

1                   **A computational solution to improve biomarker reproducibility**  
2                   **during long-term projects**  
3

4                   Feng Feng<sup>1¶</sup>, Morgan P. Thompson<sup>2¶</sup>, Beena E. Thomas<sup>2#</sup>, Elizabeth R. Duffy<sup>3</sup>,  
5                   Jiyoun Kim<sup>3</sup>, Shinichiro Kurosawa<sup>3</sup>, Joseph Y. Tashjian<sup>2,3</sup>, Yibing Wei<sup>2,3</sup>,  
6                   Chris Andry<sup>2,3</sup>, D.J. Stearns-Kurosawa<sup>3\*</sup>  
7

8                   <sup>1</sup> Department of Microbiology, Boston University School of Medicine, Boston,  
9                   Massachusetts, United States of America

10                  <sup>2</sup> Department of Pathology and Laboratory Medicine, Boston Medical Center, Boston,  
11                  Massachusetts, United States of America

12                  <sup>3</sup> Department of Pathology and Laboratory Medicine, Boston University School of  
13                  Medicine, Boston, Massachusetts, United States of America

14  
15  
16                  ¶These authors should be considered equal first authors

17  
18                  \*Corresponding author:

19                  Email: [dstearns@bu.edu](mailto:dstearns@bu.edu) (DSK)

20  
21  
22                  #Current Address; Beth Israel Deaconess Medical Center Boston, MA

23 **Abstract**

24

25 Biomarkers are fundamental to basic and clinical research outcomes by reporting host  
26 responses and providing insight into disease pathophysiology. Measuring biomarkers  
27 with research-use ELISA kits is universal, yet lack of kit standardization and unexpected  
28 lot-to-lot variability presents analytic challenges for long-term projects. During an ongoing  
29 two-year project measuring plasma biomarkers in cancer patients, control concentrations  
30 for one biomarker (PF) decreased significantly after changes in ELISA kit lots. A  
31 comprehensive operations review pointed to standard curve shifts with the new kits, an  
32 analytic variable that jeopardized data already collected on hundreds of patient samples.  
33 After excluding other reasonable contributors to data variability, a computational solution  
34 was developed to provide a uniform platform for data analysis across multiple ELISA kit  
35 lots. The solution (*ELISAtools*) was developed within open-access R software in which  
36 variability between kits is treated as a batch effect. A defined best-fit Reference standard  
37 curve is modelled, a unique Shift factor “S” is calculated for every standard curve and  
38 data adjusted accordingly. The averaged S factors for PF ELISA kit lots #1-5 ranged from  
39 -0.086 to 0.735, and reduced control inter-assay variability from 62.4% to <9%, within  
40 quality control limits. S factors calculated for four other biomarkers provided a quantitative  
41 metric to monitor ELISAs over the 10 month study period for quality control purposes.  
42 Reproducible biomarker measurements are essential, particularly for long-term projects  
43 with valuable patient samples. Use of research-use ELISA kits is ubiquitous and judicious  
44 use of this computational solution maximizes biomarker reproducibility.

45

46

## 47 Introduction

48           In virtually every research project with real or potential clinical application,  
49           biomarkers provide valuable data to monitor presence or progression of disease, as well  
50           as therapeutic susceptibility or efficacy. Biomarker data monitor defined outcomes and  
51           there is considerable discussion about whether investigators should disclose incidental  
52           research findings to study participants [1-3]. Intrinsic to this discussion is the need for  
53           reproducible study data and this presents challenges, particularly with long-term studies.

54           Data rigor and reproducibility is a systemic problem [4] and a priority issue for the NIH. It  
55           is an analytic challenge for long-term studies because research laboratories often do not  
56           have standardized operations nor validated biomarker assay reagents that adhere to the  
57           quality assurance and quality control standards for diagnostic use as required by the  
58           Clinical Laboratory Improvement Act (CLIA; [www.cdc.gov/clia](http://www.cdc.gov/clia)).

59           Protein biomarkers are measured frequently in plasma, serum or other matrices  
60           by solid phase Enzyme-Linked Immunosorbent Assay (ELISA) methods in which the  
61           antigen of interest in the sample is bound by antibodies and the amount of bound antigen  
62           is proportional to the signal strength that develops in the assay. There have been only  
63           136 *in vitro* diagnostic ELISA kits or kit components cleared or approved by the FDA since  
64           2000, but there are hundreds of commercially available ELISA kits labeled for “research  
65           purposes only” from dozens of vendors. Typically these are vetted by the manufacturer  
66           for sensitivity, selectivity, intra/inter-assay variability, stability and storage needs, but they  
67           are not required to adhere to federal CLIA guidelines. Lot-to-lot variability between ELISA  
68           kits is either not relevant or is manageable for short-term projects, but challenges arise  
69           for quality assurance when multiple lots of research ELISA kits are used in long-term  
70           studies.

71 projects. A research laboratory may operate under NIH biomarker recommendations [5]  
72 and Good Clinical Laboratory Practice guidelines with appropriate training, auditing,  
73 assay validation and proficiency testing [6], but it does not have jurisdiction over kit  
74 reagents controlled by the manufacturer. In general practice, expected inter-assay  
75 coefficients of variation (CV) for ELISA standard curves will be within 10~20%, but if a  
76 commercial ELISA standard curve suddenly shifts significantly with a new kit lot and  
77 validated control data shifts outside limits, then the current patient biomarker  
78 concentrations cannot be compared with those quantified months earlier. An experienced  
79 laboratory can rescue data from one ELISA with a failed standard curve [7], but long-term  
80 quality assurance poses other challenges. Either all the samples have to be re-assayed,  
81 which introduces variables such as freeze/thaw issues, or the data discarded, all of which  
82 wastes precious patient samples and resources.

83 This was encountered by our research group with one commercial ELISA kit during  
84 an on-going two year project to evaluate effects of pre-analytic variables on plasma  
85 thrombosis biomarkers in patients. The project developed thirty-five standard operating  
86 procedures (SOPs) that define and document operations from blood acquisition to  
87 transport, processing, assay and storage. Nine biomarkers are quantified by research-  
88 use ELISA kits. For one biomarker, biomarker “PF”, after months of reproducible assays,  
89 we observed a significant shift of our standard curves and internal control results when  
90 assayed with new kits lots. The scope of the problem was revealed by review of data  
91 from 5 kit lots over 10 months and 65 ELISA plates. Rigorous review by the quality  
92 assurance team did not identify laboratory or operational pre-analytic contributions and  
93 similar changes were not observed with the other ELISAs. The project had encountered  
94 an unexpected analytic variable and the data from 420 plasma samples collected over 10

95 months could not be compared. The manufacturer was responsive but ultimately unable  
96 to resolve the problem.

