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Abstract

Biomarkers are fundamental to basic and clinical research outcomes by reporting host
responses and providing insight into disease pathophysiology. Measuring biomarkers
with research-use ELISA kits is universal, yet lack of kit standardization and unexpected
lot-to-lot variability presents analytic challenges for long-term projects. During an ongoing
two-year project measuring plasma biomarkers in cancer patients, control concentrations
for one biomarker (PF) decreased significantly after changes in ELISA kit lots. A
comprehensive operations review pointed to standard curve shifts with the new kits, an
analytic variable that jeopardized data already collected on hundreds of patient samples.
After excluding other reasonable contributors to data variability, a computational solution
was developed to provide a uniform platform for data analysis across multiple ELISA kit
lots. The solution (ELISAtools) was developed within open-access R software in which
variability between kits is treated as a batch effect. A defined best-fit Reference standard
curve is modelled, a unique Shift factor “S” is calculated for every standard curve and
data adjusted accordingly. The averaged S factors for PF ELISA kit lots #1-5 ranged from
-0.086 to 0.735, and reduced control inter-assay variability from 62.4% to <9%, within
quality control limits. S factors calculated for four other biomarkers provided a quantitative
metric to monitor ELISAs over the 10 month study period for quality control purposes.
Reproducible biomarker measurements are essential, particularly for long-term projects
with valuable patient samples. Use of research-use ELISA kits is ubiquitous and judicious

use of this computational solution maximizes biomarker reproducibility.
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Introduction

In virtually every research project with real or potential clinical application,
biomarkers provide valuable data to monitor presence or progression of disease, as well
as therapeutic susceptibility or efficacy. Biomarker data monitor defined outcomes and
there is considerable discussion about whether investigators should disclose incidental
research findings to study participants [1-3]. Intrinsic to this discussion is the need for
reproducible study data and this presents challenges, particularly with long-term studies.
Data rigor and reproducibility is a systemic problem [4] and a priority issue for the NIH. It
is an analytic challenge for long-term studies because research laboratories often do not
have standardized operations nor validated biomarker assay reagents that adhere to the
guality assurance and quality control standards for diagnostic use as required by the

Clinical Laboratory Improvement Act (CLIA; www.cdc.gov/clia).

Protein biomarkers are measured frequently in plasma, serum or other matrices
by solid phase Enzyme-Linked Immunosorbent Assay (ELISA) methods in which the
antigen of interest in the sample is bound by antibodies and the amount of bound antigen
is proportional to the signal strength that develops in the assay. There have been only
136 in vitro diagnostic ELISA kits or kit components cleared or approved by the FDA since
2000, but there are hundreds of commercially available ELISA kits labeled for “research
purposes only” from dozens of vendors. Typically these are vetted by the manufacturer
for sensitivity, selectivity, intra/inter-assay variability, stability and storage needs, but they
are not required to adhere to federal CLIA guidelines. Lot-to-lot variability between ELISA
kits is either not relevant or is manageable for short-term projects, but challenges arise

for quality assurance when multiple lots of research ELISA kits are used in long-term
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projects. A research laboratory may operate under NIH biomarker recommendations [5]
and Good Clinical Laboratory Practice guidelines with appropriate training, auditing,
assay validation and proficiency testing [6], but it does not have jurisdiction over kit
reagents controlled by the manufacturer. In general practice, expected inter-assay
coefficients of variation (CV) for ELISA standard curves will be within 10~20%, but if a
commercial ELISA standard curve suddenly shifts significantly with a new kit lot and
validated control data shifts outside limits, then the current patient biomarker
concentrations cannot be compared with those quantified months earlier. An experienced
laboratory can rescue data from one ELISA with a failed standard curve [7], but long-term
guality assurance poses other challenges. Either all the samples have to be re-assayed,
which introduces variables such as freeze/thaw issues, or the data discarded, all of which
wastes precious patient samples and resources.

