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ABSTRACT 

 

Case-control genome-wide association (CC-GWAS) studies might provide valuable 

clues to the underlying pathophysiologic mechanisms of complex diseases, such as 

neurodegenerative disease, cancer. A commonly overlooked complication is that 

multiple distinct disease states might present with the same set of symptoms and hence 

share a clinical diagnosis. These disease states can only be distinguished in a 

biomarker evaluation that might not be feasible on the whole set of cases in the large 

number of samples that are typically needed for CC-GWAS. Instead, the biomarkers are 

measured on a subset of cases. Or an external reliability study estimates frequencies of 

the disease states of interest within the clinically diagnosed set of cases. These 

frequencies often vary by the genetic and/or non-genetic variables. We derive a simple 

approximation that relates the genetic effect estimates obtained in a logistic regression 

model with the clinical diagnosis as an outcome variable to the estimates in the 

relationship to the true disease state of interest. We performed simulation studies to 

assess accuracy of the approximation that we’ve derived. We next applied the derived 

approximation to the analysis of the genetic basis of innate immune system of 

Alzheimer’s disease.  
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INTRODUCTION 

 

Case-control genome-wide analyses scan (CC-GWAS) is a tool that is widely used to 

elucidate the genetic basis of complex diseases. A common complication is that multiple 

distinct disease states share the observed symptoms and hence the clinical diagnosis. 

Frequencies of the disease states within the clinical diagnosis often vary by the key 

variables. If the disease states have distinct genetic basses, the analyses with a clinical 

diagnosis as an outcome variable might be substantially biased (Carroll et al, 2006). 

 

The specific example that motivated this study is the analyses of the genetic 

susceptibility to Alzheimer’s disease (AD). The clinical diagnosis of AD is typically made 

based on a set of descriptive criteria and only a small subset of cases receives positron 

emission tomography (PET) to evaluate for amyloid positivity, what is a requirement for 

the true, or pathologically defined, AD. Recent biomarker studies (Salloway and 

Sperling, 2015) estimate that 36% of ApoE �4 non-carriers and 6% of ApoE �4 carriers 

diagnosed with AD do not have evidence for amyloid as measured by PET, hence do 

not qualify for the true AD diagnosis.  

 

We are interested to examine the role of the genetic variants serving the innate immune 

system in susceptibility to AD, i.e. the AD symptoms underlined by the amyloid 

deposition. The usual analyses define the outcome variable in a regression analysis to 

be the clinical diagnosis. We, however, recognize heterogeneity of the clinical diagnosis 

where the underlying disease state separates the cases into a subset with amyloid-
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related AD, what is the disease state of interest; and non-amyloid-related AD, what is 

the nuisance disease state. We derive the theoretical approximation that provides a 

simple and general relationship between � and Γ estimates using Kullback-Leibler 

divergence (Kullback, 1959). 

 

Our paper is organized as follows. First, in the Material and Methods section we present 

the setting, notation, and the proposed approximation for various models. Next, in the 

Simulation Experiments section we describe the empirical studies that are conducted to 

compare the resulting performance of the approximation that we derived relative to the 

average observed across many simulated datasets. We then compare the estimates in 

a practical setting of an Alzheimer’s disease study that aims to investigate the genetic 

basis of innate immune system in the relationship to the AD symptoms underlined by 

amyloid pathology. We conclude our paper with brief Discussion. 
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MATERIALS AND METHODS 

 

We define � to be the genotype of single nucleotide polymorphisms (SNPs) measured 

at multiple locations. Let � and � be the environmental variables that might interact. We 

assume that the genotype is independent of the environment and follows Hardy-

Weinberg equilibrium model ��	; ��, where � is the frequency of the minor allele.  

 

We define 
�� be the observed clinical diagnosis that is inferred based on a set of 

descriptive criteria that characterize symptoms. Let 
 denote the true disease states, 

where 
 � 1 indicates the disease state of interest and 
 � 1� is the nuisance disease 

state. It might not be possible to measure 
 on the set of cases in a GWAS, instead 
 is 

available on a subset or frequencies of 
 within the clinically defined set of cases are 

reliably estimated in an external reliability study. We define the clinical-pathological 

diagnosis relationship using ���� � ���
 � 1|
�� � 1, ��, what is a frequency of the 

disease state of interest within the clinically diagnosed set and the frequency varies by 

�. In the context of AD study, ���
 � 1�|
�� � 1, �� � 1 � ����, ���
 � 0|
�� � 1, �� �
0, ���
 � 1�|
�� � 0, �� � ���
 � 1|
�� � 0, �� � 0 and ���
 � 1�|
�� � 0, �� �
���
 � 0|
�� � 0, �� � 1. We define the probabilities of the clinical diagnosis in the 

population to be ���� � ���
�� � ����. Similarly, we let frequencies of the true 

pathologic state in the population to be �� � ���
 � ��. 
 

