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ABSTRACT 

 

Background: Evidence concerning the potential repurposing of antihypertensives for 

Alzheimer’s disease prevention is inconclusive. We used Mendelian randomization, which 

can be more robust to confounding by indication and patient characteristics, to investigate 

the effects of lowering systolic blood pressure (SBP), via different antihypertensive drug 

classes, on Alzheimer’s disease. 

  

Methods: We used summary statistics from genome wide association studies of SBP (from 

UK Biobank) and Alzheimer’s disease (from the International Genomics of Alzheimer's 

Project) in a two-sample Mendelian randomization analysis. We identified single nucleotide 

polymorphisms (SNPs) that mimic the action of antihypertensive targets and estimated the 

effect of lowering SBP, via antihypertensive drug classes, on Alzheimer’s disease. We also 

report the effect of lowering SBP on Alzheimer’s disease by combining all drug targets and 

without consideration of the associated drugs. 

  

Results: There was limited evidence that lowering SBP, via antihypertensive drug classes, 

affected Alzheimer’s disease risk. For example, calcium channel blockers had an odds ratio 

(OR) per 10mmHg lower SBP of 1.53 (95% confidence interval (CI): 0.94 to 2.49; p=0.09; 

SNPs=17). We also found limited evidence for an effect of lowering SBP on Alzheimer’s 

disease when combining all drug targets (OR per 10mmHg lower SBP: 1.14; 95%CI: 0.83 to 

1.56; p=0.41; SNPs=59) and without consideration of the associated drug targets (OR per 

10mmHg lower SBP: 1.04; 95%CI: 0.95 to 1.13; p=0.45; SNPs=153). 

  

Conclusions: Lowering SBP itself is unlikely to affect risk of developing Alzheimer’s disease. 

Consequently, if specific antihypertensive drug classes do affect risk of Alzheimer’s disease, 

they are unlikely to do so via SBP. 

 

KEY MESSAGES 

 

• This is the first study to use Mendelian randomization to estimate the effects of the 

twelve most common antihypertensive drug classes on Alzheimer’s disease. 

• Lowering systolic blood pressure itself is unlikely to affect risk of developing 

Alzheimer’s disease. 

• If specific antihypertensive drug classes do affect Alzheimer’s disease risk, they are 

unlikely to do so via systolic blood pressure. 
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INTRODUCTION 

 

Drug repurposing applies existing drugs to novel indications to identify potential treatments 

in a more rapid and cost-effective manner than traditional drug development. This approach 

is of interest for Alzheimer’s disease as there are currently no preventative or disease-

modifying therapies, despite investment in 1120 unique drug targets between 1995 and 

2014. (1–3) Antihypertensive drugs have previously been highlighted as priority repurposing 

candidates for Alzheimer’s disease prevention and several observational studies and a 

handful of trials have investigated this hypothesis. (2,4) However, the evidence to date is 

inconclusive. 

 

Mendelian randomization has been proposed to predict drug repurposing opportunities and 

overcome some of the issues associated with conventional observational studies. (5) 

Mendelian randomization is a form of instrumental variable analysis that uses germline 

genetic variation, assigned randomly at conception and akin to randomization in a 

randomized controlled trial, as an instrument for potentially modifiable exposures of 

interest. (6–8) Without individual level data, two-sample Mendelian randomization can be 

implemented using summary data on single nucleotide polymorphisms (SNPs) from separate 

genome wide association studies (GWAS) for the instrument-exposure (sample one) and 

instrument-outcome (sample two) associations. (9) This approach has been used before to 

study the relationship between blood pressure and Alzheimer’s disease but it has not been 

used to estimate the effects of the twelve most common antihypertensive drug classes on 

Alzheimer’s disease. (10–12)  

 

In this study, we use SNPs as instruments, selected to mimic the action of the protein targets 

of antihypertensive drug classes, in a two-sample Mendelian randomization analysis of 

systolic blood pressure on Alzheimer’s disease. Our rationale is to understand if there are 

differences between specific antihypertensive drug classes on Alzheimer’s disease risk, 

which could inform the prioritization of repurposing candidates, and provide evidence at the 

drug class level that could be triangulated with that from other sources. (13) Greater 

understanding of antihypertensives and their effect on Alzheimer’s disease may also 

highlight potentially relevant biological mechanisms for this disease. Some of these drugs, 

such as those acting through angiotensin receptor and calcium channel blocking 

mechanisms, have been suggested to have protective effects on Alzheimer’s disease that are 

independent of blood pressure lowering. (14–16) As we used instruments that proxy the 

protein targets, our estimates include all downstream effects of altering these targets, 

regardless of whether they are a direct result of lowering systolic blood pressure. (5) 

