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Many cancer genomes contain large numbers of somatic mutations, but few of these
mutations drive tumor development. Current approaches to identify cancer driver genes
are largely based on mutational recurrence, i.e. they search for genes with an increased
number of nonsynonymous mutations relative to the local background mutation rate.
Multiple studies have noted that the sensitivity of recurrence-based methods is limited in
tumors with high background mutation rates, because passenger mutations dilute their
statistical power. Here, we observe that passenger mutations tend to occur in characteristic
nucleotide sequence contexts, while driver mutations follow a different distribution
pattern determined by the location of functionally relevant genomic positions along the
protein-coding sequence. To discover new cancer genes, we searched for genes with an
excess of mutations in unusual nucleotide contexts that deviate from the characteristic
context around passenger mutations. By applying this statistical framework to whole-
exome sequencing data from 12,004 tumors, we discovered a long tail of novel candidate
cancer genes with mutation frequencies as low as 1% and functional supporting evidence.
Our results show that considering both the number and the nucleotide context around
mutations helps identify novel cancer driver genes, particularly in tumors with high

background mutation rates.
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Multiple algorithms have been developed to systematically identify genes that drive tumor
formation->. Most search for genes harboring more nonsynonymous mutations than expected
based on the local background mutation ratel>. These recurrence-based methods have
successfully identified many novel cancer genes*%7. However, several studies have noted that the
sensitivity of recurrence-based approaches is limited®89, because functionally neutral passenger
mutations dilute their statistical power to detect recurrent driver mutations!%11, Hence, due to the
high prevalence of passenger mutations in tumors with high background mutation rates, recent
studies have concluded that orders of magnitude more sequencing data would be needed to
establish a comprehensive catalog of all cancer driver genes using recurrence-based methods®8°
(Fig. S1).

Passenger mutations are not uniformly distributed along the cancer genome. Rather, they are
enriched within characteristic nucleotide sequence contexts, whose specificity depends on the
specific mutational processes active in a given tumor??15, For instance, APOBEC enzymes scan
single-stranded DNA for specific nucleotide sequence motifs and deaminate cytidine to uracile
within these motifs16-18, Similarly, mutant polymerase € randomly introduces passenger mutations
in a non-uniform manner, since its fidelity depends strongly on the local nucleotide context19-22,
For driver mutations, the distribution depends not only on the local nucleotide context, but also on
the location of functionally relevant positions along the protein sequence?3-26. Thus, we
hypothesized that the nucleotide context would differ substantially around driver and passenger
mutations.

Based on this hypothesis, we here developed a biologically informed statistical approach for
discovering new cancer genes. Briefly, our approach searches for genes harboring an excess of
mutations in unusual nucleotide contexts that deviate from the characteristic nucleotide context
around passenger mutations (Fig. 1a, Methods).

Our new method requires modeling the nucleotide context around passenger mutations. The 5’
and 3’ nucleotides immediately adjacent to a passenger mutation have the strongest effect on the
local mutation probability (Fig. 1b, S2-S3). However, as reported previously27:28, the additional
upstream and downstream nucleotides flanking a passenger mutation also influence its mutation
probability substantially (Fig. 1b, S2-S3). Traditionally, the effect of the flanking 5’ and 3’
nucleotides on the local mutation probability has been modeled by determining the mutation

probabilities of all possible trinucleotide contexts independently12-15. As the number of flanking
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nucleotides increases, the number of possible sequence contexts grows exponentially - soon
exceeding the number of mutations per tumor (Fig. S4). Hence, it is no longer feasible to analyze
all possible sequence contexts independently.

Instead, we approximated the context-specific mutation probability by assuming that each
flanking nucleotide contributed independently and multiplicatively to the local mutation
probability (Fig. 1c-f, S5-S8, Methods). For instance, we approximated the mutation probabilities
of trinucleotide contexts as products of the effects of their flanking 5’ and 3’ nucleotides, as well as
their base substitution type (Fig. 1c-d, S7a). We developed a composite likelihood model?° to
extend this approach to larger nucleotide contexts (Fig. 1e). This model closely matched the
observed mutation probabilities for the 29 cancer types examined in this study (Fig. 1e-f, S7b-c).
Although the immediately adjacent 5’ and 3’ nucleotides had the strongest impact on the local
mutation probability, also flanking nucleotides outside of the trinucleotide context had a
substantial effect in this composite likelihood model, thus refining our approximation of the local
mutation probabilities (Fig. S7d, S8).

