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Abstract

Combining neuroimaging and clinical information for diagnosis, as for exam-

ple behavioral tasks and genetics characteristics, is potentially beneficial but

presents challenges in terms of finding the best data representation for the dif-

ferent sources of information. Their simple combination usually does not provide

an improvement if compared with using the best source alone. In this paper,

we proposed a framework based on a recent multiple kernel learning algorithm

called EasyMKL and we investigated the benefits of this approach for diagnos-

ing two different mental health diseases. The well known Alzheimer’s Disease

Neuroimaging Initiative (ADNI) dataset tackling the Alzheimer Disease (AD)

patients versus healthy controls classification task, and a second dataset tack-
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ling the task of classifying an heterogeneous group of depressed patients versus

healthy controls. We used EasyMKL to combine a huge amount of basic ker-

nels alongside a feature selection methodology, pursuing an optimal and sparse

solution to facilitate interpretability. Our results show that the proposed ap-

proach, called EasyMKLFS, outperforms baselines (e.g. SVM and SimpleMKL),

state-of-the-art random forests (RF) and feature selection (FS) methods.

Keywords: Multiple kernel learning, feature selection, neuroimaging.

1. Introduction

In this paper we study the problem of combining information from differ-

ent data sources (e.g. imaging, clinical information) for diagnoses of psychi-

atric/neurological disorders. From a machine learning perspective, we have to

solve a problem in a high dimensional space using only a small set of examples5

for training a predictive model. In the past few years, several papers investigated

possible ways to combine heterogeneous data in neuroimaging-based diagnos-

tic problems. Most of the previous approaches can handle only few different

sources of information. The main goal of these approaches is to find an opti-

mal combination of the sources in order to improve predictions, given different10

modalities of neuroimaging and other clinical information (as for example, de-

mographic data or non-imaging biomarkers). In this context, Multiple Kernel

Learning (MKL) provides an effective approach to combine different sources of

information, considering each source of information as a kernel, and identifying

which information is relevant for the diagnostic problem at hand [1, 2]. It is15

known that using multiple kernels instead of a single kernel can improve the

classification performance (see e.g. [1] and references therein), and the goal of

MKL is to find the correct trade-off among the different sources of informa-

tion [1]. Moreover, MKL allows the extraction of information from the weights

assigned to the kernels, highlighting the different importance of each different20

source. Therefore, applications of MKL to neuroimaging based diagnosis might

help the discovery of biomarkers of neurological/psychiatric disorders.
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1.1. Related Work

A number of recent studies have applied the MKL approach for multi-modal

neuroimaging based diagnoses. Different MKL algorithms mainly differ on the25

type of kernels they use for each source (e.g. linear, Gaussian, polynomial) and

on the way they estimate and combine the weights of the kernels. In general,

most approaches impose some constraints on the norm2 of the weights (e.g. `p-

MKL [3]). In particular, the `1-norm constraint imposes sparsity on the kernel

combination therefore is able to select a subset of relevant kernels for the model30

(e.g. `1-MKL [4]). The MKL framework is formally introduced in Section 2.

In [5] the authors exploit the standard `p-MKL approach with p values rand-

ing from 1 (sparse) to 2 (dense). They combine various sets of basic kernels

(Gaussian, linear and polynomial) generated by selecting the top most relevant

features (with the rank of the features determined by a t-test) extracted from35

Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET)

images and clinical measurements. Their results show that this methodology

outperforms the best kernel generated by exploiting the best unique source

(MRI, PET or clinical measurements), suggesting that the combination of het-

erogeneous information with MKL is beneficial. Nevertheless, using a standard40

`p-MKL approach imposes a limitation on the number of different basic kernels,

due to the computational complexity and memory requirements of the `p-MKL

algorithms [1].

Another MKL approach able to combine different source of information is

presented in [6], in which the authors tackle the problem of predicting the cog-45

nitive decline in older adults. In this case, the authors use the `2-MKL with

two Gaussian kernels, one for the MRI features and one for the clinical mea-

surements. These kernels have two different hyper-parameters which were fixed

by using a heuristic method. They claim that, by using only the MRI infor-

mation or the clinical measurements alone, the kernels do not carry sufficient50

information to predict cognitive decline. On the other hand, using the kernel ob-

2A norm is a function that assigns a strictly positive length or size to a vector.
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tained by the combination of kernels extracted from both sources of information

improves the performances significantly.

The problem of combining heterogeneous data for predicting Alzheimer’s

disease has been handled also using the, so called, Multi-Kernel SVM. The55

idea is to use the standard SVM [7], with a pre-computed kernel that contains

a weighted combination of the basic kernels. In this case, the combination

is evaluated by exploiting a brute force search of the parameters (i.e. a grid

search). In [8] and [9], the authors try to learn an optimal kernel combining three

different kernels, each of which corresponds to a different sources of information60

(MRI, PET and clinical data), and the optimal (convex) combination of these

kernels is determined via grid search. In [8] the authors propose, as first step

of their methodology, a simple feature selection by using a t-test algorithm.

In [9], the feature selection phase is improved by using a common subset of

relevant features for related multiple clinical variables (i.e. Multi-Task learning65

approach [10]). In both studies, [8] and [9], the feature selection is applied before

the generation of the kernels. Moreover, the brute force selection for the kernels

weights, performed by using a grid search approach, is able to combine only few

kernels and often finds a sub-optimal solution due to the manual selection of

the search grid. In this sense, a MKL approach is more robust and theoretically70

grounded.

A recent paper by Xing Meng et al. [11] proposes a framework to predict

clinical measures by using a multi-step approach. The authors combine three

different neuroimaging modalities: resting-state functional Magnetic Resonance

Image (fMRI), structural Magnetic Resonance Image (sMRI) and Diffusion Ten-75

sor Imaging (DTI). After a feature selection step within each of the single modal-

ities, a selection of well-connected brain regions is performed. Their multi-modal

fusion methodology consists of a simple concatenation of the selected features,

ignoring the relative contribution of each modality. However, their approach

does not include a weighting phase of the different modalities (in contrast with80

the MKL approach).

Other methodologies to combine different sources of information can be
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found in the literature [11–16]. One way is to exploit the Gaussian Processes

for probabilistic classification (see e.g. [17]). For example, in [18], the au-

thors combine five different modalities (i.e. segmentation of the brain in grey85

matter, white matter and cerebrospinal fluid, from T2 structural images plus

the Fractional Anisotropy (FA) and Mean Diffusivity (MD) images, from the

DTI sequence) to predict three Parkinsonian neurological disorders. Finally, in

[19], the authors used Gaussian Processes to combine three different heteroge-

neous source of data: MRI, PET and the Apolipoprotein E (APOE) genotype,90

in order to predict conversion to Alzheimer’s in patients with mild cognitive

impairment.In this family of methods, the Gaussian Process models have sim-

ilarities with the MKL models, i.e. the goal is to find a kernel that combine

prescribed kernels corresponding to each source of information plus a bias term.

However, in these cases the models’ hyperparameters (kernels coefficients and95

bias terms) are selected using the Gaussian Process framework.

Another possible way to combine different sources of information is using

RF-based methods [20, 21]. The framework used in these studies consists of

several steps, where the RF methods are fundamental in order to obtain the

final model as a combination of the different sources.100

For example, the method proposed in [20] uses a RF model per modality

in order to produce a similarity measure, one per source of information. Then,

an approach to reduce of the number of features is applied and, in order to

combine the data from different modalities, a selection of weights is performed

by cross-validation. The output of this procedure is a weighted sum of the105

different measures of similarity that is equivalent to a combination of kernels,

each one representing one modality.

As another example, the algorithm in [21] consists of a sequential exploita-

tion of graph theory, recursive feature elimination (RFE) and RF. Graph theory

is used to derived a set of features that are added to them the raw data. A RFE110

procedure is exploited in order to obtain a low dimensional set of features, one

set per source of information. Then, one predictor per modality is generated by

applying the RF to the selected features. Stacking all the resulting models (one

5
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per source of information) produces the final model.

In all previous studies outlined above, there is a limit on the maximum115

number of kernels that we are able to combine (or number of sources that we

can consider) in the predictive model. In addition, feature selection (when

performed) is applied before the generation of the final representation (i.e. the

way how we describe the similarity among examples), thereby decreasing the

connection between the final model and the selected features. These methods120

are not able to perform a fine-grained feature learning because they are heavily

dependent on some priors (imposed by an expert), as for example the selection

of which features are contained in a specific kernel.

1.2. Our contribution

In this paper, we proposed a MKL based approach that is able to re-weight125

and select the relevant information when combining heterogeneous data. This

approach enables us to fragment the information from each data source into a

very large family of kernels, learning the relevance of each fragmented informa-

tion (kernel weights). Consequently, our method is very flexible and the final

model is based on a kernel that uses a small amount of features, due to the130

feature selection performed as final step of our approach in synergy with the

MKL methodology.