This was encountered by our research group with one commercial ELISA kit during
an on-going two year project to evaluate effects of pre-analytic variables on plasma
thrombosis biomarkers in patients. The project developed thirty-five standard operating
procedures (SOPs) that define and document operations from blood acquisition to
transport, processing, assay and storage. Nine biomarkers are quantified by research-
use ELISA kits. For one biomarker, biomarker “PF”, after months of reproducible assays,
we observed a significant shift of our standard curves and internal control results when
assayed with new Kkits lots. The scope of the problem was revealed by review of data
from 5 kit lots over 10 months and 65 ELISA plates. Rigorous review by the quality
assurance team did not identify laboratory or operational pre-analytic contributions and
similar changes were not observed with the other ELISAs. The project had encountered

an unexpected analytic variable and the data from 420 plasma samples collected over 10
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95 months could not be compared. The manufacturer was responsive but ultimately unable

96 to resolve the problem.

97 To rescue our patient data, we developed a computational solution with a

98  sufficiently generalized approach such that it may be used by others facing a similar

99  situation. In the solution, the lot-to-lot variability in ELISA Kits is treated as a batch effect,
100 and a defined Reference standard curve is modelled with either a four- or five-parameter
101 logistic function. Based on this Reference curve, a Shift factor (“S”) can be calculated and
102  applied retrospectively to every standard curve from every ELISA plate over many
103  months, and the biomarker concentrations for that plate are adjusted accordingly. In this
104  way, the data collected from many ELISA plates over many months can be compared on
105  a uniform platform. Once instituted, calculating the Shift factor for each ELISA standard
106  curve or each kit lot provides an expedient way to rapidly monitor standard curves as a

107  quality assurance metric and to facilitate data management.

108  Materials and methods
109

110 ELISA kits
111

112 Biomarker ELISAs with at least two kit lots were analyzed for the current study.
113  ELISAs for human P-selectin/CD62P, human myeloperoxidase and human plasminogen
114  activator inhibitor-1/serpin E1 were provided by R&D Systems (Minneapolis, MN, USA).
115  The ELISA kit vendor for the biomarker of focus for the current study (biomarker “PF”) is
116  not provided for discretionary reasons. Five lots of the biomarker PF ELISA kits were
117  received over a 10 month time period. All ELISA kits were a standard 96-well format,

118  sandwich antibody-based ELISA designated “for research purposes”.

5
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119 Assays and Equipment
120

121 ELISA kits were stored at 4 + 2°C in a cooler (Helmer Scientific, Noblesuville, IN,
122 USA) equipped with alarmed wireless external temperature monitoring (SensoScientific,
123  Inc., Simi Valley, CA). Temperature logs were reviewed and constant temperatures
124  without drift were verified. All kits were used within the manufacturer’s expiration date.
125 Plasma samples stored at -80°C were thawed just before assay in a 37°C water bath for
126 <10 minutes, gently mixed, and kept on ice. Plasma samples were assayed according to
127  a detailed standard operating procedure (SOP) for each biomarker ELISA that includes
128 the manufacturer’s procedural steps. The SOP also included required documentation for
129  every ELISA plate for operator, date, plate ID, critical reagents (date received, lot number,
130 dilution/concentration, expiration date), incubation times (date, start/stop times,
131 temperature), equipment (manufacturer, model, serial number) and a section to document
132 any deviations from the SOP. Every plate included kit standards prepared according to
133  the manufacturer’s instructions. The standards were added to triplicate wells in the first
134  three columns of the provided 96 well plate (columns A-C, rows 1-8 using standard plate
135 designations).

136 For every biomarker and every plate, an internal spiked plasma-based control
137  sample (BMC Control, see below) was included in triplicate wells. Samples were added
138  to the plates in with calibrated pipettes, washing steps were performed with an automated
139  plate washer (Biotek model EIx50, Winooski, VT) and developed color was quantified by
140 measuring optical density (O.D.) at the appropriate wavelength with a microplate reader
141 (VERSAmax; Molecular Devices, Sunnyvale, CA). The acceptable coefficient of variation

142 (CV) of triplicate wells for each standard, control or unknown was <15%. For biomarker
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143 PF, incubations with samples and detection antibody were done at 37°C in a dry incubator
144  per the manufacturer’s instructions and perimeter wells were not used for patient samples
145 to prevent possible evaporation complications due to the elevated incubation
146  temperature. Other ELISAs were performed at room temperature. Initial data analyses

147  were done with SoftMax Pro version 7 (Molecular Devices).

