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 5 

Many cancer genomes contain large numbers of somatic mutations, but few of these 6 

mutations drive tumor development. Current approaches to identify cancer driver genes 7 

are largely based on mutational recurrence, i.e. they search for genes with an increased 8 

number of nonsynonymous mutations relative to the local background mutation rate. 9 

Multiple studies have noted that the sensitivity of recurrence-based methods is limited in 10 

tumors with high background mutation rates, because passenger mutations dilute their 11 

statistical power. Here, we observe that passenger mutations tend to occur in characteristic 12 

nucleotide sequence contexts, while driver mutations follow a different distribution 13 

pattern determined by the location of functionally relevant genomic positions along the 14 

protein-coding sequence. To discover new cancer genes, we searched for genes with an 15 

excess of mutations in unusual nucleotide contexts that deviate from the characteristic 16 

context around passenger mutations. By applying this statistical framework to whole-17 

exome sequencing data from 12,004 tumors, we discovered a long tail of novel candidate 18 

cancer genes with mutation frequencies as low as 1% and functional supporting evidence. 19 

Our results show that considering both the number and the nucleotide context around 20 

mutations helps identify novel cancer driver genes, particularly in tumors with high 21 

background mutation rates. 22 
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Multiple algorithms have been developed to systematically identify genes that drive tumor 24 

formation1-5. Most search for genes harboring more nonsynonymous mutations than expected 25 

based on the local background mutation rate1-5. These recurrence-based methods have 26 

successfully identified many novel cancer genes4,6,7. However, several studies have noted that the 27 

sensitivity of recurrence-based approaches is limited6,8,9, because functionally neutral passenger 28 

mutations dilute their statistical power to detect recurrent driver mutations10,11. Hence, due to the 29 

high prevalence of passenger mutations in tumors with high background mutation rates, recent 30 

studies have concluded that orders of magnitude more sequencing data would be needed to 31 

establish a comprehensive catalog of all cancer driver genes using recurrence-based methods6,8,9 32 

(Fig. S1).  33 

Passenger mutations are not uniformly distributed along the cancer genome. Rather, they are 34 

enriched within characteristic nucleotide sequence contexts, whose specificity depends on the 35 

specific mutational processes active in a given tumor12-15. For instance, APOBEC enzymes scan 36 

single-stranded DNA for specific nucleotide sequence motifs and deaminate cytidine to uracile 37 

within these motifs16-18. Similarly, mutant polymerase ε randomly introduces passenger mutations 38 

in a non-uniform manner, since its fidelity depends strongly on the local nucleotide context19-22. 39 

For driver mutations, the distribution depends not only on the local nucleotide context, but also on 40 

the location of functionally relevant positions along the protein sequence23-26. Thus, we 41 

hypothesized that the nucleotide context would differ substantially around driver and passenger 42 

mutations. 43 

Based on this hypothesis, we here developed a biologically informed statistical approach for 44 

discovering new cancer genes. Briefly, our approach searches for genes harboring an excess of 45 

mutations in unusual nucleotide contexts that deviate from the characteristic nucleotide context 46 

around passenger mutations (Fig. 1a, Methods). 47 

Our new method requires modeling the nucleotide context around passenger mutations. The 5’ 48 

and 3’ nucleotides immediately adjacent to a passenger mutation have the strongest effect on the 49 

local mutation probability (Fig. 1b, S2-S3). However, as reported previously27,28, the additional 50 

upstream and downstream nucleotides flanking a passenger mutation also influence its mutation 51 

probability substantially (Fig. 1b, S2-S3). Traditionally, the effect of the flanking 5’ and 3’ 52 

nucleotides on the local mutation probability has been modeled by determining the mutation 53 

probabilities of all possible trinucleotide contexts independently12-15. As the number of flanking 54 
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nucleotides increases, the number of possible sequence contexts grows exponentially - soon 55 

exceeding the number of mutations per tumor (Fig. S4). Hence, it is no longer feasible to analyze 56 

all possible sequence contexts independently. 57 

Instead, we approximated the context-specific mutation probability by assuming that each 58 

flanking nucleotide contributed independently and multiplicatively to the local mutation 59 

probability (Fig. 1c-f, S5-S8, Methods). For instance, we approximated the mutation probabilities 60 

of trinucleotide contexts as products of the effects of their flanking 5’ and 3’ nucleotides, as well as 61 

their base substitution type (Fig. 1c-d, S7a). We developed a composite likelihood model29 to 62 

extend this approach to larger nucleotide contexts (Fig. 1e). This model closely matched the 63 

observed mutation probabilities for the 29 cancer types examined in this study (Fig. 1e-f, S7b-c). 64 

