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Abstract

Combining neuroimaging and clinical information for diagnosis, as for exam-
ple behavioral tasks and genetics characteristics, is potentially beneficial but
presents challenges in terms of finding the best data representation for the dif-
ferent sources of information. Their simple combination usually does not provide
an improvement if compared with using the best source alone. In this paper,
we proposed a framework based on a recent multiple kernel learning algorithm
called EasyMKL and we investigated the benefits of this approach for diagnos-
ing two different mental health diseases. The well known Alzheimer’s Disease
Neuroimaging Initiative (ADNI) dataset tackling the Alzheimer Disease (AD)

patients versus healthy controls classification task, and a second dataset tack-
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ling the task of classifying an heterogeneous group of depressed patients versus
healthy controls. We used EasyMKL to combine a huge amount of basic ker-
nels alongside a feature selection methodology, pursuing an optimal and sparse
solution to facilitate interpretability. Our results show that the proposed ap-
proach, called EasyMKLFS, outperforms baselines (e.g. SVM and SimpleMKL),
state-of-the-art random forests (RF) and feature selection (FS) methods.

Keywords: Multiple kernel learning, feature selection, neuroimaging.

1. Introduction

In this paper we study the problem of combining information from differ-
ent data sources (e.g. imaging, clinical information) for diagnoses of psychi-
atric/neurological disorders. From a machine learning perspective, we have to

5 solve a problem in a high dimensional space using only a small set of examples
for training a predictive model. In the past few years, several papers investigated
possible ways to combine heterogeneous data in neuroimaging-based diagnos-
tic problems. Most of the previous approaches can handle only few different
sources of information. The main goal of these approaches is to find an opti-

10 mal combination of the sources in order to improve predictions, given different
modalities of neuroimaging and other clinical information (as for example, de-
mographic data or non-imaging biomarkers). In this context, Multiple Kernel
Learning (MKL) provides an effective approach to combine different sources of
information, considering each source of information as a kernel, and identifying

15 which information is relevant for the diagnostic problem at hand [I 2]. It is
known that using multiple kernels instead of a single kernel can improve the
classification performance (see e.g. [I] and references therein), and the goal of
MKL is to find the correct trade-off among the different sources of informa-
tion [I]. Moreover, MKL allows the extraction of information from the weights

2 assigned to the kernels, highlighting the different importance of each different
source. Therefore, applications of MKL to neuroimaging based diagnosis might

help the discovery of biomarkers of neurological/psychiatric disorders.
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1.1. Related Work

A number of recent studies have applied the MKL approach for multi-modal
»s  neuroimaging based diagnoses. Different MKL algorithms mainly differ on the
type of kernels they use for each source (e.g. linear, Gaussian, polynomial) and
on the way they estimate and combine the weights of the kernels. In general,
most approaches impose some constraints on the nornﬂ of the weights (e.g. £,-
MKL [3]). In particular, the ¢1-norm constraint imposes sparsity on the kernel
s combination therefore is able to select a subset of relevant kernels for the model
(e.g. ¢1-MKL []). The MKL framework is formally introduced in Section
In [5] the authors exploit the standard ¢,-MKL approach with p values rand-
ing from 1 (sparse) to 2 (dense). They combine various sets of basic kernels
(Gaussian, linear and polynomial) generated by selecting the top most relevant
55 features (with the rank of the features determined by a t-test) extracted from
Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET)
images and clinical measurements. Their results show that this methodology
outperforms the best kernel generated by exploiting the best unique source
(MRI, PET or clinical measurements), suggesting that the combination of het-
w0 erogeneous information with MKL is beneficial. Nevertheless, using a standard
£,-MKL approach imposes a limitation on the number of different basic kernels,
due to the computational complexity and memory requirements of the £,-MKL
algorithms [I].
Another MKL approach able to combine different source of information is
s presented in [6], in which the authors tackle the problem of predicting the cog-
nitive decline in older adults. In this case, the authors use the fo-MKL with
two Gaussian kernels, one for the MRI features and one for the clinical mea-
surements. These kernels have two different hyper-parameters which were fixed
by using a heuristic method. They claim that, by using only the MRI infor-
so mation or the clinical measurements alone, the kernels do not carry sufficient

information to predict cognitive decline. On the other hand, using the kernel ob-

2A norm is a function that assigns a strictly positive length or size to a vector.
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tained by the combination of kernels extracted from both sources of information
improves the performances significantly.

The problem of combining heterogeneous data for predicting Alzheimer’s

s disease has been handled also using the, so called, Multi-Kernel SVM. The
idea is to use the standard SVM [7], with a pre-computed kernel that contains
a weighted combination of the basic kernels. In this case, the combination
is evaluated by exploiting a brute force search of the parameters (i.e. a grid
search). In [8] and [9], the authors try to learn an optimal kernel combining three

e different kernels, each of which corresponds to a different sources of information
(MRI, PET and clinical data), and the optimal (convex) combination of these
kernels is determined via grid search. In [8] the authors propose, as first step
of their methodology, a simple feature selection by using a t-test algorithm.
In [9], the feature selection phase is improved by using a common subset of

s relevant features for related multiple clinical variables (i.e. Multi-Task learning
approach [10]). In both studies, [8] and [9], the feature selection is applied before
the generation of the kernels. Moreover, the brute force selection for the kernels
weights, performed by using a grid search approach, is able to combine only few
kernels and often finds a sub-optimal solution due to the manual selection of

7 the search grid. In this sense, a MKL approach is more robust and theoretically
grounded.

A recent paper by Xing Meng et al. [IT] proposes a framework to predict
clinical measures by using a multi-step approach. The authors combine three
different neuroimaging modalities: resting-state functional Magnetic Resonance

75 Image (fMRI), structural Magnetic Resonance Image (sMRI) and Diffusion Ten-
sor Imaging (DTT). After a feature selection step within each of the single modal-
ities, a selection of well-connected brain regions is performed. Their multi-modal
fusion methodology consists of a simple concatenation of the selected features,
ignoring the relative contribution of each modality. However, their approach

s does not include a weighting phase of the different modalities (in contrast with
the MKL approach).

Other methodologies to combine different sources of information can be


https://doi.org/10.1101/484311
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/484311; this version posted December 10, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

found in the literature [TTHIG]. One way is to exploit the Gaussian Processes
for probabilistic classification (see e.g. [I7]). For example, in [I§], the au-

s thors combine five different modalities (i.e. segmentation of the brain in grey
matter, white matter and cerebrospinal fluid, from T2 structural images plus
the Fractional Anisotropy (FA) and Mean Diffusivity (MD) images, from the
DTI sequence) to predict three Parkinsonian neurological disorders. Finally, in
[19], the authors used Gaussian Processes to combine three different heteroge-

o neous source of data: MRI, PET and the Apolipoprotein E (APOE) genotype,
in order to predict conversion to Alzheimer’s in patients with mild cognitive
impairment.In this family of methods, the Gaussian Process models have sim-
ilarities with the MKL models, i.e. the goal is to find a kernel that combine
prescribed kernels corresponding to each source of information plus a bias term.

s However, in these cases the models’ hyperparameters (kernels coefficients and
bias terms) are selected using the Gaussian Process framework.

Another possible way to combine different sources of information is using
RF-based methods [20, 2I]. The framework used in these studies consists of
several steps, where the RF methods are fundamental in order to obtain the

wo final model as a combination of the different sources.

For example, the method proposed in [20] uses a RF model per modality
in order to produce a similarity measure, one per source of information. Then,
an approach to reduce of the number of features is applied and, in order to
combine the data from different modalities, a selection of weights is performed

s by cross-validation. The output of this procedure is a weighted sum of the
different measures of similarity that is equivalent to a combination of kernels,
each one representing one modality.

As another example, the algorithm in [21] consists of a sequential exploita-
tion of graph theory, recursive feature elimination (RFE) and RF. Graph theory

o is used to derived a set of features that are added to them the raw data. A RFE
procedure is exploited in order to obtain a low dimensional set of features, one
set per source of information. Then, one predictor per modality is generated by

applying the RF to the selected features. Stacking all the resulting models (one
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per source of information) produces the final model.

115 In all previous studies outlined above, there is a limit on the maximum
number of kernels that we are able to combine (or number of sources that we
can consider) in the predictive model. In addition, feature selection (when
performed) is applied before the generation of the final representation (i.e. the
way how we describe the similarity among examples), thereby decreasing the

0 connection between the final model and the selected features. These methods
are not able to perform a fine-grained feature learning because they are heavily
dependent on some priors (imposed by an expert), as for example the selection

of which features are contained in a specific kernel.

1.2. Our contribution

125 In this paper, we proposed a MKL based approach that is able to re-weight
and select the relevant information when combining heterogeneous data. This
approach enables us to fragment the information from each data source into a
very large family of kernels, learning the relevance of each fragmented informa-
tion (kernel weights). Consequently, our method is very flexible and the final

10 model is based on a kernel that uses a small amount of features, due to the
feature selection performed as final step of our approach in synergy with the
MKL methodology.

We start describing EasyMKL [22], a recent MKL algorithm, that can han-
dle a large amount of kernels and we combine it in synergy with a new Feature

s Selection (FS) approach. Our aim is to evaluate and select the most relevant fea-
tures from each data source. The proposed approach is applied to two different
classification tasks. The first one considers the Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI) dataset to classify patients with Alzheimer’s disease vs.
healthy controls combing structural MRI data and clinical assessments. Sec-

uo ondly, we tackle the task investigated in [23] where the goal is to classify de-
pressed patients vs healthy controls by integrating fMRI data with additional
clinical information. We compare our approach with SVM [7] as the baseline

approach, as well as a state-of-the-art MKL approach (SimpleMKL [4]), two fea-
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ture selection approaches: recursive feature elimination (RFE) [24] and t-test
us  [25], and RF-based methods ([20, 21]).

In summary, the main contributions of this paper are two-fold. Firstly, we
introduce a new methodology to combine a MKL approach using a huge number
of basic kernels and a FS approach in order to improve the prediction perfor-
mance, inherited from the previous preliminary work [26]. This new procedure,

10 called EasyMKLFS, automatically selects and re-weights the relevant informa-
tion obtaining sparse models. EasyMKLF'S provides a new optimal kernel that
can be used in every kernel machine (e.g. SVM) in order to generate a new
classifier. Secondly, we demonstrate the performance of the proposed method-
ology using two classification tasks. When applied to the ADNI dataset the

155 proposed approach was able to outperform the previous state-of-art methods
and provide a solution with high level of interpretability (i.e. the identifica-
tion of a small subset of features relevant for the predictive task); when applied
to the depression dataset the proposed approach showed better performance
than most approaches (a part from EasyMKL) with advantage of higher spar-

o  sity/interpretability.

The paper is organized as follows. In the first part of Section [2] we introduce
the theory of MKL with an analysis of the most common MKL methods. Then,
the original EasyMKL is presented, followed by the connection between feature
learning and MKL. The proposed method is described in the last part of section

165 Section [2.4] Section [3| shows the main information about the datasets, the
methods, the validation procedure for the hyper-parameters and the details
concerning the performed experiments. Section [4] describes the datasets used in
this study, the methods used as comparisons against EasyMKLFS, the validation
procedure, and the experimental designs. The results are presented in Section

wo [ for both datasets, followed by a discussion in Section
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2. Theory

In the next sections, we will introduce the classical MKL framework and a
recent MKL algorithm called EasyMKL. Firstly, we introduce the notation used
in this paper.

175 Considering the classification task, we define the set of the training examples
as {(x;,y:)}f_; with x; in X and y; with values +1 or —1. In our case, it is
possible to consider the generic set X equal to R™, with a very large number of
features m. Then, X € R**™ denotes the matrix where examples are arranged
in rows. The i*" example is represented by the i*" row of X, namely X[i,:] and

w0 the 7t features by the r*" column of X, namely X[:, r].

Specifically, in our cases, the number of examples £ refers to the number of

different subjects that are considered in the study.