We start describing EasyMKL [22], a recent MKL algorithm, that can han-

dle a large amount of kernels and we combine it in synergy with a new Feature

Selection (FS) approach. Our aim is to evaluate and select the most relevant fea-135

tures from each data source. The proposed approach is applied to two different

classification tasks. The first one considers the Alzheimer’s Disease Neuroimag-

ing Initiative (ADNI) dataset to classify patients with Alzheimer’s disease vs.

healthy controls combing structural MRI data and clinical assessments. Sec-

ondly, we tackle the task investigated in [23] where the goal is to classify de-140

pressed patients vs healthy controls by integrating fMRI data with additional

clinical information. We compare our approach with SVM [7] as the baseline

approach, as well as a state-of-the-art MKL approach (SimpleMKL [4]), two fea-
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ture selection approaches: recursive feature elimination (RFE) [24] and t-test

[25], and RF-based methods ([20, 21]).145

In summary, the main contributions of this paper are two-fold. Firstly, we

introduce a new methodology to combine a MKL approach using a huge number

of basic kernels and a FS approach in order to improve the prediction perfor-

mance, inherited from the previous preliminary work [26]. This new procedure,

called EasyMKLFS, automatically selects and re-weights the relevant informa-150

tion obtaining sparse models. EasyMKLFS provides a new optimal kernel that

can be used in every kernel machine (e.g. SVM) in order to generate a new

classifier. Secondly, we demonstrate the performance of the proposed method-

ology using two classification tasks. When applied to the ADNI dataset the

proposed approach was able to outperform the previous state-of-art methods155

and provide a solution with high level of interpretability (i.e. the identifica-

tion of a small subset of features relevant for the predictive task); when applied

to the depression dataset the proposed approach showed better performance

than most approaches (a part from EasyMKL) with advantage of higher spar-

sity/interpretability.160

The paper is organized as follows. In the first part of Section 2 we introduce

the theory of MKL with an analysis of the most common MKL methods. Then,

the original EasyMKL is presented, followed by the connection between feature

learning and MKL. The proposed method is described in the last part of section

Section 2.4. Section 3 shows the main information about the datasets, the165

methods, the validation procedure for the hyper-parameters and the details

concerning the performed experiments. Section 4 describes the datasets used in

this study, the methods used as comparisons against EasyMKLFS, the validation

procedure, and the experimental designs. The results are presented in Section

4 for both datasets, followed by a discussion in Section 5.170
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2. Theory

In the next sections, we will introduce the classical MKL framework and a

recent MKL algorithm called EasyMKL. Firstly, we introduce the notation used

in this paper.

Considering the classification task, we define the set of the training examples175

as {(xi, yi)}`i=1 with xi in X and yi with values +1 or −1. In our case, it is

possible to consider the generic set X equal to Rm, with a very large number of

features m. Then, X ∈ R`×m denotes the matrix where examples are arranged

in rows. The ith example is represented by the ith row of X, namely X[i, :] and

the rth features by the rth column of X, namely X[:, r].180

Specifically, in our cases, the number of examples ` refers to the number of

different subjects that are considered in the study.

2.1. Multiple Kernel Learning (MKL)

MKL [1, 27] is one of the most popular paradigms used to highlight which

information is important, from a pool of a priori fixed sources. The goal of MKL

is to find a new optimal kernel in order to solve a specific task. Its effectiveness

has been already demonstrated in several real world applications [28, 29]. A

kernel K generated by these techniques is a combination of a prescribed set of

R basic kernels K1, ...,KR in the form:

K =

R∑
r=1

ηrKr with ηηη < 0, ‖ηηη‖q = 1.

The value q defines the used norm and is typically fixed to 1 or 2. When q is

fixed to 1, we are interested in a sparse selection of the kernels. However, if q185

equals 2, then the model will be dense (with respect to the selected kernels). It

is important to highlight how the value ηr represents the weight assigned to the

specific rth source of information.

Using this formulation, we are studying the family of weighted sums of ker-

nels. It is well known that the sum of two kernels is equivalent to the concate-190

nation of the features contained in both the feature spaces [30]. Extending the

8
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same idea, the weighted sum of a list of basic kernels can be seen as a weighted

concatenation of all the features contained in all the feature spaces (where the

weights are the square roots of the learned weights ηr).

Theoretically, MKL algorithms are supported by several results that bound195

the estimation error (i.e. the difference between the true error and the empirical

margin error) [31–38].

2.1.1. An overview of the MKL approaches

Existing MKL approaches can be divided in two main categories. In the

first category, Fixed or Heuristic, some fixed rule is applied to obtain the kernel200

combination. These approaches scale well with the number of basic kernels, but

their effectiveness critically depend on the domain at hand. They use a pa-

rameterized combination function and find the parameters of this function (i.e.

the weights of the kernels) generally by looking at some measure obtained from

each kernel separately, often giving a suboptimal solution (since no information205

sharing among the kernels is exploited).

Alternatively, Optimization based approaches learn the combination param-

eters (i.e. the kernels’ weights) by solving a single optimization problem directly

integrated in the learning machine (e.g. exploiting the generalization error of

the algorithm) or formulated as a different model, as for example by alignment,210

or other kernel similarity maximization [4, 27, 39].

In the Fixed or Heuristic family there are some very simple (but effective)

solutions. In fact, in some applications, the average method (that equal to the

sum of the kernels [40]) can give better results than the combination of multiple

SVMs each trained with one of these kernels [41]. Another solution, can be215

the element-wise product of the kernel matrices contained in the family of basic

kernels [42].

The second family of MKL algorithms is defined exploiting an optimiza-

tion problem. Unexpectedly, finding a good kernel by solving an optimization

problem turned out to be a very challenging task, e.g. trying to obtain bet-220

ter performance than the simple average of the weak kernels is not an easy

9
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task3. Moreover, Optimization based MKL algorithms have a high computa-

tional complexity, for example using semidefinite programming or quadratically

constrained Quadratic Programming (QP). Some of the most used MKL algo-

rithms are summarized in Table 1 with their computational complexities.225

Learner Time Complexity Reference

SimpleMKL SVM Grad.+ QP Rakotomamonjy et al. [4]

GMKL SVM Grad.+ QP Varma and Babu [39]

GLMKL SVM Analytical + QP Kloft et al. [3]

LMKL SVM Grad.+ QP Gönen and Alpaydin [43]

NLMKL KRR Grad.+ Matrix Inversion Cortes et al. [44]

Table 1: Frequently used MKL Optimization based methods.

2.2. EasyMKL

EasyMKL [22] is a recent MKL algorithm able to combine sets of basic

kernels by solving a simple quadratic optimization problem. Besides its proved

empirical effectiveness, a clear advantage of EasyMKL compared to other MKL

methods is its high scalability with respect to the number of kernels to be230

combined. Specifically, its computational complexity is constant in memory

and linear in time.

This remarkable efficiency hardly depends on the particular input required

by EasyMKL. In fact, instead of requiring all the single kernel matrices (i.e. one

per source of information), EasyMKL needs only the (trace normalized) average235

of them. See Section Appendix A (in the Appendix) for a technical description

of EasyMKL4.

3www.cse.msu.edu/~cse902/S14/ppt/MKL_Feb2014.pdf
4EasyMKL implementation: github.com/jmikko/EasyMKL
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2.3. Feature Learning using MKL

In the last years, the importance of combining a large amount of kernels to

learn an optimal representation became clear [22]. As presented in the previous240

section, new methods can combine thousands of kernels with acceptable compu-

tational complexity. This approach contrasts with the previous idea that kernel

learning is shallow in general, and often based on some prior knowledge of which

specific features are more effective. Standard MKL algorithms typically cope

with a small number of strong kernels, usually less than 100, and try to com-245

bine them (each kernel representing a different source of information of the same

problem). In this case, the kernels are individually well designed by experts and

their optimal combination hardly leads to a significant improvement of the per-

formance with respect to, for example, a simple averaging combination. A new

point of view is instead pursued by EasyMKL, where the MKL paradigm can be250

exploited to combine a very large amount of basic kernels, aiming at boosting

their combined accuracy in a way similar to feature weighting [2]. Moreover,

theoretical results prove that the combination of a large number of kernels using

the MKL paradigms is able to add only a small penalty in the generalization

error, as presented in [31, 33–35].255

In this sense, we are able to take a set of linear kernels that are evaluated

over a single feature, making the connection between MKL and feature learning

clear. The single kernel weight is, in fact, the weight of the feature. Using

this framework, we can weight the information contained into a set of features,

evaluated in different ways (i.e. using different kernels that can consider different260

subsets of features).

2.4. EasyMKL and Feature Selection

In this section, we present our approach to combine MKL (as a feature learn-

ing approach) and feature selection (FS). We start from EasyMKL with a large

family of linear single-feature kernels as basic kernels. We decided to exploit

linear kernels because they do not need hyper-parameter selection. Dealing

with small datasets, this is a serious advantage. Moreover, in our single-feature

11
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context, using other families of kernels (e.g. RBF or polynomial kernels) has

not impact on the final performances5. Due to the particular definition of this

algorithm, we are able to combine efficiently millions of kernels. As presented

in Section 2.2 and in Appendix A, given the kernel generated by the average of

the trace normalized basic kernels

KA =
1

R

R∑
r=1

Kr

Tr(Kr)
,

EasyMKL produces a list of weights ηηη ∈ RR, one weight per kernel.

Fixing a threshold ρ > 0, it is possible to remove all the kernels with a

weight less or equal to ρ, considering them not sufficiently informative for our

classification task. In this way we are able to inject sparsity in our final model.

All the single-feature kernels Kr with a weight ηr > ρ are weighted and summed

obtaining a new kernel

K∗ =
R∑

r:ηr>ρ

ηr
Kr

Tr(Kr)
.

Algorithm 1 summarizes our approach, called EasyMKLFS. It is important to

note that if ρ = 0 we are performing the standard MKL approach over R basic265

kernels.

The same procedure cannot be easily exploited with the standard MKL

algorithms, due to the large amount of memory required to combine a large

family of kernels (see Table 1). In this sense, EasyMKL becomes fundamental

in order to efficiently achieve our goal. In line 8 of Algorithm 1, the amount of270

memory required by the storage of the kernels is independent with respect to

the number of combined kernels R (and the computational complexity is linear

in time).

5We performed the same experiments as presented in Section 4 using RBF kernels instead

of linear ones and we obtained comparable results with an higher computational requirements.

For this reason we decided to maintain only the linear kernels in our setting. It is important

to note that, in general, our method can be applied to any family of kernels.

