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ABSTRACT

Widespread structural, chemical and molecular differences have been reported between the
male and female human brain. Although several neurodevelopmental disorders are more
commonly diagnosed in males, little is known regarding sex differences in early human brain
development. Here, we used RNA sequencing data from a large collection of human brain
samples from the second trimester of gestation (N = 120) to assess sex biases in gene
expression within the human fetal brain. In addition to 43 genes (102 Ensembl transcripts)
transcribed from the Y-chromosome in males, we detected sex differences in the expression
of 2558 autosomal genes (2723 Ensembl transcripts) and 155 genes on the X-chromosome
(207 Ensembl transcripts) at a false discovery rate (FDR) < 0.1. Genes exhibiting sex-biased
expression in human fetal brain are enriched for high-confidence risk genes for autism and
other developmental disorders. Male-biased genes are enriched for expression in neural
progenitor cells, whereas female-biased genes are enriched for expression in Cajal-Retzius
cells and glia. All gene- and transcript- level data are provided as an online resource
(available at http://fgen.psycm.cf.ac.uk/FBSeq1) through which researchers can search,
download and visualize data pertaining to sex biases in gene expression during early human

brain development.
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INTRODUCTION

Sex differences have been reported in the regional volumes (Ruigrok et al. 2014; Ritchie et al.
2018) connectivity (Ingalhalikar et al. 2014) and chemistry (Nishizawa et al. 1997; Laakso et
al. 2002) of the adolescent and adult human brain. Sex biases are also observed in the
prevalence and presentation of many human disorders of the central nervous system (Zagni
et al. 2016). These include conditions with early neurodevelopmental origins such as autism
spectrum disorders (ASD) and intellectual disability (Werling and Geschwind 2013; Polyak et
al. 2015), the former diagnosed at a four-fold excess in males. Studies in animals have
highlighted the importance of the pre-natal period in sexual differentiation of the brain and
in establishing later sex-biased behaviours (Phoenix et al. 1959; Arnold 2009). However, little

is currently known regarding sex differences in human fetal brain development.

Transcriptomic studies, executed through microarray and more recently RNA sequencing
(RNA-Seq) technology, provide a powerful means of assessing the molecular basis of sex
differences. Such studies have revealed sex biases in autosomal gene expression as well as in
the expression of genes on the sex chromosomes in the postnatal human brain (Weickert et
al. 2009; Kang et al. 2011; Trabzuni et al. 2013; Xu et al. 2014; Mayne et al, 2016; Shi et al.
2016; Werling et al. 2016). Although sex biases in gene expression have also been reported
in the prenatal human brain (Reinius and Jazin 2009; Kang et al. 2011; Shi et al. 2016;
Werling et al. 2016), studies exploring this to date have been limited by small sample sizes
(total N < 20) and widely varying gestational ages, with all but one (Shi et al. 2016) relying on

microarray-based measures of gene expression.

In the present study, we examined sex differences in gene expression using RNA sequencing
data from a large (N = 120) collection of brain samples from the second trimester of

gestation (O’Brien et al. 2018). Our combination of greatly increased sample size and deep
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RNA sequencing allowed us to identify thousands of previously undetected sex biases in
gene expression in the human prenatal brain, at the individual transcript as well as whole
gene level. We provide our data as a searchable online resource, available at

http://fgen.psycm.cf.ac.uk/FBSeq1.

RESULTS

Sex biases in gene expression in the human fetal brain

We analysed RNA sequencing data from 120 human fetal brains (12-19 post-conception
weeks [PCW]), generated through a previous study (O’Brien et al. 2018). Abundances of
individual Ensembl transcripts were quantified using kallisto (Bray et al. 2016), with
measures of each gene based on summation of counts assigned to all annotated transcripts
for that gene. We thus derived expression measures for 94,969 expressed Ensembl
transcripts, annotated to 31,378 genes. We compared individual gene- and transcript- level
expression between males (N = 70; mean age = 14.3 PCW; age range =12 — 19 PCW) and
females (N = 50; mean age = 14.2 PCW; age range = 12 — 19 PCW), controlling for known

variables as well as hidden confounders (see Methods), using DESeq2 (Love et al. 2014).

Analyses at the gene level indicated 2756 Ensembl genes that were differentially expressed
between male and female prenatal brain at a false discovery rate [FDR] < 0.1. Of these, 1468
genes exhibited higher expression in males and 1288 genes were more highly expressed in
females (Supplementary Table S1). Genes with higher expression in males included 1377
located on autosomes and 48 on the X-chromosome, as well as 43 genes expressed from the
Y-chromosome. Genes with higher expression in females included 1181 located on

autosomes and 107 genes mapping to the X-chromosome. Only 20% (507) of the identified
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autosomal genes, 36% (56) of the X-chromosome genes and 56% (24) of the Y-chromosome
genes have previously been reported to show sex-biased expression in the fetal or adult

human brain (Supplementary Table S2).