2.1. Multiple Kernel Learning (MKL)

MKL [}, 27] is one of the most popular paradigms used to highlight which
information is important, from a pool of a priori fixed sources. The goal of MKL
is to find a new optimal kernel in order to solve a specific task. Its effectiveness
has been already demonstrated in several real world applications [28] 29]. A
kernel K generated by these techniques is a combination of a prescribed set of

R basic kernels K;, ..., Ky in the form:

R
K=Y nX, withn =0, [, =1.

r=1

The value ¢ defines the used norm and is typically fixed to 1 or 2. When ¢ is

15 fixed to 1, we are interested in a sparse selection of the kernels. However, if ¢

equals 2, then the model will be dense (with respect to the selected kernels). It

is important to highlight how the value 7, represents the weight assigned to the
specific " source of information.

Using this formulation, we are studying the family of weighted sums of ker-

1o mnels. It is well known that the sum of two kernels is equivalent to the concate-

nation of the features contained in both the feature spaces [30]. Extending the
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same idea, the weighted sum of a list of basic kernels can be seen as a weighted
concatenation of all the features contained in all the feature spaces (where the
weights are the square roots of the learned weights 7,.).

195 Theoretically, MKL algorithms are supported by several results that bound
the estimation error (i.e. the difference between the true error and the empirical

margin error) [3IH38].

2.1.1. An overview of the MKL approaches
Existing MKL approaches can be divided in two main categories. In the
20 first category, Fized or Heuristic, some fixed rule is applied to obtain the kernel
combination. These approaches scale well with the number of basic kernels, but
their effectiveness critically depend on the domain at hand. They use a pa-
rameterized combination function and find the parameters of this function (i.e.
the weights of the kernels) generally by looking at some measure obtained from
205 each kernel separately, often giving a suboptimal solution (since no information
sharing among the kernels is exploited).

Alternatively, Optimization based approaches learn the combination param-
eters (i.e. the kernels’ weights) by solving a single optimization problem directly
integrated in the learning machine (e.g. exploiting the generalization error of

a0 the algorithm) or formulated as a different model, as for example by alignment,
or other kernel similarity maximization [4} 27, [39].

In the Fized or Heuristic family there are some very simple (but effective)
solutions. In fact, in some applications, the average method (that equal to the
sum of the kernels [40]) can give better results than the combination of multiple

a5 SVMs each trained with one of these kernels [41]. Another solution, can be
the element-wise product of the kernel matrices contained in the family of basic
kernels [42].

The second family of MKL algorithms is defined exploiting an optimiza-

tion problem. Unexpectedly, finding a good kernel by solving an optimization
20 problem turned out to be a very challenging task, e.g. trying to obtain bet-

ter performance than the simple average of the weak kernels is not an easy
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taskﬂ Moreover, Optimization based MKL algorithms have a high computa-
tional complexity, for example using semidefinite programming or quadratically
constrained Quadratic Programming (QP). Some of the most used MKL algo-

rithms are summarized in Table [If with their computational complexities.

Learner Time Complexity Reference
SimpleMKL. ~ SVM Grad.+ QP Rakotomamonjy et al. [4]
GMKL SVM Grad.+ QP Varma and Babu [39]
GLMKL SVM Analytical + QP Kloft et al. [3]
LMKL SVM Grad.+ QP Gonen and Alpaydin [43]
NLMKL KRR  Grad.+ Matrix Inversion Cortes et al. [44]

Table 1: Frequently used MKL Optimization based methods.

2.2. EasyMKL

EasyMKL [22] is a recent MKL algorithm able to combine sets of basic
kernels by solving a simple quadratic optimization problem. Besides its proved
empirical effectiveness, a clear advantage of EasyMKL compared to other MKL
methods is its high scalability with respect to the number of kernels to be
combined. Specifically, its computational complexity is constant in memory
and linear in time.

This remarkable efficiency hardly depends on the particular input required
by EasyMKL. In fact, instead of requiring all the single kernel matrices (i.e. one
per source of information), EasyMKL needs only the (trace normalized) average
of them. See Section (in the Appendix) for a technical description
of EasyMKIEL

3www.cse.msu.edu/~cse902/S14/ppt/MKL_Feb2014.pdf
4EasyMKL implementation: github.com/jmikko/EasyMKL

10
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2.3. Feature Learning using MKL

In the last years, the importance of combining a large amount of kernels to
20 learn an optimal representation became clear [22]. As presented in the previous
section, new methods can combine thousands of kernels with acceptable compu-
tational complexity. This approach contrasts with the previous idea that kernel
learning is shallow in general, and often based on some prior knowledge of which
specific features are more effective. Standard MKL algorithms typically cope
25 with a small number of strong kernels, usually less than 100, and try to com-
bine them (each kernel representing a different source of information of the same
problem). In this case, the kernels are individually well designed by experts and
their optimal combination hardly leads to a significant improvement of the per-
formance with respect to, for example, a simple averaging combination. A new
0 point of view is instead pursued by EasyMKL, where the MKL paradigm can be
exploited to combine a very large amount of basic kernels, aiming at boosting
their combined accuracy in a way similar to feature weighting [2]. Moreover,
theoretical results prove that the combination of a large number of kernels using
the MKL paradigms is able to add only a small penalty in the generalization

5 error, as presented in [311, B3H35].

In this sense, we are able to take a set of linear kernels that are evaluated
over a single feature, making the connection between MKL and feature learning
clear. The single kernel weight is, in fact, the weight of the feature. Using
this framework, we can weight the information contained into a set of features,

20 evaluated in different ways (i.e. using different kernels that can consider different

subsets of features).

2.4. FasyMKL and Feature Selection

In this section, we present our approach to combine MKL (as a feature learn-
ing approach) and feature selection (FS). We start from EasyMKL with a large
family of linear single-feature kernels as basic kernels. We decided to exploit
linear kernels because they do not need hyper-parameter selection. Dealing

with small datasets, this is a serious advantage. Moreover, in our single-feature

11
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context, using other families of kernels (e.g. RBF or polynomial kernels) has
not impact on the final performancesﬂ Due to the particular definition of this
algorithm, we are able to combine efficiently millions of kernels. As presented

in Section [2.2] and in given the kernel generated by the average of

the trace normalized basic kernels
R
1 K
K'=_—-%
R = Tr(K,) ’

EasyMKL produces a list of weights € R®, one weight per kernel.

Fixing a threshold p > 0, it is possible to remove all the kernels with a
weight less or equal to p, considering them not sufficiently informative for our
classification task. In this way we are able to inject sparsity in our final model.
All the single-feature kernels K,. with a weight n,. > p are weighted and summed
obtaining a new kernel

* 4 K.
K= 2 vy

Algorithm [l summarizes our approach, called EasyMKLFS. It is important to
s note that if p = 0 we are performing the standard MKL approach over R basic
kernels.

The same procedure cannot be easily exploited with the standard MKL
algorithms, due to the large amount of memory required to combine a large
family of kernels (see Table . In this sense, EasyMKL becomes fundamental

oo in order to efficiently achieve our goal. In line 8 of Algorithm [I} the amount of
memory required by the storage of the kernels is independent with respect to
the number of combined kernels R (and the computational complexity is linear

in time).

5We performed the same experiments as presented in Section [4] using RBF kernels instead
of linear ones and we obtained comparable results with an higher computational requirements.
For this reason we decided to maintain only the linear kernels in our setting. It is important

to note that, in general, our method can be applied to any family of kernels.

12
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Algorithm 1 - EasyMKLFS: feature selection and weighting by using

EasyMKL. Oy ¢ is the zero-matrix in R4
Require: X € RO*™ y ¢ {~1,1}/,A>0,p >0

Ensure: A kernel matrix K* € Rf*¢
KA=0,, K*=0.
R=m
for r=1to R do
K = ki
K4 =K* 4+ £K
end for
: 7 =EasyMKL(K4,X,y,\)
: forr=1to R do

W P S T ey

if 7 > p then
_ _ X[)X[r]T
K = 3G X
K*=K*+n.K

end if

= =
® M B2 Q

: end for

3. Materials and Methods

as  3.1. Datasets

In this section, we present a description of the two considered datasets, i.e.
ADNI and Depression. The first dataset consists of structural Magnetic Res-
onance Imaging (sMRI), clinical and genetic information for each participant.
The second dataset consists of functional MRI (fMRI) and clinical information

x0 for each participant.

8.1.1. ADNI
This case study concerns the problem of classifying patients with possible
Alzheimer’s disease combining sMRI images and other genetical/clinical or de-
mographic information. Alzheimer’s disease (AD) is a neurodegenerative disor-
25 der that accounts for most cases of dementia.
In 2003, the ADNI was started as a public-private partnership by Princi-
pal Investigator Michael W. Weiner, MD. The primary goal of ADNI has been

to test whether serial Magnetic Resonance Imaging (MRI), Positron Emission

13
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Tomography (PET), other biological markers, and clinical and neuropsycholog-
200 ical assessment can be combined to measure the progression of mild cognitive
impairment (MCI) and early Alzheimers disease (AD).

Here, we use sMRI and clinical information from a subset of 227 individual
from the ADNI dataset. The following pre-processing steps were applied to
sMRI of the selected individuals. The T1 weighted MRI scans were segmented

205 using SPM12 into gray matter, white matter and Cerebral Spinal Fluid (CSF).
The grey matter probability maps were normalised using Dartel, converted to
MNTI space with voxel size of 2mm x 2mm X 2mm and smoothed with a Gaussian
filter with 2 mm FWHM. A mask was then generated, to select voxels which
had an average probability of being grey matter equal or higher than 10% for

a0 the whole dataset. This resulted in 168130 voxels per subject being used.

Finally, from the non-imaging information contained in ADNI, we extracted
35 different clinical information, including age and gender of the patient, the
presence of APOEA4 allele, items of the Mini-mental State Exam (MMSE) [45],
education level, Clinical Demential Rating, AD Assessment Schedule 11 and 13,

w0 Rey Auditory Verbal Learning Test and Functional Assessment Questionnaire
[46] (see Appendix A, Table for the details).

For up-to-date information about the ADNI, see www.adni-info.org.

3.1.2. Depression
The task in this challenging dataset [23] is to classify depressed patients ver-
s sus healthy controls by integrating fMRI data and other clinical measurements.
A total of 30 psychiatric in-patients from the University Hospital of Psychia-
try, Psychosomatics and Psychotherapy (Wuerzburg, Germany) diagnosed with
recurrent depressive disorder, depressive episodes, or bipolar affective disorder
based on the consensus of two trained psychiatrists according to ICD-10 crite-
as  ria (DSM-IV codes 296.xx) participated in this study. Accordingly, self report
scores in the German version of the Beck Depression Inventory (second edition)
ranged from 2 to 42 (mean standard deviation score, 19.0 [9.4]). Exclusion cri-

teria were age below 18 or above 60 years, co-morbidity with other currently
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present Axis I disorders, mental retardation or mood disorder secondary to
»20 substance abuse, medical conditions as well as severe somatic or neurological
diseases. Patients suffering from bipolar affective disorder were in a depressed
phase or recovering from a recent one with none showing manic symptoms. All
patients were taking standard antidepressant medications, consisting of selective
serotonin reuptake inhibitors, tricyclic antidepressants, tetracyclic antidepres-
35 sants, or serotonin and noradrenalin selective reuptake inhibitors. Thirty com-
parison subjects from a pool of 94 participants previously recruited by advertise-
ment from the local community were selected to match the patient group in re-
gard to gender, age, smoking, and handedness using the optimal matching algo-
rithm implemented in the Matchlt package for R http://www.r-project.org
s [47]. In order to exclude potential Axis I disorders, the German version of the
Structured Clinical Interview for DSM-IV (SCID; 35) Screening Questionnaire
was conducted. Additionally, none of the control subjects showed pathological
Beck Depression Inventory (BDI II) scores (mean = 4.3, SD = 4.6).
From all 60 participants, written informed consent was obtained after com-
a5 plete description of the study to the subjects. The study was approved by the
Ethics Committee of the University of Wuerzburg, and all procedures involved
were in accordance with the latest version (fifth revision) of the Declaration of
Helsinki.
The fMRI task consisted of passively viewing four types of emotional faces.
s Anxious, Happy, Neutral and Sad facial expressions were used in a blocked
design, with each block containing pictures of faces from 8 individuals ob-
tained from the Karolinska Directed Emotional Faces database: http://www.
emotionlab.se/resources/kdef|database. Every block was randomly repeated
4 times. Subjects were instructed to attend to the faces and empathise with
us  the emotional expression. Images acquisition details can be found in previous
publications using this dataset [23].
The images were preprocessed using the Statistical Parametric Mapping
software (SPM5, Wellcome Department of Cognitive Neurology, U.K.). Slice-

timing correction was applied, images were realigned, spatially normalised and
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0 smoothed using an 8 mm FWHM Gaussian isotropic kernel. For each par-
ticipant, a General Linear Model (GLM) was applied in which each emotion
was modeled by the convolution of the blocks with the hemodynamic response
function. The contrast images corresponding to each emotion were used for the
classification models. More specifically, for each subject we combined four differ-

s ent contrast images, corresponding to the brain activations to the four different
emotional faces: Anxious, Happy, Neutral and Sad.