 

METHODS 

 

Study design 

 

We conducted a two-sample Mendelian randomization analysis using summary data on SNPs 

from GWAS. We identified SNPs to proxy exposure to an antihypertensive drug on the basis 

that they mimicked the action of that drug on their molecular targets. For example, 

angiotensin-converting enzyme inhibitors work by inhibiting the enzyme angiotensin-

converting enzyme. We therefore selected SNPs in the angiotensin-converting enzyme gene 
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to use as a genetic proxy for this drug class. Effect sizes for these SNPs were then extracted 

from a GWAS of systolic blood pressure to estimate the instrument-exposure association. 

(17) The instrument-outcome association was estimated using the effect sizes for these 

same SNPs from a GWAS of Alzheimer’s disease. (18) All data used were publicly available 

and mostly obtained from European ancestry populations.  

 

Systolic blood pressure phenotype 

 

The systolic blood pressure phenotype was defined using a GWAS of the UK Biobank cohort. 

(17) UK Biobank consists of 503,317 Caucasian people from the UK, aged between 38 years 

and 73 years. (19,20) The GWAS was based on 317,754 of the participants.  

 

Alzheimer’s disease phenotype 

 

The Alzheimer’s disease phenotype was defined using the International Genomics of 

Alzheimer's Project (IGAP) GWAS Stage 1 results. (47). These data were from a meta-analysis 

of 17,008 Alzheimer’s disease cases and 37,154 controls of European ancestry. (48).  

 

Instrument selection 

 

We identified twelve antihypertensive drug classes in the British National Formulary. (21) 

They were: adrenergic neurone blocking drugs; alpha-adrenoceptor blockers; angiotensin-

converting enzyme inhibitors; angiotensin-II receptor blockers; beta-adrenoceptor blockers; 

calcium channel blockers; centrally acting antihypertensive drugs; loop diuretics; potassium-

sparing diuretics and aldosterone antagonists; renin inhibitors; thiazides and related 

diuretics; and vasodilator antihypertensives. Using the drug substance information, we were 

able to identify pharmacologically active protein targets and the corresponding genes in the 

DrugBank database (https://www.drugbank.ca/; version 5.1.1). (22) We then identified SNPs 

to instrument each target using the Genotype-Tissue Expression (GTEx) project data (Release 

V7; dbGaP Accession phs000424.v7.p2), which contains expression quantitative trait loci 

analysis of 48 tissues in 620 donors. (23) The full GTEx dataset, which consists of 714 donors, 

is 65.8% male and 85.2% white. SNPs marked as the ‘best SNP’ for the gene (defined by GTEx 

as the variant with the smallest nominal p-value for a variant-gene pair) in any tissue were 

selected for analysis. 

 

To validate the SNPs as instruments for antihypertensive drug targets, we estimated their 

effect on systolic blood pressure using two-sample Mendelian randomization. The SNP-

expression association, extracted from GTEx as described above, was on the scale of a 

standard deviation change in RNA expression levels for each additional effect allele. The 

SNP-systolic blood pressure association was extracted from the systolic blood pressure 

GWAS in UK Biobank and represented the standard deviation change in systolic blood 

pressure for each additional effect allele. These associations were then used to estimate the 

effect of the protein target on systolic blood pressure (i.e. the standard deviation change in 

systolic blood pressure per standard deviation change in RNA expression levels). SNPs with 

evidence of an effect on systolic blood pressure were retained for the main analysis. This 

instrument selection process is presented in Supplementary Figure 1. 
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Statistical methods 

 

We used two-sample Mendelian randomization to estimate the effect of lowering systolic 

blood pressure on Alzheimer’s disease in three ways. First, we estimated the effect of 

specific drug classes by combining the effects of any of the drug targets associated with a 

given drug class. This used the instruments defined in the previous section. Second, we 

estimated the effect of antihypertensive drugs as a whole on Alzheimer’s disease by 

combining all drug targets. Again, this used the instruments defined in the previous section. 

Finally, we estimated the overall effect of systolic blood pressure on Alzheimer’s disease by 

combining the effects of any genome-wide significant SNPs for systolic blood pressure. 