148 BMC Control Preparation and Storage

1?2 Every ELISA plate included a human pooled plasma control sample that had been
151  spiked with supplemental biomarker and designated the BMC Control. For each
152 biomarker, the BMC Control was made in bulk volume according to the respective ELISA
153  SOP and stored at -80°C in small aliquots for single use. For biomarker PF, lyophilized
154  human pooled citrated plasma (Sigma Aldrich, catalogue P9523-5ML) was reconstituted
155  with deionized water at room temperature for at least 15 minutes with gentle mixing,
156  diluted with appropriate buffer to the same ratio as the patient samples and then spiked
157  with reconstituted biomarker PF standard prepared from the same manufacturer’s kit but
158  purchased expressly for this purpose. On the assay day, a BMC Control aliquot was
159  thawed just before assay in a 37°C water bath for <10 minutes, mixed gently and added
160 to each plate in triplicate wells. Two preparations of BMC Controls were made and
161 aliquoted for storage: one in August 2017 (C1) and one in October 2017 (C2). Both

162  preparations were made with PF standard from kit lot #1. The mean O.D. £ S.D. for C1=

163  0.759 £ 0.095 (CV=13%, n=26 plates) and 0.672 + 0.062 (CV=9%, n=16 plates) for C2.

164 Data Analysis and Derivation of Shift Factor “S”
165

166 The approach was implemented in the statistical package R, an open software

167  environment for statistical computing and graphics that accepts ELISA optical density
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168 data and standard concentration data for calculation of a best-fit Reference standard
169 curve. The lot-to-lot variability is modelled as a fixed batch effect calculated as the
170  difference between each plate’s standard curve and the Reference curve. This difference
171  is designated the Shift factor “S”. An adjusted plate standard curve is derived using the
172 S factor and used to adjust the biomarker concentrations.

173 The Reference and standard curves are fitted with four- or five-parameter logistic
174  functions (4pl, 5pl). These functions are well established models to relate analyte
175  concentrations to their response signal intensities in immunoassays [8-10]. The 5pl has
176  the form of:

177 Yoar— 978 (1)

xmid—x \9
1+e scal

178 where Y is the signal intensity of measurement (OD in ELISA assays); X is the log-

179  transformed concentration of analytes; a and d are the lower and upper asymptotes of
180  signal intensity, respectively; xmid is the X value of the curve’s inflexion point; scal is
181 the scale parameter or the inverse of the slope of the curve at the inflexion point (x = xmid
182 ); g Iis the factor controlling the curve asymmetry. When g takes a value of 1, the 5pl
183  becomes the 4pl function.

184 The 5pl could also be written equivalently as a non-logarithm or exponential form,

185 YoAr_— DA 2)

B¢
(1+(X] J
C
186 where Y and gare identical to the parameters in eq. (1); x' is non-log transformed

187  concentration and equal to e*; A and D are identical to its equivalent lower-case letter
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188  parametersin eq.(1); B and C are equivalentto xmid and scal , but have an exponential
189  value of them. In this study, the log-form equation is used for implementation.

190 To analyze data from multiple plates or lots of ELISA kits, batch effects have to be
191  modelled and corrected for data comparison. Many biological or technical factors could
192  impact immunoassay reproducibility and lead to batch effects [11-15]. Lot-to-lot variability
193  between PF ELISA kits is among such factors. We proposed to model and correct it as a
194 fixed batch effect. It first assumes the lot-to-lot differences mainly result from the variable
195 quantitation of standard analyte concentrations, which can expressed as:

c=c,xN 3
196 log(c)=log(c,)+log(N) o

197 where ¢, and ¢ are the real and provided standard analyte concentrations from the
198  manufacturer, respectively, and N is the fold difference between them. We can use X,
199 X, and Sto replace log(c), log(co), and log(N) and rewrite the above log-transformed

200 equation as:

201 Xy =X—S (4)

202  Therefore the statistical model of the standard curves can be written as:

d-a
Yijk:a+ + &

xmid—xij+Si 9 ijk
203 (1+e scal } (5)

i=12..n;j=12.mk=12.