97 To rescue our patient data, we developed a computational solution with a  
98 sufficiently generalized approach such that it may be used by others facing a similar  
99 situation. In the solution, the lot-to-lot variability in ELISA kits is treated as a batch effect,  
100 and a defined Reference standard curve is modelled with either a four- or five-parameter  
101 logistic function. Based on this Reference curve, a Shift factor ("S") can be calculated and  
102 applied retrospectively to every standard curve from every ELISA plate over many  
103 months, and the biomarker concentrations for that plate are adjusted accordingly. In this  
104 way, the data collected from many ELISA plates over many months can be compared on  
105 a uniform platform. Once instituted, calculating the Shift factor for each ELISA standard  
106 curve or each kit lot provides an expedient way to rapidly monitor standard curves as a  
107 quality assurance metric and to facilitate data management.

108 **Materials and methods**  
109

110 **ELISA kits**  
111

112 Biomarker ELISAs with at least two kit lots were analyzed for the current study.  
113 ELISAs for human P-selectin/CD62P, human myeloperoxidase and human plasminogen  
114 activator inhibitor-1/serpin E1 were provided by R&D Systems (Minneapolis, MN, USA).  
115 The ELISA kit vendor for the biomarker of focus for the current study (biomarker "PF") is  
116 not provided for discretionary reasons. Five lots of the biomarker PF ELISA kits were  
117 received over a 10 month time period. All ELISA kits were a standard 96-well format,  
118 sandwich antibody-based ELISA designated "for research purposes".

119 **Assays and Equipment**

120

121 ELISA kits were stored at  $4 \pm 2^{\circ}\text{C}$  in a cooler (Helmer Scientific, Noblesville, IN,  
122 USA) equipped with alarmed wireless external temperature monitoring (SensoScientific,  
123 Inc., Simi Valley, CA). Temperature logs were reviewed and constant temperatures  
124 without drift were verified. All kits were used within the manufacturer's expiration date.  
125 Plasma samples stored at  $-80^{\circ}\text{C}$  were thawed just before assay in a  $37^{\circ}\text{C}$  water bath for  
126  $<10$  minutes, gently mixed, and kept on ice. Plasma samples were assayed according to  
127 a detailed standard operating procedure (SOP) for each biomarker ELISA that includes  
128 the manufacturer's procedural steps. The SOP also included required documentation for  
129 every ELISA plate for operator, date, plate ID, critical reagents (date received, lot number,  
130 dilution/concentration, expiration date), incubation times (date, start/stop times,  
131 temperature), equipment (manufacturer, model, serial number) and a section to document  
132 any deviations from the SOP. Every plate included kit standards prepared according to  
133 the manufacturer's instructions. The standards were added to triplicate wells in the first  
134 three columns of the provided 96 well plate (columns A-C, rows 1-8 using standard plate  
135 designations).

136 For every biomarker and every plate, an internal spiked plasma-based control  
137 sample (BMC Control, see below) was included in triplicate wells. Samples were added  
138 to the plates in with calibrated pipettes, washing steps were performed with an automated  
139 plate washer (Biotek model Elx50, Winooski, VT) and developed color was quantified by  
140 measuring optical density (O.D.) at the appropriate wavelength with a microplate reader  
141 (VERSAmax; Molecular Devices, Sunnyvale, CA). The acceptable coefficient of variation  
142 (CV) of triplicate wells for each standard, control or unknown was  $\leq 15\%$ . For biomarker

143 PF, incubations with samples and detection antibody were done at 37°C in a dry incubator  
144 per the manufacturer's instructions and perimeter wells were not used for patient samples  
145 to prevent possible evaporation complications due to the elevated incubation  
146 temperature. Other ELISAs were performed at room temperature. Initial data analyses  
147 were done with SoftMax Pro version 7 (Molecular Devices).

## 148 **BMC Control Preparation and Storage**

149  
150 Every ELISA plate included a human pooled plasma control sample that had been  
151 spiked with supplemental biomarker and designated the BMC Control. For each  
152 biomarker, the BMC Control was made in bulk volume according to the respective ELISA  
153 SOP and stored at -80°C in small aliquots for single use. For biomarker PF, lyophilized  
154 human pooled citrated plasma (Sigma Aldrich, catalogue P9523-5ML) was reconstituted  
155 with deionized water at room temperature for at least 15 minutes with gentle mixing,  
156 diluted with appropriate buffer to the same ratio as the patient samples and then spiked  
157 with reconstituted biomarker PF standard prepared from the same manufacturer's kit but  
158 purchased expressly for this purpose. On the assay day, a BMC Control aliquot was  
159 thawed just before assay in a 37°C water bath for <10 minutes, mixed gently and added  
160 to each plate in triplicate wells. Two preparations of BMC Controls were made and  
161 aliquoted for storage: one in August 2017 (C1) and one in October 2017 (C2). Both  
162 preparations were made with PF standard from kit lot #1. The mean O.D.  $\pm$  S.D. for C1 =  
163  $0.759 \pm 0.095$  (CV=13%, n=26 plates) and  $0.672 \pm 0.062$  (CV=9%, n=16 plates) for C2.

## 164 **Data Analysis and Derivation of Shift Factor “S”**

165

166 The approach was implemented in the statistical package R, an open software  
167 environment for statistical computing and graphics that accepts ELISA optical density

168 data and standard concentration data for calculation of a best-fit Reference standard  
169 curve. The lot-to-lot variability is modelled as a fixed batch effect calculated as the  
170 difference between each plate's standard curve and the Reference curve. This difference  
171 is designated the Shift factor "S". An adjusted plate standard curve is derived using the  
172 S factor and used to adjust the biomarker concentrations.

