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Abstract
Survival and growth of the anaerobic gut fungi (AGF, Neocallimastigomycota) in the
herbivorous gut necessitate the possession of multiple abilities absent in other fungal lineages.
We hypothesized that horizontal gene transfer (HGT) was instrumental in forging the evolution
of AGF into a phylogenetically distinct gut-dwelling fungal lineage. Patterns of HGT were
evaluated in the transcriptomes of 27 AGF strains, 22 of which were isolated and sequenced in
this study, and 4 AGF genomes broadly covering the breadth of AGF diversity. We identified
283 distinct incidents of HGT in AGF transcriptomes, with subsequent gene duplication resulting
inan HGT frequency of 2.1-3.6% in AGF genomes. The majority of HGT events were AGF
specific (91.5%) and wide (70.7%), indicating their occurrence at early stages of AGF evolution.
The acquired genes allowed AGF to expand their substrate utilization range, provided new
venues for electron disposal, augmented their biosynthetic capabilities, and facilitated their
adaptation to anaerobiosis. The mgjority of donors were anaerobic fermentative bacteria
prevalent in the herbivorous gut. Thiswork strongly indicates that HGT indispensably forged the
evolution of AGF as adigtinct fungal phylum and provides a unique example of therole of HGT

in shaping the evolution of ahigh rank taxonomic eukaryotic lineage.
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Importance
The anaerobic gut fungi (AGF) represent a distinct basal phylum lineage
(Neocallimastigomycota) commonly encountered in the rumen and alimentary tracts of
herbivores. Survival and growth of anaerobic gut fungi in these anaerobic, eutrophic, and
prokaryotes dominated habitats necessitates the acquisition of several traits absent in other fungal
lineages. This manuscript assesses the role of horizontal gene transfer as arelatively fast
mechanism for trait acquisition by the Neocallimastigomycota post sequestration in the
herbivorous gut. Analysis of twenty-seven transcriptomes that represent the broad
Neocallimastigomycota diversity identified 283 distinct HGT events, with subsequent gene
duplication resulting in an HGT frequency of 2.1-3.6% in AGF genomes. These HGT events
have allowed AGF to survive in the herbivorous gut by expanding their substrate utilization
range, augmenting their biosynthetic pathway, providing new routes for electron disposal by
expanding fermentative capacities, and facilitating their adaptation to anaerobiosis. HGT in the
AGF is also shown to be mainly a cross-kingdom affair, with the majority of donors belonging to
the bacteria. Thiswork represents a unique example of the role of HGT in shaping the evolution

of ahigh rank taxonomic eukaryotic lineage.
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Introduction
Horizontal gene transfer (HGT) is defined as the acquisition, integration, and retention of foreign
genetic material into arecipient organism (1). HGT represents arelatively rapid process for trait
acquisition; as opposed to gene creation either from preexisting genes (via duplication, fission,
fusion, or exon shuffling) or through de-novo gene birth from non-coding sequences (2-6). In
prokaryotes, the occurrence, patterns, frequency, and impact of HGT on the genomic architecture
(7), metabolic abilities (8, 9), physiological preferences (10, 11), and ecological fitness (12) has
been widdly investigated, and the process is now regarded as a major driver of genome evolution
in bacteria and archaea (13, 14). Although eukaryotes are perceived to evolve principally through
modifying existing genetic information, analysis of HGT events in eukaryotic genomes has been
gliciting increasing interest and scrutiny. In spite of additional barriers that need to be overcome
in eukaryotes, e.g. crossing the nuclear membrane, germ line sequestration in sexual
multicellular eukaryotes, and epigenetic nucle ¢ acids modifications mechanisms (5, 15), itis
now widely accepted that HGT contributes significantly to eukaryotic genome evolution (16,
17). HGT events have convincingly been documented in multiple phylogenetically disparate
eukaryotes ranging from the Excavata (18-21), SAR supergroup (22-25), Algae (26), Plants (27),
and Opisthokonta (28-31). Reported HGT frequency in eukaryotic genomes ranges from a
handful of genes, e.g. (32), to up to 9.6% in Bdelloid rotifers (30).

The kingdom Fungi represents a phylogenetically coherent clade that evolved ~ 900-1481

Myafrom a unicellular flagellated ancestor (33-35). To date, multiple efforts have been reported
on the detection and quantification of HGT in fungi. A survey of 60 fungal genomes reported
HGT frequencies of 0-0.38% (29), and similar low values were observed in the genomes of five

early-diverging pathogenic Microsporidia and Cryptomycota (36). The osmotrophic lifestyle of
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fungi (37) hastypically been regarded as less conducive to HGT compared to the phagocytic
lifestyle of several microeukaryotes with relatively higher HGT frequency (38).

The anaerobic gut fungi (AGF, Neocallimastigomycota) represent a phylogenetically
distinct basal fungal lineage. The AGF appear to exhibit a restricted distribution pattern, being
encountered in the gut of ruminant and non-ruminant herbivorous (39). In the herbivorous gut,
the life cycle of the AGF (Figure S1) involves the discharge of motile flagellated zoospores from
sporangiain response to animal feeding, the chemotaxis and attachment of zoospores to ingested
plant material, spore encystment, and the subsequent production of rhizoidal growth that
penetrates and digests plant biomass through the production of awide array of cellulolytic and
lignocellulolytic enzymes.

Survival, colonization, and successful propagation of AGF in the herbivorous gut
necessitate the acquisition of multiple unique physiological characteristics and metabolic abilities
absent in other fungal lineages. These include, but are not limited to, development of a robust
plant biomass degradation machinery, adaptation to anaerobiosis, and exclusive dependence on
fermentation for energy generation and recycling of eectron carriers (40, 41). Therefore, we
hypothesized that sequestration into the herbivorous gut was conducive to the broad adoption of
HGT as arelatively faster adaptive evolutionary strategy for niche adaptation by the AGF
(Figure S1). Further, since no part of the AGF life cycle occurs outside the animal host and no
reservoir of AGF outside the herbivorous gut has been identified (39), then acquisition would
mainly occur from donors that are prevalent in the herbivorous gut (Figure S1). Apart from
earlier observations on the putative bacterial origin of afew catabolic genes in two AGF isolates
(42, 43), and preliminary BLAST-based queries of afew genomes (41, 44), littleis currently

known on the patterns, determinants, and frequency of HGT in the Neocallimastigomycota. To
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address this hypothesis, we systematically evaluated the patterns of HGT acquisition in the
transcriptomes of 27 AGF strains and 4 AGF genomes broadly covering the breadth of AGF
genus-level diversity. Our results document the high level of HGT in AGF in contrast to HGT
paucity across the fungal kingdom. The identity of genes transferred, distribution pattern of
events across AGF genera, phylogenetic affiliation of donors, and the expansion of acquired
genetic material in AGF genomes highlight the role played by HGT in forging the evolution and
diversification of the Neocallimastigomycota as a phylogenetically, metabolically, and

ecologically distinct lineage in the fungal kingdom.
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Materialsand Methods
Organisms. Type strains of the Neocallimastigomycota are unavailable through culture
collections due to their strict anaerobic and fastidious nature, as well as the frequent occurrence
of senescence in AGF strains (45). As such, obtaining a broad representation of the
Neocallimastigomycota necessitated the isolation of representatives of various AGF genera de
novo. Samples were obtained from the feces, rumen, or digesta of domesticated and wild
herbivores around the city of Stillwater, OK and Val Verde County, Texas (Table 1). Samples
were immediately transferred to the laboratory and the isolation procedures usually commenced
within 24 hours of collection. A second round of isolation was occasionally conducted on
samples stored at -20° C for several weeks (Table 1).