Analyses at the individual transcript level identified 3032 Ensembl transcripts with sex-
biased expression (FDR < 0.1), of which 1389 were more highly expressed in males and 1643
more highly expressed in females (Supplementary Table S3). Transcripts with higher
expression in males included 1243 located on autosomes and 44 derived from the X-
chromosome, as well as 102 transcripts expressed from the Y-chromosome. Transcripts with
higher expression in females included 1480 located on autosomes and 163 on the X-
chromosome. We detected sex biases in 1220 autosomal transcripts annotated to 1095
genes that did not exhibit pronounced sex differences (FDR < 0.1) at the gene level. These
transcript-specific autosomal sex differences were found to particularly manifest when the

affected transcript(s) were not the predominant RNA species of the gene (e.g. Figure 1).
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Figure 1. Transcript-specific sex-bias in expression of the autosomal gene AKR1B15.
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Significant male-bias is observed in the expression of a less abundant AKR1B15 transcript
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ENST00000457545 (FDR = 4.8 X 10°%%; top), but not in a more abundant AKR1B15 transcript
(ENST00000467545; FDR = 0.68; middle) or in AKR1B15 expression at the summated gene

level (FDR =0.17; bottom).

Sex-biased gene expression from the X-chromosome

X-chromosome inactivation (XCI) is the process by which transcription from one of the two
X-chromosomes in female cells is silenced to balance gene expression dosage with XY males.
Recent data indicate that at least 23% of X-chromosome genes escape XCl to some degree
(Tukiainen et al. 2017). Twenty-six of the 107 X-chromosome genes that exhibited female-
biased expression in fetal brain are reported by Tukiainen and colleagues to escape XCl, and
a further 11 to show variable escape status (Figure 2, Supplementary Table S4). We note
significant female biases (FDR < 0.1) in the expression of an additional 43 genes for which XCl
status is either classed as unknown or is not reported in the Tukiainen et al. study (Figure 2;
Supplementary Table S4), which could include novel candidates for XCl escape in the
developing human brain. Eleven of the 48 X-chromosome genes exhibiting higher expression
in males (FDR < 0.1) map to the PAR1 pseudoautosomal region, which showed a general
male-bias in expression (Figure 2; Supplementary Table S4). Although the pseudoautosomal
regions of the X-chromosome are believed to also escape XCl, our findings are consistent
with data from adult human tissues (Tukiainen et al. 2017), indicating only partial dosage

compensation in females.
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Figure 2. Sex biases in X-chromosome gene expression in relation to reported X-
chromosome inactivation status (Tukiainen et al. 2017). Red data points indicate female-
biased genes, while blue data points indicate male-biased genes (FDR < 0.1). Gray data
points indicate X-chromosome genes that do not exhibit sex-biased expression at an FDR <
0.1. PAR = pseudoautosomal regions; NA = not reported in the study of Tukiainen and

colleagues.

Sex-biased expression of genes implicated in neurodevelopmental disorders

We detected expression of all 79 X-chromosome genes listed by Piton and colleagues (2013)
as confirmed X-linked intellectual disability (XLID) loci, consistent with their involvement in
early human brain development. In addition to the increased vulnerability to X-chromosome
gene disruption in XY males, we note that 9 of these well-supported XLID genes (KDM5C,
NLGN4X, OFD1, SYN1, PTCHD1, IL1IRAPL1, TSPAN7, CASK and RAB39B) displayed higher

baseline expression in the female prenatal brain (FDR < 0.1), while 8 (FTSJ1, DLG3, ARHGEF9,
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FMR1, DKC1, RBM10, BCOR, FLNA) exhibited higher expression in males. Three of the 10
most significantly female-biased genes (STS, PUDP and NLGN4X) map within a small region
on chromosome Xp22.3 where deletions are associated with a substantially increased risk of
developmental disorder and associated traits in males (Chatterjee et al. 2016). We detected
expression of all but 2 (MFRP and OR52M 1) of the 65 risk genes for autism (FDR < 0.1)
identified by Sanders and colleagues (2015). These high-confidence autism risk genes were
significantly enriched for sex-biases in expression in the human fetal brain (18% sex-biased,
compared with 9% of expressed genes overall, P = 0.004), with 7 autosomal genes (ACHE,
CHD2, KDM6B, KMT2C, PHF2, POGZ, SYNGAP1) displaying higher expression in males and 5
autosomal genes (ADNP, KAT2B, RANBP17, SCN2A, USP45) exhibiting higher expression in
females (at FDR < 0.1). Similarly, we found that 75 out of 76 autosomal genes exhibiting a
genome-wide significant excess of damaging de novo mutations in developmental disorders
(Deciphering Developmental Disorders Study, 2017) are expressed in fetal brain. These too
were enriched for sex biases in gene expression, with 13 genes (ADNP, MED13L, TCF4, EP300,
FOXP1, CDK13, TBL1XR1, KAT6B, CHD2, POGZ, EHMT1, CTCF, AUTS2) displaying higher
expression in males and 3 genes (SCN2A, COL4A3BP, DNM1) exhibiting higher expression in

females (21% sex-biased, P = 0.0004).