173 The Reference and standard curves are fitted with four- or five-parameter logistic  
174 functions (4pl, 5pl). These functions are well established models to relate analyte  
175 concentrations to their response signal intensities in immunoassays [8-10]. The 5pl has  
176 the form of:

$$177 \quad Y = a + \frac{d - a}{\left(1 + e^{\frac{x_{mid} - x}{scal}}\right)^g} \quad (1)$$

178 where  $Y$  is the signal intensity of measurement (OD in ELISA assays);  $x$  is the log-  
179 transformed concentration of analytes;  $a$  and  $d$  are the lower and upper asymptotes of  
180 signal intensity, respectively;  $x_{mid}$  is the  $x$  value of the curve's inflection point;  $scal$  is  
181 the scale parameter or the inverse of the slope of the curve at the inflection point ( $x = x_{mid}$   
182 );  $g$  is the factor controlling the curve asymmetry. When  $g$  takes a value of 1, the 5pl  
183 becomes the 4pl function.

184 The 5pl could also be written equivalently as a non-logarithm or exponential form,

$$185 \quad Y = A + \frac{D - A}{\left(1 + \left(\frac{x'}{C}\right)^B\right)^g} \quad (2)$$

186 where  $Y$  and  $g$  are identical to the parameters in eq. (1);  $x'$  is non-log transformed  
187 concentration and equal to  $e^x$ ;  $A$  and  $D$  are identical to its equivalent lower-case letter

188 parameters in eq.(1);  $B$  and  $C$  are equivalent to  $xmid$  and  $scal$ , but have an exponential  
189 value of them. In this study, the log-form equation is used for implementation.

190 To analyze data from multiple plates or lots of ELISA kits, batch effects have to be  
191 modelled and corrected for data comparison. Many biological or technical factors could  
192 impact immunoassay reproducibility and lead to batch effects [11-15]. Lot-to-lot variability  
193 between PF ELISA kits is among such factors. We proposed to model and correct it as a  
194 fixed batch effect. It first assumes the lot-to-lot differences mainly result from the variable  
195 quantitation of standard analyte concentrations, which can be expressed as:

196

$$c = c_0 \times N \quad (3)$$
$$\log(c) = \log(c_0) + \log(N)$$

197 where  $c_0$  and  $c$  are the real and provided standard analyte concentrations from the  
198 manufacturer, respectively, and  $N$  is the fold difference between them. We can use  $x$ ,  
199  $x_0$  and  $S$  to replace  $\log(c)$ ,  $\log(c_0)$ , and  $\log(N)$  and rewrite the above log-transformed  
200 equation as:

201

$$x_0 = x - S \quad (4)$$

202 Therefore the statistical model of the standard curves can be written as:

203

$$Y_{ijk} = a + \frac{d - a}{\left(1 + e^{\frac{x_{mid} - x_{ij} + S_i}{scal}}\right)^g} + \varepsilon_{ijk} \quad (5)$$
$$i = 1, 2, \dots, n; j = 1, 2, \dots, m; k = 1, 2, \dots, l$$

204 where  $a$ ,  $d$ ,  $xmid$ ,  $scal$  and  $g$  are the parameters for the 5pl as in eq.(1);  $Y_{ijk}$  is the  
205 observed signal intensity (measured OD in ELISA);  $x_{ij}$  is the log-transformed

206 concentration of the  $j^{th}$  standard analytes in the  $i^{th}$  batch;  $S_i$ , the Shifting factor, is the  
207 log fold difference between the known concentration and the true one;  $i$  and  $n$  are the  
208  $i^{th}$  and total batch number, respectively;  $j$  and  $m$  are the  $j^{th}$  and total number of  
209 standards, respectively;  $k$  and  $l$  are the  $k^{th}$  and total number of measurements;  $\varepsilon_{ijk}$  is  
210 the random error for each measurements. This equation can be further rewritten into:

211

212

$$Y_{ijk} = a + \frac{d - a}{\left(1 + e^{\frac{xmid_i - x_{ij}}{scal}}\right)^g} + \varepsilon_{ijk} \quad (6)$$

213 where  $xmid_i = xmid + S_i$  and all other parameters are the same as in eq.(5). As a result,  
214 the model indicates that the standard curves of the same batch differ from each other as  
215 a result of random errors of measurements, while differences between curves from  
216 different batches is ascribed to inaccurate quantitation of analyte concentrations.  
217 Furthermore, the standard curves from different batches follow the 5pl functions (or 4pl)  
218 with the identical parameters of  $a$ ,  $d$ ,  $scal$  and  $g$ , but different  $xmid$ . The differences are  
219 defined by the Shift factor,  $S_i$ , which is estimated through the non-linear regression  
220 together with other 5pl parameters.

221 To do the batch normalization/correction, the analyte concentrations in unknown  
222 samples are first estimated based on unadjusted standard curves and then the Shift factor  
223  $S$  of the batch is applied to obtain the final quantities:

224

$$(x_{ij})_{adj} = \hat{x}_{ij} - S_i \quad (7)$$

225 where  $x$  is the log-transformed analyte concentrations in the unknown sample,  $i$  and  $j$   
226 are the batch and standard number as in eq.(5), respectively.

227 It might not be possible to know the precise concentrations of analyte in the  
228 standard samples ( $c_0$  in eq.(3)) without other validation methods, such as proteomics [16].  
229 Therefore, we designated one batch as the Reference batch, in which the analyte  
230 concentrations of the standard samples were treated as accurate, and from that we  
231 estimated the Shift factor  $S$  of all other batches relative to it. The data from 28 standard  
232 curves from PF ELISA kit lot #1 (batch #1) was used to calculate a 4pl reference curve  
233 for biomarker PF. For other biomarkers, at least four representative standard curves from  
234 at least two lots and three operators were chosen to model the best-fit 4pl Reference  
235 curve.

## 236 **Statistical Analysis**

237  
238 Student's t-tests were performed for analysis of inter-assay differences. Analysis of  
239 variance between groups was performed with Bonferroni post-test.  $P<0.05$  was  
240 considered significant.

## 241 **Software Availability**

242  
243 An ELISA data analysis tool (*ELISAtools*) with the ability to correct batch effects  
244 has been implemented in the statistical R software (version 3.5.1) and is available freely  
245 for academic use at <https://github.com/BULQI/ELISAtools>. Instructions for calculation of  
246 S factors is provided in Supplemental Methods.