Although the immediately adjacent 5’ and 3’ nucleotides had the strongest impact on the local 65 

mutation probability, also flanking nucleotides outside of the trinucleotide context had a 66 

substantial effect in this composite likelihood model, thus refining our approximation of the local 67 

mutation probabilities (Fig. S7d, S8). 68 

We then examined whether the composite likelihood model could distinguish driver from 69 

passenger mutations using 10 established melanoma genes and 5 non-cancer-related genes that 70 

had been reported as false-positive findings in previous cancer gene discovery studies3 (Fig. 2). 71 

While mutations in non-cancer-related genes closely followed the expected context-dependent 72 

distribution pattern derived from the composite likelihood model, most mutations in cancer genes 73 

fell in nucleotide contexts that deviated from the expectation of the model. This suggested that 74 

considering the broad nucleotide context around mutations could indeed provide new biological 75 

information to help distinguish between driver and passenger mutations. 76 

Encouraged by these observations, we developed a statistical framework to detect cancer driver 77 

genes that considers both mutation counts and nucleotide contexts. In our model, the probability 78 

of observing the number 𝑛𝑔  and the context-dependent distribution 𝑣𝑔  of nonsynonymous 79 

mutations in a gene g (𝑃(𝑛𝑔, 𝑣𝑔|𝑠𝑔; 𝜆𝑔)) depends on the number of synonymous mutations 𝑠𝑔 and 80 

the context-specific mutation rates 𝜆𝑔. We decomposed this probability into the probability of 81 

observing 𝑛𝑔  nonsynonymous mutations, given the number of synonymous mutations 82 

𝑠𝑔 (“mutation count”; 𝑃(𝑛𝑔|𝑠𝑔)), and the probability of these 𝑛𝑔 nonsynonymous mutations falling 83 
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in nucleotide contexts 𝑣𝑔, given their context-specific mutation rates 𝜆𝑔 (“nucleotide context”; 84 

𝑃(𝑣𝑔|𝑛𝑔; 𝜆𝑔)): 85 

                                                 𝑃(𝑛𝑔, 𝑣𝑔|𝑠𝑔; 𝜆𝑔) ≔ 𝑃(𝑛𝑔|𝑠𝑔)⏟      
mutation count

⋅ 𝑃(𝑣𝑔|𝑛𝑔; 𝜆𝑔)⏟        
nucleotide context

                                                 (1) 86 

Here, 𝑃(𝑛𝑔|𝑠𝑔) reflects the established statistics used by existing recurrence-based methods for 87 

cancer gene discovery1-5. The p-value of 𝑃(𝑣𝑔|𝑛𝑔; 𝜆𝑔) was derived by comparing the observed 88 

nucleotide contexts 𝑣𝑔 against a large number of random scenarios generated by a Monte Carlo 89 

simulation approach based on the same the context-specific mutation rates 𝜆𝑔 30,31. As shown by 90 