For clarity of presentation we assume that genotype is binary to indicate presence of a 

minor allele, environmental variables � and � are Bernoulli with frequencies �� and ��, 
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respectively. In the Appendix we discuss how to extend the approximation to the 

categorical and continuous variables.  

 

Model 1. �	: We first consider a setting when only the genetic variable � is in the risk 

model, i.e. the true disease risk model is  

log �
��,��
��|��


��,��
��|��
� �  � !  � " �;                                                                                        

(1) 

log �
��,��
���|��


��,��
��|��
� � #� ! #� " �;                                                                                      (2) 

while the model used is the usual logistic regression model with the clinical diagnosis as 

an outcome variable, i.e. 

log $
���
����|��


���
����|��
% � &� ! &� " �.                                                                                       (3)    

Derivations provided in Appendix A1 show that  

&� ( log)exp� �� ! exp�#��-;                                                                                         
(4a) 

&� ( log)exp� � !  �� ! exp�#� ! #��- � log )exp � �� ! exp �#��-  
( log)exp� �� ! exp�#� ! #��- � log)exp� �� ! exp�#��- ! �������

����������������	�
"  �.      (4b) 

From (4a) and (4b), we derive that 

 � ( log)exp�&�� � exp�#��-;                                                                                          
(4c)  � ( log)exp�&� ! &�� � exp�#� ! #��- � /0	)exp�&�� � exp�#��-.                
(4d)   
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Appendix A3 describes how to obtain    �,    � ,   #�,   #� ,  assuming estimates of &�,  &�      
are available from the usual logistic regression and reliable estimates of � � ��1� "
���� � 1� ! ��0� " ���� � 0� and ��  are available in the literature.                                                 

Model 2. �	 and ��: We next consider a setting when the genetic variable � and an 

environmental variable � are in the risk model, i.e. the true disease risk model is  

log �
��,��
��|�,��


��,��
��|�,��
� �  � !  � " � !  � " �;                                                                                       

(5) 

log �
��,��
���|�,��


��,��
��|�,��
� � #� ! #� " � ! #� " �;                                                                                      

(6) 

while the model used is  

log $
���
����|�,��


���
����|�,��
% � &� ! &� " � ! &� " �.                                                                                

(7)    

Derivations provided in Appendix A2 show that  

&� ( log)exp� �� ! exp�#��- ;                                                                                          
(8a) 

&� ( 0.5 " ∑ 3log)exp� � !  � !  � " 4� ! exp�#� ! #� ! #� " 4�- � log )exp � � !  � "�

4� ! exp �#� ! #� " 4�-5  
( 0.5 " ∑ 3log)exp� � !  � " 4� ! exp�#� ! #� ! #� " 4�- � log)exp� � !  � " 4� !�

exp�#� ! #� " 4�-5 ! 0.5 " ∑ ��������
���

��������
������������	��
���
"  �� ;                                    

(8b) 

&� ( 0.5 " ∑ 3log)exp� � !  � !  � " 	� ! exp�#� ! #� ! #� " 	�- � log )exp � � !  � "�

	� ! exp �#� ! #� " 	�-5  
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( 0.5 " ∑ 3log)exp� � !  � " 	� ! exp�#� ! #� ! #� " 	�- � log)exp� � !  � " 	� !�

exp�#� ! #� " 	�-5  ! 0.5 " ∑ ��������	���

��������	������������
��	���
"  �.�                                     

(8c) 

Model 3. �	, ��, ��, and ����.: A model with interaction between the environmental 

variables � and � is discussed in Appendix. 

Model 4. �	�
, �	�

 and �	��	�
: A model with gene-gene interactions is discussed in 

Appendix. 