From the non-imaging information contained in the Depression dataset, we
generated a list of 48 different clinical and demographic variables, including
age, gender and several results from psychological tests as Karolinska Directed

0 Emotional Faces [48] test, the Sensitivity to Punishment/Reward Questionnaire
[49], tests of processing speed (approx. 1Q) [B0], Montgomery-Asberg depression
rating scale [51]), Self-report questionnaire of depression severity [52], Positive-
Negative Affect Schedule [53] and State-Trait inventory [64] (see Appendix A,
Table for the complete list).

w5 3.2. Experimental settings

We combine features derived from the images (each voxel is considered as

a single feature) with sets of selected clinical and demographic features. In

the following we will refer to (linear single-feature) basic kernels or directly to
features without distinction.

370 In our experiments, we consider different subsets and different fragmenta-

tions of the whole information contained in the datasets. The considered linear

kernels (or features) are divided in 7 different sets:

e I represents all image features in one single linear kernel (in case of the
fMRI dataset which contains 4 images it corresponds to concatenate all

375 the features in only one kernel).

e C represents the whole clinical/demographic information in one single

linear kernel.
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e I+C is the kernel containing all the voxels and all the clinical /demographic
features, which corresponds to the simplest way of combining (or concate-

380 nating) the different sources.

e I & C is the grouping of information with one group for each imaging
information (MRI or fMRI) each one containing all the voxels and one
group for the clinical/demographic information. This way of grouping the
data is exploited in the context of RF methods, in order to maintain a

385 feasible computational complexity.

o I & C is the family of basic kernels that contains a single linear kernel
for each whole image (i.e. one kernel per image) plus one kernel for each
clinical /demographic feature. In this case, we are able to tune the impor-
tance of the single clinical feature, and make the correct trade-off between

300 clinical information and image information.

e V is the family of basic kernels (or basic features) that contains one kernel
for each voxel. Each single voxel can be weighted or selected, pointing out

the relevant voxels of the MR images.

e V & C is the family of basic kernels (or basic features) that contains one
305 kernel for each voxel plus one kernel for each clinical feature. This is the
most flexible model which is able to point out the relevant voxels and

clinical/demographic features.

Our new methodology exploits the V & C set and it can be divided in three
principal steps. The first step is the extraction of the features and their vec-

wo torization. Then, as a second step, we apply our algorithm (EasyMKLFS) to
weight and select the features. Finally, we are able to generate a sparse (linear)
model by using the obtained kernel in a classifier (e.g. SVM). The idea behind
our methodology is summarized in Figure[l| Specifically, in the present work we
used the SVM as a classifier as it is a machine learning algorithm that performs

w05 very well in many different type of problems.
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Figure 1: Our framework with the three principal steps: (1) extraction of the raw features
(from MRIs, i.e. v1,...,vs, and from clinical data, i.e. c1,...,¢t); (2) evaluation of the im-
portant information by using EasyMKLFS for feature weighting and selection; (3) generation

of the final sparse model.

3.8. Comparison with other methods

We performed a balanced accuracy comparison (i.e., the average between

sensitivity and specificity) considering 6 different families of methods:

e Baseline: Linear SVM [7], using the linear kernels generated using the
410 whole images (I), clinical information (C) or both (I 4+ C). It is used as

baseline to understand the challenge of the classification tasks.

e FS: the second family of approaches is comprised of two feature selection
(FS) methods. We applied these algorithms considering each voxel of the

images as a single feature (V) or adding both one feature per voxel and
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415 one feature for each clinical information (V & C). The first method is the
SVM RFE [24], which corresponds to the standard recursive feature elim-
ination approach. RFE considers the importance of individual features in
the context of all the other features, and it has the ability to eliminate
redundancy, and improves the generalization accuracy [55]. The second

420 one is the SVM t-test, a heuristic method that exploits a statistical test
for evaluating the importance of the features. The selected features are
then used in a SVM. FS method is univariate and it is not able to take

into account the interactions between features [25].

e RF: the third comparison is with respect to the RF-based approaches.

25 The RF methods select the relevant features, in each modality, indepen-
dently with respect to the other sources of information. In this sense,

we consider RF exploiting the I & C as segmentation of the sources of
information in order to highlight the differences compared to the other
presented methodologies. We implement two methods, namely Gray [20]

430 and Pustina [21], where the RF algorithms are the key in order to find the
best representation of the single source of information. These methods

are not kernel-based methods, and are composed by a pipeline of different
algorithms. We tried to make the comparison as fair as possible, but we

are aware that the same authors in [20] highlighted that a direct compar-

a3 ison with other existing methods is hard to perform due to problems such
as the inclusion of different subjects and modalities, as well as the use of

different methods for feature extraction and cross-validation. Moreover,

we highlight that the computational complexity of these methods is sig-
nificantly higher than the others. For this reason, they are not able to

a0 handle a larger number of different sources of information.

e MKL: the fourth comparison is against the standard MKL methodology.
Firstly, we used SimpleMKL [], a well known MKL iterative algorithm
that implements a linear approach based on a sparse combination of the

kernels. Secondly, we used EasyMKL, a recent MKL algorithm presented
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a5 in Section 2.2 and We provided to these algorithms a family

of basic kernels composed by one kernel per image and one kernel per

clinical information I & C (i.e. a small family of basic kernels).

e ['W: in this group we applied a different point of view for the MKL [22]. In

this new context, we consider MKL as a feature weighting algorithm and

450 we provide to EasyMKL a single kernel for each feature (voxels and clinical
information, i.e. V & C). We are not able to compare EasyMKL with
SimpleMKL in this setting, because of the computational and memory

requirement of this algorithm.

e F'WS: the last comparison is our EasyMKLFS, which consists in a combi-
455 nation of MKL with FW and FS, as described in Section 2:4 We tested
our method with one kernel per voxel (V), and one kernel per voxel plus

one kernel per clinical information (V & C) as basic kernels.

The kernels, generated by MKL, FW and FWS methods, are plugged into a
standard SVM. In this way, we are able to compare the quality of different
w0 kernels avoiding the possible noise given by different classifiers. As highlighted
before, the RF-methods are based on a different classifier. In the following, we
tried to maintain the comparisons as fair as possible.
It is important to highlight that our approach, similarly to the other ap-
proaches used for comparison, have the following two main assumptions: (i)
w5 there are features in the data that are able to distinguish between two groups,
despite of their within-group heterogeneity. (ii) different sources of information
might carry complementary information for the classification task and, conse-
quently, combining them can be advantageous.
For both datasets, we used the Wilcoxon signed-rank test [56] to compare the
s proposed algorithm (EsasyMKLFS) with the other methods. More specifically,
we tested whether the proposed algorithm provided statistically significant dif-
ferent predictions with respect to the other methods. We used the Bonferroni

correction to account for multiple comparisons, therefore the p-value threshold
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for rejecting the null hypothesis that two classifiers are not different was 0.05

w5 divided by the number of comparisons (i.e. 8 for both datasets).

3.3.1. Validation

All the experiments are performed using an average of 5 repetitions of a
classic nested 10-fold cross-validation. We fixed the same distribution of the
age of the patients among all the subsets.

480 The validation of the hyper-parameters has been performed in the family of

C €{0.1,1,5,25} for the SVM parameter, A € {+* : v =0.0,0.1,...,0.9,1.0}

1—v

for the EasyMKL parameter, p € {-~ :7=0,1,...,20} (where m is the number
of the features) for the EasyMKLFS parameter. We fixed the percentage of
dropped features at each step of the feature selection approaches (RFE and

w5 t-test) equal to the 5% (using higher percentages deteriorates the results).
Specifically, we reported the average of 5 repetitions of the following proce-

dure:

e The dataset is divided in 10 folds fi, ..., f1y respecting the distribution of
the labels and the age of the patients, where f; contains the list of indexes

490 of the examples in the i-th fold;

e One fold f; is selected as test set;

e The remaining nine out of ten folds v; = Uzlill 4; i are then used as

validation set for the choice of the hyper-parameters. In particular, an-
other 10-fold cross validation over v; is performed (i.e., nested 10-fold

495 cross-validation);

e The set v; is selected as training set to generate a model (using the vali-

dated hyper-parameters);

e The test fold f; is used as test set to evaluate the performance of the

model;

500 o The collected results are the averages (with standard deviations) obtained

21


https://doi.org/10.1101/484311
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/484311; this version posted December 10, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

repeating the steps above over all the 10 possible test sets f;, for each j

in {1,...,10}.

3.8.2. Clinical information settings
We considered two different experimental settings. Firstly, we removed the
sos clinical information which are highly correlated with the labels. Note that,
in both cases, dementia and depression, the diagnosis or labels are derived
from clinical measures due to the lack of biomarkers, therefore by excluding
clinical information highly correlated with the labels we are basically avoiding
circularity or double dipping in the analysis. We performed a t-test between
sio  each individual feature and the corresponding label, and then excluded the
ones that were statistically correlated with the labels by using p < 0.01 with
false discovery rate (FDR) correction for multiple comparisons. FDR [57] is a
powerful method for correcting for multiple comparisons that provides strong
control of the family-wise error rate (i.e., the probability that one or more null

sis  hypotheses are mistakenly rejected).

The remaining clinical information after this selection are 25 for the ADNI
dataset and 44 for Depression dataset. The idea is to show that the improvement
of the results is not due to the use of clinical variables which are directly used
by experts to assign the patient labels.

520 In the second set of experiments, we used all the clinical variables available.
The results of these experiments can be found in the supplementary material, as
a sanity check of our datasets and methodologies. A large increase of accuracy is
obtained from this second experiment. However, these results can be considered

over optimistic, as the clinical features are highly correlated with the labels.

ss 3.4. Weight Maps Summarization

In the present work we used a method described in [58] to rank the re-
gions that contribute most to the predictive model according to the Auto-
mated Anatomical Labeling (AAL) Atlas [59]. More specifically, the regions

were ranked based on the average of the absolute weight value within them.
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s Therefore, regions which contain weights with a large absolute value, and/or

contain several weights with values different from zero, will be ranked higher.

4. Results

In this section, the results are summarized for both the datasets. When it is
reasonable, we firstly compare all the presented methods considering only the
s35 image or clinical features. Secondly, we compare different methods to combine

heterogeneous data, i.e. images and clinical/demographic information.

4.1. ADNI

In this section we present the results obtained using the ADNI dataset. The
results are presented for the previously described methods: Baseline (i.e. linear
s0  SVM), Feature Selection (FS), Random Forests methods (RF), Multiple Ker-
nel Learning (MKL), Feature Weighting by using MKL (FW) and the proposed
method Feature Weighting and Selection (FWS). In Tablethe results obtained
by exploiting only one source of information are reported, i.e. clinical informa-
tion or features derived from structural MRI. It is possible to see that the SVM
sas  algorithm with only the clinical information is not able to generate an effective
predictive model. Due to the small amount of clinical features (with respect to
the examples), using FS or FW would not be effective, therefore, this compari-
son will not be presented. Concerning the MR images, there is a small increase
in balanced accuracy when using either feature selection, feature weighting, or

50 both.

