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Abstract

Purpose: Epigenetic regulating proteins like histone methyltransferases produce
variations in several functions, some of them associated with the generation of
oncogenic processes. Mutations of genes involved in these functions have been
recently associated with cancer, and strategies to modulate their activity are currently

in clinical development.

Methods: By using data extracted from the METABRIC study, we searched for
mutated genes linked with detrimental outcome in invasive breast carcinoma (n = 772).
Then, we used downstream signatures for each mutated gene to associate that
signature with clinical prognosis using the online tool “Genotype-2-Outcome”
(http://www.g-2-0.com). Next, we performed functional annotation analyses to classify

genes by functions, and focused on those associated with the epigenetic machinery.

Results: We identified KMT2D, SETD1A and SETD2, included in the lysine
methyltransferase activity function, as linked with poor prognosis in invasive breast
cancer. KMT2D, which codes for a histone methyltransferase that acts as a
transcriptional regulator, was mutated in 6% of triple negative breast tumors and found
to be linked to poor survival. Genes regulated by KMT2D included RAC3, KRT23, or
KRT14, among others, which are involved in cell communication and signal
transduction. Finally, low expression of KMT2D at the transcriptomic level, which mirror
what happens when KMT2D is mutated and functionally inactive, confirmed its

prognostic value.

Conclusion: In the present work, we describe epigenetic modulating genes which are
found to be mutated in breast cancer. We identify the histone methyltransferase

KMT2D, which is mutated in 6% of triple negative tumors and linked with poor survival.
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Introduction

Advances in the analyses of the genomic landscape of human cancers have permitted
the identification of different molecular alterations, including mutations, copy number
variations, or gene rearrangements, which may be linked with the genesis and maintenance
of tumors [1,2]. Unfortunately, for most of the identified molecular alterations, limited
druggable opportunities exist [1,2]. Very well-known exceptions include inhibition of protein
kinase activity, when that alteration affects a kinase [2]. This has been the case for agents
targeting mutated or amplified protein kinases, such as EGFR or HERZ2 in lung and breast
cancers [3-5]. In a similar manner, chromosomal rearrangements can produce fusion proteins,

like Trk fusion proteins, with kinase activity amenable for pharmacological inhibition [6,7].

Changes at the genome not directly produced by an alteration of the nucleotide
sequence of the DNA are known as epigenetic modifications [8]. Alterations in proteins
involved in epigenetic regulation can affect genetic programs that can in turn impact on
several cellular functions. Ultimately, such genomic alterations can translate into different
diseases, from cancer to neurological alterations or aging disorders, among others [8,9].
Epigenetic regulating proteins include enzymes involved in histone modifications, histone
proteins, chromatin remodeling complexes or DNA methylation enzymes [8]. Mutations at
genes coding for proteins involved in several of these functions have been already
described, and some of them have been associated with cancer [10]. Therefore, inhibition of
epigenetic proteins can have a wide effect impacting on the expression of multiple genes,
affecting multiple pathways at the same time [10]. In this context, agents that target
epigenetic enzymes have been recently described and are currently in clinical development

[11].

In this study, we evaluated the mutational status of genes involved in epigenetic control
in breast cancer, identifying KMT2D as mutated in around 6% of triple negative tumors and

linked with a particular detrimental prognosis.
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Material and methods

Identification of Breast Cancer mutated genes

Data was extracted from the Breast Cancer METABRIC study (n = 2509), contained at
cBioPortal (http://www.cbioportal.org). First, we searched for mutated genes in those
samples from Invasive Breast Carcinoma patients (n = 772), including luminal A, luminal B,
HER2+ and basal-like. Genes that were mutated in more than 2.5% of the patients were
identified. The frequency of mutations was independently confirmed using the TCGA

database (n = 818).

Functional analyses

For the functional annotation analysis of the set of mutated genes, the gene list
enrichment analyses tool DAVID Bioinformatics Resources 6.8 (https://david.ncifcrf.gov/) was
used. To do so, genes with a mutation frequency greater than 2.5% and linked with poor

prognosis were selected.