Remarks: 

1. Model 1, equation (4b). If  � � #� � 0, then &� � 0. 
2. Model 2, equation (8b). If  � � #� � 0, then &� � 0. 
3. Model 2, equation (8c). If  � � #� � 0, then &� � 0. 
4. Remarks 1-3 describe when the usual logistic regression models with the clinical 

diagnosis as an outcome variable correctly estimate the null effect.  

5. The equations that we derived apply to several possible likelihood functions. For 

example, parameter estimates in Model 3 can be estimated based on the usual 

logistic regression model, i.e. the probability of the form ��"�
��|�, �, �� or in a 

pseudolikelihood (Spinka et al, 2005; Lobach et al, 2018) ��"�
��, �|�, �, 6 � 1�, 

where , 6 � 1 is an imaginary indicator of being selected into the study. All the 

derivations apply to both models.  

 

SIMULATION STUDIES 

False positive rate We first perform a series of simulation experiments to examine a 

false positive rate in the estimates of  � when the data are simulated from model (1)-(2), 
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but the parameter estimates are obtained from model (3). We define the false positive 

rate to be the fraction of p-values70.05 across 10,000 simulated datasets in the usual 

logistic regression analyses as an outcome variable, i.e. (3), when in fact  � � 0. We 

simulate the data using model (1) with coefficients  � � 0.5,  � � 0, #� � log�1� �
0 , log�1.5� � 0.41, log �2� � 0.69.  We next estimate parameters using model (3). Table 

1 presents false positive rates in datasets with <� � <� � 3,000; 10,000. When the 

genetic effect is not associated with the clinical diagnosis, the false positive rate is 

nominal, i.e. is nearly 0.05. When #� increases, the false positive rate gets inflated, e.g. 

when #� � log�1.5� � 0.41, the false positive rate is 0.72. Increase in sample size did 

not result in decrease of the false positive rate. 

 

Approximation vs. empirical estimates We next perform a series of simulation 

experiments to assess the magnitude of bias and the approximation to the relationships 

that we’ve derived. First, we estimate the bias empirically as the average across 500 

simulated datasets where the data are simulated using the true model (1)-(2), (5)-(6), 

(A3)-(A4) based on coefficients � and >, but estimate the parameters Γ  in the usual 

logistic regression model (3), (7) and (A5). We then compare these averages to the 

approximations that we’ve derived.  

 

We simulate genotype (�), age (>), sex (?), ApoE @4 status to be Bernoulli with 

frequencies �� , �#, �$, �%&. In the context of previous notations, � is the ApoE @4 status 

and � is a set consisting of �, >, ?.  We then simulated the clinical diagnosis status 
�� 

according to the models (3), (7) and (A5) and the true disease states 
 according to 
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model (1)-(2), (5)-(6), (A3)-(A4). In all simulations we let �� � 0.10, �# � 0.50, �$ �
0.52, �%& � 0.07. 
 

Model 1 We fist simulate the data using model (1)-(2) and estimate parameters in the 

logistic model (3). We set  � � 0.5,  � � log�1� � 0, log�1.5� � 0.41, log�2� �
0.69, log�2.5� � 0.92, log(3)=1.1, #� � log�1� � 0 , log�1.5� � 0.41, � 0.69 and simulate 

datasets with 3,000 cases and 3,000 controls. Table 2 presents empirical estimates of 

 � and the approximation (4b).  Across all values of  � and #�, the approximation (4b) is 

accurate relative to the empirical estimate. 

 

Model 2 We next generate data using models (5)-(6) but estimate parameters using 

model (7). We let  � � #� � 0.5, 

 � � log�1� � 0 , log�1.5� � 0.41 , log�2� � 0.69 , log�2.5� � 0.92 , log�3� � 1.1,  %& � #%& �
log�8� , #� � log�1� � 0, log�2� � 0.41 , log�3� � 0.69, log�4� � 1.1 and generate datasets 

with 3,000 cases and 3,000 controls. Approximations and the empirical estimates for &� 

shown in Table 3 demonstrate that the approximation (8b) is accurate relative to the 

empirical estimates. The empirical estimate of &%& is 2.09, while the approximation is 

2.08. 