12
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Algorithm 1 - EasyMKLFS: feature selection and weighting by using

EasyMKL. O`,` is the zero-matrix in R`×`.
Require: X ∈ R`×m,y ∈ {−1, 1}`, λ ≥ 0, ρ > 0

Ensure: A kernel matrix K∗ ∈ R`×`

1: KA = O`,` K∗ = O`,`

2: R = m

3: for r = 1 to R do

4: K =
X[:,r]X[:,r]T

Tr(X[:,r]X[:,r]T )

5: KA = KA + 1
R
K

6: end for

7: ηηη =EasyMKL(KA,X,y, λ)

8: for r = 1 to R do

9: if ηr > ρ then

10: K =
X[:,r]X[:,r]T

Tr(X[:,r]X[:,r]T )

11: K∗ = K∗ + ηrK

12: end if

13: end for

3. Materials and Methods

3.1. Datasets275

In this section, we present a description of the two considered datasets, i.e.

ADNI and Depression. The first dataset consists of structural Magnetic Res-

onance Imaging (sMRI), clinical and genetic information for each participant.

The second dataset consists of functional MRI (fMRI) and clinical information

for each participant.280

3.1.1. ADNI

This case study concerns the problem of classifying patients with possible

Alzheimer’s disease combining sMRI images and other genetical/clinical or de-

mographic information. Alzheimer’s disease (AD) is a neurodegenerative disor-

der that accounts for most cases of dementia.285

In 2003, the ADNI was started as a public-private partnership by Princi-

pal Investigator Michael W. Weiner, MD. The primary goal of ADNI has been

to test whether serial Magnetic Resonance Imaging (MRI), Positron Emission
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Tomography (PET), other biological markers, and clinical and neuropsycholog-

ical assessment can be combined to measure the progression of mild cognitive290

impairment (MCI) and early Alzheimers disease (AD).

Here, we use sMRI and clinical information from a subset of 227 individual

from the ADNI dataset. The following pre-processing steps were applied to

sMRI of the selected individuals. The T1 weighted MRI scans were segmented

using SPM12 into gray matter, white matter and Cerebral Spinal Fluid (CSF).295

The grey matter probability maps were normalised using Dartel, converted to

MNI space with voxel size of 2mm×2mm×2mm and smoothed with a Gaussian

filter with 2 mm FWHM. A mask was then generated, to select voxels which

had an average probability of being grey matter equal or higher than 10% for

the whole dataset. This resulted in 168130 voxels per subject being used.300

Finally, from the non-imaging information contained in ADNI, we extracted

35 different clinical information, including age and gender of the patient, the

presence of APOE4 allele, items of the Mini-mental State Exam (MMSE) [45],

education level, Clinical Demential Rating, AD Assessment Schedule 11 and 13,

Rey Auditory Verbal Learning Test and Functional Assessment Questionnaire305

[46] (see Appendix A, Table B.12 for the details).

For up-to-date information about the ADNI, see www.adni-info.org.

3.1.2. Depression

The task in this challenging dataset [23] is to classify depressed patients ver-

sus healthy controls by integrating fMRI data and other clinical measurements.310

A total of 30 psychiatric in-patients from the University Hospital of Psychia-

try, Psychosomatics and Psychotherapy (Wuerzburg, Germany) diagnosed with

recurrent depressive disorder, depressive episodes, or bipolar affective disorder

based on the consensus of two trained psychiatrists according to ICD-10 crite-

ria (DSM-IV codes 296.xx) participated in this study. Accordingly, self report315

scores in the German version of the Beck Depression Inventory (second edition)

ranged from 2 to 42 (mean standard deviation score, 19.0 [9.4]). Exclusion cri-

teria were age below 18 or above 60 years, co-morbidity with other currently
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present Axis I disorders, mental retardation or mood disorder secondary to

substance abuse, medical conditions as well as severe somatic or neurological320

diseases. Patients suffering from bipolar affective disorder were in a depressed

phase or recovering from a recent one with none showing manic symptoms. All

patients were taking standard antidepressant medications, consisting of selective

serotonin reuptake inhibitors, tricyclic antidepressants, tetracyclic antidepres-

sants, or serotonin and noradrenalin selective reuptake inhibitors. Thirty com-325

parison subjects from a pool of 94 participants previously recruited by advertise-

ment from the local community were selected to match the patient group in re-

gard to gender, age, smoking, and handedness using the optimal matching algo-

rithm implemented in the MatchIt package for R http://www.r-project.org

[47]. In order to exclude potential Axis I disorders, the German version of the330

Structured Clinical Interview for DSM-IV (SCID; 35) Screening Questionnaire

was conducted. Additionally, none of the control subjects showed pathological

Beck Depression Inventory (BDI II) scores (mean = 4.3, SD = 4.6).

From all 60 participants, written informed consent was obtained after com-

plete description of the study to the subjects. The study was approved by the335

Ethics Committee of the University of Wuerzburg, and all procedures involved

were in accordance with the latest version (fifth revision) of the Declaration of

Helsinki.

The fMRI task consisted of passively viewing four types of emotional faces.

Anxious, Happy, Neutral and Sad facial expressions were used in a blocked340

design, with each block containing pictures of faces from 8 individuals ob-

tained from the Karolinska Directed Emotional Faces database: http://www.

emotionlab.se/resources/kdef database. Every block was randomly repeated

4 times. Subjects were instructed to attend to the faces and empathise with

the emotional expression. Images acquisition details can be found in previous345

publications using this dataset [23].

The images were preprocessed using the Statistical Parametric Mapping

software (SPM5, Wellcome Department of Cognitive Neurology, U.K.). Slice-

timing correction was applied, images were realigned, spatially normalised and
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smoothed using an 8 mm FWHM Gaussian isotropic kernel. For each par-350

ticipant, a General Linear Model (GLM) was applied in which each emotion

was modeled by the convolution of the blocks with the hemodynamic response

function. The contrast images corresponding to each emotion were used for the

classification models. More specifically, for each subject we combined four differ-

ent contrast images, corresponding to the brain activations to the four different355

emotional faces: Anxious, Happy, Neutral and Sad.

From the non-imaging information contained in the Depression dataset, we

generated a list of 48 different clinical and demographic variables, including

age, gender and several results from psychological tests as Karolinska Directed

Emotional Faces [48] test, the Sensitivity to Punishment/Reward Questionnaire360

[49], tests of processing speed (approx. IQ) [50], Montgomery-Asberg depression

rating scale [51], Self-report questionnaire of depression severity [52], Positive-

Negative Affect Schedule [53] and State-Trait inventory [54] (see Appendix A,

Table B.13 for the complete list).

3.2. Experimental settings365

We combine features derived from the images (each voxel is considered as

a single feature) with sets of selected clinical and demographic features. In

the following we will refer to (linear single-feature) basic kernels or directly to

features without distinction.

In our experiments, we consider different subsets and different fragmenta-370

tions of the whole information contained in the datasets. The considered linear

kernels (or features) are divided in 7 different sets:

• I represents all image features in one single linear kernel (in case of the

fMRI dataset which contains 4 images it corresponds to concatenate all

the features in only one kernel).375

• C represents the whole clinical/demographic information in one single

linear kernel.
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• I+C is the kernel containing all the voxels and all the clinical/demographic

features, which corresponds to the simplest way of combining (or concate-

nating) the different sources.380

• I & C is the grouping of information with one group for each imaging

information (MRI or fMRI) each one containing all the voxels and one

group for the clinical/demographic information. This way of grouping the

data is exploited in the context of RF methods, in order to maintain a

feasible computational complexity.385

• I & C is the family of basic kernels that contains a single linear kernel

for each whole image (i.e. one kernel per image) plus one kernel for each

clinical/demographic feature. In this case, we are able to tune the impor-

tance of the single clinical feature, and make the correct trade-off between

clinical information and image information.390

• V is the family of basic kernels (or basic features) that contains one kernel

for each voxel. Each single voxel can be weighted or selected, pointing out

the relevant voxels of the MR images.

• V & C is the family of basic kernels (or basic features) that contains one

kernel for each voxel plus one kernel for each clinical feature. This is the395

most flexible model which is able to point out the relevant voxels and

clinical/demographic features.

Our new methodology exploits the V & C set and it can be divided in three

principal steps. The first step is the extraction of the features and their vec-

torization. Then, as a second step, we apply our algorithm (EasyMKLFS) to400

weight and select the features. Finally, we are able to generate a sparse (linear)

model by using the obtained kernel in a classifier (e.g. SVM). The idea behind

our methodology is summarized in Figure 1. Specifically, in the present work we

used the SVM as a classifier as it is a machine learning algorithm that performs

very well in many different type of problems.405
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Feature weighting and selection
Vectorization

of the raw features

Clinical 
data

Sparse model

EasyMKLFS

Training set

Classifier

Figure 1: Our framework with the three principal steps: (1) extraction of the raw features

(from MRIs, i.e. v1, . . . , vs, and from clinical data, i.e. c1, . . . , ct); (2) evaluation of the im-

portant information by using EasyMKLFS for feature weighting and selection; (3) generation

of the final sparse model.

3.3. Comparison with other methods

We performed a balanced accuracy comparison (i.e., the average between

sensitivity and specificity) considering 6 different families of methods:

• Baseline: Linear SVM [7], using the linear kernels generated using the

whole images (I), clinical information (C) or both (I + C). It is used as410

baseline to understand the challenge of the classification tasks.

• FS: the second family of approaches is comprised of two feature selection

(FS) methods. We applied these algorithms considering each voxel of the

images as a single feature (V) or adding both one feature per voxel and
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one feature for each clinical information (V & C). The first method is the415

SVM RFE [24], which corresponds to the standard recursive feature elim-

ination approach. RFE considers the importance of individual features in

the context of all the other features, and it has the ability to eliminate

redundancy, and improves the generalization accuracy [55]. The second

one is the SVM t-test, a heuristic method that exploits a statistical test420

for evaluating the importance of the features. The selected features are

then used in a SVM. FS method is univariate and it is not able to take

into account the interactions between features [25].