For the functional analysis of the KMT2D-associated gene signature (S1 Table), the
online Enrichr tool was used (http://www.amp.pharm.mssm.edu/Enrichr/). An adjusted p-
value <0.05 was applied to select enriched gene-sets. Genes were separated into
overexpressed and underexpressed and "KEGG 2015" option was chosen for the analyses

and the calculation of the "combined score".

Outcome analyses

To evaluate the relationship between the presence of mutated genes and patient
clinical outcome, the Genotype-2-Outcome online tool (http:// http://www.g-2-0.com) [12] was
used (S1 table). This publicly available database allows the evaluation of clinical outcome for
all breast cancer subtypes (All, Triple Negative Breast Cancer, Luminal A, Luminal B and
HER2+) by exploring the association with prognosis of a specific transcriptomic signature

associated with that mutation.
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To evaluate the relationship between the expression of the genes and patient clinical
prognosis, the KM Plotter Online Tool (http://www.kmplot.com) [13,14][13,14][12, 13] was
used. This database permits the evaluation of overall survival (OS) and relapse-free survival

(RFS) in basal-like, luminal A, luminal B, HER2+ and triple negative breast cancers.

For both outcome analyses, patients were separated according to median values.
Patients above the threshold were considered to have a “high” expression while patients

below the threshold were defined as those with “low” expression.

Evaluation of KMT2D mutations

Data contained at cBioportal (http://www.cbioportal.org) was used to identify mutations
in KMT2D. Mutation Assessor (http://www.mutationassessor.org), SIFT (http:/sift.bii.a-
star.edu.sg/) and PolyPhen-2 (http://genetics.bwh.harvard.edu/pph2/) databases were used

to evaluate the effect of the mutation on KMT2D functionality.
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Results

By using the METABRIC database, we identified 172 mutated genes in the analyses of
the 772 samples from invasive breast tumors. We found that 59 out of the 172 genes were
mutated in more than 2.5% of the samples. Next, we evaluated the impact of these genes on
patient outcome using the online tool Genotype-2-Outcome (http://www.G-2-O.com/)[12]
(Figure 1A). This application identifies the transcriptomic signature associated with the
presence of the mutation in patients. Using this approach, 44 of the mutated genes had an

associated signature linked to detrimental prognosis in breast cancer (Figure 1A).

Figure 1. Whole genome mutational profiling and identification of histone-lysine
methyltransferase activity as deregulated in breast cancer. A. Flow chart of the study, in
which the METABRIC dataset was used to identify breast cancer mutated genes associated
with worse outcome. B. Functional analyses of the mutated genes associated with worse
outcome, using DAVID Bioinformatics Resources 6.8 tool, and found in more than 2.5% of
breast cancer samples analyzed. The table shows the list of the mutated genes contained in

each function.

To get insides into the biological function of the mutated genes, we performed a
functional annotation analysis. Protein binding, kinase activity, DNA binding and transcription
factor binding were among the identified functions which grouped more genes (Figure 1B).
Then, the mutational frequency of the identified genes for all breast cancer subtypes was
studied. Mutations in some of the genes have been widely described in breast cancer, as is
the case for TP53, in luminal and HER2+ tumors (Figure 2A). In the case of TNBC, mutated
genes displaying higher frequency, more than 8%, included SYNE1, CDH1 and DNAH11
(Figure 2A). In HER2+ disease, PIK3CA was mutated in more than 40% of tumors. Of note,
mutated genes found in TNBC tumors showed a broader range of functions than the other

subtypes (Figure 2B).
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Figure 2. Mutational profile by breast cancer subtype, and association with biological
functions. A. Graphs displayed the mutation frequency of those genes mutated in more than
2.5% of patients for all and each breast cancer subtype. B. Heat map of the mutation
frequency and the functions of the identified genes for each breast cancer subtypes. The

percentage of mutated cases is displayed in the legend.