I solation was performed using a rumen fluid medium reduced by cysteine-sulfide,
supplemented with a mixture of kanamycin, penicillin, streptomycin, and chloramphenicol (50
pug/mL, 50 pg/mL, 20 ug/mL, and 50 ng/mL, respectively), and dispensed under a stream of
100% CO; (41, 46). All media were prepared according to the Hungate technique (47), as
modified by Balch and Wolfe (48). Cellulose (0.5%), or a mixture of switchgrass (0.5%) and
cellobiose (0.5%) were used as carbon sources. Samples were serially diluted and incubated at
39°C for 24-48 h. Colonies were obtained from dilutions showing visible signs of fungal growth
using the roll tube technique (49). Colonies obtained were inoculated into liquid media, and a
second round of isolation and colony picking was conducted to ensure culture purity.
Microscopic examination of thallus growth pattern, rhizoid morphology, and zoospore
flagellation, aswell LSU rRNA gene D1-D2 domain amplification and sequencing were

employed to determine the genus level affiliation of all isolates (46). The cultures were routinely
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sub-cultured on rumen fluid medium supplemented with antibiotics (to guard against accidental
bacterial contamination) and stored on agar media as described previously (41, 50).
Sequencing and assembly. Transcriptomic sequencing was conducted for twenty-two AGF
strains. Sequencing multiple taxa provides stronger evidence for the occurrence of HGT in a
target lineage (51), and allows for the identification of phylum-wide versus genus- and species-
specific HGT events. Transcriptomic, rather than genomic, sequencing was chosen for AGF-
wide HGT identification efforts since enrichment for polyadenylated (poly(A)) transcripts prior
to RNA-seq provides a built-in safeguard against possible prokaryotic contamination, an issue
that often plagued eukaryotic genome-based HGT detection efforts (52, 53), aswell asto
demonstrate that HGT genes identified are transcribed in AGF. Further, sequencing and
assembly of alarge number of Neocallimastigomycota genomes is challenging due to the
extremely high AT content in intergenic regions and the extensive proliferation of microsatellite
repeats, often necessitating employing multiple sequencing technologies for successful genomic
assembly (41, 44).

RNA extraction was conducted as described previously (54). Briefly, fungal biomass was
obtained by vacuum filtration and grounded with a pestle under liquid nitrogen. RNA was
extracted using Epicentre MasterPure Y east RNA Purification kit (Epicentre, Madison, WI,
USA) and stored in RNase-free TE buffer. Transcriptomic sequencing using Illumina Hi Seq2500
2X150bp paired end technology was conducted using the services of acommercial provider
(Novogene Corporation, Beijing, China).

RNA-Seq reads were assembled by the de novo transcriptomic assembly program Trinity
(55) using previously established protocols (56). All settings were implemented according to the

recommended protocol for fungal genomes, with the exception of the absence of the “—
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jaccard_clip” flag dueto the low gene density of anaerobic fungal genomes. The assembly
process was conducted on the Oklahoma State University High Performance Computing Cluster
aswell asthe XSEDE HPC Bridges at the Pittsburg Super Computing Center. Quantitative levels
for all assembled transcripts were determined using Bowtie2 (57). The program Kallisto was
used for quantification and normalization of the gene expression of the transcriptomes (58). All
final peptide models predicted were annotated using the Trinotate platform with a combination
of homology-based search using BLAST+, domain identification using hmmscan and the Pfam
30.0 database 19 (59), and cellular localization with SignalP 4.0 (60). The twenty-two
transcriptomes sequenced in this effort, as well as previously published transcriptomic datasets
from Pecoramyces ruminantium (41), Piromyces finnis, Piromyces sp. E2, Anaeromyces
robustus, and Neocallimastix californiae (44) were examined. In each dataset, redundant
transcripts were grouped into clusters using CD-HIT-EST with identity parameter of 95% (-c
0.95). The obtained non-redundant transcripts from each analyzed transcriptome were
subsequently used for peptide and coding sequence prediction using the TransDecoder with a

minimum peptide length of 100 amino acids (http://transdecoder.github.io). Assessment of

transcriptome coverage per strain was conducted using BUSCO (61).

HGT identification. A combination of BLAST similarity searches, comparative similarity index
(HGT index, hy), and phylogenetic analyses were conducted to identify HGT eventsin the
analyzed transcriptomic datasets (Figure 1). We define an HGT event as the acquisition of a
foreign gene/Pfam by AGF from a single lineage/donor. All predicted peptides were queried
against Uniprot databases (downloaded May 2017) each containing both reviewed (Swiss-Prot)
and unreviewed (TrEMBL) sequences. The databases encompassed nine different phylogenetic

groups, Bacteria, Archaea, Viridiplantae, Opisthokonta-Chaonoflagellida, Opisthokonta-Fungi
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(without Neocallimastigomycota representatives), Opisthokonta-M etazoa, Opisthokonta-
Nucleariidae and Fonticula group, all other Opisthokonta, and all other non-Opisthokonta-non-
Viridiplantae Eukaryota. For each peptide sequence, the bit score threshold and HGT index hy
(calculated as the difference between the bit-scores of the best non-fungal and the best Dikarya
fungal matches) were determined. Peptide sequences that satisfied the criteria of having a
BLASTP hit-score against a non-fungal database that was >100 (i.e. 2"*% chance of random
observation) and an HGT index hy that was >30 were considered HGT candidates and subjected
to additional phylogenetic analysis. We chose to work with bit-score rather than the raw scores
since the bit-score measures sequence similarity independent of query sequence length and
database size. Thisis essential when comparing hits from databases with different sizes (for
example, the Bacteria database contained 83 million sequences while the Choanoflagellida
database contained 21 thousand sequences). We chose an hy value of >30 (a difference of bit-
score of at least 30 between the best non-fungal hit and the best fungal hit to an AGF sequence)
previously suggested and validated (62, 63) as the best tradeoff between sensitivity and
specificity. Since the bit-score is alogarithmic value that describes sequence similarity, a bit-
score > 30 ensure that the sequence aligned much better to the non-fungal hit than it did to the
fungal hit.

Theidentified HGT candidates were modified by removing all CAZyme-encoding
sequences (due to their multi-modular nature, see below) and further clustered into orthologues
using OrthoM CL (64). Orthologues obtained were subjected to detailed phylogenetic analysisto
confirm HGT occurrence as well as to determine the potential donor. Each Orthologue was
gueried againgt the nr database using web Blastp (65) under two different settings. once against

the full nr database and once against the Fungi (taxonomy ID: 4751) excluding the

10


https://doi.org/10.1101/487215
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/487215; this version posted January 30, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

aCC-BY-NC-ND 4.0 International license.

Neocallimastigomycetes (Taxonomy ID: 451455). The first 250 hits obtained using these two
Blastp searches with an e-value below e° were downloaded and combined in one fastafile.
Datasets were reduced by removing duplicate sequences as well as redundant sequences from
one organism. AGF and reference sequences were aligned using the standalone Clustal Omega
(66). Alignments were viewed and manually curated in Mega (67). The alignments were used to
generate guide trees in FastTree under the LG model (68). Guide trees were in turn used as input
to 1Q-tree (69) to generate maximum likelihood trees under the posterior mean site frequency
method (PM SF), shown before to ameliorate long-branch attraction artifacts (70). Both the (-alrt
1000) option for performing the Shimodaira—Hasegawa approximate likelihood ratio test (SH-

aLRT), aswell asthe (-bb 1000) option for ultrafast bootstrap (UFB) (71) were added to the 1Q-

tree command line. This resulted in the generation of phylogenetic trees with two support values
(SH-aLRT and UFB) on each branch. Candidates that showed a nested phylogenetic affiliation
that was incongruent to organismal phylogeny with strong SH-aLRT and UFB supports were
deemed horizontally transferred.