• RF: the third comparison is with respect to the RF-based approaches.

The RF methods select the relevant features, in each modality, indepen-425

dently with respect to the other sources of information. In this sense,

we consider RF exploiting the I & C as segmentation of the sources of

information in order to highlight the differences compared to the other

presented methodologies. We implement two methods, namely Gray [20]

and Pustina [21], where the RF algorithms are the key in order to find the430

best representation of the single source of information. These methods

are not kernel-based methods, and are composed by a pipeline of different

algorithms. We tried to make the comparison as fair as possible, but we

are aware that the same authors in [20] highlighted that a direct compar-

ison with other existing methods is hard to perform due to problems such435

as the inclusion of different subjects and modalities, as well as the use of

different methods for feature extraction and cross-validation. Moreover,

we highlight that the computational complexity of these methods is sig-

nificantly higher than the others. For this reason, they are not able to

handle a larger number of different sources of information.440

• MKL: the fourth comparison is against the standard MKL methodology.

Firstly, we used SimpleMKL [4], a well known MKL iterative algorithm

that implements a linear approach based on a sparse combination of the

kernels. Secondly, we used EasyMKL, a recent MKL algorithm presented
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in Section 2.2 and Appendix A. We provided to these algorithms a family445

of basic kernels composed by one kernel per image and one kernel per

clinical information I & C (i.e. a small family of basic kernels).

• FW: in this group we applied a different point of view for the MKL [22]. In

this new context, we consider MKL as a feature weighting algorithm and

we provide to EasyMKL a single kernel for each feature (voxels and clinical450

information, i.e. V & C). We are not able to compare EasyMKL with

SimpleMKL in this setting, because of the computational and memory

requirement of this algorithm.

• FWS: the last comparison is our EasyMKLFS, which consists in a combi-

nation of MKL with FW and FS, as described in Section 2.4. We tested455

our method with one kernel per voxel (V), and one kernel per voxel plus

one kernel per clinical information (V & C) as basic kernels.

The kernels, generated by MKL, FW and FWS methods, are plugged into a

standard SVM. In this way, we are able to compare the quality of different

kernels avoiding the possible noise given by different classifiers. As highlighted460

before, the RF-methods are based on a different classifier. In the following, we

tried to maintain the comparisons as fair as possible.

It is important to highlight that our approach, similarly to the other ap-

proaches used for comparison, have the following two main assumptions: (i)

there are features in the data that are able to distinguish between two groups,465

despite of their within-group heterogeneity. (ii) different sources of information

might carry complementary information for the classification task and, conse-

quently, combining them can be advantageous.

For both datasets, we used the Wilcoxon signed-rank test [56] to compare the

proposed algorithm (EsasyMKLFS) with the other methods. More specifically,470

we tested whether the proposed algorithm provided statistically significant dif-

ferent predictions with respect to the other methods. We used the Bonferroni

correction to account for multiple comparisons, therefore the p-value threshold
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for rejecting the null hypothesis that two classifiers are not different was 0.05

divided by the number of comparisons (i.e. 8 for both datasets).475

3.3.1. Validation

All the experiments are performed using an average of 5 repetitions of a

classic nested 10-fold cross-validation. We fixed the same distribution of the

age of the patients among all the subsets.

The validation of the hyper-parameters has been performed in the family of480

C ∈ {0.1, 1, 5, 25} for the SVM parameter, λ ∈ { v
1−v : v = 0.0, 0.1, . . . , 0.9, 1.0}

for the EasyMKL parameter, ρ ∈ { im : i = 0, 1, . . . , 20} (where m is the number

of the features) for the EasyMKLFS parameter. We fixed the percentage of

dropped features at each step of the feature selection approaches (RFE and

t-test) equal to the 5% (using higher percentages deteriorates the results).485

Specifically, we reported the average of 5 repetitions of the following proce-

dure:

• The dataset is divided in 10 folds f1, . . . , f10 respecting the distribution of

the labels and the age of the patients, where fi contains the list of indexes

of the examples in the i-th fold;490

• One fold fj is selected as test set;

• The remaining nine out of ten folds vj =
⋃10
i=1,i6=j fi are then used as

validation set for the choice of the hyper-parameters. In particular, an-

other 10-fold cross validation over vj is performed (i.e., nested 10-fold

cross-validation);495

• The set vj is selected as training set to generate a model (using the vali-

dated hyper-parameters);

• The test fold fj is used as test set to evaluate the performance of the

model;

• The collected results are the averages (with standard deviations) obtained500
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repeating the steps above over all the 10 possible test sets fj , for each j

in {1, . . . , 10}.

3.3.2. Clinical information settings

We considered two different experimental settings. Firstly, we removed the

clinical information which are highly correlated with the labels. Note that,505

in both cases, dementia and depression, the diagnosis or labels are derived

from clinical measures due to the lack of biomarkers, therefore by excluding

clinical information highly correlated with the labels we are basically avoiding

circularity or double dipping in the analysis. We performed a t-test between

each individual feature and the corresponding label, and then excluded the510

ones that were statistically correlated with the labels by using p < 0.01 with

false discovery rate (FDR) correction for multiple comparisons. FDR [57] is a

powerful method for correcting for multiple comparisons that provides strong

control of the family-wise error rate (i.e., the probability that one or more null

hypotheses are mistakenly rejected).515

The remaining clinical information after this selection are 25 for the ADNI

dataset and 44 for Depression dataset. The idea is to show that the improvement

of the results is not due to the use of clinical variables which are directly used

by experts to assign the patient labels.

In the second set of experiments, we used all the clinical variables available.520

The results of these experiments can be found in the supplementary material, as

a sanity check of our datasets and methodologies. A large increase of accuracy is

obtained from this second experiment. However, these results can be considered

over optimistic, as the clinical features are highly correlated with the labels.

3.4. Weight Maps Summarization525

In the present work we used a method described in [58] to rank the re-

gions that contribute most to the predictive model according to the Auto-

mated Anatomical Labeling (AAL) Atlas [59]. More specifically, the regions

were ranked based on the average of the absolute weight value within them.
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Therefore, regions which contain weights with a large absolute value, and/or530

contain several weights with values different from zero, will be ranked higher.

4. Results

In this section, the results are summarized for both the datasets. When it is

reasonable, we firstly compare all the presented methods considering only the

image or clinical features. Secondly, we compare different methods to combine535

heterogeneous data, i.e. images and clinical/demographic information.

4.1. ADNI

In this section we present the results obtained using the ADNI dataset. The

results are presented for the previously described methods: Baseline (i.e. linear

SVM), Feature Selection (FS), Random Forests methods (RF), Multiple Ker-540

nel Learning (MKL), Feature Weighting by using MKL (FW) and the proposed

method Feature Weighting and Selection (FWS). In Table 2 the results obtained

by exploiting only one source of information are reported, i.e. clinical informa-

tion or features derived from structural MRI. It is possible to see that the SVM

algorithm with only the clinical information is not able to generate an effective545

predictive model. Due to the small amount of clinical features (with respect to

the examples), using FS or FW would not be effective, therefore, this compari-

son will not be presented. Concerning the MR images, there is a small increase

in balanced accuracy when using either feature selection, feature weighting, or

both.550

The second step is to combine heterogeneous data (image and non-image

features) for prediction. Table 3 shows the results obtained when we combine

both image and clinical features in different ways. Combining the MR images

with the clinical information by concatenation (i.e. SVM with I + C) or by using

standard MKL or RF approaches produces a model that is similar (in accuracy)555

to the one generated by using only the MR features. A small improvement

of the results is obtained by the feature selection methods (i.e. SVM RFE and
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Algorithm Kernels R Bal. Acc. %

Baseline
SVM C 1 52.12± 8.26

SVM I 1 84.08± 6.94

FS
SVM RFE V − 86.34± 6.93

SVM t-test V − 85.72± 5.32

FW
SimpleMKL V 168130 Out of memory

EasyMKL V 168130 86.12± 4.54

FWS EasyMKLFS V 168130 86.91± 5.12

Table 2: ADNI Dataset: comparisons of 5 repetitions of a nested 10-fold cross-validation

balanced accuracy using the clinical information selected by a FDR procedure. The results

are divided in 4 families: Baseline, Feature Selection (FS), Feature Weighting by using MKL

(FW) and our method in Feature Weighting and Selection (FWS). R corresponds to the

number of kernels used.

SVM t-test). EasyMKL used as feature weighter provides a larger improvement,

because it is able to select a single weight for each voxel of the MR image.

Finally, by removing the noise from the weights of EasyMKL, the proposed560

method (EasyMKLFS) is able to provide the best performance.

Algorithm Kernels R Bal. Acc. %

Baseline SVM I + C 1 84.10± 7.92

FS
SVM RFE V & C − 86.53± 5.99

SVM t-test V & C − 86.01± 5.17

RF
Gray I & C − 85.99± 10.73

Pustina I & C − 84.34± 11.14

MKL
SimpleMKL I & C 26 84.29± 11.78

EasyMKL I & C 26 84.47± 7.28

FW
SimpleMKL V & C 168155 Out of memory

EasyMKL V & C 168155 87.97± 6.59

FWS EasyMKLFS V & C 168155 92.38± 7.27

Table 3: ADNI Dataset: comparisons of 5 repetitions of a nested 10-fold cross-validation

balanced accuracy using the clinical information selected by a FDR procedure. The results

are divided in 5 families: Baseline, Feature Selection (FS), Random Forests-based family (RF),

standard Multiple Kernel Learning (MKL), Feature Weighting by using MKL (FW) and our

method in Feature Weighting and Selection (FWS). R corresponds to the number of kernels

used.
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In order to compare the predictions of the proposed EasyMKLFS with re-

spect to the other methods we used the non-parametric Wilcoxon signed-rank

test [56]. The results of these tests are presented in Table 4. Since there were

8 comparisons, the Bonferroni corrected p-value is 0.05/8 = 6.25 · 10−3. Not565

surprising the test showed a significance difference between the proposed meth-

ods with respect to all compared approaches, and the one with the performance

most similar to the EasyMKLFS is the EasyMKL.

