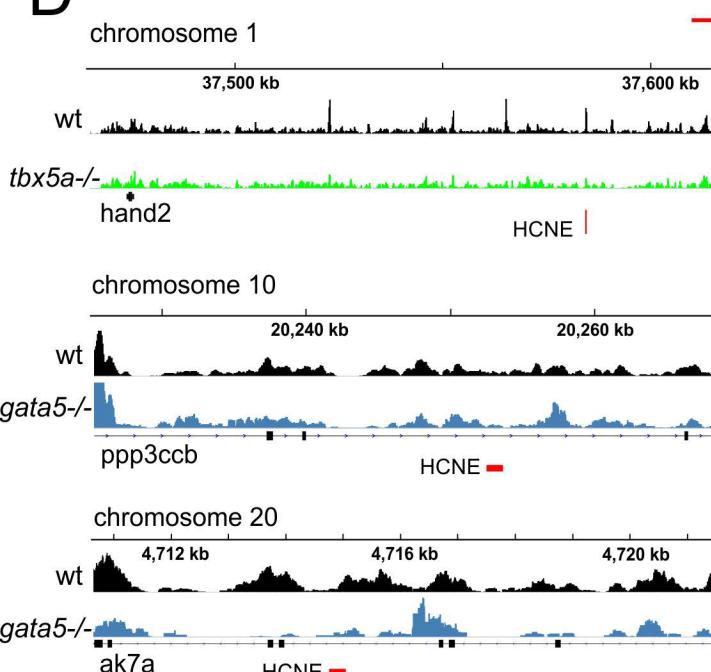
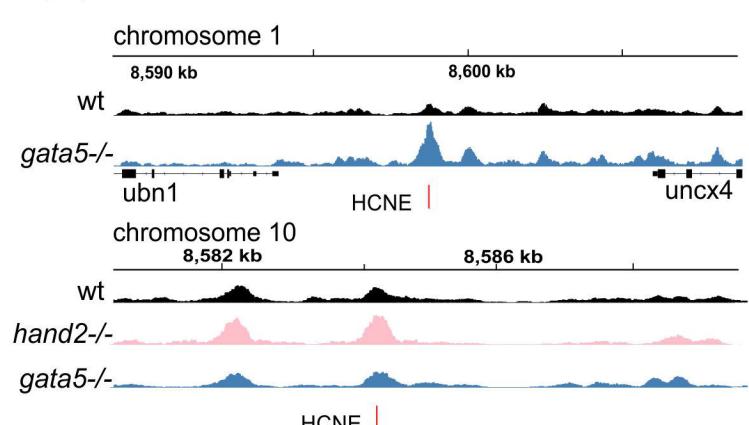







Figure 5. Pawlak et al.

A**B****C****D****E**