 

Model 3 We next simulate data using models (A3)-(A4) and estimate parameters using 

model (A5), with the approximation derived in (A6a-c). 
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Setting 1. We first consider a setting when the nuisance disease is not associated with 

the genotype (#� � 0) and when @4 and > " @4 are not associated with the nuisance 

disease status (#%& � 0, #� � 0, ##�%& � 0). We simulate the clinical diagnosis and 

disease states with coefficients  � � �1,  $ � /0	�0.92� � �0.08,  %& � /0	�8� �
2.1,  # � /0	�2� � 0.69, 
 � � /0	�1�, /0	�1.5�, /0	�2�, /0	�2.5�, /0	�3�,  #�%& � /0	�1�, /0	�2�, /0	�3�, /0	�3�, 
#� � �1, #$ � /0	�0.92�, #%& � 0, ## � /0	�2�, #� � 0, ##�%& � 0. 
Figure 1 presents biases in estimates of  � (panel A),  # (panel B),  $ (panel C),  %& 

(panel D) and  #�%& (panel E) in studies with 3,000 cases and 3,000 controls; values of 

 #�%& are shown along the x-axis and values of  � are indicated by color. Figure 1 

panels A and D show that bias in the estimates of  � and  %&  can be substantial with 

largest bias of -0.06; panel E shows that bias in  #�%& is notable in this case ranging 

from 0.01 to -0.06; estimates of  # and  $ are nearly unbiased consistent with the 

theoretical observations that the null effect in some settings can be estimated with no 

bias even in a misspecified model. We note that magnitude of bias in  � 
C and 

 #�(& 
D  increases as the true value of the coefficient increases.  

 

Shown on Figure 2 are the empirical bias (Emp) and the approximation (AX) of bias in 

 � indicated by color with values of  #�%& along the x-axis and values of  � along the 

panels. The difference between the Emp and AX starts at ( 0.6 when  � � 0.41 and 

increases to ( 1.2 when  � � 1.1. Bias of  $
C and  #

C   is approximated to be <0.0001. 

Shown on Figure 3 are Emp and AX of estimates of  %&, and Figure 4 is presenting 

estimates of  #�%&. 
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Setting 2. We next simulate datasets with 30,000 cases and 30,000 controls in the 

Setting 1. Supplementary Figure 1 shows that biases in the estimates noted in Setting 

1 persists for larger sample sizes. 

 

Setting 3. We next consider a setting when with the nuisance disease the genotype is 

associated (#� � /0	�1.5�), #%& is associated (#%& � /0	�2�), and no interaction ##�%& �
0.   We next change the parameters for the nuisance state to be #� � �1, #$ �
/0	�0.92�, #%& � /0	�2�, ## � /0	�2�, #� � /0	�1.5�, ##�%& � 0 and all other parameters 

as in Setting 1. Shown on Supplementary Figure 2 are biases in the estimates of the 

parameters of interest that reach -1.4 for  � 
C , are near -0.5 for  %& 

C , and can reach  -0.15 

for  #�(& 
D  . 

 

Setting 4. We next consider a Setting 1 but with more common disease of interest, i.e. 

 � � 1.5. Supplementary Figure 3 is showing empirical bias in all estimates. The 

estimates can still be substantially biased. 

 

Setting 5. We next consider a setting where the genetic variable is associated with the 

nuisance disease state (#� � /0	�2�) and there is significant > " @4 interaction (##�%& �
/0	�2�). We next change the parameters for the nuisance state to be #� � 0.5, #$ �
/0	�0.80�, #%& � /0	�4�, ## � /0	�3�, #� � /0	�2�, ##�%& � /0	�2�. Figure 5 presents 

biases in the estimates and Supplementary Figures 4-5 show the empirical estimates 

and the approximations. 
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Supplementary Figure 7: Frequency of the disease state of interest (
 � 1) and the 

nuisance disease (
 � 1�) when  � � 1.5,  $ � /0	�0.80�,  %& � /0	�8�,  # � /0	�3�, 
 � � /0	�1�, /0	�1.5�, /0	�2�, /0	�2.5�, /0	�3�,  ��%& � /0	�1�, /0	�2�, /0	�3�, /0	�3�, 
#� � 0.5, #$ � /0	�0.80�, #%& � /0	�4�, ## � /0	�3�, #� � /0	�2�, ##�%& � /0	�2�, 
�� � 0.10, �# � 0.50, �$ � 0.52, �%& � 0.07. Shown along the x-axis are values of  � and 

indicated by color are values of  #�%&.  We note that these frequencies are similar to 

those in context of Alzheimer’s disease. 