 

When multiple SNPs were being used as an instrument, ‘clumping’ was performed to 

identify independent SNPs using the linkage disequilibrium between them. SNPs absent in 

the outcome data were replaced by proxy SNPs in high linkage disequilibrium from the 1000 

Genomes Project European data where possible. (24,25) Proxies were required to have a 

minimum R-squared value of 0.8 and palindromic SNPs were permitted if their minor allele 

frequency was less than 0.3. 

 

Prior to the analysis, data were harmonised to represent an increase in systolic blood 

pressure. Mendelian randomization was then performed using the inverse variance 

weighted method or, for single-SNP instruments, the Wald ratio. (26–28) Once complete, 

the Mendelian randomization results were transformed to be the odds ratio (OR) for 

Alzheimer’s disease per 10mmHg lower systolic blood pressure to make the effect 

comparable to taking an antihypertensive, which on average reduces systolic blood pressure 

by 9mmHg. (29) All analyses used genome reference consortium human build 37 (GRCh37), 

assembly Hg19, and were performed in R using the package ‘TwoSampleMR’. (24) 

 

Sensitivity analyses 

 

Mendelian randomization estimates may be subject to horizontal pleiotropy, whereby the 

SNP(s) chosen to proxy the exposure affect the outcome by a different mechanism to that 

intended. (30) To estimate the extent of horizontal pleiotropy, we applied MR-Egger 

regression to all estimates based on ten or more SNPs. The regression intercept for these 

analyses “can be interpreted as an estimate of the average pleiotropic effect across the 

genetic variants”. (31) This can detect directional pleiotropy, which occurs when the biasing 

effects are not balanced around the null.  

 

To examine heterogeneity within the drug classes, we also considered the effects of 

individual drug targets on Alzheimer’s disease. This analysis allowed us to ascertain whether 

certain targets were driving the drug class effects we observed. Drug classes with very 

heterogeneous target results can be considered to have less reliable estimates than those 

where targets were more homogeneous.  

 

Code availability 

 

The analysis used R version 3.4.4. (32) All coding files are available from GitHub 

(https://github.com/venexia/MR-antihypertensives-AD). 
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RESULTS 

 

Instrument selection  

 

We identified a total of 73 unique protein targets of antihypertensive drugs (Supplementary 

Table 1). Among these targets, 68 had an effect in one or more GTEx tissues and 58 of those 

68 provided evidence that the target affected systolic blood pressure (Supplementary Table 

2). Supplementary Figure 2 summarizes the results of the Mendelian randomization analysis 

of expression on systolic blood pressure. A further six targets were excluded prior to the 

main analysis because neither the genetic instrument, nor a suitable proxy, were available in 

the outcome GWAS. Consequently, 52 unique protein targets were ultimately analysed 

(Supplementary Table 3). 

 

Figure 1: Estimates for the effect of systolic blood pressure on Alzheimer’s disease from two-

sample Mendelian randomization 

 

 
 

PSD: potassium- sparing diuretic.  

 

Drug class effects 

 

There was limited evidence that reducing systolic blood pressure affected risk of Alzheimer’s 

disease at the drug class level with most estimates failing to exclude the null (Supplementary 

Table 4). For example, calcium channel blockers had an OR of 1.53 (95% CI: 0.94 to 2.49; 

p=0.09; SNPs=17) and loop diuretics an OR of 0.78 (95% CI: 0.18 to 3.40; p=0.74; SNPs=3) per 

10mmHg lower systolic blood pressure. The exceptions to this were angiotensin-converting 

enzyme inhibitors (OR per 10mmHg lower systolic blood pressure: 13.20; 95% CI: 2.14 to 
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81.24; p=0.005; rs4968783) and potassium-sparing diuretics and aldosterone antagonists 

(OR per 10mmHg lower systolic blood pressure: 0.17; 95% CI: 0.02 to 1.33; p=0.09; SNPs=3). 

 

Antihypertensive drug effect 

 

We found little evidence for an overall effect of lowering systolic blood pressure on 

Alzheimer’s disease when combining all identified drug targets (OR per 10 mmHg lower 

systolic blood pressure: 1.14; 95% CI: 0.83 to 1.56; p=0.41; SNPs=59) (Supplementary Table 

4). 