Q-Q-plots32, the p-values derived from 𝑃(𝑛𝑔|𝑠𝑔) , 𝑃(𝑣𝑔|𝑛𝑔; 𝜆𝑔) , and 𝑃(𝑣𝑔, 𝑛𝑔|𝑠𝑔; 𝜆𝑔)  closely 91 

approximated a uniform distribution, which indicated that our models were reasonably well 92 

calibrated to the observed data (Fig. 3a, Methods). 93 

Notably, mutational count and nucleotide context provided complementary criteria for detecting 94 

cancer genes (Fig. 3a). In cancer types with low background mutation rates, such as thyroid 95 

cancer, mutational counts were highly informative. In cancer types with high background 96 

mutation rates, such as melanoma, the nucleotide context was the dominant criterion. Combining 97 

both criteria identified several candidate cancer genes that could not be identified based on 98 

mutational count or nucleotide context alone (Fig. 3a). 99 

We applied our statistical framework to whole-exome sequencing data from 12,004 individual 100 

tumors spanning 29 different tumor types (Fig. S9, Table S1). The results of these analyses are 101 

summarized here (Fig. 3-4, S9-45) and at www.cancer-genes.org, for various false-discovery rate 102 

(FDR) thresholds. For FDR<0.25, we identified 697 gene-tumor pairs, i.e. pairs of significantly 103 

mutated genes and their associated tumor type. These gene-tumor pairs involved 379 distinct 104 

genes, with 423 gene-tumor pairs being novel. The corresponding numbers were 484, 252 and 105 

231 for FDR<0.05, as well as 395, 201, and 168 for FDR<0.01 (Tables 1, S2-S3). Gene-tumors pairs 106 

were considered novel if they were not reported as significantly mutated in at least two 107 

computational studies, among all TCGA marker papers, a meta-analysis of 876 publications, and 108 

two large-scale pan-cancer gene discovery studies4,6,7,33.  109 

We next examined the biological relevance of the 423 novel gene- tumor pairs (FDR<0.25). Half of 110 

the novel gene-tumor pairs (49%) involved canonical cancer genes in the Cancer Gene Census34,35, 111 

compared with a rate of 3.8% for random gene-tumor pairs. We systematically reviewed the 112 
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literature to further investigate the experimental or clinical support for of the novel gene-tumor 113 

pairs. We only considered publications with experimental data supporting the causal involvement 114 

of these genes in carcinogenesis and excluded functionally unsupported reports of mutations 115 

(Methods). A majority of the novel gene-tumor pairs (82%) had experimental support, with 61% 116 

having support in the same tumor type, in which we detected them as significantly mutated (Fig. 117 

3b, Tables 1, S2-S3). In contrast, the rate for random gene-tumor pairs was 17%. Overall, 11% 118 

(75/697, FDR<0.25), 6% (30/484, FDR<0.05), and 4% (16/395, FDR<0.01) of the significant gene-119 

tumor pairs had no literature support, which is roughly in accordance with these FDR thresholds 120 

(Fig. 3b, Tables 1, S2-S3). 121 

We asked whether considering the nucleotide context identified candidate cancer genes that were 122 

not discovered based on recurrence alone. Among gene-tumor pairs previously reported as 123 

significantly mutated, 74% were also identified by using an established recurrence-based 124 

approach3 (FDR<0.25 for both methods, Fig. 3c-d, S10). In contrast, among novel gene-tumor 125 

pairs, only 33% were identified based on recurrence alone. In particular, our statistical framework 126 

identified numerous biologically relevant candidate cancer genes that were not identified based 127 

on recurrence alone. For instance, HDAC4 (histone deacetylase 4) was significantly mutated in 128 

gastroesophageal cancer (FDR=5.5x10-2 by nucleotide context and recurrence; FDR=6.8x10-1 by 129 

recurrence alone; not reported as significant previously; Fig. 3e, S11). Histone deacetylases have 130 

been implicated in tumor formation36-38 and HDAC4 displayed two mutational hotspots: gastric 131 

cancers with disruptive frameshift mutations (P901fs), and esophageal cancers with recurrent 132 

missense mutations (F746L) (Fig. 3e). Similarly, we identified POLR2A (RNA polymerase II subunit 133 

A) as significantly mutated in lung adenocarcinoma (FDR=1.07x10-5 by nucleotide context and 134 

recurrence; FDR=1.0 by recurrence; not reported as significant previously; Fig. 4, S12). Mutations 135 

in POLR2A have been implicated in the development of meningioma39, and POLR2A has been 136 

identified as a therapeutic target in colon cancer due to its frequent co-deletion with TP5340. 137 