The second step is to combine heterogeneous data (image and non-image
features) for prediction. Table [3[ shows the results obtained when we combine
both image and clinical features in different ways. Combining the MR images
with the clinical information by concatenation (i.e. SVM with I + C) or by using

55 standard MKL or RF approaches produces a model that is similar (in accuracy)
to the one generated by using only the MR features. A small improvement

of the results is obtained by the feature selection methods (i.e. SVM RFE and
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Algorithm Kernels R Bal. Acc. %

Baseline SVM C 1 52.12 + 8.26

SVM I 1 84.08 + 6.94

SVM RFE % - 86.34 + 6.93

Fs SVM t-test % — 85.72 + 5.32
— SimpleMKL v 168130  Out of memory

EasyMKL % 168130 86.12 + 4.54

FWS EasyMKLFS % 168130 86.91 + 5.12

Table 2: ADNI Dataset: comparisons of 5 repetitions of a nested 10-fold cross-validation
balanced accuracy using the clinical information selected by a FDR procedure. The results
are divided in 4 families: Baseline, Feature Selection (FS), Feature Weighting by using MKL
(FW) and our method in Feature Weighting and Selection (FWS). R corresponds to the

number of kernels used.

SVM t-test). EasyMKL used as feature weighter provides a larger improvement,
because it is able to select a single weight for each voxel of the MR image.

sso  Finally, by removing the noise from the weights of EasyMKL, the proposed
method (EasyMKLFS) is able to provide the best performance.

Algorithm Kernels R Bal. Acc. %

Baseline SVM I+C 1 84.10 £ 7.92

SVM RFE V&C - 86.53 £+ 5.99

Fs SVM t-test V&C - 86.01 +£5.17

RE Gray I1&C - 85.99 £+ 10.73

Pustina I1&C — 84.34 +11.14

MEKL SimpleMKL I1&C 26 84.29 +11.78

EasyMKL I1&C 26 84.47 £ 7.28
SimpleMKL V&C 168155  Out of memory

mw EasyMKL V&C 168155 87.97 £ 6.59

FWS EasyMKLFS V& C 168155 92.38 £ 7.27

Table 3: ADNI Dataset: comparisons of 5 repetitions of a nested 10-fold cross-validation
balanced accuracy using the clinical information selected by a FDR procedure. The results
are divided in 5 families: Baseline, Feature Selection (FS), Random Forests-based family (RF),
standard Multiple Kernel Learning (MKL), Feature Weighting by using MKL (FW) and our
method in Feature Weighting and Selection (FWS). R corresponds to the number of kernels

used.
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In order to compare the predictions of the proposed EasyMKLFS with re-
spect to the other methods we used the non-parametric Wilcoxon signed-rank
test [56]. The results of these tests are presented in Table 4] Since there were

ss 8 comparisons, the Bonferroni corrected p-value is 0.05/8 = 6.25 - 1073, Not
surprising the test showed a significance difference between the proposed meth-
ods with respect to all compared approaches, and the one with the performance

most similar to the EasyMKLF'S is the EasyMKL.

Algorithm p-value w.r.t. EasyMKLFS

Baseline SVM 2.7-107°
SVM RFE 3.2.107°

FS
SVM t-test 5.6-107%
Gray 1.9-1077

RF
Pustina 9.1-1076
SimpleMKL 3.8.1074

MKL

EasyMKL 3.7-10~4
FW EasyMKL 1.7-1073

Table 4: ADNI Dataset: results of the Wilcoxon signed-rank test comparing EasyMKLFS
with respect to the others. Smaller p-values mean an higher difference between the models

and, in our case, the Bonferoni corrected p-value is 0.05/8 = 6.25 - 103,

Figureshows the selection frequency for the F'S sparse methods (SVM RFE

so  and SVM t-test) or the average of the weights n (for EasyMKLFS), respectively,

overlaid onto an anatomical brain template, which can be used as a surrogate

for consistency. These maps show that all approaches find brain areas pre-

viously identified as important for neuroimaging-based diagnosis of Alzheimer

(e.g. bilateral hippocampus and amygdala). However, the SVM RFE and SVM

si5 t-test also select features across the whole brain potentially related to noise,

while the EasyMKLFS selects almost exclusively voxels within the hippocam-

pus and amygdala. In Table [5| we present the top 10 most selected regions by
each method (SVM RFE, SVM t-test and EasyMKLFS).

In Figure [3] the weights assigned to the clinical information by EasyMKL

ss0 are depicted. These weights are generated by using V & C as family of basic
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(a) SVM RFE with V & C. (b) SVM t-test with V & C. (c¢) EasyMKLFS with V & C.

Figure 2: ADNI dataset: comparison of voxels selection frequency (RFE and t-test) and
weights (EasyMKLFS), overlayed onto an anatomical template.

kernels. The top 5 highest weights are assigned to some of the clinical informa-
tion concerning the MMSE questionnaire, specifically the task related to write a
sentence (MMWRITE), put a paper on the floor (MMONFLR), repeat a name
of an object (the word "tree” for MMTREE and the word ”flag” for MMFLAG)

sss and answer to a simple question about an object (in this case a wrist watch for
MMWATCH). See Table for further information.

Figure [ depicts the cumulative weight assigned by EasyMKLFS to each
source of information (sMRI and clinical information). These weights show
that the importance of the SMRI images is larger than the clinical data. Nev-

s ertheless, the accuracy results show that the clinical features contributed to
the improvement of the final predictive model (changing the performance of our

method from 86.91% to 92.38% of balanced accuracy, in this classification task).

4.2. Depression

In this section we present the results obtained by using the Depression

sos dataset. Table [6] shows the results obtained by exploiting each source of in-
formation alone, i.e. the clinical data or the combination of the four fMRI
derived images of each subject (brain activation to Anxious, Happy, Neutral
and Sad faces). These results highlight the challenge of this classification task.

In this case, the clinical features bring a good amount of information, which is

e0 comparable with the information contained in the fMRI. In fact, the best ac-
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SVM RFE voxels | SVM t-test voxels | EasyMKLFS voxels
Amygdala-L 188 Amygdala-L 202 Amygdala-L 121
Amygdala-R 210 Amygdala-R 231 Amygdala-R 102
Hippocampus-L 713 Hippocampus-L 747 Hippocampus-L 255
Hippocampus-R 659 ParaHippocampal-L 798 Hippocampus-R 264
ParaHippocampal-L 738 Hippocampus-R 739 ParaHippocampal-L 142
ParaHippocampal-R 725 ParaHippocampal-R 877 ParaHippocampal-R 88
Temporal-Inf-L 1844 Temporal-Inf-L 2622 Vermis-4-5 30
Vermis-8 165 Fusiform-L 1734 Temporal-Inf-L 118
SupraMarginal-L 653 Temporal-Inf-R 2694 SupraMarginal-L 37
Vermis-7 110 Fusiform-R 1723 Lingual-L 32

Table 5: ADNI dataset: the top 10 most selected brain regions for SVM RFE, SVM t-test
and EasyMKLFS (with respect to the assigned weight) with the number of selected voxels.

curacy of the single source methods is 79.67% for Linear SVM with the clinical
data, and 68% with EasyMKL with the fMRIs features. Due to the fact that
this dataset includes a very heterogeneous group of patients, the training la-
bels are extremely “noisy” and unreliable. For this reason, the standard feature

o5 selection methods (i.e. SVM RFE and SVM t-test) fail to select the relevant
voxels. Our method showed a similar performance to EasyMKL (used as a sim-
ple feature weighter) but it is able to produce a sparser solution, providing more
interpretability when compared with a dense model.

Similarly to the previous example, we avoid the comparison of FS or FW

s10  methods using only the clinical information, due to the low dimensionality of
the problem with respect to the number of the examples.

Table [7] shows the results by combining the fMRI derived features with the
clinical information. For this challenging classification task, the FS methods
showed similar performance with and without the clinical information. Some

e1s improvement is obtained by the RF approaches, however a slightly bigger im-
provement is provided by the standard MKL methods (with an accuracy of
79.67% for SimpleMKL). The results of the EasyMKL, EasyMKL as FW, and
our method (EasyMKLFS), are comparable to standard MKL. However, once
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Figure 3: EasyMKL assigned weights for the clinical information selected by a FDR proce-
dure exploiting V & C as family of basic kernels for the ADNI dataset. The top 5 highest
weights are assigned to the clinical data (see Tablefor further information): MMWRITE,
MMONFLR, MMTREE, MMFLAG and MMWATCH.

again, our method produces a sparse model, which is more interpretable.
620 As for the ADNI dataset, we compared the different methods with re-

spect the proposed EasyMKLFS concerning the predictions performing the non-

parametric Wilcoxon signed-rank test [56]. The results of the p-values obtained
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Figure 4: EasyMKLF'S assigned weights for the different sources of information: MR images

and clinical measurements.

Algorithm Kernels R Bal. Acc. %

Basoline SVM C 1 79.67 +12.29

SVM I 1 67.00 + 14.87

SVM RFE % - 65.33 £12.97

Fs SVM t-test % - 62.19 £+ 10.12
— SimpleMKL v 713816  Out of memory

EasyMKL % 713816 68.00 £ 13.67

FWS EasyMKLFS v 713816 67.73 +11.32

Table 6: Depression Dataset: comparisons of 5 repetitions of a nested 10-fold cross-validation
balanced accuracy using the clinical information selected by a FDR procedure. The results are
divided in 4 families: Baseline, Feature Selection (FS), Feature Weighting by using MKL (FW)
and our method in Feature Weighting and Selection (FWS). R corresponds to the number of

kernels used.

from of these tests are presented in Table[8] Similarly to the previous dataset the
Bonferroni corrected p-value is 0.05/8 = 6.25 - 10~3. The differences are signifi-

s cant for all the methods but EasyMKL. EasyMKL is a fundamental part of the
proposed algorithm. EasyMKLFS combines the properties of EasyMKL with
feature selection. The uncertainty of the labels and the amount of noise in the
Depression dataset probably makes the feature selection step not as beneficial
as in the previous example.

630 Figurem shows the selection frequency of the sparse FS methods (SVM RFE
and SVM t-test) or the average of the weights n (for EasyMKLFS) overlaid
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Algorithm Kernels R Bal. Acc. %

Baseline SVM I+C 1 67.00 £+ 14.87

SVM RFE V&C - 64.99 £+ 13.01

Fs SVM t-test V& C — 62.72 +11.12

RE Gray I1&C - 75.34 £16.34

Pustina I1&C — 73.88 £15.19

MKL SimpleMKL I1&C 45 79.67 £13.11

EasyMKL I1&C 45 79.61 +14.12
SimpleMKL V&C 713860  Out of memory

mw EasyMKL V&C 713860 80.02 £+ 11.32

FWS EasyMKLFS VYV &C 713860 80.01 £+ 10.11

Table 7: Depression Dataset: comparisons of 5 repetitions of a nested 10-fold cross-validation
balanced accuracy using the clinical information selected by a FDR procedure. The results are
divided in 5 families: Baseline, Feature Selection (FS), Random Forests-based family (RF),
standard Multiple Kernel Learning (MKL), Feature Weighting by using MKL (FW) and our
method in Feature Weighting and Selection (FWS). R corresponds to the number of kernels

used.
Algorithm p-value w.r.t. EasyMKLFS
Baseline SVM 8.6-1075
SVM RFE 3.8.1074
FS
SVM t-test 1.2-1074
Gray 4.3-107°
RF
Pustina 7.8.1074
SimpleMKL 1.8-1074
MKL
EasyMKL 4.6-104
FW EasyMKL 9.6-1073

Table 8: Depression Dataset: results of the Wilcoxon signed-rank test comparing EasyMKLFS
with respect to the others. Smaller p-values mean an higher difference between the models

and, in our case, the Bonferoni corrected p-value is 0.05/8 = 6.25 - 1073,

onto an anatomical brain template, which can be used as a surrogate of consis-
tency. For each method, we present the selection frequency or the average of
the weights for the four fMRI derived images (i.e. brain activation to Anxious,
s Happy, Neutral and Sad faces). In Tables |§| and we present the top 10 brain
regions selected for each method (SVM RFE, SVM t-test and EasyMKLFS), and

30


https://doi.org/10.1101/484311
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/484311; this version posted December 10, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

for each fMRI derived image. The vast majority of these regions has been pre-
viously described in the depression literature. Especially frontal and temporal
areas, as well as subcortical regions, such as: the hippocampus, the amygdala,
s0 and parts of the reward system (e.g. the pallidum and the caudate). These re-
gions have been previously identified using both multivariate pattern recognition
approaches, and classic group statistical analyses [23] 60H62].
Figure [5| depicts the weights assigned by EasyMKL for the clinical informa-
tion. The family V & C has been used for the basic kernels. For this dataset, the
es  top b highest weights are assigned to the following clinical information: the Neg-
ative Affect Schedule (PANAS neg), the mean valence ratings for male neutral
and sad faces (from KDEF, i.e. KDEF_val neum and KDEF _val_sad_-m), the
mean arousal rating for male happy faces (from KDEF, i.e. KDEF _aro_hap_m)
and an extracted feature from the State-Trait anger expression inventory test
0 (STAXI_TAT). See Table for further information.
Figure[6]shows the sums of the weights that are assigned for each information

source (4 fMRI derived images plus the clinical information) by our method.