 

Systolic blood pressure effect 

 

We also found little evidence for an overall effect of lowering systolic blood pressure on 

Alzheimer’s disease, without consideration of the associated drugs, as indicated by the OR of 

1.04 (95% CI: 0.95 to 1.13; p=0.45; SNPs=135) per 10 mmHg lower systolic blood pressure 

(Supplementary Table 4).  

 

Sensitivity analyses 

 

The Egger intercepts were close to zero for almost all analyses where they could be 

calculated (Supplementary Table 5). In addition, the estimates from the inverse variance 

weighted and MR-Egger methods were similar for all analyses with both the point estimate 

and confidence interval for the inverse variance weighted method almost contained within 

the confidence interval for the MR-Egger method (Supplementary Figure 3). 

 

The analysis of individual targets identified some targets that were likely to be driving the 

drug class effects (Supplementary Figure 4). For example, the target NR3C2 is estimated to 

be extremely protective (OR per 10 mmHg lower systolic blood pressure: 2.01e-3; 95% CI: 

5.22e-6 to 0.78; p=0.04; rs71616586) and is likely to have contributed to the extremely 

protective effect observed for potassium-sparing diuretics and aldosterone antagonists (OR 

per 10 mmHg lower systolic blood pressure: 0.17; 95% CI: 0.02 to 1.33; p=0.09; SNPs=3). 

 

DISCUSSION 

 

We found limited evidence to support an overall effect of lowering systolic blood pressure 

on Alzheimer’s disease risk (OR per 10 mmHg lower systolic blood pressure: 1.04; 95% CI: 

0.95 to 1.13; p=0.45; SNPs=135). There was also limited evidence that lowering systolic 

blood pressure via antihypertensive drug classes affected Alzheimer’s disease. For example, 

calcium channel blockers had an OR of 1.53 (95% CI: 0.94 to 2.49; p=0.09; SNPs=17) and 

vasodilator antihypertensives had an OR of 0.98 (95% CI: 0.30 to 3.14; p=0.97; SNPs=11) per 

10mmHg lower systolic blood pressure. This was reflected in the overall effect of lowering 

systolic blood pressure on Alzheimer’s disease when combining all identified drug targets, 

which had an OR of 1.14 (95% CI: 0.83 to 1.56; p=0.41; SNPs=59) per 10 mmHg lower systolic 

blood pressure. Despite this, we also report some extreme results, such as angiotensin-

converting enzyme inhibitors, which were associated with an increased Alzheimer’s disease 

risk (OR per 10 mmHg lower systolic blood pressure: 13.29; 95% CI: 2.14 to 81.24; p=0.005; 

rs4968783). 
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Figure 2: Mendelian randomization model in the presence of a competing mechanism 

 

 
 

The cause of these extreme results could be due to a competing mechanism, as illustrated in 

Figure 2. We estimated the effect of exposure to a given drug class on Alzheimer’s disease 

using the effect of the instrument for that drug class on both systolic blood pressure 

(instrument-exposure association) and Alzheimer’s disease (instrument-outcome 

association). Our analysis assumed that the effect we were estimating acted through systolic 

blood pressure, however there is potentially a competing mechanism by which the given 

drug class can affect Alzheimer’s disease. If a competing mechanism does exist and the 

instrument-exposure association (i.e. the effect of the drug class instrument on systolic 

blood pressure) is small, estimates from Mendelian randomization can become inflated as 

the competing mechanism means the instrument-outcome association (i.e. the effect of the 

drug class instrument on Alzheimer’s disease) remains large. This is more apparent if you 

consider the Wald ratio used to calculate the effect for single SNP instruments:  

 

 

 

In our analysis, we found a small effect of systolic blood pressure on Alzheimer’s disease and 

our extreme results were for drug classes that may well act through competing mechanisms. 

For instance, returning to the example of angiotensin-converting enzyme inhibitors, 

angiotensin-converting enzyme is proposed to affect both vascular pathways (such as blood 

pressure) and have independent effects on amyloid beta. (15) In addition, potassium-sparing 

diuretics and aldosterone antagonists, which were also estimated to have an extreme effect 

(OR per 10 mmHg lower systolic blood pressure: 0.17; 95% CI: 0.02 to 1.33; p=0.09; SNPs=3), 

have previously been suggested to have a role, independent of blood pressure, in preventing 

cognitive decline. (33) This explanation for the extreme results observed for certain drug 

classes, along with the limited evidence for an effect among the remaining drug classes, 

indicates that antihypertensive drug classes are unlikely to have an effect on Alzheimer’s 

disease via systolic blood pressure. 