204 where a, d, xmid,scal and g are the parameters for the 5pl as in eq.(1); Y;, is the

205 observed signal intensity (measured OD in ELISA); x; is the log-transformed
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206 concentration of the j" standard analytes in the i batch; S;, the Shifting factor, is the
207 log fold difference between the known concentration and the true one; i and n are the
208 i" and total batch number, respectively; j and m are the j" and total number of
209 standards, respectively; k and | are the k" and total number of measurements; &y IS

210 the random error for each measurements. This equation can be further rewritten into:
211

d-a
212 Yy =a+t————tg (6)

xmid; —X;; 9 ijk
1+e scal

213 where xmid;, = xmid + S, and all other parameters are the same as in eq.(5). As a result,

214  the model indicates that the standard curves of the same batch differ from each other as
215 a result of random errors of measurements, while differences between curves from
216 different batches is ascribed to inaccurate quantitation of analyte concentrations.
217  Furthermore, the standard curves from different batches follow the 5pl functions (or 4pl)

218  with the identical parameters of a, d, scal and g, but different xmid . The differences are
219 defined by the Shift factor,S;, which is estimated through the non-linear regression

220 together with other 5pl parameters.
221 To do the batch normalization/correction, the analyte concentrations in unknown
222  samples are first estimated based on unadjusted standard curves and then the Shift factor

223 S of the batch is applied to obtain the final quantities:

224 (Xij )adj = )zij - Si (7)
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225 where X is the log-transformed analyte concentrations in the unknown sample, i and |

226  are the batch and standard number as in eq.(5), respectively.

227 It might not be possible to know the precise concentrations of analyte in the
228 standard samples (¢, in eq.(3)) without other validation methods, such as proteomics [16].

229 Therefore, we designated one batch as the Reference batch, in which the analyte
230 concentrations of the standard samples were treated as accurate, and from that we
231 estimated the Shift factor S of all other batches relative to it. The data from 28 standard
232 curves from PF ELISA kit lot #1 (batch #1) was used to calculate a 4pl reference curve
233 for biomarker PF. For other biomarkers, at least four representative standard curves from
234  at least two lots and three operators were chosen to model the best-fit 4pl Reference

235 curve.

236 Statistical Analysis
237

238  Student’s t-tests were performed for analysis of inter-assay differences. Analysis of
239 variance between groups was performed with Bonferroni post-test. P<0.05 was

240 considered significant.

241 Software Availability
242

243 An ELISA data analysis tool (ELISAtools) with the ability to correct batch effects
244  has been implemented in the statistical R software (version 3.5.1) and is available freely

245  for academic use at https://github.com/BULOI/ELISAtools. Instructions for calculation of

246 S factors is provided in Supplemental Methods.

247
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248 Results
249
250 Procedurally, the ELISA manufacturer's directions were followed for reagents,

251  buffers, assay temperature, reagent incubations and wash times. Operationally, these
252 instructions were supplemented with documentation for each plate that included operator,
253 kit reagent lot numbers and clock times for reagent additions and incubation periods.
254  Including a BMC control sample on each plate permitted comparison of data over months
255 (Fig 1). Control optical density (O.D.) readings were consistent with time even with
256 different ELISA kit lots (Fig 1A,B). Myeloperoxidase data (lots #1,2) is shown as a
257  comparison with biomarker PF (lots #1-5). Observations were similar for the other seven
258  biomarkers (data not shown). Myeloperoxidase O.D.s were slightly higher for lot #2, but
259 calculated antigen concentrations were stable (Fig 1C). In contrast, calculated PF
260 concentrations in the BMC controls (preparations C1 and C2) decreased by an average
261 62.4% between ELISA kit lot #1 and lot #5 over the time (Fig 1D), exceeding our quality
262 control limits. This disconnect between O.D. readings and calculated PF biomarker
263  concentrations over time raised problems for the 420 patient samples already analyzed.
264

265 Fig 1. Biomarker Controls with Time

266 ELISAs were completed over ~10 months as described in Methods for biomarkers
267 myeloperoxidase and PF. (A,B) Optical density (O.D. at 450nm) readings and biomarker
268  concentrations calculated from each plate’s standard curve (C,D) for the BMC internal control
269  samples are shown versus time. Two ELISA kit lots were used for myeloperoxidase, and five kit
270  lots for PF. Two BMC control preparations were used for PF (C1 and C2), and one BMC control

271  preparation for myeloperoxidase. OD readings for PF controls are reasonably constant with time,