247

248 **Results**

249

250 Procedurally, the ELISA manufacturer's directions were followed for reagents,  
251 buffers, assay temperature, reagent incubations and wash times. Operationally, these  
252 instructions were supplemented with documentation for each plate that included operator,  
253 kit reagent lot numbers and clock times for reagent additions and incubation periods.  
254 Including a BMC control sample on each plate permitted comparison of data over months  
255 (Fig 1). Control optical density (O.D.) readings were consistent with time even with  
256 different ELISA kit lots (Fig 1A,B). Myeloperoxidase data (lots #1,2) is shown as a  
257 comparison with biomarker PF (lots #1-5). Observations were similar for the other seven  
258 biomarkers (data not shown). Myeloperoxidase O.D.s were slightly higher for lot #2, but  
259 calculated antigen concentrations were stable (Fig 1C). In contrast, calculated PF  
260 concentrations in the BMC controls (preparations C1 and C2) decreased by an average  
261 62.4% between ELISA kit lot #1 and lot #5 over the time (Fig 1D), exceeding our quality  
262 control limits. This disconnect between O.D. readings and calculated PF biomarker  
263 concentrations over time raised problems for the 420 patient samples already analyzed.

264

265 **Fig 1. Biomarker Controls with Time**

266 ELISAs were completed over ~10 months as described in Methods for biomarkers  
267 myeloperoxidase and PF. (A,B) Optical density (O.D. at 450nm) readings and biomarker  
268 concentrations calculated from each plate's standard curve (C,D) for the BMC internal control  
269 samples are shown *versus* time. Two ELISA kit lots were used for myeloperoxidase, and five kit  
270 lots for PF. Two BMC control preparations were used for PF (C1 and C2), and one BMC control  
271 preparation for myeloperoxidase. OD readings for PF controls are reasonably constant with time,  
272 but unlike myeloperoxidase, PF concentrations decreased by 62.4% over the study period.

273                   Loss of PF antigenicity in the BMC controls during freezer storage could be a  
274                   contributor. BMC control preparation C1 was prepared in August 2017 and C2 in October  
275                   2017, and stored aliquots were used over the study period. The averaged optical density  
276                   values for C1 were higher than C2 ( $P<0.01$ ; C1 O.D.=  $0.759 \pm 0.095$ , CV=9%;n=26 plates;  
277                   C2 O.D. =  $0.672 \pm 0.062$ , CV=13%; n=16 plates). However, O.D. values over time for  
278                   each preparation were reasonably stable (Fig 1B), suggesting PF antigenicity did not  
279                   change significantly during storage. Despite similar O.D. values, a plate with control C1  
280                   had a calculated PF concentration of 723.9 pg/mL (mean, triplicate wells) in October 2017  
281                   with kit lot #1, but the same control calculated as 238.5 pg/mL in June 2018 with kit lot #5  
282                   (Table 1). A similar change was observed for BMC control preparation C2 samples.  
283                   Other than the kit itself, a detailed operations review did not identify significant changes  
284                   in PF antigenicity, environment, equipment or operator contributions that could explain  
285                   the large change in calculated PF concentrations observed in the BMC controls (data not  
286                   shown). Notably, no similar changes were observed with the other eight biomarker kits  
287                   (1-6 kit lots) over the same period.

**Table 1. BMC Controls and ELISA Kit Lot number (#)**

| Assay Date | BMC Control C1 | BMC Control C2 | Kit Lot # | O.D. (450nm)* | PF Conc. (pg/mL) |
|------------|----------------|----------------|-----------|---------------|------------------|
| 10/11/2017 | x              |                | 1         | 0.686         | 723.9            |
| 06/19/2018 | x              |                | 5         | 0.638         | 238.5            |
| 02/19/2018 |                | x              | 1         | 0.717         | 605.4            |
| 06/04/2018 |                | x              | 5         | 0.684         | 225.1            |

\* Mean O.D.  $\pm$  S.D. is  $0.759 \pm 0.095$  for C1 (CV=13%, n=26) and  $0.672 \pm 0.062$  (CV=9%, n=16)

288 In contrast, comparison of PF standard curves from kit lot #1-5 showed a trend  
289 with time (Fig 2A) that paralleled changes observed with the BMC control concentrations.  
290 Expected variability between standard curves within the lot was observed (Fig 2B), but  
291 lot-to-lot variability showed a left-shift trend. The averaged standard curves for lots #1  
292 and #2 (September, November 2017) were similar, but lots #3-5 (April, May 2018) curves  
293 had increasing O.D. at each standard concentration. The expected consequence of a left-  
294 shift in standard curves will be lower biomarker PF concentrations, which was observed  
295 (Fig 1, Table 1).

296

297 **Fig 2. Lot-to-Lot Variability in PF ELISA.**

298 (A) The averaged standard curves for each lot of PF ELISA as the mean optical density  
299 O.D.  $\pm$  S.D. at each standard concentration. N= 28, 19, 8, 4, 9 curves for lots #1-5,  
300 respectively. (B) Variability of standard curve optical density at 450nm within and  
301 between PF ELISA kit lots #1 and #5.

302

303 To address this analytic variable and rescue our patient data, a strategy was  
304 developed such that each PF standard curve is compared to a best-fit Reference curve  
305 (O.D. versus PF concentration) and a Shift factor ("S") calculated that quantifies the  
306 difference between each plate's standard curve and the Reference curve. An adjusted  
307 plate standard curve equation is derived and the biomarker concentrations are re-  
308 calculated. Thus, every plate has a unique adjustment, based on the calculated S factor  
309 for that plate, and results are generated on a uniform platform. A small S factor value  
310 indicates the original standard curve on that plate is similar to the best-fit Reference curve.  
311 Conversely, a large S factor indicates a larger left- or right-shift relative to the best-fit

312 Reference curve. The PF Reference curve was fitted with a 4-parameter logistics (4pl)  
313 equation common to many ELISA analyses, but a 5-parameter logistics (5pl) curve fit  
314 option is also available (Supplemental Methods).

315 Assignment of biomarker PF data to calculate the Reference curve was based on  
316 our available data, the manufacturer's screening data, and judgment. We used data from  
317 28 standard curves (PF kit lot #1) consistent over six months and three operators to  
318 calculate the (4pl) Reference curve. Fig 3 shows the Reference curve with unadjusted  
319 averaged standard curves for lots #2 and #5. Lot #2 curves had an average S factor of  
320 0.0690 (n=19) indicating small differences from the Reference curve. In contrast, lot #5  
321 curves had an average S factor of 0.6994 (n=9), indicating a substantial shift relative to  
322 the Reference curve.