 

Comparison with existing literature 

 

Two previous Mendelian randomization studies have studied the overall effect of systolic 

blood pressure on Alzheimer’s disease to date. These studies used different instruments and 

different systolic blood pressure GWAS, both to us and each other. (10,11) Østergaard et al 

found higher systolic blood pressure to be associated with a reduced risk of Alzheimer’s 

disease, while Larsson et al found little evidence of an effect of systolic or diastolic blood 
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pressure with Alzheimer’s disease. Our results agree with Larsson et al in that there is 

unlikely to be an overall effect of systolic blood pressure on risk of Alzheimer’s disease. Gill 

et al recently conducted a study that combined MR using genetic variants related to 

antihypertensive targets with a PheWAS conducted in UK Biobank, however their analysis 

was restricted to beta-adrenoceptor blockers and calcium channel blockers. (12) Our results 

broadly agree with those reported by Gill et al for Alzheimer’s disease. There was a small 

overlap in the choice of SNPs used to instrument systolic blood pressure between our study 

and those previously reported however, there was very little overlap when considering our 

drug specific instruments (Supplementary Table 6). Using the previously reported 

instruments with our data, we were able to reproduce the previously reported results 

(Supplementary Figures 5 and 6). 

    

Larsson et al recently conducted a systematic review and meta-analysis, which identified five 

randomized controlled trials that have investigated whether antihypertensives prevent 

dementia (not Alzheimer’s disease specifically). (4) Four of the five trials had point estimates 

that suggested a protective effect of antihypertensives compared to non-use, however three 

of these trials failed to exclude the null. This resulted in the meta-analysis finding an overall 

relative risk of 0.84 (95% CI: 0.69 to 1.02; p=0.10). It is worth highlighting that most studies 

described in the meta-analysis were from populations with high cardiovascular morbidity 

and were designed around cardiovascular related primary outcomes. In these trials, the 

proportion of dementia cases that derived from vascular mechanisms might be 

disproportionately high compared with other study populations. (34,35) This difference 

might explain the more favourable point estimate obtained in the meta-analysis. Since the 

publication of the meta-analysis, the first trial to consider an antihypertensive drug (calcium 

channel blocker Nilvadipine) as a direct intervention in Alzheimer’s disease has been 

published - it found no benefit of the treatment. (36)  

 

Strengths and limitations 

 

A strength of our study was the use of two-sample Mendelian randomization that meant we 

were able to utilize the IGAP GWAS for our outcome data, which contains information on 

17,008 Alzheimer’s disease cases and 37,154 controls. (9) The use of Mendelian 

randomization, over more conventional pharmacoepidemiological approaches, will have also 

addressed certain forms of confounding. This includes confounding by indication and 

confounding by the environmental and lifestyle factors of patients, which cannot be fully 

adjusted for using observational data. This is because measurement error and incomplete 

capture of all these potential confounding factors inevitably leads to residual confounding. 

 

The limitations of this study included the risk of horizontal pleiotropy. We addressed this by 

conducting sensitivity analyses using MR-Egger when possible. Sensitivity analyses that 

considered the individual drug target effects also identified some heterogeneity that may 

have affected our drug class estimates – for example, the estimate for potassium-sparing 

diuretics and aldosterone antagonist may have seemed more protective due to the 

particularly large protective effect observed for one of the three targets under 

consideration: NR3C2. We were also limited by the fact that Mendelian randomization 

estimates the effect of lifelong exposure, while drugs typically have much shorter periods of 

exposure. This means that the effect sizes that we have estimated will not directly reflect 
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what is observed in trials or clinical practice and may not distinguish critical periods of 

exposure. (37)  

 

CONCLUSION 

 

This study helps to inform the growing knowledge around repurposing antihypertensive 

drugs for Alzheimer’s disease prevention by using a different method, subject to different 

biases, to assess this research question. We found little evidence to suggest that lowering 

systolic blood pressure itself will affect risk of developing Alzheimer’s disease. This was 

accompanied by limited evidence for many of the antihypertensive drug classes that we 

tested. This suggests that if specific antihypertensive drug classes do affect risk of 

Alzheimer’s disease, they are unlikely to do so via systolic blood pressure. Future research 

should consider this study, with other sources of evidence, in a triangulation framework to 

obtain a reliable answer concerning the potential repurposing of antihypertensives for 

Alzheimer’s disease prevention.  
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