Identification of HGT eventsin carbohydrate active enzymes (CAZymes) transcripts. In
AGF genomes, carbohydrate active enzymes (CAZymes) are often encoded by large multi-
module genes with multiple adjacent CAZyme or non-CAZyme domains (41, 44). A single gene
can hence harbor multiple CAZyme pfams of different (fungal or non-fungal) origins (41, 44).
Assuch, our initial effortsfor HGT assessment in CAZyme-encoding transcripts using an entire
gene/ transcript strategy yielded inaccurate results since similarity searches only identified pfams
with the lowest e-value or highest number of copies, while overlooking additional CAZyme
pfamsin the transcript (Figure S2). To circumvent the multi-modular nature of AGF CAZyme

transripts, we opted for the identification of CAZyme HGT events on trimmed domains, rather

11
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than entire transcript. CAZyme-containing transcripts (Glycoside hydrolases (GHS),
Polysaccharide lyases (PLs), and Carbohydrate Esterases (CES)) were first identified by
searching the entire transcriptomic datasets against the dbCAN hidden markov models V5 (72)
(downloaded from the dbCAN web server in September 2016) using the command hmmscan in
standalone HMMER. For each CAZy family identified, predicted peptides across all
transcriptomic datasets were grouped in one fasta file that was then amended with the

corresponding Pfam seed sequences (downloaded from the Pfam website (http://pfam.xfam.org/)

in March 2017). Sequences were aligned using the standalone Clustal Omega (66) to their
corresponding Pfam seeds. Using the Pfam seed sequences as a guide for the start and end of the
domain, aligned sequences were then truncated in Jalview (73). Truncated transcripts with an
identified CAZy domain were again compared to the pfam database (74) using hmmscan (75) to
ensure correct assignment to CAZy families and accurate domain trimming. These truncated
peptide sequences were then analyzed to pinpoint incidents of HGT using the approach described
above.

Neocallimastigomycota-specific ver sus non-specific HGT events. To determine whether an
identified HGT event (i.e. foreign gene acquisition from a specific donor) is specific to the
phylum Neocallimastigomycota; the occurrence of orthologues (30% identity, >100 amino acids
alignment) of the identified HGT genesin basal fungi, i.e. members of Blastocladiales,
Chytridiomycota, Cryptomycota, Microsporidia, Mucormycota, and Zoopagomycota, aswell as
the putative phylogenetic affiliation of these orthologues, when encountered, were assessed.
HGT events were judged to be Neocallimastigomycota-specific if: 1. orthologues were absent in
all basal fungal genomes, 2. orthologues were identified in basal fungal genomes, but these

orthologues were of clear fungal origin, or 3. orthologues were identified in basal fungal

12
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genomes and showed a non-fungal phylogenetic affiliation, but such affiliation was different
from that observed in the Neocallimastigomycota. On the other hand, events were judged to be
non-specific to the Neocallimastigomycota if phylogenetic analysis of basal fungal orthologues
indicated a non-fungal origin with adonor affiliation similar to that observed in the
Neocallimastigomycota (Figure 1).

Mapping HGT eventsto available AGF genomes. HGT eventsidentified in AGF datasets
examined (both CAZy and non-CAZy events) were mapped onto currently available AGF
genome assemblies (41, 44) (Genbank accession numbers ASRE00000000.1,

M COG00000000.1, MCFG00000000.1, MCFH00000000.1). The duplication and expansion
patterns, as well as GC content, and intron distribution were assessed in all identified genes.
Averages were compared to AGF genome average using Student t-test to identify possible
deviationsin such characteristics as often observed with HGT genes (76). To avoid any biasthe
differences in the number of genes compared might have on the results, we also compared the
GC content, codon usage, and intron distribution averages for the identified genes to a subset of
an equal number of randomly chosen genes from AGF genomes. We used the MEME Suite's

fasta-subsample function (http://meme-suite.org/doc/fasta-subsample.html) to randomly select an

equal number of genes from the AGF genomes.

Validation of HGT -identification pipeline using previously published datasets. As acontrol,
the frequency of HGT occurrence in the genomes of afilamentous ascomycete (Colletotrichum
graminicola, GenBank Assembly accession number GCA_000149035.1), and a microsporidian
(Encephalitozoon hellem, GenBank Assembly accession number GCA_000277815.3) were
determined using our pipeline (Table S1); and the results were compared to previously published

results (36, 77).

13
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Guarding against false positive HGT eventsdue to contamination. Multiple safeguards were
taken to ensure that the frequency and incidence of HGT reported here are not due to bacterial
contamination of AGF transcripts. Theseincluded: 1. Application of antiobioticsin al culturing
procedures as described above. 2. Utilization of transcriptomes rather than genomes selects for
eukaryotic polyadenylated (poly(A)) transcripts prior to RNA-seq as a built-in safeguard agai nst
possible prokaryotic contamination. 3. Mapping HGT transcripts identified to genomes generated
in prior studies and confirming the occurrence of introns in the majority of HGT genesidentified.
4. Applying athreshold where only transcripts identified in >50% of transcriptomic assemblies
from a specific genus are included and 5. The exclusion of HGT events showing suspiciously
high (>90%) sequence identity to donor sequences.

In addition, recent studies have demonstrated that GenBank-deposited reference genomes
(52) and transcriptomes (78) of multicellular organisms are often plagued by prokaryotic
contamination. The occurrence of prokaryotic contamination in reference donors
genomes/transcriptomes could lead to false positive HGT identification, or incorrect HGT
assignments. To guard against any false positive HGT event identification due to possible
contamination in reference datasets, sequence data from potential donor reference organisms
were queried using blast, and their congruence with organismal phylogeny was considered a
prerequisite for inclusion of an HGT event.
Data accession. Sequences of individual transcripts identified as horizontally transferred are
deposited in GenBank under the accession number MH043627-MH043936, and MH044722-
MHO044724. The whole transcri ptome shotgun sequences were deposited in GenBank under the
BioProject PRINA489922, and Biosample accession numbers SAMNQ09994575-

SAMNO09994596. Transcriptomic assemblies were deposited in the SRA under project accession
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294  number SRP161496. Alignments, aswell as Newick treefilesfor all HGT genes are provided as

295  Supplementary datasets. Trees of HGT events discussed in the results and discussion sections are

296  presented in the supplementary document (S5-$45).
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Results
| solates. The transcriptomes of 22 different isolates were sequenced. These isolates belonged to
six out of the nine currently described AGF genera: Anaeromyces (n=5), Caecomyces (n=2),
Neocallimastix (n=2), Orpinomyces (n=3), Pecoramyces (n=4), Piromyces (n=4), aswell asthe
recently proposed genus Feramyces (n=2) (79) (Table 1, Supplementary Fig. 3). Out of the three
AGF genera not included in this analysis, two are currently represented by a single strain that
was either lost (genus Oontomyces (80)), or appears to exhibit an extremely limited geographic
and animal host distribution (genus Buwchfawromyces (81)). The third unrepresented genus
(Cyllamyces) has recently been suggested to be phylogenetically synonymous with Caecomyces
(82). As such, the current collection is abroad representation of currently described AGF genera.
Sequencing. Transcriptomic sequencing yielded 15.2-110.8 million reads (average, 40.87) that
were assembled into 31,021-178,809 total transcripts, 17,539-132,141 distinct transcripts
(clustering at 95%), and 16,500-70,061 predicted peptides (average 31,611) (Table S2).
Assessment of transcriptome coverage using BUSCO (61) yielded high completion values
(82.76-97.24%) for all assemblies (Table S1). For strains with a sequenced genome, genome
coverage (percentage of genesin a strain’s genome for which a transcript was identified) ranged
between 70.9-91.4% (Table S2).
HGT events. A total of 12,786 orthologues with anon-fungal bit score > 100, and an HGT index
> 30 were identified. After removing orthologues occurring only in asingle strain or in less than
50% of isolates belonging to the same genus, 2147 events were further evaluated. Phylogenetic
analysis could not confirm the HGT nature (e.g. single long branch that could either be attributed
to HGT or genelossin al other fungi, unstable phylogeny, and/or low bootstrap) of 1846