323

324 **Fig 3. Reference Curve for calculation of S factor.**

325 The best-fit, 4-parameter logistic (4pl) Reference curve ( closed circle, R, solid line) from  
326 twenty-eight PF ELISA kit lot #1 standard curves is shown as derived from the indicated  
327 equation and D= -0.01; A= 3.20; C= 1300.00; B= -1.30. The averaged standard curves  
328 for kit lot #2 has an S factor = 0.0690 (open square; n=19 curves) and S= 0.6994 (open  
329 triangle; n=9) for curves from kit lot #5.

330

331 S factors for each PF standard curve were calculated (Fig 4). Data from lot #1 was  
332 used to fit the Reference Curve, so the average S factor is close to 0 as expected. A shift  
333 from the Reference curve for lots #3-5 is shown by their higher average S factors. One  
334 lot #2 plate had an S = 0.7032, which is 20.8-fold higher than the average S factor from  
335 the remaining plates (mean S=0.0338 ± 0.158; n=18). Data from this plate is under

336 review. Average S factors for lots #3-5 are similar, but those from lot #3 have greater  
337 inter-assay variability. The CV for lot #3 S factors is 44.2% (n=8), compared to 16.7%  
338 (n=4) for lot #4 and 11.5% (n=9) for lot #5. Whether this is due to manufacturer's  
339 differences, sample size or laboratory-based variables is not known.

340

341 **Fig 4. Calculated Shift Factors for PF ELISA Standard Curves.**

342 A 4pl Reference curve was derived from PF kit lot #1 standard curves data and a Shift  
343 factor "S" was calculated to quantify the difference between each plate's standard curve  
344 and the best-fit reference curve. The S factors for each curve in lots #1-5 is shown with  
345 the mean (horizontal line) for each lot. S factors for lots #1 and #2 curves are not different,  
346 but those for lots #3-5 differ significantly from lot #1 (\*\*P<0.0001, ANOVA with Bonferroni  
347 post-test).

348

349 The BMC control PF concentrations for preparations C1 and C2 were re-calculated  
350 using the S factor for each plate's standard curve. The reference curve was based on kit  
351 lot #1 data and C1 was assayed primarily with kit lots #1 and #2. Thus, the average PF  
352 concentration did not change significantly (P=0.843), but the variance was reduced (P=0.002),  
353 as expected (Fig 5). C2 controls were included primarily on plates from kit lots  
354 #3-5, so the difference after correction with S factors is significant (P<0.0001).

355

356 **Figure 5. BMC Control PF Concentrations.**

357 A BMC control sample from preparation C1 or C2 was included on each ELISA plate for  
358 the 10 month study period and assayed with kit lots #1-5. C1 was used primarily on plates  
359 from kit lots #1 and #2. C2 was used primarily on plates from kit lots #3-5. Standard

360 curves from each plate were adjusted according to their calculated S factor and the control  
361 PF concentrations were re-calculated. The data shows the PF concentrations before and  
362 after correction with the S factors. \*\*\*P<0.0001; ns, not significant (Student's t test).

363

364 S factors for myeloperoxidase, soluble P-selectin and plasminogen activator  
365 inhibitor-1 were calculated (Table 2). Data for 4pl Reference curves was chosen from  
366 four standard curves performed by 3 different operators over at least 6 months to  
367 represent the composite data and inter-assay variability. One myeloperoxidase curve  
368 had an S = 1.099, and this data is under review. All BMC controls were within quality  
369 control limits. Overall, their calculated S factors agree with consistent BMC Control  
370 values over time and between kit lots.

371

**Table 2. Average S Factors (min, max; N) for Biomarker Standard Curves from Kit Lots**

| Biomarker                         | Lot 1                         | Lot 2                         | Lot 3                        |
|-----------------------------------|-------------------------------|-------------------------------|------------------------------|
| Myeloperoxidase                   | 0.041<br>(-0.352, 0.347; 10)  | 0.505<br>(0.085, 1.10; 35)    | 0.289<br>(0.231, 0.382; 3)   |
| Soluble P-selectin                | -0.032<br>(-0.294, 0.156; 42) | 0.105<br>(-0.153, 0.393; 4)   | ----                         |
| Plasminogen activator inhibitor-1 | -0.226<br>(-0.220, 0.107; 22) | -0.056<br>(-0.373, 0.047; 22) | -0.008<br>(-0.043, 0.039; 2) |

372

373

## 374 Discussion

375

376 Acquiring ELISA data using commercial research kits over a prolonged period  
377 presents challenges for quality control needs. There is potential impact of multiple  
378 operators, antigen stability, environmental and equipment drift, lot-to-lot reagent  
379 variability, and lack of validated controls [15, 17-20]. It is virtually impossible to  
380 manufacture a new reagent lot that is identical in all respects to prior lots, and reagent  
381 variability occurs even with commercial diagnostic assay reagents [21]. Yet minimizing  
382 these influences is necessary so patient or other experimental data can be compared with  
383 confidence over the study period. In this study, changing BMC control concentrations for  
384 biomarker PF first raised the potential of excessive lot-to-lot variability in the ELISA kits.  
385 The optical density data did not change significantly, but calculated PF concentrations  
386 greatly decreased, and this disconnect triggered the comprehensive data review. After  
387 excluding other reasonable contributors, the S factor strategy was developed to provide  
388 a uniform platform for comparison of patient PF data collected over many months.

389 Calculation of S factors allowed retrospective adjustment of each plate's standard  
390 curve. The averaged S factors for PF kit lots #1-5 ranged from -0.086 to 0.735, and  
391 reduced the BMC control inter-assay variability to within our quality control limits (<9%).  
392 Review of the S factors for each standard curve was useful in that we could rapidly identify  
393 possible outliers. One curve each from PF ELISA lot #1 (high) and lot #3 (low), and one  
394 for myeloperoxidase (high) were sufficiently different and those plates were tagged for  
395 review. Unanticipated variability occurred even with SOPs, required documentation,  
396 equipment calibration and heightened operator awareness of pre-analytic variables.  
397 Controlling pre-analytic variables for quality assurance and method validation is difficult

398 [22] and identifying trends on a day-to-day basis is largely subjective. Once a Reference  
399 curve is established, calculating the S factor for each curve provides rapid and  
400 quantitative comparative data.