We then examined whether the composite likelihood model could distinguish driver from
passenger mutations using 10 established melanoma genes and 5 non-cancer-related genes that
had been reported as false-positive findings in previous cancer gene discovery studies3 (Fig. 2).
While mutations in non-cancer-related genes closely followed the expected context-dependent
distribution pattern derived from the composite likelihood model, most mutations in cancer genes
fell in nucleotide contexts that deviated from the expectation of the model. This suggested that
considering the broad nucleotide context around mutations could indeed provide new biological
information to help distinguish between driver and passenger mutations.

Encouraged by these observations, we developed a statistical framework to detect cancer driver
genes that considers both mutation counts and nucleotide contexts. In our model, the probability

of observing the number n; and the context-dependent distribution v; of nonsynonymous
mutations in a gene g (P(ng, Vg |sg; Ag)) depends on the number of synonymous mutations s, and
the context-specific mutation rates 4;,. We decomposed this probability into the probability of
observing n, nonsynonymous mutations, given the number of synonymous mutations

Sy (“mutation count”; P(ng |sg)), and the probability of these n; nonsynonymous mutations falling
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in nucleotide contexts vy, given their context-specific mutation rates /1g (“nucleotide context”;
P(vglng;’lg)):
P("g'vglsg;’lg) = P(nglsg) ' P(vglng?’lg) (1)

mutation count nucleotide context

Here, P(ng|sg) reflects the established statistics used by existing recurrence-based methods for
cancer gene discovery!>. The p-value of P(vg|ng;lg) was derived by comparing the observed
nucleotide contexts v, against a large number of random scenarios generated by a Monte Carlo
simulation approach based on the same the context-specific mutation rates 4, 3031, As shown by
Q-Q-plots32, the p-values derived from P(ng|sg) , P(vg|ng;/1g), and P(vg,ng|sg;/1g) closely
approximated a uniform distribution, which indicated that our models were reasonably well
calibrated to the observed data (Fig. 3a, Methods).

Notably, mutational count and nucleotide context provided complementary criteria for detecting
cancer genes (Fig. 3a). In cancer types with low background mutation rates, such as thyroid
cancer, mutational counts were highly informative. In cancer types with high background
mutation rates, such as melanoma, the nucleotide context was the dominant criterion. Combining
both criteria identified several candidate cancer genes that could not be identified based on
mutational count or nucleotide context alone (Fig. 3a).

We applied our statistical framework to whole-exome sequencing data from 12,004 individual
tumors spanning 29 different tumor types (Fig. S9, Table S1). The results of these analyses are
summarized here (Fig. 3-4, S9-45) and at www.cancer-genes.org, for various false-discovery rate
(FDR) thresholds. For FDR<0.25, we identified 697 gene-tumor pairs, i.e. pairs of significantly
mutated genes and their associated tumor type. These gene-tumor pairs involved 379 distinct
genes, with 423 gene-tumor pairs being novel. The corresponding numbers were 484, 252 and
231 for FDR<0.05, as well as 395, 201, and 168 for FDR<0.01 (Tables 1, S2-S3). Gene-tumors pairs
were considered novel if they were not reported as significantly mutated in at least two
computational studies, among all TCGA marker papers, a meta-analysis of 876 publications, and
two large-scale pan-cancer gene discovery studies%67:33,

We next examined the biological relevance of the 423 novel gene- tumor pairs (FDR<0.25). Half of
the novel gene-tumor pairs (49%) involved canonical cancer genes in the Cancer Gene Census3433,

compared with a rate of 3.8% for random gene-tumor pairs. We systematically reviewed the
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literature to further investigate the experimental or clinical support for of the novel gene-tumor
pairs. We only considered publications with experimental data supporting the causal involvement
of these genes in carcinogenesis and excluded functionally unsupported reports of mutations
(Methods). A majority of the novel gene-tumor pairs (82%) had experimental support, with 61%
having support in the same tumor type, in which we detected them as significantly mutated (Fig.
3b, Tables 1, S2-S3). In contrast, the rate for random gene-tumor pairs was 17%. Overall, 11%
(75/697, FDR<0.25), 6% (30/484, FDR<0.05), and 4% (16/395, FDR<0.01) of the significant gene-
tumor pairs had no literature support, which is roughly in accordance with these FDR thresholds
(Fig. 3b, Tables 1, S2-S3).