orthologues and so were subsequently removed. Of the remaining 291 orthol ogues, 8 had
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suspiciously high (>90%) first hit amino acid identity. Although the relatively recent divergence
and/or acquisition time could explain this high level of similarity, we opted to remove these
orthologues as a safeguard against possible bacterial contamination of the transcriptomes.
Ultimately, atotal of 283 distinct HGT events that satisfied the criteria described above for HGT
were identified (Table S3). The average number of events per genus was 223+13 and ranged
between 210 in the genus Orpinomyces to 242 in the genus Pecoramyces pantranscriptomes (Fig.
2A). The mgjority of HGT acquisition events identified (259, 91.52%) appear to be
Neocallimastigomycota-specific, i.e. identified only in genomes belonging to the
Neocallimastigomycota, but not in other basal fungal genomes (Table $4), strongly suggesting
that such acquisitions occurred post, or concurrent with, the evolution of Neocallimastigomycota
asadistinct fungal lineage. As well, the mgjority of these identified genes were
Neocallimastigomycota-wide, being identified in strains belonging to at least six out of the seven
examined genera (200 events, 70.7%), suggesting the acquisition of such genes prior to genus
level diversification within the Neocallimastigomycota. Only 33 events (11.7%) were genus-
specific, with the remainder (50 events, 17.7%) being identified in the transcriptomes of 3-5
genera (Table $4, Figure $4, and Fig. 2b).

The absolute maority (89%) of events were successfully mapped to at least one of the
four AGF genomes (Table S5), with afraction (7/31) of the unmapped transcripts being specific
to a genus with no genome representative (Feramyces, Caecomyces). Compared to a random
subset of 283 genesin each of the sequenced genomes, horizontally transferred genesin AGF
genomes exhibited significantly (P<0.0001) fewer introns (1.1+031 vs 3.32+0.83), aswell as
higher GC content (31+4.5 vs 27.745.5) (Table S5). Further, HGT genes/pfams often displayed

high levels of gene/ pfam duplication and expansion within the genome (Table S5), resulting in
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an HGT frequency of 2.13% in Pecoramyces ruminantium (348 HGT genes out of 16,347 total
genes), 3.07% in Piromyces finnis (352 HGT genes out of 11,477 total genes), 3.27% in
Anaeromyces robustus (423 HGT genes out of 12,939 total genes), and 3.60% in Neocallimastix
californiae (753 HGT genes out of 20,939 total genes).

Donors. A bacterial origin was identified for the majority of HGT events (84.8%), with four
bacterial phyla (Firmicutes, Proteobacteria, Bacteroidetes, and Spirochaetes) identified as donors
for 177 events (62.5% of total, 73.8% of bacterial events) (Fig. 3A). Specificaly, the
contribution of members of the Firmicutes (125 events) was paramount, the majority of which
were most closaly affiliated with members of the order Clostridiales (106 events). In addition,
minor contributions from a wide range of bacterial phylawere also identified (Fig. 3A). The
majority of the putative donor taxa are strict/ facultative anaerobes, and many of which are also
known to be major inhabitants of the herbivorous gut and often possess polysaccharide-
degradation capabilities (83, 84). Archaeal contributionsto HGT were extremely rare (6 events).
On the other hand, multiple (34) events with eukaryotic donors were identified. In few instances,
aclear non-fungal origin was identified for a specific event, but the precise inference of the
donor based on phylogenetic analysis was not feasible (Table $4).

Metabolic char acterization. Functional annotation of HGT genes/pfams indicated that the
majority (63.96%) of events encode metabolic functions such as extracellular polysaccharide
degradation and central metabolic processes. Bacterial donors were slightly overrepresented in
metabolic HGT events (87.3% of the metabolism-related events, compared to 84.8% of the total
events). Genesinvolved in cellular processes and signaling represent the second most

represented HGT events (10.95%), while genesinvolved in information storage and processing
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only made up 4.95% of the HGT eventsidentified (Figs 3b-€). Below we present adetailed
description of the putative abilities and functions enabled by HGT transfer events.

Central catabolic abilities. Multiple HGT events encoding various central catabolic processes
were identified in AGF transcriptomes and successfully mapped to the genomes (Fig. 4, Table
4, Figs S5-S16). A group of events appear to encode enzymes that allow AGF to channel
specific substrates into central metabolic pathways. For example, genes encoding enzymes of the
Leloir pathway for galactose conversion to glucose-1-phosphate (galactose-1-epimerase,
galactokinase (Fig. 5A), and gal actose-1-phosphate uridylyltransferase) were identified, in
addition to genes encoding ribokinase, as well as xylose isomerase and xylulokinase for ribose
and xylose channeling into the pentose phosphate pathway. As well, genes encoding
deoxyribose-phosphate aldolase (DeoC) enabling the utilization of purines as carbon and energy
sources were also horizontally acquired in AGF. Further, several of the
glycolysis/gluconeogenesis genes, e.g. phosphoenolpyruvate synthase, as well as
phosphoglycerate mutase were also of bacterial origin. Fungal homologues of these
glycolysis/gluconeogenesi s genes were not identified in the AGF transcriptomes, suggesting the
occurrence of xenologous replacement HGT events.

In addition to broadening substrate range, HGT acquisitions provided additional venues
for recycling reduced electron carriers via new fermentative pathways in this strictly anaerobic
and fermentative lineage. The production of ethanol, D-lactate, and hydrogen appears to be
enabled by HGT (Fig. 4). The acquisition of several aldehyde/alcohol dehydrogenases, and of D-
Lactate dehydrogenase for ethanol and lactate production from pyruvate was identified.
Although these two enzymes are encoded in other fungi as part of their fermentative capacity

(e.g. Saccharomyces and Schizosaccharomyces), no homologues of these fungal genes were
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identified in AGF pantranscriptomes. Hydrogen production in AGF, as well asin many
anaerobic eukaryotes with mitochondria-related organelles, involves pyruvate decarboxylation to
acetyl CoA, followed by the use of electrons generated for hydrogen formation via an anaerobic
Fe-Fe hydrogenase. In AGF, while pyruvate decarboxylation to acetyl CoA via pyruvate-formate
lyase and the subsequent production of acetate via acetyl-CoA:succinyl transferase appear to be
of fungal origin, the Fe-Fe hydrogenase and its entire maturation machinery (HydEFG) seem to
be horizontally transferred being phylogenetically affiliated with smilar enzymesin
Thermotogae, Clostridiales, and the anaerobic jakobid excavate, Sygiella incarcerate (Fig. 5B).
It has recently been suggested that Stygiella acquired the Fe-Fe hydrogenase and its maturation
machinery from bacterial donors including Thermotogae, Firmicutes, and Spirochaetes (85),
suggesting either asingle early acquisition event in eukaryotes, or alternatively independent
events for the same group of gene have occurred in different eukaryotes.