401 Few research-use ELISA kits include validated controls, so the early decision to  
402 include spiked plasma controls on every plate was advantageous. One limitation of  
403 laboratory-made controls is that each preparation will be slightly different and those  
404 differences may not be apparent until enough plates have been run to set the quality  
405 control ranges. Access to independently standardized and validated controls in a variety  
406 of matrices (plasma, serum, urine, etc) for established and emerging biomarkers would  
407 be a valuable resource for investigators and facilitate more consistent biomarker results  
408 between laboratories. This in turn supports the goals of improved data rigor and  
409 reproducibility, and the more ethical discussion regarding disclosure of validated data to  
410 study participants [23-25].

411 The problem of inter-assay variability is not new [26] and various approaches are  
412 proposed to quantify data that are acquired in batches using conversion of a signal from  
413 known samples into a meaningful value for unknown samples [15, 27]. For *in vitro*  
414 diagnostic ELISA kits used in a clinical laboratories, quality assurance is provided by a  
415 validated control sample(s) with defined value limits. Research-only ELISA kits do not  
416 have this foundation, yet are used universally. Calculation of S factors and retrospective  
417 re-analysis with adjusted standard curves is useful when quality control values exceed  
418 limits and environmental, procedural, equipment or operator contributions are ruled out.

419 This strategy should be used judiciously primarily because data choices for the  
420 Reference curve is partially subjective. We chose data from PF ELISA lot #1 based on  
421 volume of data, relative consistency over many months and similarity to the

422 manufacturer's data for that lot. We could have chosen standard curve data from lot #5  
423 plates instead, but there were fewer curves over a shorter time period and our collective  
424 experience judged this to be a less favorable choice. We do not anticipate using this  
425 strategy for the other biomarkers. Their inter-assay ELISA variability is acceptable, their  
426 BMC controls remain within limits, and there is no justifiable need to adjust the curves.  
427 That said, we have found the S factors to be a useful monitor of ELISA outcomes to  
428 rapidly identify pre-analytic factors, such as operator differences, that otherwise may be  
429 difficult to identify by visual inspection of the data, particularly for long-term projects.

430 There are other approaches to adjust for batch effects in immunoassays similar to our  
431 current work. More complicated statistical approaches are employed, such as the mix-  
432 effect model [15] and the iterative maximum likelihood method [27]. They assume a linear  
433 relationship between the measured signals and the analyte concentrations, which is only  
434 an approximation and has its own limitations. Our implementation takes the form of a non-  
435 linear logistic function. Our proposed statistical model is simple and the assumption is  
436 appropriate for the observed lot-to-lot variability (Supplementary Figure 2).

437 We focused on developing an accessible and generalizable strategy to solve similar  
438 issues as long as the assumptions are met. The software is implemented in R and the  
439 data input uses a format familiar to those who use standard 96 well plates for ELISAs. It  
440 is written for either Mac or PC and a choice of 4pl or 5pl curve fitting is provided. The  
441 software is open source and in the public domain, with instructions for data input in the  
442 Supplemental Methods.

443

444

## 445 **Acknowledgements**

446  
447 The authors gratefully acknowledge Dr. Thomas Kepler (BUSM, Department of  
448 Mathematics and Biostatistics, Department of Microbiology) for strategic discussions and  
449 Dr. Daniel Remick (BUSM, Department of Pathology and Laboratory Medicine) for critical  
450 reading of the manuscript. We gratefully acknowledge the administrative assistance of  
451 Lindy Joseph (BUSM) and Dr. Jasmin Bavarva (Leidos Biomedical Research, Inc.,  
452 Frederick, MD) who contributed to project set-up.

453  
454

## 455 **References**

- 456 1. Wong CA, Hernandez AF, Califf RM. Return of research results to study  
457 participants: Uncharted and untested. *JAMA*. 2018;320(5):435-6. doi:  
458 [10.1001/jama.2018.7898](https://doi.org/10.1001/jama.2018.7898).
- 459 2. Schmidt CO, Hegenscheid K, Erdmann P, Kohlmann T, Langanke M, Volzke H, et  
460 al. Psychosocial consequences and severity of disclosed incidental findings from whole-  
461 body MRI in a general population study. *Eur Radiol*. 2013;23(5):1343-51. doi:  
462 [10.1007/s00330-012-2723-8](https://doi.org/10.1007/s00330-012-2723-8). PubMed PMID: 23239059.
- 463 3. Shalowitz DI, Miller FG. Disclosing individual results of clinical research:  
464 Implications of respect for participants. *JAMA*. 2005;294(6):737-40. doi:  
465 [10.1001/jama.294.6.737](https://doi.org/10.1001/jama.294.6.737).
- 466 4. Prinz F, Schlange T, Asadullah K. Believe it or not: how much can we rely on  
467 published data on potential drug targets? *Nat Rev Drug Discov*. 2011;10(9):712. doi:  
468 [10.1038/nrd3439-c1](https://doi.org/10.1038/nrd3439-c1). PubMed PMID: 21892149.

- 469 5. Dancey JE, Dobbin KK, Groshen S, Jessup JM, Hruszkewycz AH, Koehler M, et  
470 al. Guidelines for the Development and Incorporation of Biomarker Studies in Early  
471 Clinical Trials of Novel Agents. *Clinical Cancer Research*. 2010;16(6):1745.
- 472 6. Sarzotti-Kelsoe M, Cox J, Cleland N, Denny T, Hural J, Needham L, et al.  
473 Evaluation and Recommendations on Good Clinical Laboratory Practice Guidelines for  
474 Phase I-III Clinical Trials. *PLoS Medicine*. 2009;6(5):e1000067. doi:  
475 10.1371/journal.pmed.1000067. PubMed PMID: PMC2670502.
- 476 7. Natarajan S, Remick DG. ELISA rescue protocol: recovery of sample  
477 concentrations from an assay with an unsuccessful standard curve. *Methods*.  
478 2013;61(1):69-72. doi: 10.1016/j.ymeth.2012.08.013. PubMed PMID: 22982520; PubMed  
479 Central PMCID: PMCPMC3604139.
- 480 8. Gottschalk PG, Dunn JR. The five-parameter logistic: a characterization and  
481 comparison with the four-parameter logistic. *Anal Biochem*. 2005;343(1):54-65. doi:  
482 10.1016/j.ab.2005.04.035. PubMed PMID: 15953581.
- 483 9. Higgins KM, Davidian M, Chew G, Burge H. The effect of serial dilution error on  
484 calibration inference in immunoassay. *Biometrics*. 1998;54(1):19-32. PubMed PMID:  
485 9544505.
- 486 10. Feng F, Sales AP, Kepler TB. A Bayesian approach for estimating calibration  
487 curves and unknown concentrations in immunoassays. *Bioinformatics*. 2011;27(5):707-  
488 12. doi: 10.1093/bioinformatics/btq686. PubMed PMID: 21149344; PubMed Central  
489 PMCID: PMCPMC3465100.
- 490 11. Fichorova RN, Richardson-Harman N, Alfano M, Belec L, Carbonneil C, Chen S,  
491 et al. Biological and technical variables affecting immunoassay recovery of cytokines from  
492 human serum and simulated vaginal fluid: a multicenter study. *Anal Chem*.