We asked whether considering the nucleotide context identified candidate cancer genes that were
not discovered based on recurrence alone. Among gene-tumor pairs previously reported as
significantly mutated, 74% were also identified by using an established recurrence-based
approach? (FDR<0.25 for both methods, Fig. 3c-d, S10). In contrast, among novel gene-tumor
pairs, only 33% were identified based on recurrence alone. In particular, our statistical framework
identified numerous biologically relevant candidate cancer genes that were not identified based
on recurrence alone. For instance, HDAC4 (histone deacetylase 4) was significantly mutated in
gastroesophageal cancer (FDR=5.5x10-2 by nucleotide context and recurrence; FDR=6.8x10-1 by
recurrence alone; not reported as significant previously; Fig. 3e, S11). Histone deacetylases have
been implicated in tumor formation3¢-38 and HDAC4 displayed two mutational hotspots: gastric
cancers with disruptive frameshift mutations (P901fs), and esophageal cancers with recurrent
missense mutations (F746L) (Fig. 3e). Similarly, we identified POLR2A (RNA polymerase II subunit
A) as significantly mutated in lung adenocarcinoma (FDR=1.07x10-> by nucleotide context and
recurrence; FDR=1.0 by recurrence; not reported as significant previously; Fig. 4, S12). Mutations
in POLRZA have been implicated in the development of meningioma3°, and POLRZA has been
identified as a therapeutic target in colon cancer due to its frequent co-deletion with TP5340.
Further, we noticed that POLRZA contained recurrent mutations in positions that are relevant for
the protein-DNA interaction (Fig. S12). Additional biologically relevant candidate cancer genes
that were not identified based on recurrence included ANAPC1, FGFR4, IKZF3, PARG, SOX17, and
ZFX (FDR<0.1 by nucleotide context and recurrence; FDR=1.0 by recurrence; Fig. 4, S11-S12,
Tables S2-S3). In addition, we observed that the following cancer-related signaling complexes

contained several candidate cancer genes, i.e. new cancer genes or gene-tumor pairs: modulation
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of Ras signaling (RHOA, RHOB, RRAS2), cell cycle regulation (CCNQ, CDK4), regulation of protein
levels (EEF1A1, EIF1AX, MIAZ2), the catenin/cadherin complex (FAT1, FAT3, FAT4), DNA
polymerases (POLQ, POLR2A, REV3L), regulation of transcription (MAMLZ, SF3B2), modulation of
apoptosis (ACVR2A, ACVR1B, CASP8, BIRC3, BIRC6), and epigenetic modification (Fig. S13). In these
signaling complexes, 64% (118/183) of the gene-tumor pairs had not been reported as
significantly mutated previously, and 60% (110/183) of the gene-tumor pairs were not identified
by recurrence alone (Fig. 4).

Taken together, our findings demonstrate that characterization of the broad nucleotide context
around somatic passenger mutations enhances cancer gene discovery, particularly in tumor types
with high background mutation rates. Consideration of the nucleotide context for cancer gene
discovery does not require prior knowledge of the location of functionally relevant positions or
the biological effect of mutations. Hence, nucleotide contexts may ultimately be amenable to
variant and gene discovery in non-coding regions of the cancer genome. Through our statistical
model we identified a long tail of reasonable candidate cancer genes that may form the foundation
for future experimental and clinical studies. The new statistical framework is available as a fully
executable software tool called MutPanning (www.cancer-genes.org) and can be executed online