272 but unlike myeloperoxidase, PF concentrations decreased by 62.4% over the study period.
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273 Loss of PF antigenicity in the BMC controls during freezer storage could be a
274  contributor. BMC control preparation C1 was prepared in August 2017 and C2 in October
275 2017, and stored aliquots were used over the study period. The averaged optical density
276  values for C1 were higher than C2 (P<0.01; C1 O.D.=0.759 + 0.095, CV=9%;n=26 plates;
277 C2 O.D. = 0.672 £ 0.062, CV=13%, n=16 plates). However, O.D. values over time for
278 each preparation were reasonably stable (Fig 1B), suggesting PF antigenicity did not
279  change significantly during storage. Despite similar O.D. values, a plate with control C1
280 had a calculated PF concentration of 723.9 pg/mL (mean, triplicate wells) in October 2017
281  with kit lot #1, but the same control calculated as 238.5 pg/mL in June 2018 with kit lot #5
282 (Table 1). A similar change was observed for BMC control preparation C2 samples.
283  Other than the kit itself, a detailed operations review did not identify significant changes
284 in PF antigenicity, environment, equipment or operator contributions that could explain
285 the large change in calculated PF concentrations observed in the BMC controls (data not
286  shown). Notably, no similar changes were observed with the other eight biomarker kits
287  (1-6 kit lots) over the same period.

Table 1. BMC Controls and ELISA Kit Lot number (#)

O.D. PF Conc.
Assay Date BMC Control C1 BMC Control C2 Kit Lot# (450nm)” (pg/mL)
10/11/2017 X 1 0.686 723.9
06/19/2018 X 5 0.638 238.5
02/19/2018 X 1 0.717 605.4
06/04/2018 X 5 0.684 225.1

"Mean O.D. + S.D. is 0.759 + 0.095 for C1 (CV=13%, n=26) and 0.672 + 0.062 (CV=9%, n=16)

13
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288 In contrast, comparison of PF standard curves from kit lot #1-5 showed a trend
289  with time (Fig 2A) that paralleled changes observed with the BMC control concentrations.
290 Expected variability between standard curves within the lot was observed (Fig 2B), but
291 lot-to-lot variability showed a left-shift trend. The averaged standard curves for lots #1
292  and #2 (September, November 2017) were similar, but lots #3-5 (April, May 2018) curves
293  hadincreasing O.D. at each standard concentration. The expected consequence of a left-
294  shift in standard curves will be lower biomarker PF concentrations, which was observed
295 (Fig 1, Table 1).

296

297 Fig 2. Lot-to-Lot Variability in PF ELISA.

298 (A) The averaged standard curves for each lot of PF ELISA as the mean optical density
299 O.D. = S.D. at each standard concentration. N= 28, 19, 8, 4, 9 curves for lots #1-5,
300 respectively. (B) Variability of standard curve optical density at 450nm within and
301 between PF ELISA kit lots #1 and #5.

302

303 To address this analytic variable and rescue our patient data, a strategy was
304 developed such that each PF standard curve is compared to a best-fit Reference curve
305 (O.D. versus PF concentration) and a Shift factor (“S”) calculated that quantifies the
306 difference between each plate’s standard curve and the Reference curve. An adjusted
307 plate standard curve equation is derived and the biomarker concentrations are re-
308 calculated. Thus, every plate has a unique adjustment, based on the calculated S factor
309 for that plate, and results are generated on a uniform platform. A small S factor value
310 indicates the original standard curve on that plate is similar to the best-fit Reference curve.

311  Conversely, a large S factor indicates a larger left- or right-shift relative to the best-fit
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312 Reference curve. The PF Reference curve was fitted with a 4-parameter logistics (4pl)
313 equation common to many ELISA analyses, but a 5-parameter logistics (5pl) curve fit
314 option is also available (Supplemental Methods).

315 Assignment of biomarker PF data to calculate the Reference curve was based on
316 our available data, the manufacturer’s screening data, and judgment. We used data from
317 28 standard curves (PF kit lot #1) consistent over six months and three operators to
318 calculate the (4pl) Reference curve. Fig 3 shows the Reference curve with unadjusted
319 averaged standard curves for lots #2 and #5. Lot #2 curves had an average S factor of
320 0.0690 (n=19) indicating small differences from the Reference curve. In contrast, lot #5
321  curves had an average S factor of 0.6994 (n=9), indicating a substantial shift relative to
322 the Reference curve.

323

324 Fig 3. Reference Curve for calculation of S factor.

325 The best-fit, 4-parameter logistic (4pl) Reference curve ( closed circle, R, solid line) from
326  twenty-eight PF ELISA kit lot #1 standard curves is shown as derived from the indicated
327 equation and D= -0.01; A= 3.20; C= 1300.00; B= -1.30. The averaged standard curves
328 for kit lot #2 has an S factor = 0.0690 (open square; n=19 curves) and S= 0.6994 (open
329 triangle; n=9) for curves from kit lot #5.