5. Discussion

The main goal of this paper is to present an effective methodology to com-
ess  bine and select features from different sources of information (sMRI/fMRI, clin-
ical and demographic information) in order to classify patients with mental
health disorders versus healthy controls. The proposed method (EasyMKLFS)
obtained better or similar accuracy than several compared machine learning
approaches with higher levels of sparsity, therefore consistently improving in-

o0 terpretability.

More specifically, by using the ADNI dataset, we were able to obtain a
significant improvement in the classification accuracy, potentially due to absence
of strong source of noise in the data and presence of predictive information in the
considered sources of information. On the other hand, in the Depression dataset,

65 we obtained a comparable accuracy to the MKL gold standard methods. The
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Figure 5: EasyMKL assigned weights for the clinical information selected by a FDR procedure
exploiting V & C as family of basic kernels for the Depression dataset. The top 5 highest
weights are assigned to the clinical data (see Tablefor further information): PANAS_neg,
KDEF _val_neu-m, KDEF _val_sad_m, KDEF _aro_hap-m and STAXI_TAT.
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Cumulative weight

Anxious Happy Neutral Sad Clinical

Source of information

Figure 6: EasyMKLFS assigned weights for the different sources of information of the Depres-
sion dataset: Anxious image, Happy image, Neutral image, Sad image and clinical measure-

ments.

lack of a significant improvement in classification accuracy for the depression
dataset might be explained by the noise in the fMRI data and higher label
uncertainty for this task (i.e. high heterogeneity in the depressed group). More
important, in both the cases, the EasyMKLFS provides the sparser solution.

eo  This particular result improves the interpretability of our models, identifying
which features are driving the predictions.

In the context of machine learning, interpretability of a model often refers
to its ability to identify a subset of informative features. In contrast, in neu-
roscience and clinical neuroscience, researchers often wants to understand why

s a specific feature contribute or is informative to a predictive model. Unfortu-
nately, answering the question of why a feature is informative to a predictive
model is not straightforward and has been topic of a number of studies in the
field of neuroimaging (e.g. [63-66]). These studies have shown that a features
can be included in a model due to different reasons (e.g. a feature might be

s informative because it has consistently high/low value for one class with respect
to the other class or because it helps canceling correlated noise). In the present
work we use the machine learning definition of model interpretability or infor-
mativeness. The identified features were compared with previous literature in

terms of how they overlap with regions previously described as important for
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Anxious
SVM RFE voxels | SVM t-test voxels | EasyMKLFS voxels
Calcarine-L 783 Pallidum-L 147 Calcarine-L 266
Occipital-Sup-R. 364 Putamen-L 514 Temporal-Sup-L 237
Frontal-Sup-Medial-R 692 SupraMarginal-R, 874 Occipital-Sup-R 134
Calcarine-R 532 Occipital-Sup-R 517 Paracentral-Lobule-R 82
Temporal-Sup-L 655 Postcentral-R 1617 Frontal-Mid-L 394
Parietal-Sup-L 534 Frontal-Mid-L 1793 Frontal-Sup-R 319
Frontal-Mid-L 1104 Paracentral-Lobule-R 296 Frontal-Sup-Medial-R, 157
Paracentral-Lobule-R 224 Calcarine-R 662 Frontal-Inf-Tri-L 184
Temporal-Sup-R 869 Frontal-Sup-R 1395 Frontal-Inf-Oper-L 69
Cingulum-Mid-L 629 Cuneus-R 481 Temporal-Mid-R 318
Happy
SVM RFE voxels | SVM t-test voxels | EasyMKLFS voxels
SupraMarginal-L 358 Cingulum-Ant-R 630 Temporal-Sup-L 366
Temporal-Sup-L 666 Cuneus-R 587 SupraMarginal-L 204
Calcarine-L 805 Temporal-Sup-L 677 Paracentral-Lobule-R 73
Precentral-R 1063 Hippocampus-L 311 Calcarine-L 222
Insula-R 335 Putamen-R 388 Precentral-R 268
Putamen-R 216 Hippocampus-R 449 Insula-R 128
Temporal-Mid-R 1339 Calcarine-R 715 Putamen-R 64
Caudate-R 295 Caudate-L 548 Frontal-Mid-L 365
Caudate-L 331 Thalamus-L 500 Caudate-L 87
Calcarine-R 474 Cuneus-L 652 Frontal-Sup-R 311

Table 9: Depression dataset: the top 10 most selected brain regions for SVM RFE, SVM t-test
and EasyMKLFS (with respect to the assigned weight) with the number of selected voxels.

s discriminating dementia and depression from healthy subjects.

It is important to note what makes our method different from the standard
approaches to combine heterogeneous information for neuroimaging based di-
agnosis. EasyMKLFS works in a framework where the initial information is
fragmented in small and low informative pieces, and without exploiting some a

s0  priori knowledge from an expert. Due to the particular ability of EasyMKL to
combine huge amounts of different kernels (i.e. one per feature), we are able to

weight all of them. This first difference with respect to the state-of-art MKL
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Neutral
SVM RFE voxels | SVM t-test voxels | EasyMKLFS voxels
Temporal-Sup-L 775 Hippocampus-L 447 Temporal-Sup-L 398
Amygdala-R 115 Thalamus-L 624 SupraMarginal-L 175
Temporal-Mid-R 1444 Hippocampus-R 547 Pallidum-R 44
SupraMarginal-L 388 Amygdala-R 131 Amygdala-L 26
Amygdala-L 79 Temporal-Sup-L 877 Thalamus-L 129
Thalamus-L 461 Putamen-R 488 Temporal-Mid-R 470
Pallidum-R 97 Putamen-L 426 Hippocampus-L 82
Hippocampus-R 329 Temporal-Mid-R 1618 Hippocampus-R 86
Caudate-R 299 Caudate-R 441 Putamen-R 75
Hippocampus-L 238 ParaHippocampal-L 359 Precentral-R 260
Sad
SVM RFE voxels | SVM t-test voxels | EasyMKLFS voxels
Parietal-Sup-L 717 Amygdala-R 117 Temporal-Sup-L 342
Temporal-Sup-L 760 Postcentral-R 1462 SupraMarginal-L 159
SupraMarginal-L 383 Cingulum-Ant-R 554 Precentral-R 310
Precentral-R 986 Temporal-Sup-L 783 Parietal-Sup-L 199
Caudate-L 213 Caudate-L 398 Caudate-L 87
Insula-L 506 Parietal-Sup-L 934 ParaHippocampal-L 69
Thalamus-L 313 Hippocampus-L 342 ParaHippocampal-R 68
Temporal-Pole-Sup-L 269 Occipital-Sup-R 598 Insula-L 122
Postcentral-R 768 Frontal-Mid-L 1625 Frontal-Inf-Tri-L 150
Occipital-Mid-R, 556 Putamen-R 303 Frontal-Mid-L 256

Table 10: Depression dataset: the top 10 most selected Atlas Regions of the brain for SVM
RFE, SVM t-test and EasyMKLFS (with respect to the assigned weight) with the number of

selected voxels.

applications is crucial, in fact, other MKL methods often combine only a small
set of different sources manually selected. Our method is able to work without

es this bias and obtain better or similar performance as previous methods. Finally,
the last step of EasyMKLFS is able to find a very sparse model unifying in syn-
ergy the characteristics of feature weighting (i.e. MKL with a large amount of
basic kernels) and feature selection.

When compared to the RF-based approaches, our method obtains better
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w0 accuracy and, as in the MKL case, the main difference is the computational
complexity of these methods. In fact, the two RF-based methodologies (i.e.
Pustina and Gray) have an increase in computational time to perform the train-
ing that is orders of magnitude higher when the number of different sources of
information increase. Moreover, these approaches are a mixture of heuristics

s and algorithms, not easily comparable to the other well-theoretically-grounded
machine learning methods used in the paper.

In our experiments, we reported the average accuracy of each method to-
gether with its standard deviation. This procedure is broadly used comparing
machine learning methods. For the sake of completeness, we have compared the

7o performance of the proposed algorithm, EasyMKLFS, with each of the other
methods using the Wilcoxon signed-rank test [56]. Results from these compar-
isons show that the EasyMKLFS was significantly better than all other methods
for the ADNI dataset and significantly better than all but the EasyMKL for the
depression dataset. The lack of improvement with respect to the EasyMKL for

ns  the depression dataset suggests that for heterogeneous datasets with high label
uncertainty (i.e. datasets that contain subgroups of subjects with different char-
acteristics) the feature selection step might not be advantageous. Unfortunately,
label uncertainty is a common issue in psychiatry disorders. Current diagnostic
categories in psychiatric are only based on symptoms and behaviours due to the

720 lack of biomarkers in psychiatry [67]. There is a lot of evidence that the bound-
ary of these categories do not alight with neuroscience, genetics and have also
not been predictive of treatment response [68]. Another evidence of the impact
of class heterogeneity on the performance of neuroimaging based classifiers can
be found in [69] where the author shows a negative correlation between reported

s accuracy and sample size for many diagnostic applications. Bigger samples are
likely to be more heterogeneous than small ones. In summary, taken together,
these results demonstrate the effectiveness of our methodology in two differ-
ent classification tasks, obtaining similar or higher accuracy than the compared
methods with higher interpretability.

730 The EasyMKLFS was able to identify, for both datasets, sMRI/fMRI and

36


https://doi.org/10.1101/484311
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/484311; this version posted December 10, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

clinical/demographic features that overlap with features previously identified
as relevant for discriminating demented and depressed patients from healthy
controls. More specifically, for the ADNI dataset, the top most selected brain
regions according to the AAL atlas were bilateral amygdala, hippocampus and
s parahippocampus. The top most selected clinical information were items of
the Mini-Mental State Examination (MMSE).The MMSE is a 30-point ques-
tionnaire that is used extensively in clinical and research settings to measure
cognitive impairment [45]. The depression dataset consisted of four brain im-
ages, representing fMRI patterns of brain activation to different emotional faces
70 (Anxious, Happy, Neutral and Sad), in addition to the clinical information. The
top most selected brain regions across the different emotions included frontal and
temporal areas, as well as subcortical regions, such as: the hippocampus, the
amygdala, and parts of the reward system (e.g. the pallidum and the caudate).
All these regions have been has been previously described in the depression
75 literature [23, 60H62]. The top most selected clinical information for the depres-
sion dataset was the Negative Affect Schedule (PANAS neg). The Positive and
Negative Affect Schedule (PANAS) is a self-report questionnaire that measures
both positive and negative affect [70]. Previous studies have shown that indi-
viduals with higher Negative Affect (NA) trait (neuroticism) show heightened
50 emotional reactivity [7I] and experience more negative emotions [72]. Higher
NA trait has been also associated with poor prognosis [72] and predictive of
onset of major depression [(3]. Furthermore, a recent study showed that it is
possible to decode individuals NA trait from patterns of brain activation to
threat stimuli in a sample of healthy subject [74]. Our results, corroborate with
s these previous studies and support the evidence that Negative Affect trait might
have important clinical implications for depression.