 

 
ROLE OF THE GENETIC VARIANTS SERVING INNATE IMMUNE 

SYSTEM IN SUSCEPTIBILITY TO ALZHEIMER’s DISEASE 

 

We apply the usual logistic analyses with the clinical diagnosis as an outcome variable 

to a dataset collected as part of the Alzheimer’s Disease Genetics Consortium. We next 

apply the approximations (7)-(10) and (11)-(14) to see how the genetic estimates 

change when presence of the nuisance disease state is recognized. 

We mapped Illumina Human 660K markers onto human chromosomes using NCBI 

dbSNP database (https://www.ncbi.nlm.nih.gov/projects/SNP/). Chromosomal location, 

proximal gene or genes and gene structure location (e.g. intron, exon, intergenic, UTR) 

has been recorded for all SNPs. From these data we inferred 165 SNPs to reside in 

genes serving innate immune system.  

The dataset consists of 727 controls and 2,797 cases diagnosed with AD.  
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We are interested to examine a relationship between the pathologic disease state of AD 

characterized by presence of amyloid deposition and each of the 165 SNPs serving the 

innate immune system. We include ApoE @4 status, age, and sex in the model with an 

interaction between ApoE and age. The genetic variant is modeled as a Bernoulli 

variable as an indicator of presence or absence of a minor allele. Age is Bernoulli as 

well that corresponds to a median split in the dataset. 

 

Table 4 presents estimates of effects of the SNPs obtained using the usual logistic 

regression model with the clinical diagnosis as an outcome variable in a univariable 

model (3) and with adjustment for SNP + ApoE ε4 + Age + Sex (7); and the 

corresponding models (1-2) and (5-6) that recognize presence of the nuisance disease 

state. In the univariable setting the empirical bias is estimated as the difference between 

the main effect estimates obtained in model (3) and model (1-2), and the approximation 

to the bias is estimated as derived in (4b). In the multivariable setting, the empirical bias 

is the difference between main effect estimates obtained in model (7) and (5-6), and the 

approximation is as derived in (8b).  

 

First shown in Table 4 are 16 estimates with p-value<0.05 after the Benjamini-Hochberg 

multiple testing adjustment in a univariable model (3) and then added are 13 SNPs with 

p-value <0.05 in a univariable model (1-2). Across all these SNPs, the approximation 

was accurate relative to the empirical bias. 
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DISCUSSION 

 

We’ve examined a situation when multiple disease states share observed symptoms 

and hence the clinical diagnosis. Both theoretically and in extensive simulation studies 

we observed that the magnitude of bias can be substantial in situations when frequency 

of the nuisance disease state within the clinically diagnosed set varies by the key 

variables. We derived a simple and general approximation to the relationship between 

the genetic effect estimates that use the clinical diagnosis as an outcome variable and 

the estimates that recognize presence of the nuisance disease state.  

 

While the effect of misclassification of the disease status has been examined 

extensively in statistical literature (Carroll et al, 2006), we extend the literature by 

deriving a simple and general approximation to the bias in a multivariable setting. The 

approximation provides a simple formula to assess how elastic the estimates of interest 

are to the values of parameters in the nuisance risk model. The regression coefficients 

or plausible ranges for the coefficients of the nuisance disease state are often available 

in the literature. 

 

Simulation studies that we conducted showed that when presence of the nuisance 

disease is ignored, the genetic effect estimates can be biased in either direction. These 

biases can be substantial in magnitude leading to false positive and false negative 

results.  
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While our study is motivated by the setting of Alzheimer’s disease, the results are 

readily applicable for other complex diseases. For example, Manchia el al (2013) 

examined the effect of heterogeneity, i.e. presence of non-cases, in the context of 

diabetes and showed that ignoring the heterogeneity leads to reduced statistical power 

to detect an association and also reduced the estimated risks attributable to 

susceptibility alleles. 

 

The approximation that we’ve derived is widely applicable in other areas of research 

where the diagnosis is heterogeneous. For example, when disease states correspond to 

subtypes of a complex disease. We also see the application to the analyses of 

Electronic Health Records, where the disease status might be subject to exposure-

dependent differential misclassification (Chen et al, 2017).  
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APPENDIX 

A1. Approximation using Kullback-Leibler divergence 

We show schematics of the derivations based on Model 3, the other models can be 

derived accordingly. We denote the model the true model (9)-(10) based on probability 

��"�
��|�, �, �� or ��"�
��, �|�, �, 6 � 1�  as �),#�
��, �, �, �� � ��),#�
��, �|�, �, 6 �
1�. Similarly, we denote model (3) with (4) as �"�
��, �, �, �� � ��"�
��|�, �, ��. 