- 493 2008;80(12):4741-51. doi: 10.1021/ac702628q. PubMed PMID: 18484740; PubMed  
494 Central PMCID: PMCPMC2646866.
- 495 12. Schrijver RS, Kramps JA. Critical factors affecting the diagnostic reliability of  
496 enzyme-linked immunosorbent assay formats. *Rev Sci Tech*. 1998;17(2):550-61.  
497 PubMed PMID: 9713894.
- 498 13. Tate J, Ward G. Interferences in immunoassay. *Clin Biochem Rev*.  
499 2004;25(2):105-20. PubMed PMID: 18458713; PubMed Central PMCID:  
500 PMCPMC1904417.
- 501 14. Wilson DH, Williams G, Herrmann R, Wiesner D, Brookhart P. Issues in  
502 immunoassay standardization: the ARCHITECT Folate model for intermethod  
503 harmonization. *Clin Chem*. 2005;51(4):684-7. doi: 10.1373/clinchem.2004.042358.  
504 PubMed PMID: 15788785.
- 505 15. Whitcomb BW, Perkins NJ, Albert PS, Schisterman EF. Treatment of batch in the  
506 detection, calibration, and quantification of immunoassays in large-scale epidemiologic  
507 studies. *Epidemiology*. 2010;21 Suppl 4:S44-50. doi: 10.1097/EDE.0b013e3181dceac2.  
508 PubMed PMID: 21422966; PubMed Central PMCID: PMCPMC3073366.
- 509 16. Hassis ME, Niles RK, Braten MN, Albertolle ME, Ewa Witkowska H, Hubel CA, et  
510 al. Evaluating the effects of preanalytical variables on the stability of the human plasma  
511 proteome. *Anal Biochem*. 2015;478:14-22. doi: 10.1016/j.ab.2015.03.003. PubMed  
512 PMID: 25769420; PubMed Central PMCID: PMCPMC4492164.
- 513 17. Algeciras-Schimnich A, Bruns DE, Boyd JC, Bryant SC, La Fortune KA, Grebe SK.  
514 Failure of current laboratory protocols to detect lot-to-lot reagent differences: findings and  
515 possible solutions. *Clin Chem*. 2013;59(8):1187-94. doi: 10.1373/clinchem.2013.205070.  
516 PubMed PMID: 23592508.

- 517 18. Potter DM, Butterfield LH, Divito SJ, Sander CA, Kirkwood JM. Pitfalls in  
518 retrospective analyses of biomarkers: a case study with metastatic melanoma patients. *J  
519 Immunol Methods*. 2012;376(1-2):108-12. doi: 10.1016/j.jim.2011.12.003. PubMed  
520 PMID: 22210094; PubMed Central PMCID: PMCPMC3472364.
- 521 19. Kim HS, Kang HJ, Whang DH, Lee SG, Park MJ, Park J-Y, et al. Analysis of  
522 Reagent Lot-to-Lot Comparability Tests in Five Immunoassay Items. *Annals of Clinical &  
523 Laboratory Science*. 2012;42(2):165-73.
- 524 20. Teunissen CE, Willemse E. Cerebrospinal Fluid Biomarkers for Alzheimer's  
525 Disease: Emergence of the Solution to an Important Unmet Need. *EJIFCC*.  
526 2013;24(3):97-104. PubMed PMID: 27683444; PubMed Central PMCID:  
527 PMCPMC4975183.
- 528 21. Thaler MA, Iakoubov R, Bietenbeck A, Luppa PB. Clinically relevant lot-to-lot  
529 reagent difference in a commercial immunoturbidimetric assay for glycated hemoglobin  
530 A1c. *Clin Biochem*. 2015;48(16-17):1167-70. doi: 10.1016/j.clinbiochem.2015.07.018.  
531 PubMed PMID: 26187005.
- 532 22. Andreasson U, Perret-Liaudet A, van Waalwijk van Doorn LJC, Blennow K,  
533 Chiasserini D, Engelborghs S, et al. A Practical Guide to Immunoassay Method  
534 Validation. *Frontiers in Neurology*. 2015;6:179. doi: 10.3389/fneur.2015.00179. PubMed  
535 PMID: PMC4541289.
- 536 23. Broadstock M, Michie S, Marteau T. Psychological consequences of predictive  
537 genetic testing: a systematic review. *Eur J Hum Genet*. 2000;8(10):731-8. doi:  
538 10.1038/sj.ejhg.5200532. PubMed PMID: 11039571.
- 539 24. Partridge AH, Wong JS, Knudsen K, Gelman R, Sampson E, Gadd M, et al.  
540 Offering participants results of a clinical trial: sharing results of a negative study. *Lancet*.

541 2005;365(9463):963-4. doi: 10.1016/S0140-6736(05)71085-0. PubMed PMID:  
542 15766998.

543 25. Gibson LM, Littlejohns TJ, Adamska L, Garratt S, Doherty N, Group UKBIW, et al.  
544 Impact of detecting potentially serious incidental findings during multi-modal imaging.  
545 Wellcome open research. 2018;2:114-41. doi: 10.12688/wellcomeopenres.13181.3.  
546 PubMed PMID: 30009267.

547 26. Liao JJ, Lewis JW. Qualifying ELISA data: combining information. J Biopharm Stat.  
548 2000;10(4):545-58. doi: 10.1081/BIP-100101983. PubMed PMID: 11104392.

549 27. Andrews SS, Rutherford S. A Method and On-Line Tool for Maximum Likelihood  
550 Calibration of Immunoblots and Other Measurements That Are Quantified in Batches.  
551 PLoS One. 2016;11(2):e0149575. doi: 10.1371/journal.pone.0149575. PubMed PMID:  
552 26908370; PubMed Central PMCID: PMCPMC4764494.