as a module on the GenePattern platform#! (www.genepattern.org).
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Fig. 1 | A biologically informed statistical framework to discover candidate cancer genes. a,
Schematic of our statistical framework to discover candidate cancer genes based on nucleotide
context. Passenger mutations accumulate in characteristic nucleotide contexts (gray, left),
whereas driver mutations typically accumulate in functionally relevant positions (red, left). We
searched for genes harboring an increased number of nonsynonymous mutations above the local
background mutation rate (mutational recurrence, middle). Further, we searched for genes with
an excess of mutations in nucleotide contexts that deviate from the characteristic nucleotide
context around passenger mutations (mutations in unusual contexts, right). In tumors with high
background mutation rates, the second criterion allowed us to actively suppress mutations in the
test statistics that were likely to be passenger mutations based on their surrounding nucleotide
context (gray). b, The nucleotide context around passenger mutations is visualized for three
cancer types with high average background mutation rates. In brief, we counted how often we
observed which nucleotide in the context around recurrent passenger mutations (+8 nucleotides).
These plots show that the flanking 5’ and 3’ nucleotides have the strongest impact on the local
mutation probability (1, trinucleotide context). However, also flanking nucleotides outside of the
trinucleotide context have a substantial impact on the local mutation probability, suggesting that
the broad nucleotide context around passenger mutations contains a relevant biological signal
that we needed to consider in our approach. c-f, To integrate this signal into our statistical
framework, we developed a composite likelihood model that characterizes the broad context
around passenger mutations. ¢, Mutation probabilities of trinucleotide contexts are commonly
modeled by determining the mutation probability of each possible trinucleotide context
independently!!-14 (original likelihood, top). Instead, we integrated the effect of the flanking 5’ and
3’ nucleotides, as well as the base substitution type as independent factors into a composite
likelihood model (bottom). d, For each classical trinucleotide mutation signaturell-14, we plotted
the original mutational likelihood (x-axis) against the composite likelihood (y-axis). Dot colors
reflect the six different base substitution types, and Pearson correlations are annotated on the
bottom right. These analyses revealed that mutation probabilities of trinucleotide contexts could
be decomposed into the effects of their central and flanking 5 and 3’ nucleotides, thus
corroborating the validity of our composite likelihood approach for trinucleotide contexts. e, We
next generalized the composite likelihood model to broader nucleotide contexts. In parallel to our

approach for trinucleotide contexts, we integrated the effect of each flanking nucleotide in the
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broad context as an independent and multiplicative factor into the composite likelihood. f, We
then counted the number of mutations in each possible 7-nucleotide context (x-axis, original
likelihood) and compared them with the composite likelihood (y-axis). Since the number of
possible nucleotide contexts was too large to be visualized directly, we plotted the data point
density. Similar plots for the remaining trinucleotide signatures and cancer types are shown in
Figures S7a-c. An analysis of the contribution of flanking nucleotides outside of the trinucleotide
context to the local mutation probability in the composite likelihood model is shown in Figures

S7d and S8.
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Fig. 2 | Cancer driver genes harbor an excess of mutations in unusual nucleotide contexts. a,
For each mutation, we compared its nucleotide context (observed context, top) with the
characteristic context around passenger mutations (expected context, bottom). We derived a
probability score that indicated whether the mutation occurred in an unusual (left, orange) or
expected (right, gray) nucleotide context (Methods). b, We corrected these probabilities for
multiple hypothesis testing (false-discovery rates, y-axis) and plotted them against their genomic
position (x-axis). In cancer genes a substantial number of mutations occurred in unusual sequence
contexts (left, middle). In non-cancer genes mutations in unusual sequence contexts were
extremely rare (right). This suggested that cancer driver genes harbor an increased number of
mutations in unusual nucleotide contexts that deviate from the characteristic nucleotide context
around passenger mutations. This observation provides a novel biological criterion to

discriminate between driver and passenger mutations.
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Fig. 3 | Discovery and characterization of candidate cancer genes identified based on
nucleotide context. a, We determined which genes emerged as significantly mutated (false-
discovery rate, FDR<0.25) based on their mutational recurrence (blue) and based on their excess
of mutations in “unusual” nucleotide contexts (red). Further, we identified candidate cancer genes
based on a statistical model that combined mutational recurrence and nucleotide context
(orange). We compared the expected (x-axis) and observed (y-axis) p-values derived from these
three statistical models using Q-Q-plots. Venn diagrams visualize the overlap in significant genes
detected with these three models (bottom). These analyses revealed that increased mutation
counts and unusual nucleotide contexts provide two complementary criteria for the discovery of
cancer genes. Integrating both aspects into a combined significance model enabled discovery of
candidate cancer genes across tumor types with high and low background mutation rates (left to
right). b, We stratified our findings based on their support in the literature. Known gene-tumor
pairs, which had been reported as significantly mutated previously, are colored in blue. Novel
gene-tumor pairs, which had not been reported as significantly mutated previously, are colored in
orange (experimental support in the same tumor type), brown (literature support in a different
tumor type), or gray (no support). For rigorous FDR thresholds (FDR<0.01), a majority of the
significant gene-tumor pairs (82%, 323/395) involved canonical cancer genes in the Cancer Gene
Census3435, Further, most gene-tumor pairs had been known previously or had experimental
literature support in the same tumor type (89%, 351/395 for FDR<0.01). For less stringent FDR
thresholds, the absolute number of novel findings with experimental literature support increased,
and the number of findings without literature support (11%, 75/697) did not exceed the expected
false-discovery rate (FDR<0.25). ¢, We counted for each gene-tumor pair (FDR<0.25) how many
previous studies reported the gene-tumor pair as significantly mutated+67.33 (x-axis). Further, we
examined whether the gene-tumor pair was also identified using an established recurrence-based
approach? (y-axis). The concordance between these two measures potentially reflects the fact that
most previous pan-cancer gene discovery studies used recurrence-based approaches to identify
cancer genes*6733. d, We explored the mutation frequencies of the gene-tumor pairs that emerged
as significantly mutated based on their recurrence in the TCGA subset (blue), in the complete
dataset (orange), or when additionally considering the nucleotide context around mutations
(black). This density plot revealed that both the addition of 4,913 samples from TCGA-