Anabolic capabilities. Multiple anabolic genes that expanded AGF biosynthetic capacities
appear to be horizontally transferred (Fig. S17-S30). These include several amino acid
biosynthesis genes e.g. cysteine biosynthesis from serine; glycine and threonine interconversion;
and asparagine synthesis from aspartate. In addition, horizontal gene transfer allowed AGF to de-
novo synthesize NAD viathe bacteria pathway (starting from aspartate via L-aspartate oxidase
(NadB; Fig. 5C) and quinolinate synthase (NadA) rather than the five-enzymes fungal pathway
starting from tryptophan (86)). HGT aso allowed AGF to salvage thiamine via the acquisition of
phosphomethylpyrimidine kinase. Additionally, several genes encoding enzymes in purine and
pyrimidine biosynthesis were horizontally transferred (Fig. 4). Finally, horizontal gene transfer
allowed AGF to synthesize phosphatidyl-serine from CDP-diacylglycerol, and to convert

phosphatidyl-ethanolamine to phosphatidyl-choline.
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Adaptation to the host environment. Horizontal gene transfer also appearsto have provided
means of guarding against toxic levels of compounds known to occur in the host animal gut (Fig.
S31-S37). For example, methylglyoxal, a reactive electrophilic species (87), isinevitably
produced by ruminal bacteria from dihydroxyacetone phosphate when experiencing growth
conditions with excess sugar and limiting nitrogen (88). Genes encoding enzymes mediating
methylglyoxal conversion to D-lactate (glyoxalase | and glyoxalase I1-encoding genes) appear to
be acquired viaHGT in AGF. Further, HGT allowed several means of adaptation to
anaerobiosis. These include: 1) acquisition of the oxygen-sensitive ribonucleosi de-triphosphate
reductase class |11 (Fig. 5D) that is known to only function during anaerobiosis to convert
ribonucleotides to deoxyribonucleotides (89), 2) acquisition of squalene-hopene cyclase, which
catalyzes the cyclization of squalene into hopene, an essential step in biosynthesis of the cell
membrane steroid tetrahymanol that replaced the molecular O,-requiring ergosterol in the cell
membranes of AGF, 3) acquisition of several enzymes in the oxidative stress machinery
including Fe/Mn superoxide dismutase, glutathione peroxidase, rubredoxin/rubrerythrin, and
alkylhydroperoxidase.

In addition to anaerobiosis, multiple horizontally transferred general stress and repair
enzymes were identified (Fig. S38-$45). HGT-acquired genes encoding 2-phosphoglycolate
phosphatase, known to metabolize the 2-phosphoglycolate produced in the repair of DNA lesions
induced by oxidative stress (90) to glycolate, were identified in all AGF transcriptomes studied
(Fig. 4, Table $4). Surprisingly, two genes encoding antibiotic resistance enzymes,
chloramphenicol acetyltransferase and aminoglycoside phosphotransferase, were identified in all
AGF transcriptomes, presumably to improve its fitness in the eutrophic rumen habitat that

harbors antibiotic-producing prokaryotes (Table S4). While unusual for eukaryotes to express
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antibiotic resistance genes, basal fungi such as Allomyces, Batrachochytrium, and Blastocladiella
were shown to be susceptible to chloramphenicol and streptomycin (91, 92). Other horizontally
transferred repair enzymes include DNA-3-methyladenine glycosylase |, methylated-DNA--
protein-cysteine methyltransferase, galactoside and maltose O-acetyltransferase, and methionine-
R-sulfoxide reductase (Table $4).

HGT transfer in AGF carbohydrate active enzymes machinery. Within the analyzed AGF
transcriptomes, CAZymes belonging to 39 glycoside hydrolase (GHS), 5 polysaccharide lyase
(PLs), and 10 carbohydrate esterase (CEs) families were identified (Fig. 6). The composition of
the CAZymes of various AGF strains examined were broadly similar, with the following ten
notable exceptions. Presence of GH24 and GH78 transcripts only in Anaeromyces and
Orpinomyces, the presence of GH28 transcripts only in Pecoramyces, Neocallimastix, and
Orpinomyces, the presence of GH30 transcripts only in Anaeromyces, and Neocallimastix, the
presence of GH36 and GH95 transcripts only in Anaeromyces, Neocal limastix, and
Orpinomyces, the presence of GH97 transcripts only in Neocallimastix, and Feramyces, the
presence of GH108 transcripts only in Neocal limastix, and Piromyces, and the presence of GH37
predominantly in Neocallimastix, GH57 transcripts predominantly in Orpinomyces, GH76
transcripts predominantly in Feramyces, and CE7 transcripts predominantly in Anaeromyces
(Fig. 6).

HGT appearsto be rampant in the AGF pan-CAZyome: A total of 75 events (26.5% of total
HGT events) were identified, with 40% occurring in all AGF genera examined (Fig. 6, Table
). In 36.5% of GH families, 37.5% of CE families, and 28.6% of PL families, a single event
(i.e. attributed to one donor) was observed (Fig. 6, Table $4).

Duplication of these eventsin AGF genomes was notable, with 134, 322, 161, and 135 copies of
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HGT CAZyme pfams identified in Anaeromyces, Neocallimastix, Piromyces and Pecoramyces
genomes, representing 34.1%, 38.2%, 41.7%, and 25.6% of the overall organismal CAZyme
machinery (Table S5). The contribution of Viridiplantae, Fibrobacteres, and Gamma-
Proteobacteria was either exclusive to CAZyme-related HGT events or significantly higher in
CAZyme, compared to other, events (Fig. 3A).
Transcripts acquired by HGT represented >50% of transcripts in anywhere between 13
(Caecomyces) to 20 (Anaeromyces) GH families; 3 (Caecomyces) to 5 (Anaeromyces,
Neocallimastix, Orpinomyces, and Feramyces) CE families; and 2 (Caecomyces and Feramyces)
to 3 (Anaeromyces, Pecoramyces, Piromyces, Neocal limastix, and Orpinomyces) PL families
(Fig. 6). It isimportant to note that in all these families, multiple transcripts appeared to be of
bacterial origin based on BLAST similarity search but did not meet the dtrict criteria
implemented for HGT determination in this study. As such, the contribution of HGT transcripts
to overall transcriptsin these familiesis probably an underestimate. Only GH9, GH20, GH37,
GH45, and PL3 families appear to lack any detectable HGT events. A PCA biplot comparing
CAZyomesin AGF genomes to other basal fungal lineages strongly suggests that the acquisition
and expansion of many of these foreign genes play an important role in shaping the
lignocd lulolytic machinery of AGF (Fig. 7). The mgority of CAZyme families defining AGF
CAZyome were predominantly of non-fungal origin (Fig. 7). This pattern clearly atteststo the
value of HGT in shaping AGF CAZyome via acquisition and extensive duplication of acquired
gene families.

Coallectively, HGT had a profound impact on AGF plant biomass degradation
capabilities. The AGF CAZyome encodes enzymes putatively mediating the degradation of

twelve different polysaccharides (Fig. $46). In all instances, GH and PL families with >50%
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horizontally transferred transcripts contributed to backbone cleavage of these polymers; although
in many polymers, e.g. cellulose, glucoarabinoxylan, and rhamnogal actouronan, multiple
different GHs can contribute to backbone cleavage. Similarly, GH, CE, and PL families with
>50% horizontally transferred transcripts contributed to 10 out of 13 side-chain-cleaving

activities, and 3 out of 5 oligomer-to-monomer breakdown activities (Fig. $46).
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Discussion

Here, we present a systematic analysis of HGT patterns in 27 transcriptomes and 4 genomes
belonging to the Neocallimastigomycota. Our analysis identified 283 events, representing 2.1-
3.6% of genesin examined AGF genomes. Further, we consider these values to be conservative
estimates due to the highly stringent criteriaand employed. Only events with hy of >30 were
considered, and all putative events were further subjected to manual inspection and phylogenetic
tree construction to confirm incongruence with organismal evolution and bootstrap-supported
affiliation to donor lineages. Further, events identified in less than 50% of strainsin a specific
genus were excluded, and parametric gene composition approaches were implemented in
conjunction with sequence-based analysis.