Because epigenetic enzymes are currently under evaluation as druggable targets, we
focused on genes that had this function. Therefore, we selected the three genes included in
the functional analyses under the “Histone-lysine N-methyltransferase activity” function,
KMT2D, SETD2 and SETD1A, (Figure 1B). Next, we confirmed the presence of these
mutations in the different breast cancer subtypes, using data contained at TCGA (Table 1).
According to TCGA data, mutations of KMT2D were observed in 6% of TNBC and mutations
of SETD2 in 1.2%, confirming the data obtained with METABRIC. However, the presence of
mutation in the other breast cancer subtypes was not confirmed or was too low compared to
the percentage found in METABRIC. On the other hand, the proportion of SETD1A mutations
was not confirmed in TCGA for any of the subtypes (Table 1). Next, we aimed to further
explore the impact of the mutations of these two genes in patient prognosis, by exploring the
effect of their associated transcriptomic signature in breast cancer (All subtypes). KMT2D
transcriptomic signature was linked with detrimental outcome (HR 0.62 CI: 0.56-0.69; log
rank p=0), as well as SETD1A (HR 0.66 CI: 0.59-0.74; logrank p=7.6E-14) and SETD2 (HR

0.69, CI: 0.62-0.77; logrank p=1.8e-11) transcriptomic signatures (Figure 3A).

Table 1. Proportion of mutations in TCGA and METABRIC databases. Proportion of
mutations in KMT2D, SETD2 and SETD1A by breast cancer subtype using data from the

METABRIC and TCGA studies contained in cBioportal.

As the presence of KMT2D and SETD2 mutations were consistent using both
databases (METABRIC and TCGA) in TNBC, we next explored if KMT2D and SETD2

mutational signatures were associated with detrimental prognosis in this specific tumor
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subtype. Notably, the presence of the associated transcriptomic signatures for both, KMTD2
and SETD2, were associated with poor prognosis (HR 0.58 Cl: 0.45-0.74; log rank p=1.9e-05

and HR 0.55 CI: 0.43-0.71; log rank p= 4.2e-0.6; respectively) (Figure 3B).

Figure 3. KMT2D, SETD2 and SETD1A mutational signature and clinical outcome. A.
Association of KMT2D, SETD2, and SETD1A mutational signature with patient outcome in all
breast tumors. B. Association of KMT2D and SETD2 mutational signatures with prognosis in
triple negative breast tumors. The online tool Genotype-2-Outcome was used for both

analyses.

From here, we focused on KMT2D, as it was the most prevalent mutated gene in both
datasets and was strongly associated with poor outcome. KMT2D is a histone
methyltransferase that acts as a transcriptional regulator. The complete list of deregulated
genes included in the KMTD2 associated transcriptomic signature is shown in S1 table, and
the functions of these genes, determined with the online tool Enrichr, are displayed in figure
4. Most down-regulated genes were included in the cell communication function, followed by
tyrosine metabolism or extracellular matrix receptor interaction (S1 Table). Genes which
codify for Keratins, KRT23 or KRT14, were among the most relevant genes included in the
cell communication function (Figure 4). The most relevant upregulated gene included the
GTPase RAC3, that belongs to the RAS family of small GTPases involved in cell proliferation

(S1 Table and figure 4) [15].

Figure 4. Functional analysis of deregulated genes included in the KMT2D mutated
signature. A. Percentage of deregulated genes included in the KMT2D mutated signature by
biological function. Overexpressed genes are displayed in blue and down-expressed genes
in red. For functional annotation analysis, the online tool Enrichr was used as described in

material and methods. B. Deregulated genes included in each function.

Last, we explored the functional consequences of the mutations present in KMT2D in