independent studies and considering the nucleotide context around mutations independently
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contributed to the discovery of rare candidate cancer genes. e, Exemplary evidence for the
candidate cancer gene HDAC4. Left: The distribution of HDAC4 mutations is visualized as a needle
plot. For each amino acid substitution the number of samples (y-axis) is plotted against its
position in the peptide sequence (x-axis). Dot colors reflect the tumor types, in which the amino
acid substitution was detected. Right: The position of the two mutational hotspots is visualized
using a crystal structure*? (PDB: 4CBY). A previous study reported a hydrogen bond and salt
bridge network between W762, E764, and R730, which along with F746 form a closed
hydrophobic patch peripheral to the catalytic center of HDAC443 (orange). Evidence for other

candidate cancer genes can be found in Figures S11-5S13.
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Fig. 4 | Arefined catalog of driver genes involved in human cancer. We applied our statistical
framework to whole-exome sequencing data from 12,004 tumors. Significant gene-tumor pairs
(FDR<0.25) are listed in decreasing order according to their mutation frequency, which is
reflected by the color of the square next to the gene name (dark red to white). The font size of the
gene name reflects its significance (false-discovery rate), and the font color (black vs. white)
indicates whether the gene is a canonical cancer gene in the Cancer Gene Census343>. To determine
which gene-tumor pairs had been known previously, we benchmarked our results against all
TCGA marker papers’ (orange), a meta-analysis33 of 876 publications (blue), the tumorportal
database® (yellow), and a pan-cancer study, which adopted the dN/dS ratio for cancer gene
discovery* (green). We further ran an established recurrence-based approach3 on our dataset
(purple) to determine which gene-tumor pairs were identified based on recurrence alone. A more
detailed overview of the driver mutation landscape of individual tumor types is provided in
Figures S18-5S45. An interactive visualization of these results can be found online (www.cancer-

genes.org).
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FDR < 25% FDR < 10% FDR < 5% FDR < 1%
Genes G-T Pairs| Genes G-T Pairs| Genes G-T Pairs| Genes G-T Pairs

Total 379 697 298 562 252 484 201 395
Known 127 274 123 262 121 253 114 227
Novel 252 423 175 300 131 231 87 168
124

supportin = gq 91 44 55 31 40 21 28

different type

e no support 73 75 46 a7 30 30 16 16

Table 1 | Stratification of candidate cancer genes by literature support. To examine the
biological relevance of our findings, we stratified them based on their literature support. Genes
and gene-tumor (G-T) pairs that had been reported as significantly mutated in at least two
previous computational studies were classified as known (blue, 2nd row). Novel genes and gene-
tumor pairs, which had not been reported as significantly mutated previously (red, 3rd row), were
further stratified depending on whether there was literature support (experimental or clinical) for
the same tumor type in which we discovered them as significantly mutated (orange, 4th row),
supporting literature for a different tumor type (brown, 5th row), or no supporting data (gray, 6th
row). Depending on their literature support level, 94% (known, 257/274), 72% (same tumor type,
186/257), 23% (different tumor type, 21/91), and 3% (no support, 2/75) of the gene-tumor pairs
(FDR<0.25) involved canonical cancer genes present in the Cancer Gene Census343>, compared
with a rate of 3.8% for random gene-tumor pairs. Thus, literature support levels provide a

measure to prioritize our findings based on their external validity.
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