From a clinical perspective, the proposed approach addresses the two funda-
mental challenges arising from the unique, multivariate and multi-modal nature
of mental disorders (for an in-depth discussion of both conceptual challenges, see

70 [75]). On the one hand, mental disorders are characterized by numerous, possi-

bly interacting biological, intrapsychic, interpersonal and socio-cultural factors
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[76, [77]. Thus, a clinically useful patient representation must, in many cases,
include data from multiple sources of observation, possibly spanning the range
from molecules to social interaction. Even within the field of neuroimaging, we

s see a plethora of modalities used in daily research; including e.g. task-related
and resting-state fMRI, structural MRI data and Diffusion Tensor Imaging
(DTT) approaches. All these modalities might contain non-redundant, possi-
bly interacting sources of information with regard to the clinical question. In
fact, it is this peculiarity — distinguishing psychiatry from most other areas of

70 medicine — which has hampered research in general and translational efforts for
decades. Overwhelming evidence shows that no single measurement — be it a
voxel, a gene or a psychometric test — explains substantial variance with regards
to any practically relevant aspect of a psychiatric disorder (compare e.g. [78]).
In addition, many if not most variables are irrelevant for the particular question

s addressed. It is this profoundly multivariate nature of mental disorders that
necessitates dimensionality reduction or feature-selection approaches when us-
ing whole-brain neuroimaging data. The fact that EasyMKLFS now addresses,
both, the issue of feature selection and multi-modal data integration in a single,
mathematically principled framework constitutes a major step forward. From a

70 health economic point of view, approaches such as this one are especially note-
worthy, as they have the potential not only to identify the best-performance,
but also the most efficient model. By using EasyMKLFS, it is possible to di-
rectly test which sources of information are non-redundant with regards to the
model’s performance.

785 From the perspective of biomarker research, it is particularly important that
EasyMKLFS provides a means to investigate and visualize the predictive model.
Using MKL weights in combination with feature selection provides information
regarding feature importance for single features, as well as for data sources,
while guaranteeing sparsity. Our results show that, compared for example to a

70 classic t-test, the visualization appears much less noisy and focused, dramati-
cally increasing interpretability. Accordingly, we were able to identify many of

the key-regions known to be involved in the mental diseases while maintaining
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a rather focused list of areas.
Despite our encouraging results, the method does present some limitations.

75 Firstly, our method was not able to show an improvement in performance when
the classification task is very noisy (i.e. for unreliable patients’ labels), as in the
Depression dataset. Another weak point of the presented methodology is that,
in this paper, we studied only the simplest way to combine the information, by
generating exclusively linear kernels. From this point of view, this is a limitation

so of our framework with respect to the strength of the kernels methods.

Considering these limitations, there are two possible future directions. Firstly,

the improvement of EasyMKL by using a different regularizer that is more sta-

ble with respect to the heterogeneity in the patient group. The idea is to split

the regularization in two different parts: the first part for the positive examples,

sos and the second part for the negative examples. In this way, we might be able
to handle classification with heterogeneous classes better (e.g. the Depression
dataset). A second way to evolve our framework is to fragment and to ran-
domly generate the source of information, improving the accuracy by injecting
non-linearity. In this sense, a good way to proceed is by randomly generating

s small subsets of information from the raw data, then projecting them onto a
non-linear feature space before the weighting and selection phase. In this way,
we might be able to increase the expressiveness of our features and, consequently,
the complexity of the generated model. On the other hand, we have to be able
to bound these new degrees of freedom, in order to avoid overfitting.

815 In terms of future applications, the proposed EasyMKLFS approach has
the ability to be applied to other clinical relevant classification tasks such as
distinguishing diseases groups and predicting diseases progression (see for ex-
ample [79H8T]). As shown in our results, the performance of the EasyMKLFS
approach on these applications will be bounded by the reliability of the labels

g0 and informativeness of the considered sources of information. Moreover, our
approach might be also particular beneficial for "big-data’ applications focusing
on personalized medicine, where the goal is to predict future outcomes and/or

treatment response by combining larger sources of patient information.

39


https://doi.org/10.1101/484311
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/484311; this version posted December 10, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

Acknowledgements

825 Janaina Mourao-Miranda was funded by the Wellcome Trust under grant
number WT102845/Z/13/Z. Joao M. Monteiro was funded by a PhD scholarship
awarded by Fundacao para a Ciencia e a Tecnologia (SFRH/BD/88345/).

References

[1] M. Génen, E. Alpaydin, Multiple Kernel Learning Algorithms, Journal of
830 Machine Learning Research 12 (2011) 2211-2268.

[2] V. Bolén-Canedo, M. Donini, F. Aiolli, Feature and kernel learning, in:
European Symposium on Artificial Neural Networks (ESANN), 2015, pp.
22-24.

[3] M. Kloft, Lp-Norm Multiple Kernel Learning, Journal of Machine Learning
635 Research 12 (2011) 953-997.

[4] A.Rakotomamonjy, F. Bach, S. Canu, Y. Grandvalet, SimpleMKL, Journal
of Machine Learning Research 9 (2008) 2491-2521.

[5] C. Hinrichs, V. Singh, G. Xu, S. C. Johnson, Predictive markers for AD in
a multi-modality framework: An analysis of MCI progression in the ADNI
840 population, NeuroImage 55 (2011) 574-589.

[6] R. Filipovych, S. M. Resnick, C. Davatzikos, Multi-Kernel Classification
for Integration of Clinical and Imaging Data: Application to Prediction of
Cognitive Decline in Older Adults, Machine Learning in Medical Imaging
- Lecture Notes in Computer Science 7009 (2011) 159-166.

ss 7] C. Cortes, V. Vapnik, Support-vector networks, Machine Learning 20
(1995) 273-297.

[8] D. Zhang, Y. Wang, L. Zhou, H. Yuan, D. Shen, Multimodal classifica-
tion of Alzheimer’s disease and mild cognitive impairment, Neurolmage 55

(2011) 856-867.

40


https://doi.org/10.1101/484311
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/484311; this version posted December 10, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

g0 [9] D. Zhang, D. Shen, Multi-modal multi-task learning for joint prediction of
clinical scores in Alzheimer’s disease, Neurolmage 59 (2012) 895-907.

[10] A. Argyriou, T. Evgeniou, M. Pontil, Convex multi-task feature learning,
Machine Learning 73 (2008) 243-272.

[11] X. Meng, R. Jiang, D. Lin, J. Bustillo, T. Jones, J. Chen, Q. Yu, Y. Du,
855 Y. Zhang, T. Jiang, J. Sui, V. D. Calhoun, Predicting individualized clinical
measures by a generalized prediction framework and multimodal fusion of

MRI data, Neurolmage 145 (2017) 218-229.

[12] T. Tong, K. Gray, Q. Gao, L. Chen, D. Rueckert, A. D. N. Initiative,
et al., Multi-modal classification of alzheimer’s disease using nonlinear

860 graph fusion, Pattern Recognition 63 (2017) 171-181.

[13] D. Yao, V. D. Calhoun, Z. Fu, Y. Du, J. Sui, An ensemble learning system
for a 4-way classification of alzheimers disease and mild cognitive impair-

ment, Journal of neuroscience methods 302 (2018) 75-81.

[14] M. Liu, J. Zhang, P.-T. Yap, D. Shen, View-aligned hypergraph learning for
865 alzheimers disease diagnosis with incomplete multi-modality data, Medical

image analysis 36 (2017) 123-134.

[15] N.-F. Jie, M.-H. Zhu, X.-Y. Ma, E. A. Osuch, M. Wammes, J. Théberge, H.-
D. Li, Y. Zhang, T.-Z. Jiang, J. Sui, et al., Discriminating bipolar disorder
from major depression based on svmm-foba: efficient feature selection with

870 multimodal brain imaging data, IEEE transactions on autonomous mental

development 7 (2015) 320-331.

[16] J. Sui, S. Qi, T. G. van Erp, J. Bustillo, R. Jiang, D. Lin, J. A. Turner,
E. Damaraju, A. R. Mayer, Y. Cui, et al., Multimodal neuromarkers in

schizophrenia via cognition-guided mri fusion, Nature communications 9

(2018) 3028.

41


https://doi.org/10.1101/484311
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/484311; this version posted December 10, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

[17] C. K. I. Williams, D. Barber, Bayesian classification with gaussian pro-
cesses, IEEE Transactions on Pattern Analysis and Machine Intelligence

20 (1998) 1342-1351.

[18] M. Filippone, A. F. Marquand, C. R. V. Blain, S. C. R. Williams,
880 J. Mourao-Miranda, M. Girolami, Probabilistic prediction of neurologi-
cal disorders with a statistical assessment of neuroimaging data modalities,

Annals of Applied Statistics 6 (2012) 1883-1905.

[19] J. Young, M. Modat, M. J. Cardoso, A. Mendelson, D. Cash, S. Ourselin,
Accurate multimodal probabilistic prediction of conversion to Alzheimer’s
885 disease in patients with mild cognitive impairment, Neurolmage: Clinical

2 (2013) 735-745.

[20] K. R. Gray, P. Aljabar, R. A. Heckemann, A. Hammers, D. Rueckert,
A. D. N. Initiative, et al., Random forest-based similarity measures for
multi-modal classification of alzheimer’s disease, Neurolmage 65 (2013)

890 167-175.

[21] D. Pustina, H. B. Coslett, L. Ungar, O. K. Faseyitan, J. D. Medaglia,
B. Avants, M. F. Schwartz, Enhanced estimations of post-stroke aphasia
severity using stacked multimodal predictions, Human brain mapping 38

(2017) 5603-5615.

s [22] F. Aiolli, M. Donini, EasyMKL: a scalable multiple kernel learning algo-
rithm, Neurocomputing (2015) 1-10.

[23] T. Hahn, A. F. Marquand, A.-C. Ehlis, T. Dresler, S. Kittel-Schneider,
T. A. Jarczok, K.-P. Lesch, P. M. Jakob, J. Mourao-Miranda, M. J. Bram-
mer, A. J. Fallgatter, Integrating Neurobiological Markers of Depression,

900 Arch Gen Psychiatry 68 (2011) 361-368.

[24] T. Guyon, J. Weston, S. Barnhill, V. Vapnik, Gene selection for cancer
classification using support vector machines, Machine Learning 46 (2002)

389-422.

42


https://doi.org/10.1101/484311
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/484311; this version posted December 10, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

[25] R. Peck, J. L. Devore, Statistics: The Exploration and Analysis of Data,

905 Cengage Learning, 2011.

[26] M. Donini, J. M. Monteiro, M. Pontil, J. Shawe-Taylor, J. Mourao-Miranda,
A multimodal multiple kernel learning approach to alzheimer’s disease de-
tection, in: Machine Learning for Signal Processing (MLSP), 2016, pp.
1-6.

ao [27] F. R. Bach, G. R. G. Lanckriet, M. I. Jordan, Multiple kernel learning,
conic duality, and the SMO algorithm, in: International Conference on

Machine learning (ICML), 2004.

[28] S. Bucak, R. Jin, A. Jain, Multiple Kernel Learning for Visual Object
Recognition: A Review, IEEE Transactions on Pattern Analysis and Ma-
o15 chine Intelligence 36 (2014) 1354-1369.

[29] E. Castro, V. Gdémez-Verdejo, M. Martinez-Ramén, K. a. Kiehl, V. D.
Calhoun, A multiple kernel learning approach to perform classification of
groups from complex-valued fMRI data analysis: Application to schizophre-

nia, Neurolmage 87 (2014) 1-17.

o0 [30] J. Shawe-Taylor, N. Cristianini, Kernel Methods for Pattern Analysis,
Cambridge University Press, 2004.

[31] A. Maurer, M. Pontil, Structured sparsity and generalization, Journal of

Machine Learning Research 13 (2012) 671-690.

[32] N. Srebro, S. Ben-david, Learning Bounds for Support Vector Machines
925 with Learned Kernels, in: Annual Conference on Learning Theory (COLT),

2006, pp. 169-183.

[33] C. Cortes, M. Mohri, A. Rostamizadeh, New Generalization Bounds for
Learning Kernels, in: International Conference on Machine Learning

(ICML), 2010, pp. 247-254.

43


https://doi.org/10.1101/484311
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/484311; this version posted December 10, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

o0 [34] Z. Hussain, J. Shawe-Taylor, Improved Loss Bounds for Multiple Kernel
Learning, Journal of Machine Learning Research 15 (2011) 370-377.