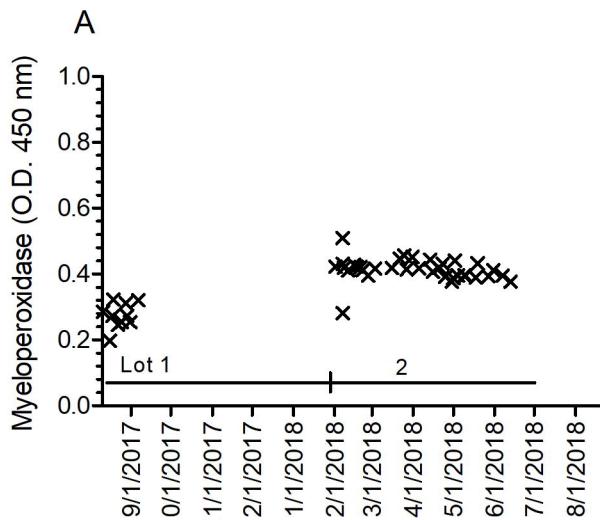
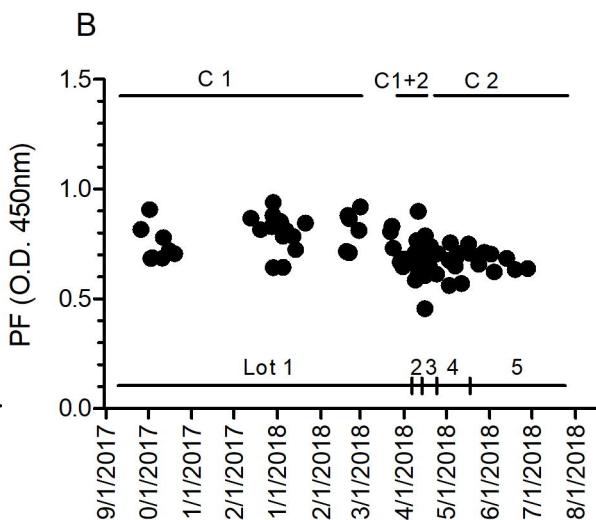
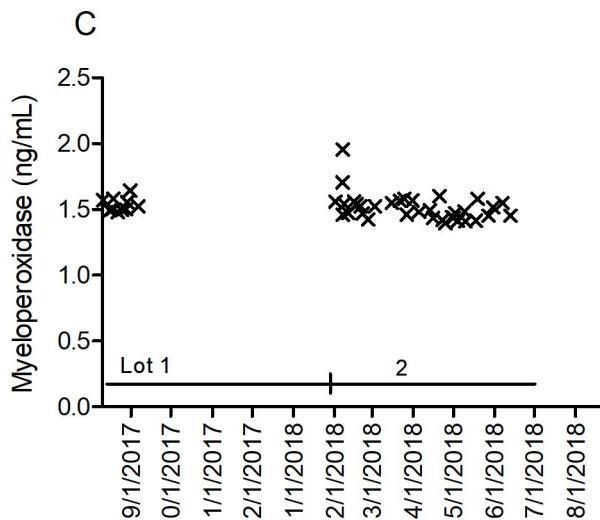
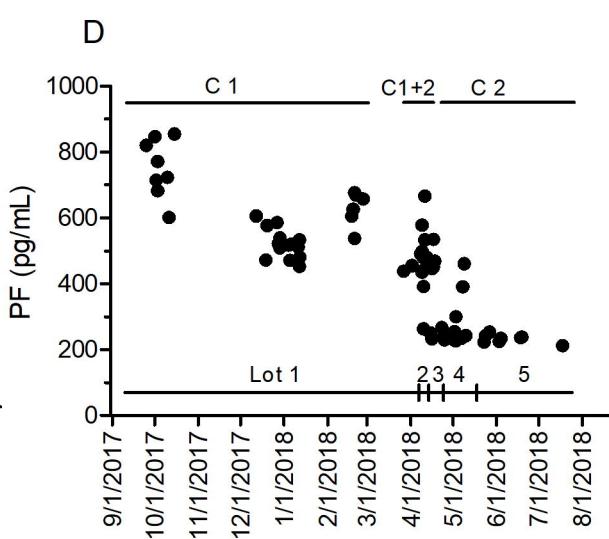
553

## 554 **Supporting Information**

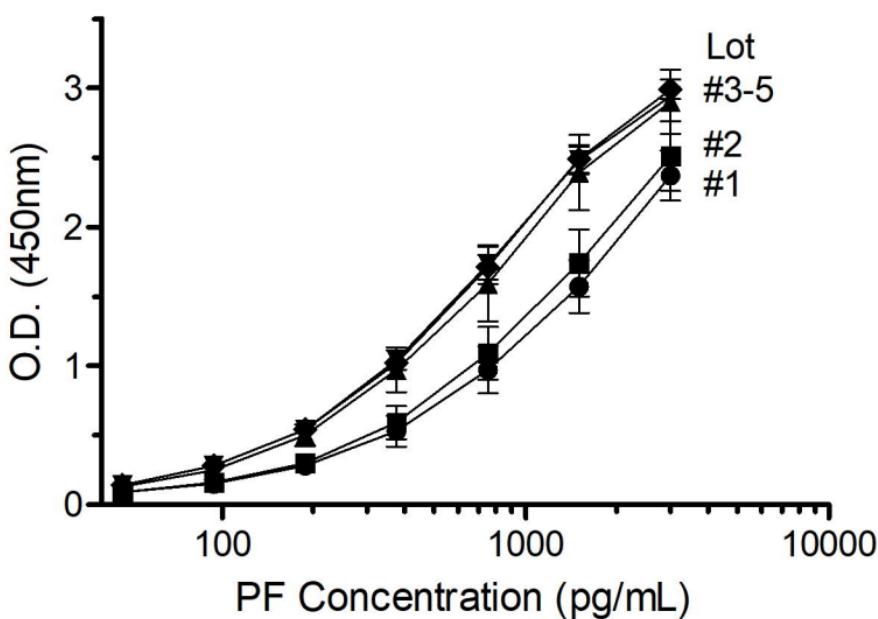
555

556 Supplemental Methods provides instructions on how to load and use ELISAtools for  
557 calculation of S factor(s).

558



A



B