Further, we noticed that POLR2A contained recurrent mutations in positions that are relevant for 138 

the protein-DNA interaction (Fig. S12). Additional biologically relevant candidate cancer genes 139 

that were not identified based on recurrence included ANAPC1, FGFR4, IKZF3, PARG, SOX17, and 140 

ZFX (FDR<0.1 by nucleotide context and recurrence; FDR=1.0 by recurrence; Fig. 4, S11-S12, 141 

Tables S2-S3). In addition, we observed that the following cancer-related signaling complexes 142 

contained several candidate cancer genes, i.e. new cancer genes or gene-tumor pairs: modulation 143 
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of Ras signaling (RHOA, RHOB, RRAS2), cell cycle regulation (CCNQ, CDK4), regulation of protein 144 

levels (EEF1A1, EIF1AX, MIA2), the catenin/cadherin complex (FAT1, FAT3, FAT4), DNA 145 

polymerases (POLQ, POLR2A, REV3L), regulation of transcription (MAML2, SF3B2), modulation of 146 

apoptosis (ACVR2A, ACVR1B, CASP8, BIRC3, BIRC6), and epigenetic modification (Fig. S13). In these 147 

signaling complexes, 64% (118/183) of the gene-tumor pairs had not been reported as 148 

significantly mutated previously, and 60% (110/183) of the gene-tumor pairs were not identified 149 

by recurrence alone (Fig. 4). 150 

Taken together, our findings demonstrate that characterization of the broad nucleotide context 151 

around somatic passenger mutations enhances cancer gene discovery, particularly in tumor types 152 

with high background mutation rates. Consideration of the nucleotide context for cancer gene 153 

discovery does not require prior knowledge of the location of functionally relevant positions or 154 

the biological effect of mutations. Hence, nucleotide contexts may ultimately be amenable to 155 

variant and gene discovery in non-coding regions of the cancer genome. Through our statistical 156 

model we identified a long tail of reasonable candidate cancer genes that may form the foundation 157 

for future experimental and clinical studies. The new statistical framework is available as a fully 158 

executable software tool called MutPanning (www.cancer-genes.org) and can be executed online 159 

as a module on the GenePattern platform41 (www.genepattern.org). 160 
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Fig. 1 | A biologically informed statistical framework to discover candidate cancer genes. a, 264 

Schematic of our statistical framework to discover candidate cancer genes based on nucleotide 265 

context. Passenger mutations accumulate in characteristic nucleotide contexts (gray, left), 266 

whereas driver mutations typically accumulate in functionally relevant positions (red, left). We 267 

searched for genes harboring an increased number of nonsynonymous mutations above the local 268 

background mutation rate (mutational recurrence, middle). Further, we searched for genes with 269 

an excess of mutations in nucleotide contexts that deviate from the characteristic nucleotide 270 

context around passenger mutations (mutations in unusual contexts, right). In tumors with high 271 

background mutation rates, the second criterion allowed us to actively suppress mutations in the 272 

test statistics that were likely to be passenger mutations based on their surrounding nucleotide 273 

context (gray). b, The nucleotide context around passenger mutations is visualized for three 274 

cancer types with high average background mutation rates. In brief, we counted how often we 275 

observed which nucleotide in the context around recurrent passenger mutations (±8 nucleotides). 276 

These plots show that the flanking 5’ and 3’ nucleotides have the strongest impact on the local 277 

mutation probability (±1, trinucleotide context). However, also flanking nucleotides outside of the 278 

trinucleotide context have a substantial impact on the local mutation probability, suggesting that 279 

the broad nucleotide context around passenger mutations contains a relevant biological signal 280 

that we needed to consider in our approach. c-f, To integrate this signal into our statistical 281 

framework, we developed a composite likelihood model that characterizes the broad context 282 

around passenger mutations. c, Mutation probabilities of trinucleotide contexts are commonly 283 

modeled by determining the mutation probability of each possible trinucleotide context 284 

independently11-14 (original likelihood, top). Instead, we integrated the effect of the flanking 5’ and 285 