Algorithm p-value w.r.t. EasyMKLFS

Baseline SVM 2.7 · 10−5

FS
SVM RFE 3.2 · 10−5

SVM t-test 5.6 · 10−4

RF
Gray 1.9 · 10−7

Pustina 9.1 · 10−6

MKL
SimpleMKL 3.8 · 10−4

EasyMKL 3.7 · 10−4

FW EasyMKL 1.7 · 10−3

Table 4: ADNI Dataset: results of the Wilcoxon signed-rank test comparing EasyMKLFS

with respect to the others. Smaller p-values mean an higher difference between the models

and, in our case, the Bonferoni corrected p-value is 0.05/8 = 6.25 · 10−3.

Figure 2 shows the selection frequency for the FS sparse methods (SVM RFE

and SVM t-test) or the average of the weights ηηη (for EasyMKLFS), respectively,570

overlaid onto an anatomical brain template, which can be used as a surrogate

for consistency. These maps show that all approaches find brain areas pre-

viously identified as important for neuroimaging-based diagnosis of Alzheimer

(e.g. bilateral hippocampus and amygdala). However, the SVM RFE and SVM

t-test also select features across the whole brain potentially related to noise,575

while the EasyMKLFS selects almost exclusively voxels within the hippocam-

pus and amygdala. In Table 5 we present the top 10 most selected regions by

each method (SVM RFE, SVM t-test and EasyMKLFS).

In Figure 3, the weights assigned to the clinical information by EasyMKL

are depicted. These weights are generated by using V & C as family of basic580
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(a) SVM RFE with V & C. (b) SVM t-test with V & C. (c) EasyMKLFS with V & C.

Figure 2: ADNI dataset: comparison of voxels selection frequency (RFE and t-test) and

weights (EasyMKLFS), overlayed onto an anatomical template.

kernels. The top 5 highest weights are assigned to some of the clinical informa-

tion concerning the MMSE questionnaire, specifically the task related to write a

sentence (MMWRITE), put a paper on the floor (MMONFLR), repeat a name

of an object (the word ”tree” for MMTREE and the word ”flag” for MMFLAG)

and answer to a simple question about an object (in this case a wrist watch for585

MMWATCH). See Table B.12 for further information.

Figure 4 depicts the cumulative weight assigned by EasyMKLFS to each

source of information (sMRI and clinical information). These weights show

that the importance of the sMRI images is larger than the clinical data. Nev-

ertheless, the accuracy results show that the clinical features contributed to590

the improvement of the final predictive model (changing the performance of our

method from 86.91% to 92.38% of balanced accuracy, in this classification task).

4.2. Depression

In this section we present the results obtained by using the Depression

dataset. Table 6 shows the results obtained by exploiting each source of in-595

formation alone, i.e. the clinical data or the combination of the four fMRI

derived images of each subject (brain activation to Anxious, Happy, Neutral

and Sad faces). These results highlight the challenge of this classification task.

In this case, the clinical features bring a good amount of information, which is

comparable with the information contained in the fMRI. In fact, the best ac-600
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SVM RFE voxels SVM t-test voxels EasyMKLFS voxels

Amygdala-L 188 Amygdala-L 202 Amygdala-L 121

Amygdala-R 210 Amygdala-R 231 Amygdala-R 102

Hippocampus-L 713 Hippocampus-L 747 Hippocampus-L 255

Hippocampus-R 659 ParaHippocampal-L 798 Hippocampus-R 264

ParaHippocampal-L 738 Hippocampus-R 739 ParaHippocampal-L 142

ParaHippocampal-R 725 ParaHippocampal-R 877 ParaHippocampal-R 88

Temporal-Inf-L 1844 Temporal-Inf-L 2622 Vermis-4-5 30

Vermis-8 165 Fusiform-L 1734 Temporal-Inf-L 118

SupraMarginal-L 653 Temporal-Inf-R 2694 SupraMarginal-L 37

Vermis-7 110 Fusiform-R 1723 Lingual-L 32

Table 5: ADNI dataset: the top 10 most selected brain regions for SVM RFE, SVM t-test

and EasyMKLFS (with respect to the assigned weight) with the number of selected voxels.

curacy of the single source methods is 79.67% for Linear SVM with the clinical

data, and 68% with EasyMKL with the fMRIs features. Due to the fact that

this dataset includes a very heterogeneous group of patients, the training la-

bels are extremely “noisy” and unreliable. For this reason, the standard feature

selection methods (i.e. SVM RFE and SVM t-test) fail to select the relevant605

voxels. Our method showed a similar performance to EasyMKL (used as a sim-

ple feature weighter) but it is able to produce a sparser solution, providing more

interpretability when compared with a dense model.

Similarly to the previous example, we avoid the comparison of FS or FW

methods using only the clinical information, due to the low dimensionality of610

the problem with respect to the number of the examples.

Table 7 shows the results by combining the fMRI derived features with the

clinical information. For this challenging classification task, the FS methods

showed similar performance with and without the clinical information. Some

improvement is obtained by the RF approaches, however a slightly bigger im-615

provement is provided by the standard MKL methods (with an accuracy of

79.67% for SimpleMKL). The results of the EasyMKL, EasyMKL as FW, and

our method (EasyMKLFS), are comparable to standard MKL. However, once
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Figure 3: EasyMKL assigned weights for the clinical information selected by a FDR proce-

dure exploiting V & C as family of basic kernels for the ADNI dataset. The top 5 highest

weights are assigned to the clinical data (see Table B.12 for further information): MMWRITE,

MMONFLR, MMTREE, MMFLAG and MMWATCH.

again, our method produces a sparse model, which is more interpretable.

As for the ADNI dataset, we compared the different methods with re-620

spect the proposed EasyMKLFS concerning the predictions performing the non-

parametric Wilcoxon signed-rank test [56]. The results of the p-values obtained
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Figure 4: EasyMKLFS assigned weights for the different sources of information: MR images

and clinical measurements.

Algorithm Kernels R Bal. Acc. %

Baseline
SVM C 1 79.67± 12.29

SVM I 1 67.00± 14.87

FS
SVM RFE V − 65.33± 12.97

SVM t-test V − 62.19± 10.12

FW
SimpleMKL V 713816 Out of memory

EasyMKL V 713816 68.00± 13.67

FWS EasyMKLFS V 713816 67.73± 11.32

Table 6: Depression Dataset: comparisons of 5 repetitions of a nested 10-fold cross-validation

balanced accuracy using the clinical information selected by a FDR procedure. The results are

divided in 4 families: Baseline, Feature Selection (FS), Feature Weighting by using MKL (FW)

and our method in Feature Weighting and Selection (FWS). R corresponds to the number of

kernels used.

from of these tests are presented in Table 8. Similarly to the previous dataset the

Bonferroni corrected p-value is 0.05/8 = 6.25 · 10−3. The differences are signifi-

cant for all the methods but EasyMKL. EasyMKL is a fundamental part of the625

proposed algorithm. EasyMKLFS combines the properties of EasyMKL with

feature selection. The uncertainty of the labels and the amount of noise in the

Depression dataset probably makes the feature selection step not as beneficial

as in the previous example.

Figure 7 shows the selection frequency of the sparse FS methods (SVM RFE630

and SVM t-test) or the average of the weights ηηη (for EasyMKLFS) overlaid
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Algorithm Kernels R Bal. Acc. %

Baseline SVM I + C 1 67.00± 14.87

FS
SVM RFE V & C − 64.99± 13.01

SVM t-test V & C − 62.72± 11.12

RF
Gray I & C − 75.34± 16.34

Pustina I & C − 73.88± 15.19

MKL
SimpleMKL I & C 45 79.67± 13.11

EasyMKL I & C 45 79.61± 14.12

FW
SimpleMKL V & C 713860 Out of memory

EasyMKL V & C 713860 80.02± 11.32

FWS EasyMKLFS V & C 713860 80.01± 10.11

Table 7: Depression Dataset: comparisons of 5 repetitions of a nested 10-fold cross-validation

balanced accuracy using the clinical information selected by a FDR procedure. The results are

divided in 5 families: Baseline, Feature Selection (FS), Random Forests-based family (RF),

standard Multiple Kernel Learning (MKL), Feature Weighting by using MKL (FW) and our

method in Feature Weighting and Selection (FWS). R corresponds to the number of kernels

used.

Algorithm p-value w.r.t. EasyMKLFS

Baseline SVM 8.6 · 10−5

FS
SVM RFE 3.8 · 10−4

SVM t-test 1.2 · 10−4

RF
Gray 4.3 · 10−5

Pustina 7.8 · 10−4

MKL
SimpleMKL 1.8 · 10−4

EasyMKL 4.6 · 10−4

FW EasyMKL 9.6 · 10−3

Table 8: Depression Dataset: results of the Wilcoxon signed-rank test comparing EasyMKLFS

with respect to the others. Smaller p-values mean an higher difference between the models

and, in our case, the Bonferoni corrected p-value is 0.05/8 = 6.25 · 10−3.

onto an anatomical brain template, which can be used as a surrogate of consis-

tency. For each method, we present the selection frequency or the average of

the weights for the four fMRI derived images (i.e. brain activation to Anxious,

Happy, Neutral and Sad faces). In Tables 9 and 10, we present the top 10 brain635

regions selected for each method (SVM RFE, SVM t-test and EasyMKLFS), and
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for each fMRI derived image. The vast majority of these regions has been pre-

viously described in the depression literature. Especially frontal and temporal

areas, as well as subcortical regions, such as: the hippocampus, the amygdala,

and parts of the reward system (e.g. the pallidum and the caudate). These re-640

gions have been previously identified using both multivariate pattern recognition

approaches, and classic group statistical analyses [23, 60–62].