330

331 S factors for each PF standard curve were calculated (Fig 4). Data from lot #1 was
332  used to fit the Reference Curve, so the average S factor is close to 0 as expected. A shift
333 from the Reference curve for lots #3-5 is shown by their higher average S factors. One
334 lot #2 plate had an S = 0.7032, which is 20.8-fold higher than the average S factor from

335 the remaining plates (mean S=0.0338 + 0.158; n=18). Data from this plate is under
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336 review. Average S factors for lots #3-5 are similar, but those from lot #3 have greater
337 inter-assay variability. The CV for lot #3 S factors is 44.2% (n=8), compared to 16.7%
338 (n=4) for lot #4 and 11.5% (n=9) for lot #5. Whether this is due to manufacturer’s
339 differences, sample size or laboratory-based variables is not known.

340

341 Fig 4. Calculated Shift Factors for PF ELISA Standard Curves.

342 A 4pl Reference curve was derived from PF kit lot #1 standard curves data and a Shift
343 factor “S” was calculated to quantify the difference between each plate’s standard curve
344  and the best-fit reference curve. The S factors for each curve in lots #1-5 is shown with
345 the mean (horizontal line) for each lot. S factors for lots #1 and #2 curves are not different,
346  butthose for lots #3-5 differ significantly from lot #1 (***P<0.0001, ANOVA with Bonferroni
347  post-test).

348

349 The BMC control PF concentrations for preparations C1 and C2 were re-calculated
350 using the S factor for each plate’s standard curve. The reference curve was based on kit
351 lot #1 data and C1 was assayed primarily with kit lots #1 and #2. Thus, the average PF
352  concentration did not change significantly (P=0.843), but the variance was reduced (P=
353 0.002), as expected (Fig 5). C2 controls were included primarily on plates from kit lots
354  #3-5, so the difference after correction with S factors is significant (P<0.0001).

355

356 Figure 5. BMC Control PF Concentrations.

357 A BMC control sample from preparation C1 or C2 was included on each ELISA plate for
358 the 10 month study period and assayed with kit lots #1-5. C1 was used primarily on plates

359  from kit lots #1 and #2. C2 was used primarily on plates from kit lots #3-5. Standard
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360 curves from each plate were adjusted according to their calculated S factor and the control
361  PF concentrations were re-calculated. The data shows the PF concentrations before and
362  after correction with the S factors. ***P<0.0001; ns, not significant (Student’s t test).

363

364 S factors for myeloperoxidase, soluble P-selectin and plasminogen activator
365 inhibitor-1 were calculated (Table 2). Data for 4pl Reference curves was chosen from
366 four standard curves performed by 3 different operators over at least 6 months to
367 represent the composite data and inter-assay variability. One myeloperoxidase curve
368 had an S = 1.099, and this data is under review. All BMC controls were within quality
369  control limits.

Overall, their calculated S factors agree with consistent BMC Control

370 values over time and between Kit lots.

371
Table 2. Average S Factors (min, max; N) for Biomarker Standard Curves from Kit Lots
Biomarker Lot1l Lot 2 Lot 3
Myeloperoxidase 0.041 0.505 0.289
(-0.352, 0.347; 10) (0.085, 1.10; 35) (0.231, 0.382; 3)
Soluble P-selectin -0.032 0.105
(-0.294,0.156; 42) (-0.153, 0.393; 4)
Plasminogen -0.226 -0.056 -0.008
activator inhibitor-1 5 5500.107: 22)  (-0.373,0.047; 22) (-0.043,0.039; 2)
372
373
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374 DIsScussion
375

376 Acquiring ELISA data using commercial research kits over a prolonged period
377 presents challenges for quality control needs. There is potential impact of multiple
378 operators, antigen stability, environmental and equipment drift, lot-to-lot reagent
379 variability, and lack of validated controls [15, 17-20]. It is virtually impossible to
380 manufacture a new reagent lot that is identical in all respects to prior lots, and reagent
381 variability occurs even with commercial diagnostic assay reagents [21]. Yet minimizing
382 these influences is necessary so patient or other experimental data can be compared with
383  confidence over the study period. In this study, changing BMC control concentrations for
384  biomarker PF first raised the potential of excessive lot-to-lot variability in the ELISA kits.
385 The optical density data did not change significantly, but calculated PF concentrations
386 greatly decreased, and this disconnect triggered the comprehensive data review. After
387 excluding other reasonable contributors, the S factor strategy was developed to provide
388 a uniform platform for comparison of patient PF data collected over many months.