Enrichment of sex-biased autosomal genes in functional categories and fetal cell types

Sex differences in autosomal gene expression could reflect cellular differences between the
sexes that are a distal consequence of signalling through the sex chromosomes. As an initial
exploration of the biological significance of our findings, we tested whether male- and
female- biased autosomal genes (FDR < 0.1) were enriched for annotation to specific Gene
Ontology (GO) terms. Autosomal genes that exhibited higher expression in males were
enriched for GO terms including ‘chromosome organization’ (fold-enrichment = 2.5;

Bonferroni-corrected P = 9.8 X 10°%) and ‘cell cycle’ (fold-enrichment = 1.9; Bonferroni-
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corrected P = 2.9 X 10%1), whereas those that were more highly expressed in females were
notably enriched for synaptic processes, with ‘synaptic signaling’ the most significant term
(fold-enrichment = 2.8; Bonferroni-corrected P = 1.2 X 10*?) (Supplementary Tables S5 and
S6). These enrichments could reflect differences in cellular composition between the male
and female brain at this developmental time-point. To explore this hypothesis, we tested for
enrichment of sex-biased genes (FDR < 0.1) within gene sets that have recently been
reported to distinguish cell types in the human fetal brain through single cell RNA
sequencing (Fan et al. 2018; Zhong et al. 2018). Consistent with our finding that male-biased
genes are enriched for involvement in the cell cycle, male-biased genes are also enriched
among those that are reported to show higher expression in neural progenitor cells
(Bonferroni-corrected P = 0.0038). In contrast, female-biased genes are notably enriched
among those distinguishing Cajal-Retzius cells (Bonferroni-corrected P = 3.2 X 10%), as well
as for genes more highly expressed in oligodendrocyte precursor cells (Bonferroni-corrected
P =2.7 X 10®), astrocytes (Bonferroni-corrected P = 0.025) and glia in general (Bonferroni-

corrected P = 0.005).

DISCUSSION

We present the largest analysis of transcriptional sex differences in the human prenatal
brain to date, identifying sex-biases in the expression of approximately 9% of transcribed

genes.

Our data illuminate molecular differences between males and females that are likely to
govern as well as reflect the early sexual differentiation of the human brain. The former

might include expression of 43 genes from the Y-chromosome in the male fetal brain, as well
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as sex-biased expression of X-chromosome genes in females. Sex biases in autosomal gene
expression could reflect hormonal influences, the direct action of transcription factors
transcribed from the sex chromosomes or cellular differences between males and females
that are secondary to these factors. For example, studies in rodents indicate that fetal
testosterone, through its aromatization to estradiol, could plausibly account for the
increased cellular proliferation in the male prenatal brain suggested by our data (Martinez-

Cerdefio et al. 2006; Bowers et al. 2010).

Our detection in the fetal brain of numerous genes implicated in XLID, ASD and other
developmental disorders is consistent with a prenatal component to these conditions. In
addition, we find that many of these genes display sex-biased expression in the human fetal
brain, which could modulate the impact of pathogenic mutations at these loci. Indeed, we
found that high confidence risk genes for ASD (Sanders et al, 2015) are enriched two-fold for
sex biased expression in the prenatal brain. The proportion of genes exhibiting sex-biased
expression in the fetal brain was even higher for those implicated in developmental
disorders by the recent Deciphering Developmental Disorders Study (2017), with the

majority (13 /16) more highly expressed in males.

Analyses of our data in relation to recent single cell RNA sequencing findings (Fan et al.
2018; Zhong et al. 2018) suggest subtle differences in cellular composition between the male
and female human brain during the studied period of gestation. Consistent with our finding
that male-biased genes are enriched for involvement in the cell cycle, we find that these
genes are also enriched for those that are more highly expressed in neural progenitor cells.
In contrast, we observe a highly significant enrichment of female-biased genes among those
that have been reported to be more highly expressed in Cajal-Retzius cells, as well as
enrichments for genes that are prominently expressed in oligodendrocyte precursors and

astrocytes. Cajal-Retzius cells are an early form of neuron that play a major role in neural

10


https://doi.org/10.1101/483636
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/483636; this version posted March 21, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

O’Brien et al.
migration through their secretion of the extracellular matrix protein reelin (Soriano & Del Rio.
2005), while oligodendrocyte precursor cells and astrocytes appear after the emergence of
neurons in the mammalian brain (Qian et al. 2000; Zhong et al. 2018). It is possible that the
cellular differences between the male and female prenatal brain suggested by these
analyses have etiological relevance to ASD and other sex-biased neurodevelopmental
disorders. For example, an extended period of neural progenitor proliferation might render
males more susceptible to environmental and genetic insults, while earlier maturation of
particular neuronal and glial cells in females might confer a protective effect. We provide
our data as a searchable, online resource to aid in the investigation of these and other

disorders of human brain development.