Multiple factors could be postulated to account for the observed high HGT frequency in
AGF. The sequestration of AGF into the anaerobic, prokaryotes-dominated herbivorous gut
necessitated the implementation of the relatively faster adaptive mechanisms for survival in this
new environment, as opposed to the slower strategies of neofunctionalization and gene birth.
Indeed, niche adaptation and habitat diversification events are widely considered important
driversfor HGT in eukaryotes (16, 23, 93, 94). Further, AGF are constantly exposed to arich
milieu of cells and degraded DNA in the herbivorous gut. Such close physical proximity between
donorg/ extracellular DNA and recipientsis also known to greatly facilitate HGT (95-97).
Finaly, AGF release asexua motile free zoospores into the herbivorous gut as part of their life
cycle (39). According to the weak-link moddl (98), these weakly protected and exposed
structures provide excellent entry point of foreign DNA to eukaryotic genomes. It isimportant to
note that AGF zoospores also appear to be naturally competent, capable of readily uptaking

nucleic acids from their surrounding environment (50).
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508 The distribution of HGT events across various AGF taxa (Fig. 2), identities of HGT

509 donors (Fig. 3), and abilitiesimparted (Figs. 4-5) could offer important clues regarding the

510 timing and impact of HGT on Neocallimastigomycota evolution. The majority of events (70.7%)
511  were Neocallimastigomycota-wide and were mostly acquired from lineages known to inhabit the
512  herbivorous gut, e.g. Firmicutes, Proteobacteria, Bacteroidetes, and Spirochaetes (Figs. 2-3).
513 Thispattern strongly suggests that such acquisitions occurred post (or concurrent with) AGF
514  sequestration into the herbivorous gut, but prior to AGF genus level diversification. Many of the
515 functions encoded by these events represented novel functional acquisitions that impart new

516 abilities, e.g. galactose metabolism, methyl glyoxal detoxification, pyruvate fermentation to d-
517 lactate and ethanol, and chloramphenicol resistance (Fig. 3). Others represented acquisition of
518 nove genes or pfams augmenting existing capabilities within the AGF genomes, e.g. acquisition
519  of GH5 cellulases to augment the fungal GH45, acquisition of additional GH1 and GH3 beta
520  gluco- and galactosidases to augment similar enzymes of apparent fungal originin AGF

521 genomes (Fig. 6-7, Fig. $46). Novel functional acquisition events enabled AGF to survive and
522  colonize the herbivorous gut by: 1. Expanding substrate-degradation capabilities (Fig. 5a, 6, 7,
523  S5-S17, Table $4), hence improving fitness by maximizing carbon and energy acquisition from
524  available plant substrates, 2. Providing additional venues for electron disposal vialactate,

525 ethanol, and hydrogen production, and 3. Enabling adaptation to anaerobiosis (Fig. 4, S32-S38,
526 Table 4).

527 A smaller number of observed events (n=33) were genus-specific (Fig. 2, Table $4). This
528  group was characterized by being significantly enriched in CAZymes (60.6% of genus-specific
529  horizontally transferred events have a predicted CAZyme function, as opposed to 26.5% in the

530 overall HGT dataset), and being ailmost exclusively acquired from donors that are known to
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inhabit the herbivorous gut (99) (26 out of the 33 events were acquired from the orders
Clostridiales, Bacillales, and Negativicutes within Firmicutes, Burkholderiaes within the Beta-
Proteobacteria, Flavobacteriales and Bacteroidales within Bacteroidetes, and the Spirochaetes,
Actinobacteria, and Lentisphaerae), or from Viridiplantae (4 out of the 33 events). Such pattern
suggests the occurrence of these events relatively recently, in the herbivorous gut post AGF
genus level diversification. We reason that the lower frequency of such eventsis areflection of
the relaxed pressure for acquisition and retention of foreign genes at this stage of AGF evolution.
Gene acquisition by HGT necessitates physical contact between donor and recipient
organisms. Many of the HGT acquired traits by AGF are acquired from prokaryotes that are
prevalent in the herbivorous gut microbiota (Fig. 3). However, since many of these traits are
absolutely necessary for survival in the gut, the establishment of AGF ancestorsin this
seemingly inhospitable habitat is, theoretically, unfeasible. This dilemmais common to all HGT
processes enabling niche adaptation and habitat diversification (22). We put forth two
evolutionary scenarios that could explain this dilemma not only for AGF, but also for other gut-
dwelling anaerobic microeukaryotes, e.g. Giardia, Blastocystis, and Entamoeba, where HGT was
shown to play avital role in enabling survival in anaerobic conditions (100-102). Thefirstisa
coevolution scenario in which the progressive evolution of the mammalian gut from a short and
predominantly aerobic structure characteristic of carnivores/insectivores to the longer, more
complex, and compartmentalized structure encountered in herbivores was associated with a
parallel progressive and stepwise acquisition of genes required for plant polymers metabolism
and anaerobiosis by AGF ancestors, hence assuring its survival and establishment in the current
herbivorous gut. The second possibility isthat AGF ancestors were indeed acquired into a

complex and anaerobic herbivorous gut, but initially represented an extremely minor component
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of the gut microbiome and survived in locations with relatively higher oxygen concentration in
the alimentary tract e.g. mouth, saliva, esophagus or in micro-niches in the rumen where
transient oxygen exposure occurs. Subsequently, HGT acquisition has enabled the expansion of
their niche, improved their competitiveness and their relative abundance in the herbivorous gut to
the current levels.

In conclusion, our survey of HGT in AGF acquisition demonstrates that the processis
absolutely crucial for the survival and growth of AGF in its unique habitat. Thisis not only
reflected in the large number of events, massive duplication of acquired genes, and overall high
HGT frequency observed in AGF genomes, but also in the nature of abilitiesimparted by the
process. HGT events not only facilitated AGF adaptation to anaerobiosis, but also allowed them
to dragtically improve their polysaccharide degradation capacities, provide new venues for
electron disposal via fermentation, and acquire new biosynthetic abilities. As such, we reason
that the process should not merely be regarded as a conduit for supplementa acquisition of few
additional beneficial traits. Rather, we posit that HGT enabled AGF to forge a new evolutionary
trajectory, resulting in Neocallimastigomycota sequestration, evolution as a distinct fungal
lineage in the fungal tree of life, and subsequent genus and species level diversification. This
provides an excellent example of therole of HGT in forging the formation of high rank
taxonomic lineages during eukaryotic evolution.
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Table 1: Neocallimastigomycota strains analyzed in this study.