[35] Z.Hussain, J. Shawe-Taylor, A Note on Improved Loss Bounds for Multiple
Kernel Learning, arXiv preprint arXiv:1106.6258 15 (2011) 1-11.

[36] S. M. Kakade, S. Shalev-Shwartz, A. Tewari, Regularization Techniques for
935 Learning with Matrices, Journal of Machine Learning Research 13 (2012)
1865-1890.

[37] C. A. Micchelli, M. Pontil, Q. Wu, D.-X. Zhou, Error bounds for learning
the kernel, Analysis and Applications 14 (2016) 849-868.

[38] M. Kloft, G. Blanchard, The local rademacher complexity of Ip-norm multi-
940 ple kernel learning, in: Advances in Neural Information Processing Systems

(NIPS), 2011, pp. 2438-2446.

[39] M. Varma, B. R. Babu, More generality in efficient multiple kernel learning,
in: International Conference on Machine Learning (ICML), 2009, pp. 1-8.

[40] L. A. Belanche, A. Tosi, Averaging of kernel functions, Neurocomputing
o4 112 (2013) 19-25.

[41] P. Pavlidis, J. Weston, C. Jinsong, W. N. Grundy, Gene functional classi-
fication from heterogeneous data, in: International Conference on Compu-

tational Molecular Biology, 212, 2001, pp. 242-248.

[42] F. Aiolli, M. Donini, Learning anisotropic rbf kernels, in: International

050 Conference on Artificial Neural Networks, Springer, 2014, pp. 515-522.

[43] M. Gonen, E. Alpaydin, Localized multiple kernel learning, in: Interna-
tional conference on Machine learning (ICML), 2008, pp. 352-359.

[44] C. Cortes, M. Mohri, A. Rostamizadeh, Learning non-linear combinations
of kernels, in: Advances in Neural Information Processing Systems (NIPS),

955 2009, Pp. 1-9.

44


https://doi.org/10.1101/484311
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/484311; this version posted December 10, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

[45] M. F. Folstein, S. E. Folstein, P. R. McHugh, ”Mini-mental state”: a
practical method for grading the cognitive state of patients for the clinician,

Journal of psychiatric research 12 (1975) 189-198.

[46] E. Moradi, I. Hallikainen, T. Hénninen, J. Tohka, A. D. N. Initiative, et al.,
960 Rey’s auditory verbal learning test scores can be predicted from whole brain

mri in alzheimer’s disease, Neurolmage: Clinical 13 (2017) 415-427.

[47] D. E. Ho, K. Imai, G. King, E. A. Stuart, Matching as nonparametric pre-
processing for reducing model dependence in parametric causal inference,

Political analysis 15 (2007) 199-236.

s [48] D.Lundqvist, A. Flykt, A. Ohman, The karolinska directed emotional faces
(kdef), CD ROM from Department of Clinical Neuroscience, Psychology
section, Karolinska Institutet (1998) 91-630.

[49] R. Torrubia, C. Avila, J. Molté, X. Caseras, The sensitivity to punishment
and sensitivity to reward questionnaire (spsrq) as a measure of gray’s anx-

o70 iety and impulsivity dimensions, Personality and individual differences 31

(2001) 837-862.

[50] P. A. Vernon, Der zahlen-verbindungs-test and other trail-making cor-
relates of general intelligence, Personality and Individual Differences 14

(1993) 35-40.

os  [51] S. A. Montgomery, M. Asberg, A new depression scale designed to be
sensitive to change., The British journal of psychiatry 134 (1979) 382-389.

[52] A.T.Beck, R. A. Steer, R. Ball, W. F. Ranieri, Comparison of beck depres-
sion inventories-ia and-ii in psychiatric outpatients, Journal of personality

assessment 67 (1996) 588-597.

wo [53] J. R. Crawford, J. D. Henry, The positive and negative affect schedule
(panas): Construct validity, measurement properties and normative data
in a large non-clinical sample, British Journal of Clinical Psychology 43

(2004) 245-265.

45


https://doi.org/10.1101/484311
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/484311; this version posted December 10, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

[64] C. D. Spielberger, State-trait anxiety inventory: Bibliography . palo alto,
085 1989.

[65] B. Mwangi, T. S. Tian, J. C. Soares, A review of feature reduction tech-
niques in Neuroimaging, Neuroinformatics 12 (2014) 229-244.

[56] J. Demsar, Statistical comparisons of classifiers over multiple data sets,

Journal of Machine learning research 7 (2006) 1-30.

wo [57] Y. Benjamini, Y. Hochberg, Controlling the False Discovery Rate: A Prac-
tical and Powerful Approach to Multiple Testing, Journal of the Royal
Statistical Society 57 (2016) 289-300.

[58] J. M. Monteiro, A. Rao, J. Shawe-Taylor, J. Mourdo-Miranda, A. D. Initia-
tive, et al., A multiple hold-out framework for sparse partial least squares,

995 Journal of neuroscience methods 271 (2016) 182-194.

[59] N. Tzourio-Mazoyer, B. Landeau, D. Papathanassiou, F. Crivello, O. Etard,
N. Delcroix, B. Mazoyer, M. Joliot, Automated anatomical labeling of
activations in spm using a macroscopic anatomical parcellation of the mni

mri single-subject brain, Neuroimage 15 (2002) 273-289.

wo  [60] P. A. Keedwell, C. Andrew, S. C. Williams, M. J. Brammer, M. L. Phillips,
The neural correlates of anhedonia in major depressive disorder, Biological

psychiatry 58 (2005) 843-853.

[61] J. Epstein, H. Pan, J. H. Kocsis, Y. Yang, T. Butler, J. Chusid,
H. Hochberg, J. Murrough, E. Strohmayer, E. Stern, et al., Lack of ventral
1005 striatal response to positive stimuli in depressed versus normal subjects,

American Journal of Psychiatry 163 (2006) 1784-1790.

[62] C. H. Miller, J. P. Hamilton, M. D. Sacchet, I. H. Gotlib, Meta-analysis
of functional neuroimaging of major depressive disorder in youth, JAMA

psychiatry 72 (2015) 1045-1053.

46


https://doi.org/10.1101/484311
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/484311; this version posted December 10, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

oo [63] S. Haufe, F. Meinecke, K. Gorgen, S. Didhne, J.-D. Haynes, B. Blankertz,
F. Biefmann, On the interpretation of weight vectors of linear models in

multivariate neuroimaging, Neuroimage 87 (2014) 96-110.

[64] S. Weichwald, T. Meyer, O. Ozdenizci, B. Scholkopf, T. Ball, M. Grosse-
Wentrup, Causal interpretation rules for encoding and decoding models in

1015 neuroimaging, Neurolmage 110 (2015) 48-59.

[65] J. Schrouff, J. M. Monteiro, L. Portugal, M. J. Rosa, C. Phillips, J. Mourao-
Miranda, Embedding anatomical or functional knowledge in whole-brain

multiple kernel learning models, Neuroinformatics 16 (2018) 117-143.

[66] J. Schrouff, J. Mourao-Miranda, Interpreting weight maps in terms of cog-
1020 nitive or clinical neuroscience: nonsense?, arXiv preprint arXiv:1804.11259

(2018).

[67] M. L. Phillips, Neuroimaging in psychiatry: bringing neuroscience into
clinical practice, The British Journal of Psychiatry 201 (2012) 1-3.

[68] T. Insel, B. Cuthbert, M. Garvey, R. Heinssen, D. S. Pine, K. Quinn,
1025 C. Sanislow, P. Wang, Research domain criteria (rdoc): toward a new

classification framework for research on mental disorders, 2010.

[69] G. Varoquaux, P. R. Raamana, D. A. Engemann, A. Hoyos-Idrobo,
Y. Schwartz, B. Thirion, Assessing and tuning brain decoders: Cross-
validation, caveats, and guidelines, Neurolmage 145 (2017) 166 — 179.

1030 Individual Subject Prediction.

[70] D. Watson, L. A. Clark, A. Tellegen, Development and validation of brief
measures of positive and negative affect: the panas scales., Journal of

personality and social psychology 54 (1988) 1063.

[71] B. W. Haas, K. Omura, Z. Amin, R. T. Constable, T. Canli, Functional
1035 connectivity with the anterior cingulate is associated with extraversion dur-

ing the emotional stroop task, Social Neuroscience 1 (2006) 16-24.

47


https://doi.org/10.1101/484311
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/484311; this version posted December 10, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

[72] L. A. Clark, D. Watson, S. Mineka, Temperament, personality, and the
mood and anxiety disorders., Journal of abnormal psychology 103 (1994)
103.

wo  [73] J. Ormel, A. Oldehinkel, W. Vollebergh, Vulnerability before, during,
and after a major depressive episode: A 3-wave population-based study,

Archives of General Psychiatry 61 (2004) 990-996.

[74] O. Fernandes Jr, L. C. Portugal, S. A. Rita de Céssia, T. Arruda-Sanchez,
A. Rao, E. Volchan, M. Pereira, L. Oliveira, J. Mourao-Miranda, Decoding
1045 negative affect personality trait from patterns of brain activation to threat

stimuli, Neurolmage 145 (2017) 337-345.

[75] T.Hahn, A. Nierenberg, S. Whitfield-Gabrieli, Predictive analytics in men-
tal health: applications, guidelines, challenges and perspectives, Molecular

psychiatry 22 (2017) 37-43.

wo [76] K. Kendler, The nature of psychiatric disorders, World Psychiatry 15
(2016) 5-12.

[77] M. Maj, The need for a conceptual framework in psychiatry acknowledging
complexity while avoiding defeatism, World Psychiatry 15 (2016) 1-2.

[78] U. Ozomaro, C. Wahlestedt, C. B. Nemeroff, Personalized medicine in
1055 psychiatry: problems and promises, BMC Medicine 11 (2013) 132.

[79] H. He, Q. Yu, Y. Du, V. Vergara, T. A. Victor, W. C. Drevets, J. B.
Savitz, T. Jiang, J. Sui, V. D. Calhoun, Resting-state functional network
connectivity in prefrontal regions differs between unmedicated patients with
bipolar and major depressive disorders, Journal of affective disorders 190

1060 (2016) 483-493.

[80] S. Gao, V. D. Calhoun, J. Sui, Machine learning in major depression:
From classification to treatment outcome prediction, CNS neuroscience &

therapeutics (2018).

48


https://doi.org/10.1101/484311
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/484311; this version posted December 10, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

[81] X. Long, L. Chen, C. Jiang, L. Zhang, A. D. N. Initiative, et al., Predic-
1065 tion and classification of alzheimer disease based on quantification of mri

deformation, PloS one 12 (2017) e0173372.

[82] C. Spielberger, Manual for the state-trait anger expression inventory,

Odessa, FL: Psychological Assessment Resources (1988).

49


https://doi.org/10.1101/484311
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/484311; this version posted December 10, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

(a) Anxious, SVM RFE.  (b) Anxious, SVM t-test. (c) Anxious, EasyMKLFS.

(e) Happy, SVM t-test. (f) Happy, EasyMKLFS.

(h) Neutral, SVM t-test. (i) Neutral, EasyMKLFS.

(j) Sad, SVM RFE. (k) Sad, SVM t-test. (1) Sad, EasyMKLFS.

Figure 7: Depression dataset: comparison of voxels selection frequency (RFE and t-test) and

weights (EasyMKLFS) by using V & C, overlayed onto an anatomical template.

50


https://doi.org/10.1101/484311
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/484311; this version posted December 10, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

Appendix A. A brief introduction to EasyMKL

1070 As introduced in Section EasyMKL [22] is a very efficient MKL algorithm
with the clear advantage of having high scalability with respect to the number
of kernels to be combined. In fact, its computational complexity is constant in
memory and linear in time.

Technically, EasyMKL finds the coefficients 17 that maximize the margin on
wrs  the training set. The margin is computed as the distance between the smaller
convex envelopes (i.e. convex hulls) of positive and negative examples in the

feature space, as shown in Figure

Margin
C—

Convex hull of Convex hull of
positive examples negative examples

Figure A.8: The margin is the distance between the convex hull of the positive examples (in
red) and the convex hull of the negative examples (in green). EasyMKL is able to find a

combination of kernels that maximizes this distance.