METHODS

RNA sequencing data

RNA sequencing data were previously generated using undissected brain tissue from 120
human fetuses aged 12-19 PCW (described in O’Brien et al. 2018). Briefly, RNA-Seq libraries
were prepared from extracted total RNA using the TruSeq Stranded Total RNA RNA Library
Prep kit (lllumina), following depletion of ribosomal RNA. Libraries were sequenced on
Illumina HiSeq systems, generating at least 50 million read pairs (100 million reads) per
sample. Fetal sex was determined by karyotyping, expression of genes on the Y-chromosome
in males and heterozygosity for genetic X-chromosome markers in females. Of the 120
samples included in the analysis, 70 were thus determined to be male and 50 female. Male
and female samples were well matched for known variables including age, RIN and read

count (Supplementary Table S7).
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Gene expression analyses

Transcript abundance was quantified by pseudoalignment of sequencing reads to transcript
sequences derived from the GRCh38 human genome reference sequence and Ensembl
(version 81) reference annotation using kallisto (Bray et al. 2016). Reads were aggregated at
the gene level using tximport (Soneson et al. 2015) and biomaRt (Durinck et al. 2005), with
between-sample normalization and variance-stabilizing transformation carried out using
DESeq?2 (Love et al. 2014). Gene expression measures were quantile normalized and
corrected for PCW, RIN, sequencing batch, the first three principal components derived from
genome-wide DNA genotypes (O’Brien et al. 2018) and 10 hidden confounders estimated
through use of probabilistic estimation of expression residuals (PEER; Stegle et al. 2012).
Tests of differential expression between males and females were performed using DESeq2
(Love et al. 2014) using the wrapper scripts included in the SARtools package (Varet et al.
2016) in the R statistical computing environment. Genes and transcripts with low expression
were filtered out using empirically determined thresholds (average counts per sample of
0.26 for the gene-level analysis and 0.23 for the transcript-level analysis) before controlling
the False Discovery Rate (FDR) at 0.1. Outliers were detected by calculating Cook’s distance:
genes where Cook’s distance was greater than 10 for any sample were discarded from the

list of differentially expressed genes.

Analyses of genes implicated in heurodevelopmental disorders

Enrichment of sex-biased genes (FDR < 0.1) among high confidence risk genes for ASD
(Sanders et al. 2015) and developmental disorders (Deciphering Developmental Disorders
Study, 2017) was tested using hypergeometric tests, as implemented in the clusterProfiler R

package (Yu et al. 2010).
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Gene Ontology and cell enrichment analyses

Autosomal genes exhibiting sex-biased expression (FDR < 0.1) were subject to Gene
Ontology (GO) enrichment analysis using all terms included in the comprehensive GOBPFAT
category through DAVID Bioinformatics Resources 6.8 (Huang et al. 2009;
https://david.ncifcrf.gov/). For each analysis, we used a background of all expressed
autosomal genes (N = 30,331). To explore potential differences in cellular composition
between the male and female prenatal brain, we tested for enrichment of male- and female-
biased genes (FDR < 0.1) among genes that are reported by Zhong et al. (2018) to be
differentially expressed between 6 major cell types in the prenatal human prefrontal cortex
(neural progenitor cells, excitatory neurons, interneurons, astrocytes, oligodendrocyte
progenitor cells and microglia) and among genes that are reported by Fan et al. (2018) to be
differentially expressed between 8 major cell types of the human fetal cerebral cortex
(excitatory neurons, inhibitory neurons, Cajal-Retzius cells, glial cells, microglia, endothelial
cells, immune cells and blood cells). Enrichments were tested using hypergeometric tests, as
implemented in the clusterProfiler R package (Yu et al. 2010), and resulting P-values were

Bonferroni-corrected for 14 tests.

DATA ACCESS

A searchable database of normalized expression data for all expressed Ensembl genes and
transcripts can be accessed at: http://fgen.psycm.cf.ac.uk/FBSeql. The raw RNA sequencing
data are available through the European Genome-phenome Archive

(https://www.ebi.ac.uk/ega/home) under study accession number EGAS00001003214.
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Scripts to produce analyses and figures are available at: https://github.com/hobrien/GENEX-

FB1.
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