Genus Species Strain | Host Isolation | Location L SU Genbank Reference
source accession number

Anaeromyces | contortus C3G Cow (Bos taurus) Feces Stillwater, OK MF121936 This study
Anaeromyces | contortus C3J Cow (Bos taurus) Feces Stillwater, OK MF121942 This study
Anaeromyces | contortus G3G Goat (Capra aegagrus hircus) | Feces Stillwater, OK MF121935 This study
Anaeromyces | contortus Na Cow (Bos taurus) Feces Stillwater, OK MF121943 This study
Anaeromyces | contortus 02 Cow (Bos taurus) Feces Stillwater, OK MF121931 This study
Anaeromyces | robustus A Sheep (Ovis aries) Feces SantaBarbara, CA | NA* (44)

Caecomyces sp. Is03 Cow (Bos taurus) Feces Stillwater, OK MG992499 This study
Caecomyces sp. Cow (Bos taurus) Rumen Stillwater, OK MG992500 This study

Aoudad sheep (Ammotragus
Feramyces austinii F2c lervia) Feces Stillwater, OK MG605675 This study
Aoudad sheep (Ammotragus
Feramyces austinii F3a lervia) Feces Stillwater, OK MG584226 This study
Neocallimastix | californiae | G1 Goat (Capra aegagrus hircus) | Feces Santa Barbara, CA | Genomic sequence** | (44)
cf.

Neocallimastix | cameroonii | G3 Sheep (Ovis aries) Feces Stillwater, OK MG992493 This study
Neocallimastix | cf. frontalis | Hef5 Cow (Bos taurus) Feces Stillwater, OK MG992494 This study
Orpinomyces | cf. joyonii D3A Cow (Bos taurus) Digesta Stillwater, OK MG992487 This study
Orpinomyces | cf. joyonii D3B Cow (Bos taurus) Digesta Stillwater, OK M(G992488 This study
Orpinomyces | cf. joyonii D4C Cow (Bos taurus) Digesta Stillwater, OK MG992489 This study
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*NA: Not available

** | SU sequence was extracted from the genomic assembly. No LSU accession number was available.

Pecoramyces | ruminantium | C1A Cow (Bos taurus) Feces Stillwater, OK JIN939127 (103, 104)
Pecoramyces | ruminantium | S4B Sheep (Ovisaries) Feces Stillwater, OK KX961618 This study
Pecoramyces | ruminantium | FS3C | Cow (Bos taurus) Rumen Stillwater, OK MG992492 This study
Pecoramyces | ruminantium | FX4B | Cow (Bos taurus) Rumen Stillwater, OK MG992491 This study
Pecoramyces | ruminantium | YC3 Cow (Bos taurus) Rumen Stillwater, OK MG992490 This study
Piromyces finnis finn Horse (Equus caballus) Feces Santa Barbara, CA | Genomic sequence** | (44)
Piromyces p. Al Sheep (Ovis aries) Feces Stillwater, OK MG992496 This study
Piromyces p. A2 Sheep (Ovis aries) Feces Stillwater, OK MG992495 This study
Piromyces sp. B4 Cow (Bos taurus) Feces Stillwater, OK MG992497 This study
Piromyces sp. B5 Cow (Bos taurus) Feces Stillwater, OK MG992498 This study
Indian Elephant (Elephas
Piromyces sp. E2 maximus) Feces London, UK NA (44, 105)
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Figure Legends

Figure 1. Workflow diagram describing the procedure employed for identification HGT events
in Neocallimastigomycota datasets analyzed in this study.

Figure 2. (A) Distribution pattern of HGT events in AGF transcriptomes demonstrating that the
majority of events were Neocallimastigomycota-widei.e. identified in all seven AGF genera
examined. (B) Total Number of HGT events identified per AGF genus.

Figure 3. Identity of HGT donors and their contribution to the various functional classes. The X-
axis shows the absolute number of events belonging to each of the functional classes shown in
the legend. The treeis intended to show the relationship between the donors’ taxa and is not
drawn to scale. Bacterial donors are shown with red branches depicting the phylum-level, with
the exception of Firmicutes and Bacteroidetes donors, where the order-level is shown, and
Proteobacteria, where the class-level is shown. Archaeal donors are shown with green branches
and all belonged to the M ethanobacteriales order of Euryarchaeota. Eukaryotic donors are shown
with blue branches. Only the 230 events from a definitive-taxon donor are shown in the figure.
The other 53 events were clearly nested within a non-fungal clade, but a definitive donor taxon
could not be ascertained. Functional classification of the HGT events, determined by searching
the Conserved Domain server (106) against the COG database are shown in B. For events with
no COG classification, a search against the KEGG orthology database (107) was performed. For
the mgjor COG/KEGG categories (metabolism, cellular processes and signaling, and Information
storage and processing), sub-classifications are shown in C, D, and E, respectively.

Figure 4. HGT impact on AGF central metabolic abilities. Pathways for sugar metabolism are
highlighted in blue, pathways for amino acid metabolism are highlighted in red, pathways for

cofactor metabolism are highlighted in green, pathways for nucleotide metabolism are
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highlighted in grey, pathways for lipid metabolism are highlighted in orange, fermentation
pathways are highlighted in purple, while pathways for detoxification are highlighted in brown.
The double black lines depict the hydrogenosomal outer and inner membrane. Arrows
corresponding to enzymes encoded by horizontally transferred transcripts are shown with thicker
dotted lines and are given numbers 1 through 48 as follows. Sugar metabolism (1-11): 1. Xylose
isomerase, 2. Xylulokinase, 3. Ribokinase, 4. 2,3-bisphosphoglycerate-independent
phosphoglycerate mutase, 5. 2,3-bisphosphoglycerate-dependent phosphoglycerate mutase, 6.
Phosphoenolpyruvate synthase, 7. Phosphoenol pyruvate carboxykinase (GTP), 8. Aldose-1-
epimerase, 9. Galactokinase, 10. Galactose-1-phosphate uridyltransferase. Amino acid
metabolism (11-19): 11. Aspartate-ammonialigase, 12. Tryptophan synthase (TrpB), 13.
Tryptophanase, 14. Monofunctional prephenate dehydratase, 15. Serine-O-acetyltransferase, 16.
Cysteine synthase, 17. Low-specificity threonine aldolase, 18. 5'-methylthioadenosine

nucleos dase/5'-methylthi oadenosine phosphorylase (MTA phosphorylase), 19. Arginase.
Cofactor metabolism (20-27): 20. Pyridoxamine 5'-phosphate oxidase, 21. L-aspartate oxidase
(NadB), 22. Quinolate synthase (NadA), 23. NH(3)-dependent NAD(+) synthetase (NadE), 24.
2-dehydropantoate 2-reductase, 25. dephosphoCoA kinase, 26. Dihydrofolate reductase (DHFR)
family, 27. Dihydropteroate synthase. Nucleotide metabolism (28-35): 28. GMP reductase, 29.
Trifunctional nucleotide phosphoesterase, 30. deoxyribose-phosphate aldolase (DeoC), 31.
Oxygen-sensitive ribonucleoside-triphosphate reductase class |11 (NrdD), 32.
nucleoside/nucleotide kinase family protein, 33. Cytidylate kinase-like family, 34. thymidylate
synthase, 35. thymidine kinase. Pyruvate metabolism (fermentation pathways) (36-40): 36. D-
lactate dehydrogenase, 37. bifunctional aldehyde/alcohol dehydrogenase family of Fe-alcohol

dehydrogenase, 38. Butanol dehydrogenase family of Fe-alcohol dehydrogenase, 39. Zn-type
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alcohol dehydrogenase, 40. Fe-only hydrogenase. Detoxification reactions (41-44): 41.
Phosphoglycolate phosphatase, 42. Glyoxal reductase, 43. Glyoxalase |, 44. Glyoxalase Il. Lipid
metabolism (45-47): 45. CDP-diacylglycerol--serine O-phosphatidyltransferase, 46.
lysophospholipid acyltransferase LPEAT, 47. methylene-fatty-acyl-phospholipid synthase.
Abbreviations: CDP-DAG, CDP-diacylglycerol; 7,8 DHF, 7,8 dihydrofolate; EthA,
ethanolamine; Gal, galactose; GAP, glyceraldehyde-3-P; Glu, glucose; GSH, glutathione; I,
complex | NADH dehydrogenase; NaM N, Nicotinate D-ribonucleotide; Orn, ornithine; PEP,
phosphoenol pyruvate; Phenyl-pyr, phenylpyruvate; PRPP, phosphoribosyl-pyrophosphate; Ptd,
phosphatidyl; SAM; S-adenosylmethionine; THF, tetrahydrofolate.