3’ nucleotides, as well as the base substitution type as independent factors into a composite 286 

likelihood model (bottom). d, For each classical trinucleotide mutation signature11-14, we plotted 287 

the original mutational likelihood (x-axis) against the composite likelihood (y-axis). Dot colors 288 

reflect the six different base substitution types, and Pearson correlations are annotated on the 289 

bottom right. These analyses revealed that mutation probabilities of trinucleotide contexts could 290 

be decomposed into the effects of their central and flanking 5’ and 3’ nucleotides, thus 291 

corroborating the validity of our composite likelihood approach for trinucleotide contexts. e, We 292 

next generalized the composite likelihood model to broader nucleotide contexts. In parallel to our 293 

approach for trinucleotide contexts, we integrated the effect of each flanking nucleotide in the 294 
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broad context as an independent and multiplicative factor into the composite likelihood. f, We 295 

then counted the number of mutations in each possible 7-nucleotide context (x-axis, original 296 

likelihood) and compared them with the composite likelihood (y-axis). Since the number of 297 

possible nucleotide contexts was too large to be visualized directly, we plotted the data point 298 

density. Similar plots for the remaining trinucleotide signatures and cancer types are shown in 299 

Figures S7a-c. An analysis of the contribution of flanking nucleotides outside of the trinucleotide 300 

context to the local mutation probability in the composite likelihood model is shown in Figures 301 

S7d and S8. 302 

 303 

  304 
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 305 

Fig. 2 | Cancer driver genes harbor an excess of mutations in unusual nucleotide contexts. a, 306 

For each mutation, we compared its nucleotide context (observed context, top) with the 307 

characteristic context around passenger mutations (expected context, bottom). We derived a 308 

probability score that indicated whether the mutation occurred in an unusual (left, orange) or 309 

expected (right, gray) nucleotide context (Methods). b, We corrected these probabilities for 310 

multiple hypothesis testing (false-discovery rates, y-axis) and plotted them against their genomic 311 

position (x-axis). In cancer genes a substantial number of mutations occurred in unusual sequence 312 

contexts (left, middle). In non-cancer genes mutations in unusual sequence contexts were 313 

extremely rare (right). This suggested that cancer driver genes harbor an increased number of 314 

mutations in unusual nucleotide contexts that deviate from the characteristic nucleotide context 315 

around passenger mutations. This observation provides a novel biological criterion to 316 

discriminate between driver and passenger mutations. 317 

 318 

 319 
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Fig. 3 | Discovery and characterization of candidate cancer genes identified based on 323 

nucleotide context. a, We determined which genes emerged as significantly mutated (false-324 

discovery rate, FDR<0.25) based on their mutational recurrence (blue) and based on their excess 325 

of mutations in “unusual” nucleotide contexts (red). Further, we identified candidate cancer genes 326 

based on a statistical model that combined mutational recurrence and nucleotide context 327 

(orange). We compared the expected (x-axis) and observed (y-axis) p-values derived from these 328 

three statistical models using Q-Q-plots. Venn diagrams visualize the overlap in significant genes 329 

detected with these three models (bottom). These analyses revealed that increased mutation 330 

counts and unusual nucleotide contexts provide two complementary criteria for the discovery of 331 

cancer genes. Integrating both aspects into a combined significance model enabled discovery of 332 

candidate cancer genes across tumor types with high and low background mutation rates (left to 333 

right). b, We stratified our findings based on their support in the literature. Known gene-tumor 334 

pairs, which had been reported as significantly mutated previously, are colored in blue. Novel 335 

gene-tumor pairs, which had not been reported as significantly mutated previously, are colored in 336 

orange (experimental support in the same tumor type), brown (literature support in a different 337 

tumor type), or gray (no support). For rigorous FDR thresholds (FDR<0.01), a majority of the 338 

significant gene-tumor pairs (82%, 323/395) involved canonical cancer genes in the Cancer Gene 339 