the samples of the METABRIC database. To identify these mutations, we used the online
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tool cBioportal (Figure 5A). Missense mutations were scattered along the full length of the
protein, and were the most abundant molecular alterations, followed by truncating mutations
(Figure 5B). The functional impact of all these different mutations, evaluated with three
different databases (Mutation Assessor, SIFT and PolyPhen-2), are displayed in Figure 5C.
As shown, between 40-55% of KMT2D mutations had a functional impact. This indicated that
those mutations lead to an abnormal protein, unable to participate in their normal function,
mimicking a lack of expression of the gene. To confirm this hypothesis, we decided to
explore if a low expression level of this gene could recapitulate the outcome observed at a
mutational level, when we explored the effect of mutated KMT2D. Using the online tool
KMplotter, that links the transcriptional expression of a gene with patient outcome [14], we
found that low transcriptomic levels of KMT2D were associated with detrimental prognosis
(relapse free survival) in all breast tumors (HR 0.64 Cl: 0.55-0.79; log rank p=2.4e-08)
(Figure 8D), in addition to the triple negative subtype (HR 0.71 Cl: 0.551-0.98; log rank

p=0.035) (Figure 5E).

Figure 5. Assessment of mutations at KMT2D. A. Diagram showing each aminoacid (aa)
which can be found to be mutated in the KMT2D gene. B. Type of mutations from the
included cases. C. Functional impact of KMT2D mutations in the included cases. D. Relapse
free survival (RFS) of breast cancer patients based on the transcriptomic expression of
KMT2D. E. Relapse free survival (RFS) of triple negative breast cancer patients based on
the transcriptomic expression of KMT2D. KM plotter online tool was used for these prognosis

analyses.
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Discussion

In the present article we report the identification of genes that are mutated in breast
cancer and associated with detrimental outcome. After functional analysis of the identified
genes, we focused on the “Histone-lysine N-methyltransferase activity” function and found
that the histone methyltransferase gene KMT2D was mutated in around 6% of the TNBCs
samples evaluated; in addition to be associated with poor prognosis in this breast cancer

subtype.

KMT2D is a histone methyltransferase that methylates the Lys-4 position of the histone
H3 [16]. The codified protein belongs to a large protein complex termed ASCOM, which is

one of the transcriptional regulators of the estrogen receptor genes [16,17].

KMT2D mutations have been associated with the development of different tumors,
including small cell lung cancer [16], esophageal squamous cell carcinoma, and large B-cell
lymphoma [16]. Although there are many other tumors where mutations in this gene have
been described [16,18], neither those mutations have been previously reported in breast

cancer, nor their impact on patient outcome has been assessed.

Recent data suggest that KMT2D is involved in the recruitment and activation of
relevant breast cancer genes including FOXA1, PBX1, and ER [17]. As described in the
present article and other reports, most of the mutations in KMT2D are frameshift and
nonsense mutations in the SET and PHD domains, respectively [17]. Most of the described
mutations result in the protein loss or in a reduction of the methyltransferase activity [19].
Therefore, this can produce defective enhancer regulation and, subsequently, modifications
in the transcription of several genes or increase in genomic instability [8,20]. This is
demonstrated in our study by the transcriptomic signature associated with the gene mutation,
which will be discussed later, particularly with the upregulation of RAC3. Of note, KMT2D
displays different effects depending on the cellular context, due to the recruitment of different

transcription factors [16].
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When evaluating the transcriptomic signature linked to KMT2D mutations, we found
that RAC3 was one of the most significantly upregulated transcripts. This transcript codes for
a GTPase which belongs to the RAS superfamily of small GTP-binding proteins, and it has
been linked with the pathophysiology of many solid tumors, including breast cancer
[15,21,22]. In breast cancer RAC3 regulates invasion and migration participating in the

metastatic process[15].

Finally, we confirmed that the expression level of the KMT2D gene was associated with
clinical outcome in a similar manner as we observed for the presence of the gene mutations,
which mostly produce a reduction or loss of protein expression or a decrease in its activity.
This result indirectly confirms the robustness of the mutational gene signature in relation to

outcome.

In conclusion, in the present work, we identify that the histone methyltransferase gene
KMT2D is mutated in a number of TNBC patients and associated with detrimental outcome in
TNBC. Therefore, modulation of the expression or activity of downstream genes, or KMT2D

itself, might have relevant consequences from a therapeutic point of view.
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S1 Table. Deregulated genes contained in the transcriptomic signature linked to
KMT2D mutation. Genes found to be upregulated or downregulated in the KMT2D

mutational signature. Genotype-2-Outcome database was used for this analysis.
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