Figure5. (A) Maximum likelihood tree showing the phylogenetic affiliation of AGF
galactokinase. AGF genes highlighted in light blue clustered within the Flavobacteriales order of
the Bacteroidetes phylum and were clearly nested within the bacterial domain (highlighted in
green) attesting to their non-fungal origin. Fungal galactokinase representatives are highlighted
in pink. (B) Maximum likelihood tree showing the phylogenetic affiliation of AGF Fe-only
hydrogenase. AGF genes highlighted in light blue clustered within the Thermotogae phylum and
were clearly nested within the bacterial domain (highlighted in green) attesting to their non-
fungal origin. Sygiella incarcerata (anaerobic Jakobidae) clustered with the Thermotogae as
well, as has recently been suggested (85). Fe-only hydrogenases from Gonopodya prolifera
(Chytridiomycota) (shown in orange text) clustered with the AGF genes. Thisis an example of
one of the rare occasions (n=24) where a non-AGF basal fungal representative showed an HGT
pattern with the same donor affiliation as the Neocallimastigomycota. Other basal fungal Fe-only
hydrogenase representatives are highlighted in pink and clustered outside the bacterial domain.

(C) Maximum likelihood tree showing the phylogenetic affiliation of AGF L-aspartate oxidase
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(NadB). AGF genes highlighted in light blue clustered within the Delta-Proteobacteria class and
were clearly nested within the bacterial domain (highlighted in green) attesting to their non-
fungal origin. Asde-novo NAD synthesisin fungi usually follow the five-enzyme pathway
starting from tryptophan, as opposed to the two-enzyme pathway from aspartate, no NadB were
found in non-AGF fungi and hence no fungal cluster is shown in the tree. (D) Maximum
likelihood tree showing the phylogenetic affiliation of AGF oxygen-sensitive ribonucleotide
reductase (NrdD). AGF genes highlighted in light blue clustered with representatives from
Candidate phylum Dependentiae and were clearly nested within the bacterial domain
(highlighted in green) attesting to their non-fungal origin. Fungal NrdD representatives are
highlighted in pink. GenBank accession numbers are shown in parentheses. Alignment was done
using the standalone Clustal Omega (66) and trees were constructed using |Q-tree (69).

Figure 6. HGT in the AGF CAZyome shown across the seven genera studied. Glycosyl
Hydrolase (GH), Carboxy! Esterase (CE), and Polysaccharide Lyase (PL) families are shown to
the left. The color of the cells depicts the prevalence of HGT within each family. Red indicates
that 100% of the CAZyme transcripts were horizontally transferred. Shades of red-orange
indicate that HGT contributed to > 50% of the transcripts belonging to that CAZy family. Blue
indicates that 100% of the CAZyme transcripts were of fungal origin. Shades of blue indicate
that HGT contributed to < 50% of the transcripts belonging to that CAZy family. The numbersin
each cell indicate the affiliation of the HGT donor as shown in the key to the right.

Figure 7. Principal-component analysis biplot of the distribution of CAZy familiesin AGF
genomes (), compared to representatives of other basal fungi belonging to the

Mucoromycotina (@), Chytridiomycota (@), Blastocladiomycota (), Entomophthoromycotina

(e ), Mortierellomycotina (4 ), Glomeromycota (4), Kickxellomycotina (V), and
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Zoopagomycotina (¥). CAZy families are shown as colored dots. The color code used was as
follows:. green, CAZy families that are absent from AGF genomes; black, CAZy families present
in AGF genomes and with an entirely fungal origin; blue, CAZy families present in AGF
genomes and for which HGT contributed to < 50% of the transcripts in the examined
transcriptomes; red, CAZy families present in AGF genomes and for which HGT contributed to
> 50% of the transcriptsin the examined transcriptomes. The majority of CAZyme families

defining the AGF CAZyome were predominantly of non-fungal origin (red and blue dots).
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Table 1: Neocallimastigomycota strains analyzed in this study.

Genus Species Strain  |Host :z(l)ll:ction Location ﬁsgb(i:nbank accessmaneference
Anaeromyces |contortus C3G Cow (Bos taurus) Feces Stillwater, OK MF121936 This study
Anaeromyces |contortus C3J Cow (Bos taurus) Feces Stillwater, OK MF121942 This study
Anaeromyces |contortus G3G Goat (Capra aegagrus hircus) Feces Stillwater, OK MF121935 This study
Anaeromyces |contortus Na Cow (Bos taurus) Feces Stillwater, OK MF121943 This study
Anaeromyces |contortus 02 Cow (Bos taurus) Feces Stillwater, OK MF121931 This study
Anaeromyces |robustus S4 Sheep (Ovis aries) Feces Santa Barbara, CA |NA* (44)

Caecomyces Cow (Bos taurus) Stillwater, OK MG992499 This study

Caecomyces

Feramyces

austinii

Cow (Bos taurus)

F2c Aoudad sheep (Ammotragus lervia)

Stillwater, OK

Stillwater, OK

MG992500

MG605675

This study

This study

Feramyces austinii F3a Aoudad sheep (Ammotragus lervia) |Feces Stillwater, OK MG584226 This study
Neocallimastix |californiae Gl Goat (Capra aegagrus hircus) Feces Santa Barbara, CA |Genomic sequence** (44)

Neocallimastix |cf. cameroonii |G3 Sheep (Ovis aries) Feces Stillwater, OK MG992493 This study
Neocallimastix |cf. frontalis Hef5 Cow (Bos taurus) Feces Stillwater, OK MG992494 This study

Orpinomyces  |cf. joyonii D3A Cow (Bos taurus) Digesta Stillwater, OK MG992487 This study
Orpinomyces  |cf. joyonii D3B Cow (Bos taurus) Digesta Stillwater, OK MG992488 This study
Orpinomyces  |cf. joyonii D4C Cow (Bos taurus) Digesta Stillwater, OK MG992489 This study

Pecoramyces  Jruminantium |ClA Cow (Bos taurus) Feces Stillwater, OK JN939127 (103, 104)
Pecoramyces  |ruminantium |S4B Sheep (Ovis aries) Feces Stillwater, OK KX961618 This study
Pecoramyces  |ruminantium |FS3C Cow (Bos taurus) Rumen Stillwater, OK MG992492 This study
Pecoramyces  |ruminantium |FX4B  |Cow (Bos taurus) Rumen Stillwater, OK MG992491 This study
Pecoramyces  |ruminantium |YC3 Cow (Bos taurus) Rumen Stillwater, OK MG992490 This study

*NA: Not available
** LSU sequence was extracted from the genomic assembly. No LSU accession number was available.

Piromyces finnis finn Horse (Equus caballus) Feces Santa Barbara, CA |Genomic sequence** (44)
Piromyces sp. Al Sheep (Ovis aries) Feces Stillwater, OK MG992496 This study
Piromyces sp. A2 Sheep (Ovis aries) Feces Stillwater, OK MG992495 This study
Piromyces sp. B4 Cow (Bos taurus) Feces Stillwater, OK MG992497 This study
Piromyces sp. B5 Cow (Bos taurus) Feces Stillwater, OK MG992498 This study
Piromyces sp E2 Indian Elephant (Elephas maximus) |Feces London, UK NA (44, 105)
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