Census34,35. Further, most gene-tumor pairs had been known previously or had experimental 340 

literature support in the same tumor type (89%, 351/395 for FDR<0.01). For less stringent FDR 341 

thresholds, the absolute number of novel findings with experimental literature support increased, 342 

and the number of findings without literature support (11%, 75/697) did not exceed the expected 343 

false-discovery rate (FDR<0.25). c, We counted for each gene-tumor pair (FDR<0.25) how many 344 

previous studies reported the gene-tumor pair as significantly mutated4,6,7,33 (x-axis). Further, we 345 

examined whether the gene-tumor pair was also identified using an established recurrence-based 346 

approach3 (y-axis). The concordance between these two measures potentially reflects the fact that 347 

most previous pan-cancer gene discovery studies used recurrence-based approaches to identify 348 

cancer genes4,6,7,33. d, We explored the mutation frequencies of the gene-tumor pairs that emerged 349 

as significantly mutated based on their recurrence in the TCGA subset (blue), in the complete 350 

dataset (orange), or when additionally considering the nucleotide context around mutations 351 

(black). This density plot revealed that both the addition of 4,913 samples from TCGA-352 

independent studies and considering the nucleotide context around mutations independently 353 
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contributed to the discovery of rare candidate cancer genes. e, Exemplary evidence for the 354 

candidate cancer gene HDAC4. Left: The distribution of HDAC4 mutations is visualized as a needle 355 

plot. For each amino acid substitution the number of samples (y-axis) is plotted against its 356 

position in the peptide sequence (x-axis). Dot colors reflect the tumor types, in which the amino 357 

acid substitution was detected. Right: The position of the two mutational hotspots is visualized 358 

using a crystal structure42 (PDB: 4CBY). A previous study reported a hydrogen bond and salt 359 

bridge network between W762, E764, and R730, which along with F746 form a closed 360 

hydrophobic patch peripheral to the catalytic center of HDAC443 (orange). Evidence for other 361 

candidate cancer genes can be found in Figures S11-S13. 362 
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Fig. 4 | A refined catalog of driver genes involved in human cancer. We applied our statistical 365 

framework to whole-exome sequencing data from 12,004 tumors. Significant gene-tumor pairs 366 

(FDR<0.25) are listed in decreasing order according to their mutation frequency, which is 367 

reflected by the color of the square next to the gene name (dark red to white). The font size of the 368 

gene name reflects its significance (false-discovery rate), and the font color (black vs. white) 369 

indicates whether the gene is a canonical cancer gene in the Cancer Gene Census34,35. To determine 370 

which gene-tumor pairs had been known previously, we benchmarked our results against all 371 

TCGA marker papers7 (orange), a meta-analysis33 of 876 publications (blue), the tumorportal 372 

database6 (yellow), and a pan-cancer study, which adopted the dN/dS ratio for cancer gene 373 

discovery4 (green). We further ran an established recurrence-based approach3 on our dataset 374 

(purple) to determine which gene-tumor pairs were identified based on recurrence alone. A more 375 

detailed overview of the driver mutation landscape of individual tumor types is provided in 376 

Figures S18-S45. An interactive visualization of these results can be found online (www.cancer-377 

genes.org). 378 
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 380 

Table 1 | Stratification of candidate cancer genes by literature support. To examine the 381 

biological relevance of our findings, we stratified them based on their literature support. Genes 382 

and gene-tumor (G-T) pairs that had been reported as significantly mutated in at least two 383 

previous computational studies were classified as known (blue, 2nd row). Novel genes and gene-384 

tumor pairs, which had not been reported as significantly mutated previously (red, 3rd row), were 385 

further stratified depending on whether there was literature support (experimental or clinical) for 386 

the same tumor type in which we discovered them as significantly mutated (orange, 4th row), 387 

supporting literature for a different tumor type (brown, 5th row), or no supporting data (gray, 6th 388 

row). Depending on their literature support level, 94% (known, 257/274), 72% (same tumor type, 389 

186/257), 23% (different tumor type, 21/91), and 3% (no support, 2/75) of the gene-tumor pairs 390 

(FDR<0.25) involved canonical cancer genes present in the Cancer Gene Census34,35, compared 391 

with a rate of 3.8% for random gene-tumor pairs. Thus, literature support levels provide a 392 

measure to prioritize our findings based on their external validity. 393 
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