Figure 5 depicts the weights assigned by EasyMKL for the clinical informa-

tion. The family V & C has been used for the basic kernels. For this dataset, the

top 5 highest weights are assigned to the following clinical information: the Neg-645

ative Affect Schedule (PANAS neg), the mean valence ratings for male neutral

and sad faces (from KDEF, i.e. KDEF val neu m and KDEF val sad m), the

mean arousal rating for male happy faces (from KDEF, i.e. KDEF aro hap m)

and an extracted feature from the State-Trait anger expression inventory test

(STAXI TAT). See Table B.13 for further information.650

Figure 6 shows the sums of the weights that are assigned for each information

source (4 fMRI derived images plus the clinical information) by our method.

5. Discussion

The main goal of this paper is to present an effective methodology to com-

bine and select features from different sources of information (sMRI/fMRI, clin-655

ical and demographic information) in order to classify patients with mental

health disorders versus healthy controls. The proposed method (EasyMKLFS)

obtained better or similar accuracy than several compared machine learning

approaches with higher levels of sparsity, therefore consistently improving in-

terpretability.660

More specifically, by using the ADNI dataset, we were able to obtain a

significant improvement in the classification accuracy, potentially due to absence

of strong source of noise in the data and presence of predictive information in the

considered sources of information. On the other hand, in the Depression dataset,

we obtained a comparable accuracy to the MKL gold standard methods. The665
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Figure 5: EasyMKL assigned weights for the clinical information selected by a FDR procedure

exploiting V & C as family of basic kernels for the Depression dataset. The top 5 highest

weights are assigned to the clinical data (see Table B.13 for further information): PANAS neg,

KDEF val neu m, KDEF val sad m, KDEF aro hap m and STAXI TAT.
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Figure 6: EasyMKLFS assigned weights for the different sources of information of the Depres-

sion dataset: Anxious image, Happy image, Neutral image, Sad image and clinical measure-

ments.

lack of a significant improvement in classification accuracy for the depression

dataset might be explained by the noise in the fMRI data and higher label

uncertainty for this task (i.e. high heterogeneity in the depressed group). More

important, in both the cases, the EasyMKLFS provides the sparser solution.

This particular result improves the interpretability of our models, identifying670

which features are driving the predictions.

In the context of machine learning, interpretability of a model often refers

to its ability to identify a subset of informative features. In contrast, in neu-

roscience and clinical neuroscience, researchers often wants to understand why

a specific feature contribute or is informative to a predictive model. Unfortu-675

nately, answering the question of why a feature is informative to a predictive

model is not straightforward and has been topic of a number of studies in the

field of neuroimaging (e.g. [63–66]). These studies have shown that a features

can be included in a model due to different reasons (e.g. a feature might be

informative because it has consistently high/low value for one class with respect680

to the other class or because it helps canceling correlated noise). In the present

work we use the machine learning definition of model interpretability or infor-

mativeness. The identified features were compared with previous literature in

terms of how they overlap with regions previously described as important for
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Anxious

SVM RFE voxels SVM t-test voxels EasyMKLFS voxels

Calcarine-L 783 Pallidum-L 147 Calcarine-L 266

Occipital-Sup-R 364 Putamen-L 514 Temporal-Sup-L 237

Frontal-Sup-Medial-R 692 SupraMarginal-R 874 Occipital-Sup-R 134

Calcarine-R 532 Occipital-Sup-R 517 Paracentral-Lobule-R 82

Temporal-Sup-L 655 Postcentral-R 1617 Frontal-Mid-L 394

Parietal-Sup-L 534 Frontal-Mid-L 1793 Frontal-Sup-R 319

Frontal-Mid-L 1104 Paracentral-Lobule-R 296 Frontal-Sup-Medial-R 157

Paracentral-Lobule-R 224 Calcarine-R 662 Frontal-Inf-Tri-L 184

Temporal-Sup-R 869 Frontal-Sup-R 1395 Frontal-Inf-Oper-L 69

Cingulum-Mid-L 629 Cuneus-R 481 Temporal-Mid-R 318

Happy

SVM RFE voxels SVM t-test voxels EasyMKLFS voxels

SupraMarginal-L 358 Cingulum-Ant-R 630 Temporal-Sup-L 366

Temporal-Sup-L 666 Cuneus-R 587 SupraMarginal-L 204

Calcarine-L 805 Temporal-Sup-L 677 Paracentral-Lobule-R 73

Precentral-R 1063 Hippocampus-L 311 Calcarine-L 222

Insula-R 335 Putamen-R 388 Precentral-R 268

Putamen-R 216 Hippocampus-R 449 Insula-R 128

Temporal-Mid-R 1339 Calcarine-R 715 Putamen-R 64

Caudate-R 295 Caudate-L 548 Frontal-Mid-L 365

Caudate-L 331 Thalamus-L 500 Caudate-L 87

Calcarine-R 474 Cuneus-L 652 Frontal-Sup-R 311

Table 9: Depression dataset: the top 10 most selected brain regions for SVM RFE, SVM t-test

and EasyMKLFS (with respect to the assigned weight) with the number of selected voxels.

discriminating dementia and depression from healthy subjects.685

It is important to note what makes our method different from the standard

approaches to combine heterogeneous information for neuroimaging based di-

agnosis. EasyMKLFS works in a framework where the initial information is

fragmented in small and low informative pieces, and without exploiting some a

priori knowledge from an expert. Due to the particular ability of EasyMKL to690

combine huge amounts of different kernels (i.e. one per feature), we are able to

weight all of them. This first difference with respect to the state-of-art MKL
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Neutral

SVM RFE voxels SVM t-test voxels EasyMKLFS voxels

Temporal-Sup-L 775 Hippocampus-L 447 Temporal-Sup-L 398

Amygdala-R 115 Thalamus-L 624 SupraMarginal-L 175

Temporal-Mid-R 1444 Hippocampus-R 547 Pallidum-R 44

SupraMarginal-L 388 Amygdala-R 131 Amygdala-L 26

Amygdala-L 79 Temporal-Sup-L 877 Thalamus-L 129

Thalamus-L 461 Putamen-R 488 Temporal-Mid-R 470

Pallidum-R 97 Putamen-L 426 Hippocampus-L 82

Hippocampus-R 329 Temporal-Mid-R 1618 Hippocampus-R 86

Caudate-R 299 Caudate-R 441 Putamen-R 75

Hippocampus-L 238 ParaHippocampal-L 359 Precentral-R 260

Sad

SVM RFE voxels SVM t-test voxels EasyMKLFS voxels

Parietal-Sup-L 717 Amygdala-R 117 Temporal-Sup-L 342

Temporal-Sup-L 760 Postcentral-R 1462 SupraMarginal-L 159

SupraMarginal-L 383 Cingulum-Ant-R 554 Precentral-R 310

Precentral-R 986 Temporal-Sup-L 783 Parietal-Sup-L 199

Caudate-L 213 Caudate-L 398 Caudate-L 87

Insula-L 506 Parietal-Sup-L 934 ParaHippocampal-L 69

Thalamus-L 313 Hippocampus-L 342 ParaHippocampal-R 68

Temporal-Pole-Sup-L 269 Occipital-Sup-R 598 Insula-L 122

Postcentral-R 768 Frontal-Mid-L 1625 Frontal-Inf-Tri-L 150

Occipital-Mid-R 556 Putamen-R 303 Frontal-Mid-L 256

Table 10: Depression dataset: the top 10 most selected Atlas Regions of the brain for SVM

RFE, SVM t-test and EasyMKLFS (with respect to the assigned weight) with the number of

selected voxels.

applications is crucial, in fact, other MKL methods often combine only a small

set of different sources manually selected. Our method is able to work without

this bias and obtain better or similar performance as previous methods. Finally,695

the last step of EasyMKLFS is able to find a very sparse model unifying in syn-

ergy the characteristics of feature weighting (i.e. MKL with a large amount of

basic kernels) and feature selection.

When compared to the RF-based approaches, our method obtains better
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accuracy and, as in the MKL case, the main difference is the computational700

complexity of these methods. In fact, the two RF-based methodologies (i.e.

Pustina and Gray) have an increase in computational time to perform the train-

ing that is orders of magnitude higher when the number of different sources of

information increase. Moreover, these approaches are a mixture of heuristics

and algorithms, not easily comparable to the other well-theoretically-grounded705

machine learning methods used in the paper.

In our experiments, we reported the average accuracy of each method to-

gether with its standard deviation. This procedure is broadly used comparing

machine learning methods. For the sake of completeness, we have compared the

performance of the proposed algorithm, EasyMKLFS, with each of the other710

methods using the Wilcoxon signed-rank test [56]. Results from these compar-

isons show that the EasyMKLFS was significantly better than all other methods

for the ADNI dataset and significantly better than all but the EasyMKL for the

depression dataset. The lack of improvement with respect to the EasyMKL for

the depression dataset suggests that for heterogeneous datasets with high label715

uncertainty (i.e. datasets that contain subgroups of subjects with different char-

acteristics) the feature selection step might not be advantageous. Unfortunately,

label uncertainty is a common issue in psychiatry disorders. Current diagnostic

categories in psychiatric are only based on symptoms and behaviours due to the

lack of biomarkers in psychiatry [67]. There is a lot of evidence that the bound-720

ary of these categories do not alight with neuroscience, genetics and have also

not been predictive of treatment response [68]. Another evidence of the impact

of class heterogeneity on the performance of neuroimaging based classifiers can

be found in [69] where the author shows a negative correlation between reported

accuracy and sample size for many diagnostic applications. Bigger samples are725

likely to be more heterogeneous than small ones. In summary, taken together,

these results demonstrate the effectiveness of our methodology in two differ-

ent classification tasks, obtaining similar or higher accuracy than the compared

methods with higher interpretability.