In particular, EasyMKL tries to optimize the following general problem:

R
* * . T 2
, =arg max min Y K, )Y~y + A . Al
(n*, ") gnil\Tlez:l it ~ (;:0777 )Yy (17115 (A1)

where Y is a diagonal matrix with training labels on the diagonal, and A

is a regularization hyper-parameter. The domain I' represents two probability

wso  distributions over the set of positive and negative examples of the training set,
that is I' = {y € R |2 yi=+17Yi = L>2,.— 17 = 1}. Note that any element

~ € T corresponds to a pair of points, the first contained in the convex hull of

positive training examples and the second in the convex hull of negative training
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examples. At the solution, the first term of the objective function represents the

s obtained (squared) margin, that is the (squared) distance between a point in
the convex hull of positive examples and a point in the convex hull of negative
examples, in the considered feature space.

Eq. can be seen as a minimax problem that can be reduced to a simple
quadratic problem with a technical derivation described in [22]. The solution
of the quadratic problem is an approximation of the optimal y* for the original
formulation and due to the particular structure of this approximated problem,
it is sufficient to provide the average kernel of all the trace-normalized basic

kernels, i.e.
R
K= 23 iy
R Tr(K;)
For this reason, we can avoid to store in memory all the single basic kernels ob-
taining a very scalable MKL algorithm (with respect to the number of kernels).
Finally, from «*, it is easy to obtain the optimal weights for the single basic
kernels K, by using the following formula

K
=Ty ——L _ Yy* =1,....R. A2
T]T‘ ’Y T’]"(K,,‘) ’Y ) vr b 7R ( )

wo Appendix B. A further analysis of ADNI and Depression datasets

In Table the required memory of the different MKL methods is pre-
sented. As already noted, SimpleMKL requires a huge amount of memory to
handle large family of basic kernels. For example, generating one linear kernel
for each voxel, we have to provide more than 50 Gb of memory to store all

wes  the required information. EasyMKL and our EasyMKLFS use a fixed amount
of memory independently with respect to the number of kernels, due to the
particular definition of the optimization problem (see Sections and .

Finally, the list of the extracted clinical information from the ADNI and

Depression datasets are summarized in Table and Table respectively.
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Algorithm R Memory Memory (real)
Baseline | Linear SVM 1 O(£?) 293 Kb
- SVM RFE - O2) 293 Kb
SVM t-test - O(£?) 293 Kb
KL SimpleMKL 26 O(Re?) ~ 10 Mb
EasyMKL 26 O(£?) 293 Kb
oW SimpleMKL 168155  O(R(?) ~ 50 Gb
EasyMKL 168155 O(£?) 293 Kb
FWS EasyMKLFS 168155  O(£2) 293 Kb

Table B.11: ADNI dataset: required memory for different methods to handle different families

of basic kernels.
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1D Clinical Information code Description

1 AGE The age of the subject.

2 PTGENDER The gender of the subject.

3 PTEDUCAT The level of education of the subject.

4 APOE4 The presence of the APOE4 allele.

5 CDRSB Clinical Dementia Rating.

6 ADAS11 Variant of the Alzheimer’s Disease Assessment Scale.

7 ADAS13 Variant of the Alzheimer’s Disease Assessment Scale.

8 RAVLT-immediate Rey Auditory Verbal Learning Test: sum of the scores from first 5 trials [46].
9 RAVLT learning Rey Auditory Verbal Learning Test: score of trial 5 minus the score of trial 1.
10 RAVLT _forgetting Rey Auditory Verbal Learning Test: score of trial 5 minus score of the delayed recall.
11 RAVLT_perc_forgetting Rey Auditory Verbal Learning Test: RAVLT _forgetting divided by score of trial 5.
12 FAQ Functional Assessment Questionnaire.

13 MMSE Total score of Mini-Mental State Examination [45].

14 MMBALL MMSE Task: Repeat name of object (ball).

15 MMFLAG MMSE Task: Repeat name of object (flag).

16 MMTREE MMSE Task: Repeat name of object (tree).

17 MMTRIALS MMSE: Number of trials to complete the naming task.

18 MMD MMSE Task: Spell “world” backwards (letter D).

19 MML MMSE Task: Spell “world” backwards (letter L).

20 MMR MMSE Task: Spell “world” backwards (letter R).

21 MMO MMSE Task: Spell “world” backwards (letter O).

22 MMW MMSE Task: Spell “world” backwards (letter W).

23 MMBALLDL MMSE Task: Remember object named earlier (ball).

24 MMFLAGDL MMSE Task: Remember object named earlier (flag).

25 MMTREEDL MMSE Task: Remember object named earlier (tree).

26 MMWATCH MMSE Task: Show a wrist watch and ask “What is this?”

27 MMPENCIL MMSE Task: Show a pencil and ask “What is this?”

28 MMREPEAT MMSE Task: Ask to repeat a sentence.

29 MMHAND MMSE Task: Ask to take paper with the right hand.

30 MMFOLD MMSE Task: Ask to fold paper in half.

31 MMONFLR MMSE Task: Ask to put paper on the floor.

32 MMREAD MMSE Task: Ask to read and obey a command (‘“close your eyes”).

33 MMWRITE MMSE Task: Ask to write a sentence.

34 MMDRAW MMSE Task: Ask to draw a copy of a design.

35 MMSCORE Total score of Mini-Mental State Examination

Table B.12: ADNI clinical information. In italic red, the clinical information removed by the
FDR procedure. All the clinical information starting with "MM?” are part of a quite widely

used exam that is performed on patients with dementia [45].
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5

Clinical Information code

Description

Lo T N T

©

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

age
zvt-mean

zvt_sd

BDI_IT

MADRS

SPSRQ-R
SPSRQ-P
PANAS_neg
PANAS_pos
STAI-G_-X1
STAI.G.X2
STAXI.S
STAXI-TA
STAXI_TAT
STAXI-TAR
STAXI-AI
STAXI_AO
STAXI-AC

gender

education
anx-before
anx_after

KDEF _val_neutral
KDEF_val-anxious
KDEF _val_sad
KDEF_val_happy
KDEF.aro-neutral
KDEF_aro_anxious
KDEF_aro-sad
KDEF _aro_happy
KDEF _val_miss
KDEF_aro-miss
KDEF _val_neu_fem
KDEF_val_-neu.m
KDEF._val-anx_fem
KDEF_val_anx_m
KDEF_val_sad_fem
KDEF._val_-sad-m
KDEF_val_hap_fem
KDEF_val_hap-m
KDEF.aro-neu-fem
KDEF_aro_.neu.m
KDEF_aro-anx-fem
KDEF_aro_anx_m
KDEF_aro_sad_fem
KDEF.aro-sad-m
KDEF_aro_hap_fem
KDEF_aro_hap.m

The age of the patient

Average of all the tests of processing speed (approx. 1Q)

Standard deviation of all the tests of processing speed

Self-report questionnaire of depression severity
Montgomery-Asberg depression rating scale [51]

Reward score of ”Sensitivity to Punishment/Reward Questionnaire” [49]
Punishment score of ”Sensitivity to Punishment/Reward Questionnaire”
Negative Affect Schedule [53]

Positive Affect Schedule

}Statc—’I‘rait anxiety inventory [54]

State-Trait anger expression inventory [82]

The gender of the patient

The education level of the patient

Visual analog scale of subjective anxiety

Anxiety after the scanning

Mean Valence ratings for neutral faces from the KDEF [48] collection
Mean Valence ratings for Anxious faces from the KDEF collection

Mean Valence ratings for Sad faces from the KDEF collection

Mean Valence ratings for Happy faces from the KDEF collection

Mean Arousal ratings for Neutral faces from the KDEF collection

Mean Arousal ratings for Anxious faces from the KDEF collection

Mean Arousal ratings for Sad faces from the KDEF collection

Mean Arousal ratings for Happy faces from the KDEF collection

Mean Valence rating missing from the KDEF collection

Mean Arousal rating missing from the KDEF collection

Mean Valence ratings for female Neutral faces from the KDEF collection
Mean Valence ratings for male Neutral faces from the KDEF collection
Mean Valence ratings for female Anxious faces from the KDEF collection
Mean Valence ratings for male Anxious faces from the KDEF collection
Mean Valence ratings for female Sad faces from the KDEF collection
Mean Valence ratings for male Sad faces from the KDEF collection
Mean Valence ratings for female Happy faces from the KDEF collection
Mean Valence ratings for male Happy faces from the KDEF collection
Mean Arousal ratings for female Neutral faces from the KDEF collection
Mean Arousal ratings for male Neutral faces from the KDEF collection
Mean Arousal ratings for female Anxious faces from the KDEF collection
Mean Arousal ratings for male Anxious faces from the KDEF collection
Mean Arousal ratings for female Sad faces from the KDEF collection
Mean Arousal ratings for male Sad faces from the KDEF collection
Mean Arousal ratings for female Happy faces from the KDEF collection

Mean Arousal ratings for male happy Faces from the KDEF collection

Table B.13: Depression clinical information. In

by the FDR procedure.
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no  Supplementary Material

In this section we present the results of the same experiments described in

the main paper with the difference that the algorithms can use all the clinical

information without any restriction. In the following the results for both the

datasets, i.e. ADNI and Depression.

nes  Appendiz B.1. ADNI

The accuracy results for the ADNI dataset are presented in Table

Algorithm Kernels R Bal. Acc. %
Linear SVM C 1 68.73 + 9.68
Baseline
SVM I+C 1 84.80 £ 6.87
- SVM RFE V& — 86.93 +4.76
SVM t-test V&C — 86.47 £ 6.92
SimpleMKL 1&C 36 84.44 + 6.68
MKL

EasyMKL I1&C 36 84.78 £6.76

— SimpleMKL V&C 168165  Out of memory
EasyMKL V&C 168165 88.80 £ 7.02
FWS EasyMKLFS V& C 168165 96.14 + 3.55

Table B.14: ADNI Dataset: comparisons of 5 repetitions of a nested 10-fold cross-validation

balanced accuracy using all the clinical information. The results are divided in 5 families:

Baseline, Feature Selection (FS), standard Multiple Kernel Learning (MKL), Feature Weight-
ing by using MKL (FW) and our method in Feature Weighting and Selection (FWS). R

corresponds to the number of kernels used.

Figure shows the assigned weights of the clinical information by using

all the clinical features.

Finally, in Figure it is possible to note the importance of the clinical

mo data compared to the weight assigned to the voxel of the MRI images.

Appendiz B.2. Depression

The accuracy results for the Depression dataset are presented in Table
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Algorithm Kernels R Bal. Acc. %
Linear SVM C 1 83.33 £15.71
Baseline
SVM I+C 1 67.00 £ 14.87
- SVM RFE V& C — 65.24 +£11.34
SVM t-test V& - 63.89 + 10.32
SimpleMKL I1&C 49 84.65 + 12.88
MKL

EasyMKL I1&C 49 84.56 + 13.02

— SimpleMKL V& 713864  Out of memory
EasyMKL V&C 713864 84.55 +12.19
FWS EasyMKLFS V& C 713864 84.21 £10.72

Table B.15: Depression Dataset: comparisons of 5 repetitions of a nested 10-fold cross-
validation balanced accuracy using all the clinical information. The results are divided in
5 families: Baseline, Feature Selection (F'S), standard Multiple Kernel Learning (MKL), Fea-
ture Weighting by using MKL (FW) and our method in Feature Weighting and Selection
(FWS). R corresponds to the number of kernels used.

Figure and depict the assigned weights of the clinical information

ws by using all the clinical features and the ration between the weight assigned to

the clinical data with respect to the weight assigned to the different fMRIs.
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= ADNI dataset - Clinical st
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Figure B.9: EasyMKL assigned weights for the all the clinical information for the ADNI

dataset.
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Figure B.10: EasyMKLFS assigned weights for the different sources of information: MRI

image and all the clinical measurements.
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Figure B.11: EasyMKL assigned weights for the clinical information for the Depression

dataset.
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Cumulative weight

Anxious Happy Neutral Sad Clinical
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Figure B.12: EasyMKLFS assigned weights for the different sources of information of the

Depression dataset: Anxious image, Happy image, Neutral image, Sad image and clinical

measurements.
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