389 Calculation of S factors allowed retrospective adjustment of each plate’s standard
390 curve. The averaged S factors for PF kit lots #1-5 ranged from -0.086 to 0.735, and
391 reduced the BMC control inter-assay variability to within our quality control limits (<9%).
392 Review of the S factors for each standard curve was useful in that we could rapidly identify
393  possible outliers. One curve each from PF ELISA lot #1 (high) and lot #3 (low), and one
394 for myeloperoxidase (high) were sufficiently different and those plates were tagged for
395 review. Unanticipated variability occurred even with SOPs, required documentation,
396 equipment calibration and heightened operator awareness of pre-analytic variables.
397  Controlling pre-analytic variables for quality assurance and method validation is difficult
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398 [22] and identifying trends on a day-to-day basis is largely subjective. Once a Reference
399 curve is established, calculating the S factor for each curve provides rapid and
400 quantitative comparative data.

401 Few research-use ELISA kits include validated controls, so the early decision to
402 include spiked plasma controls on every plate was advantageous. One limitation of
403 laboratory-made controls is that each preparation will be slightly different and those
404  differences may not be apparent until enough plates have been run to set the quality
405 control ranges. Access to independently standardized and validated controls in a variety
406  of matrices (plasma, serum, urine, etc) for established and emerging biomarkers would
407 be a valuable resource for investigators and facilitate more consistent biomarker results
408 between laboratories. This in turn supports the goals of improved data rigor and
409 reproducibility, and the more ethical discussion regarding disclosure of validated data to
410  study participants [23-25].

411 The problem of inter-assay variability is not new [26] and various approaches are
412  proposed to quantify data that are acquired in batches using conversion of a signal from
413  known samples into a meaningful value for unknown samples [15, 27]. For in vitro
414  diagnostic ELISA kits used in a clinical laboratories, quality assurance is provided by a
415 validated control sample(s) with defined value limits. Research-only ELISA kits do not
416  have this foundation, yet are used universally. Calculation of S factors and retrospective
417  re-analysis with adjusted standard curves is useful when quality control values exceed
418 limits and environmental, procedural, equipment or operator contributions are ruled out.

419 This strategy should be used judiciously primarily because data choices for the
420 Reference curve is partially subjective. We chose data from PF ELISA lot #1 based on

421 volume of data, relative consistency over many months and similarity to the

19


https://doi.org/10.1101/483800
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/483800; this version posted December 6, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC 4.0 International license.

422  manufacturer’s data for that lot. We could have chosen standard curve data from lot #5
423  plates instead, but there were fewer curves over a shorter time period and our collective
424  experience judged this to be a less favorable choice. We do not anticipate using this
425  strategy for the other biomarkers. Their inter-assay ELISA variability is acceptable, their
426  BMC controls remain within limits, and there is no justifiable need to adjust the curves.
427  That said, we have found the S factors to be a useful monitor of ELISA outcomes to
428  rapidly identify pre-analytic factors, such as operator differences, that otherwise may be
429  difficult to identify by visual inspection of the data, particularly for long-term projects.

430 There are other approaches to adjust for batch effects in immunoassays similar to our
431  current work. More complicated statistical approaches are employed, such as the mix-
432  effect model [15] and the iterative maximum likelihood method [27]. They assume a linear
433  relationship between the measured signals and the analyte concentrations, which is only
434  an approximation and has its own limitations. Our implementation takes the form of a non-
435 linear logistic function. Our proposed statistical model is simple and the assumption is
436  appropriate for the observed lot-to-lot variability (Supplementary Figure 2).

437 We focused on developing an accessible and generalizable strategy to solve similar
438 issues as long as the assumptions are met. The software is implemented in R and the
439  data input uses a format familiar to those who use standard 96 well plates for ELISAs. It
440 is written for either Mac or PC and a choice of 4pl or 5pl curve fitting is provided. The
441  software is open source and in the public domain, with instructions for data input in the
442  Supplemental Methods.

443

444
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