The EasyMKLFS was able to identify, for both datasets, sMRI/fMRI and730
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clinical/demographic features that overlap with features previously identified

as relevant for discriminating demented and depressed patients from healthy

controls. More specifically, for the ADNI dataset, the top most selected brain

regions according to the AAL atlas were bilateral amygdala, hippocampus and

parahippocampus. The top most selected clinical information were items of735

the Mini-Mental State Examination (MMSE).The MMSE is a 30-point ques-

tionnaire that is used extensively in clinical and research settings to measure

cognitive impairment [45]. The depression dataset consisted of four brain im-

ages, representing fMRI patterns of brain activation to different emotional faces

(Anxious, Happy, Neutral and Sad), in addition to the clinical information. The740

top most selected brain regions across the different emotions included frontal and

temporal areas, as well as subcortical regions, such as: the hippocampus, the

amygdala, and parts of the reward system (e.g. the pallidum and the caudate).

All these regions have been has been previously described in the depression

literature [23, 60–62]. The top most selected clinical information for the depres-745

sion dataset was the Negative Affect Schedule (PANAS neg). The Positive and

Negative Affect Schedule (PANAS) is a self-report questionnaire that measures

both positive and negative affect [70]. Previous studies have shown that indi-

viduals with higher Negative Affect (NA) trait (neuroticism) show heightened

emotional reactivity [71] and experience more negative emotions [72]. Higher750

NA trait has been also associated with poor prognosis [72] and predictive of

onset of major depression [73]. Furthermore, a recent study showed that it is

possible to decode individuals NA trait from patterns of brain activation to

threat stimuli in a sample of healthy subject [74]. Our results, corroborate with

these previous studies and support the evidence that Negative Affect trait might755

have important clinical implications for depression.

From a clinical perspective, the proposed approach addresses the two funda-

mental challenges arising from the unique, multivariate and multi-modal nature

of mental disorders (for an in-depth discussion of both conceptual challenges, see

[75]). On the one hand, mental disorders are characterized by numerous, possi-760

bly interacting biological, intrapsychic, interpersonal and socio-cultural factors
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[76, 77]. Thus, a clinically useful patient representation must, in many cases,

include data from multiple sources of observation, possibly spanning the range

from molecules to social interaction. Even within the field of neuroimaging, we

see a plethora of modalities used in daily research; including e.g. task-related765

and resting-state fMRI, structural MRI data and Diffusion Tensor Imaging

(DTI) approaches. All these modalities might contain non-redundant, possi-

bly interacting sources of information with regard to the clinical question. In

fact, it is this peculiarity – distinguishing psychiatry from most other areas of

medicine – which has hampered research in general and translational efforts for770

decades. Overwhelming evidence shows that no single measurement – be it a

voxel, a gene or a psychometric test – explains substantial variance with regards

to any practically relevant aspect of a psychiatric disorder (compare e.g. [78]).

In addition, many if not most variables are irrelevant for the particular question

addressed. It is this profoundly multivariate nature of mental disorders that775

necessitates dimensionality reduction or feature-selection approaches when us-

ing whole-brain neuroimaging data. The fact that EasyMKLFS now addresses,

both, the issue of feature selection and multi-modal data integration in a single,

mathematically principled framework constitutes a major step forward. From a

health economic point of view, approaches such as this one are especially note-780

worthy, as they have the potential not only to identify the best-performance,

but also the most efficient model. By using EasyMKLFS, it is possible to di-

rectly test which sources of information are non-redundant with regards to the

model’s performance.

From the perspective of biomarker research, it is particularly important that785

EasyMKLFS provides a means to investigate and visualize the predictive model.

Using MKL weights in combination with feature selection provides information

regarding feature importance for single features, as well as for data sources,

while guaranteeing sparsity. Our results show that, compared for example to a

classic t-test, the visualization appears much less noisy and focused, dramati-790

cally increasing interpretability. Accordingly, we were able to identify many of

the key-regions known to be involved in the mental diseases while maintaining
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a rather focused list of areas.

Despite our encouraging results, the method does present some limitations.

Firstly, our method was not able to show an improvement in performance when795

the classification task is very noisy (i.e. for unreliable patients’ labels), as in the

Depression dataset. Another weak point of the presented methodology is that,

in this paper, we studied only the simplest way to combine the information, by

generating exclusively linear kernels. From this point of view, this is a limitation

of our framework with respect to the strength of the kernels methods.800

Considering these limitations, there are two possible future directions. Firstly,

the improvement of EasyMKL by using a different regularizer that is more sta-

ble with respect to the heterogeneity in the patient group. The idea is to split

the regularization in two different parts: the first part for the positive examples,

and the second part for the negative examples. In this way, we might be able805

to handle classification with heterogeneous classes better (e.g. the Depression

dataset). A second way to evolve our framework is to fragment and to ran-

domly generate the source of information, improving the accuracy by injecting

non-linearity. In this sense, a good way to proceed is by randomly generating

small subsets of information from the raw data, then projecting them onto a810

non-linear feature space before the weighting and selection phase. In this way,

we might be able to increase the expressiveness of our features and, consequently,

the complexity of the generated model. On the other hand, we have to be able

to bound these new degrees of freedom, in order to avoid overfitting.

In terms of future applications, the proposed EasyMKLFS approach has815

the ability to be applied to other clinical relevant classification tasks such as

distinguishing diseases groups and predicting diseases progression (see for ex-

ample [79–81]). As shown in our results, the performance of the EasyMKLFS

approach on these applications will be bounded by the reliability of the labels

and informativeness of the considered sources of information. Moreover, our820

approach might be also particular beneficial for ’big-data’ applications focusing

on personalized medicine, where the goal is to predict future outcomes and/or

treatment response by combining larger sources of patient information.
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(a) Anxious, SVM RFE. (b) Anxious, SVM t-test. (c) Anxious, EasyMKLFS.

(d) Happy, SVM RFE. (e) Happy, SVM t-test. (f) Happy, EasyMKLFS.

(g) Neutral, SVM RFE. (h) Neutral, SVM t-test. (i) Neutral, EasyMKLFS.

(j) Sad, SVM RFE. (k) Sad, SVM t-test. (l) Sad, EasyMKLFS.

Figure 7: Depression dataset: comparison of voxels selection frequency (RFE and t-test) and

weights (EasyMKLFS) by using V & C, overlayed onto an anatomical template.
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Appendix A. A brief introduction to EasyMKL

As introduced in Section 2.2, EasyMKL [22] is a very efficient MKL algorithm1070

with the clear advantage of having high scalability with respect to the number

of kernels to be combined. In fact, its computational complexity is constant in

memory and linear in time.

Technically, EasyMKL finds the coefficients η that maximize the margin on

the training set. The margin is computed as the distance between the smaller1075

convex envelopes (i.e. convex hulls) of positive and negative examples in the

feature space, as shown in Figure A.8.

Margin

Convex hull of 
positive examples

Convex hull of
negative examples

Figure A.8: The margin is the distance between the convex hull of the positive examples (in

red) and the convex hull of the negative examples (in green). EasyMKL is able to find a

combination of kernels that maximizes this distance.

In particular, EasyMKL tries to optimize the following general problem:

(η∗,γ∗) = arg max
η:||η||2=1

min
γ∈Γ

γ>Y(
R∑
r=0

ηrKr)Yγ + λ||γ||22. (A.1)

where Y is a diagonal matrix with training labels on the diagonal, and λ

is a regularization hyper-parameter. The domain Γ represents two probability

distributions over the set of positive and negative examples of the training set,1080

that is Γ = {γ ∈ R`+ |
∑
yi=+1 γi = 1,

∑
yi=−1 γi = 1}. Note that any element

γ ∈ Γ corresponds to a pair of points, the first contained in the convex hull of

positive training examples and the second in the convex hull of negative training
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examples. At the solution, the first term of the objective function represents the

obtained (squared) margin, that is the (squared) distance between a point in1085

the convex hull of positive examples and a point in the convex hull of negative

examples, in the considered feature space.

Eq. A.1 can be seen as a minimax problem that can be reduced to a simple

quadratic problem with a technical derivation described in [22]. The solution

of the quadratic problem is an approximation of the optimal γγγ∗ for the original

formulation and due to the particular structure of this approximated problem,

it is sufficient to provide the average kernel of all the trace-normalized basic

kernels, i.e.

KA =
1

R

R∑
r=1

Kr

Tr(Kr)
.

For this reason, we can avoid to store in memory all the single basic kernels ob-

taining a very scalable MKL algorithm (with respect to the number of kernels).

Finally, from γγγ∗, it is easy to obtain the optimal weights for the single basic

kernels Kr by using the following formula

ηr = γγγ∗TY
Kr

Tr(Kr)
Yγγγ∗, ∀r = 1, . . . , R. (A.2)

Appendix B. A further analysis of ADNI and Depression datasets1090

In Table B.11, the required memory of the different MKL methods is pre-

sented. As already noted, SimpleMKL requires a huge amount of memory to

handle large family of basic kernels. For example, generating one linear kernel

for each voxel, we have to provide more than 50 Gb of memory to store all

the required information. EasyMKL and our EasyMKLFS use a fixed amount1095

of memory independently with respect to the number of kernels, due to the

particular definition of the optimization problem (see Sections 2.2 and 2.4).

Finally, the list of the extracted clinical information from the ADNI and

Depression datasets are summarized in Table B.12 and Table B.13 respectively.
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Algorithm R Memory Memory (real)

Baseline Linear SVM 1 O(`2) 293 Kb

FS
SVM RFE − O(`2) 293 Kb

SVM t-test − O(`2) 293 Kb

MKL
SimpleMKL 26 O(R`2) ∼ 10 Mb

EasyMKL 26 O(`2) 293 Kb

FW
SimpleMKL 168155 O(R`2) ∼ 50 Gb

EasyMKL 168155 O(`2) 293 Kb

FWS EasyMKLFS 168155 O(`2) 293 Kb

Table B.11: ADNI dataset: required memory for different methods to handle different families

of basic kernels.
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ID Clinical Information code Description

1 AGE The age of the subject.

2 PTGENDER The gender of the subject.

3 PTEDUCAT The level of education of the subject.

4 APOE4 The presence of the APOE4 allele.

5 CDRSB Clinical Dementia Rating.

6 ADAS11 Variant of the Alzheimer’s Disease Assessment Scale.

7 ADAS13 Variant of the Alzheimer’s Disease Assessment Scale.

8 RAVLT immediate Rey Auditory Verbal Learning Test: sum of the scores from first 5 trials [46].

9 RAVLT learning Rey Auditory Verbal Learning Test: score of trial 5 minus the score of trial 1.

10 RAVLT forgetting Rey Auditory Verbal Learning Test: score of trial 5 minus score of the delayed recall.

11 RAVLT perc forgetting Rey Auditory Verbal Learning Test: RAVLT forgetting divided by score of trial 5.

12 FAQ Functional Assessment Questionnaire.

13 MMSE Total score of Mini-Mental State Examination [45].

14 MMBALL MMSE Task: Repeat name of object (ball).

15 MMFLAG MMSE Task: Repeat name of object (flag).

16 MMTREE MMSE Task: Repeat name of object (tree).

17 MMTRIALS MMSE: Number of trials to complete the naming task.

18 MMD MMSE Task: Spell “world” backwards (letter D).

19 MML MMSE Task: Spell “world” backwards (letter L).

20 MMR MMSE Task: Spell “world” backwards (letter R).

21 MMO MMSE Task: Spell “world” backwards (letter O).

22 MMW MMSE Task: Spell “world” backwards (letter W).

23 MMBALLDL MMSE Task: Remember object named earlier (ball).

24 MMFLAGDL MMSE Task: Remember object named earlier (flag).

25 MMTREEDL MMSE Task: Remember object named earlier (tree).

26 MMWATCH MMSE Task: Show a wrist watch and ask “What is this?”

27 MMPENCIL MMSE Task: Show a pencil and ask “What is this?”

28 MMREPEAT MMSE Task: Ask to repeat a sentence.

29 MMHAND MMSE Task: Ask to take paper with the right hand.

30 MMFOLD MMSE Task: Ask to fold paper in half.

31 MMONFLR MMSE Task: Ask to put paper on the floor.

32 MMREAD MMSE Task: Ask to read and obey a command (“close your eyes”).

33 MMWRITE MMSE Task: Ask to write a sentence.

34 MMDRAW MMSE Task: Ask to draw a copy of a design.

35 MMSCORE Total score of Mini-Mental State Examination

Table B.12: ADNI clinical information. In italic red , the clinical information removed by the

FDR procedure. All the clinical information starting with ”MM” are part of a quite widely

used exam that is performed on patients with dementia [45].
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ID Clinical Information code Description

1 age The age of the patient

2 zvt mean Average of all the tests of processing speed (approx. IQ) [50]

3 zvt sd Standard deviation of all the tests of processing speed

4 BDI II Self-report questionnaire of depression severity [52]

5 MADRS Montgomery-Asberg depression rating scale [51]

6 SPSRQ R Reward score of ”Sensitivity to Punishment/Reward Questionnaire” [49]

7 SPSRQ P Punishment score of ”Sensitivity to Punishment/Reward Questionnaire”

8 PANAS neg Negative Affect Schedule [53]

9 PANAS pos Positive Affect Schedule

10 STAI G X1

State-Trait anxiety inventory [54]
11 STAI G X2

12 STAXI S


State-Trait anger expression inventory [82]

13 STAXI TA

14 STAXI TAT

15 STAXI TAR

16 STAXI AI

17 STAXI AO

18 STAXI AC

19 gender The gender of the patient

20 education The education level of the patient

21 anx before Visual analog scale of subjective anxiety

22 anx after Anxiety after the scanning

23 KDEF val neutral Mean Valence ratings for neutral faces from the KDEF [48] collection

24 KDEF val anxious Mean Valence ratings for Anxious faces from the KDEF collection

25 KDEF val sad Mean Valence ratings for Sad faces from the KDEF collection

26 KDEF val happy Mean Valence ratings for Happy faces from the KDEF collection

27 KDEF aro neutral Mean Arousal ratings for Neutral faces from the KDEF collection

28 KDEF aro anxious Mean Arousal ratings for Anxious faces from the KDEF collection

29 KDEF aro sad Mean Arousal ratings for Sad faces from the KDEF collection

30 KDEF aro happy Mean Arousal ratings for Happy faces from the KDEF collection

31 KDEF val miss Mean Valence rating missing from the KDEF collection

32 KDEF aro miss Mean Arousal rating missing from the KDEF collection

33 KDEF val neu fem Mean Valence ratings for female Neutral faces from the KDEF collection

34 KDEF val neu m Mean Valence ratings for male Neutral faces from the KDEF collection

35 KDEF val anx fem Mean Valence ratings for female Anxious faces from the KDEF collection

36 KDEF val anx m Mean Valence ratings for male Anxious faces from the KDEF collection

37 KDEF val sad fem Mean Valence ratings for female Sad faces from the KDEF collection

38 KDEF val sad m Mean Valence ratings for male Sad faces from the KDEF collection

39 KDEF val hap fem Mean Valence ratings for female Happy faces from the KDEF collection

40 KDEF val hap m Mean Valence ratings for male Happy faces from the KDEF collection

41 KDEF aro neu fem Mean Arousal ratings for female Neutral faces from the KDEF collection

42 KDEF aro neu m Mean Arousal ratings for male Neutral faces from the KDEF collection

43 KDEF aro anx fem Mean Arousal ratings for female Anxious faces from the KDEF collection

44 KDEF aro anx m Mean Arousal ratings for male Anxious faces from the KDEF collection

45 KDEF aro sad fem Mean Arousal ratings for female Sad faces from the KDEF collection

46 KDEF aro sad m Mean Arousal ratings for male Sad faces from the KDEF collection

47 KDEF aro hap fem Mean Arousal ratings for female Happy faces from the KDEF collection

48 KDEF aro hap m Mean Arousal ratings for male happy Faces from the KDEF collection

Table B.13: Depression clinical information. In italic red , the clinical information removed

by the FDR procedure.
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Supplementary Material1100

In this section we present the results of the same experiments described in

the main paper with the difference that the algorithms can use all the clinical

information without any restriction. In the following the results for both the

datasets, i.e. ADNI and Depression.

Appendix B.1. ADNI1105

The accuracy results for the ADNI dataset are presented in Table B.14.

Algorithm Kernels R Bal. Acc. %

Baseline
Linear SVM C 1 68.73± 9.68

SVM I + C 1 84.80± 6.87

FS
SVM RFE V & C − 86.93± 4.76

SVM t-test V & C − 86.47± 6.92

MKL
SimpleMKL I & C 36 84.44± 6.68

EasyMKL I & C 36 84.78± 6.76

FW
SimpleMKL V & C 168165 Out of memory

EasyMKL V & C 168165 88.80± 7.02

FWS EasyMKLFS V & C 168165 96.14± 3.55

Table B.14: ADNI Dataset: comparisons of 5 repetitions of a nested 10-fold cross-validation

balanced accuracy using all the clinical information. The results are divided in 5 families:

Baseline, Feature Selection (FS), standard Multiple Kernel Learning (MKL), Feature Weight-

ing by using MKL (FW) and our method in Feature Weighting and Selection (FWS). R

corresponds to the number of kernels used.

Figure B.9 shows the assigned weights of the clinical information by using

all the clinical features.

Finally, in Figure B.10 it is possible to note the importance of the clinical

data compared to the weight assigned to the voxel of the MRI images.1110

Appendix B.2. Depression

The accuracy results for the Depression dataset are presented in Table B.15.
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Algorithm Kernels R Bal. Acc. %

Baseline
Linear SVM C 1 83.33± 15.71

SVM I + C 1 67.00± 14.87

FS
SVM RFE V & C − 65.24± 11.34

SVM t-test V & C − 63.89± 10.32

MKL
SimpleMKL I & C 49 84.65± 12.88

EasyMKL I & C 49 84.56± 13.02

FW
SimpleMKL V & C 713864 Out of memory

EasyMKL V & C 713864 84.55± 12.19

FWS EasyMKLFS V & C 713864 84.21± 10.72

Table B.15: Depression Dataset: comparisons of 5 repetitions of a nested 10-fold cross-

validation balanced accuracy using all the clinical information. The results are divided in

5 families: Baseline, Feature Selection (FS), standard Multiple Kernel Learning (MKL), Fea-

ture Weighting by using MKL (FW) and our method in Feature Weighting and Selection

(FWS). R corresponds to the number of kernels used.

Figure B.11 and B.12 depict the assigned weights of the clinical information

by using all the clinical features and the ration between the weight assigned to1115

the clinical data with respect to the weight assigned to the different fMRIs.
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Figure B.9: EasyMKL assigned weights for the all the clinical information for the ADNI

dataset.
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Figure B.10: EasyMKLFS assigned weights for the different sources of information: MRI

image and all the clinical measurements.
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Figure B.11: EasyMKL assigned weights for the clinical information for the Depression

dataset.
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Figure B.12: EasyMKLFS assigned weights for the different sources of information of the

Depression dataset: Anxious image, Happy image, Neutral image, Sad image and clinical

measurements.
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