Kullback (1959) showed that parameters Γ converge to values that minimize Kullback-

Leibler divergence criteria between the two models, specifically 

& � E�	FG< $H�,�,� IH
��|�,�,� J/0	 $*�,��
��,�,�,��

*��
��,�,�,��
%KL%. 

Considerable algebraic derivations arrive to the following system of equations to be 

solved for parameters Γ 
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H�,�,� M3��),#�
 � 1|�, �, �� ! ��),#�
 � 1�|�, �, ��5 " �����
��"�
�� � 1|�, �, ��

" ∂
∂Γ

O4��&� ! &� " � ! &� " � ! &� " � ! &��� " � " ��
1 ! O4��&� ! &� " � ! &� " � ! &� " � ! &��� " � " ��

! ��),#�
 � 0|�, �, �� " �����
��"�
�� � 0|�, �, ��

" ∂
∂Γ

1
1 ! O4��&� ! &� " � ! &� " � ! &� " � ! &��� " � " ��P � 0 

(A1) 

Define Q��, �, �; Γ� � ����� " +�
�,��,
���,	���,
���,
�
�����

��+�
�,��,
���,	���,
���,
�
�����
 

Then (A1) becomes 

H�,�,� R� " Q��, �, �; Γ� S��),#�
 � 1|�, �, �� ! ��),#�
 � 1�|�, �, ��
��"�
�� � 1|�, �, ��

� ��),#�
 � 0|�, �, ��
��"�
�� � 0|�, �, ���T � 0 

 

H�,�,� M� " Q��, �, �; Γ� ���),#�
 � 1|�, �, �� ! ��),#�
 � 1�|�, �, ��
��"�
�� � 1|�, �, ��

� ��),#�
 � 0|�, �, ��
��"�
�� � 0|�, �, ���P � 0 

H�,�,� M� " Q��, �, �; Γ� ���),#�
 � 1|�, �, �� ! ��),#�
 � 1�|�, �, ��
��"�
�� � 1|�, �, ��

� ��),#�
 � 0|�, �, ��
��"�
�� � 0|�, �, ���P � 0 

H�,�,� M� " � " Q��, �, �; Γ� ���),#�
 � 1|�, �, �� ! ��),#�
 � 1�|�, �, ��
��"�
�� � 1|�, �, ��

� ��),#�
 � 0|�, �, ��
��"�
�� � 0|�, �, ���P � 0 
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Values of Γ such that  

��),#�
 � 1|�, �, �� ! ��),#�
 � 1�|�, �, ��
��"�
�� � 1|�, �, �� � ��),#�
 � 0|�, �, ��

��"�
�� � 0|�, �, �� � 1 

for all �, �, � solve the system of equations (A1). 

By definition, 

&� � 0.25 " ∑
�,-

3/0	GU)��"�
�� � 1|� � 1, � � 4, � � V�- � /0	GU)��"�
�� � 1|� � 0, �
� 4, � � V�-5. 

With Taylor series expansion around  � � 0 we arrive at (12a). Derivation for the other 

parameters is similar. If � is continuous, then e.g., 

&� � 0.5 " ∑
�

3/0	GU)��"�
�� � 1|� � 	, � � 4 ! 1, � � 0�- � /0	GU)��"�
�� � 1|� � 	, � �
4, � � 0�-5. 

 
 
 
 
 
 

�� � ����1� � 0 ����1.5� � 0.41 ����2� � 0.69 

�� � �� � 3,000 0.052 0.72 0.99 

�� � �� � 10,000 0.048 0.79 0.99 

Table 1: False positive rate defined as the proportion of p-values70.05 across 10,000 

simulated datasets in the usual logistic regression analyses as an outcome variable (3), 

when in fact  � � 0 and the data are generated from (1)-(2). We let  � � 0.5,  � � 0, 

#� � log�1� � 0 , log�1.5� � 0.41, log �2� � 0.69. 
 

 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 29, 2018. ; https://doi.org/10.1101/483198doi: bioRxiv preprint 

https://doi.org/10.1101/483198
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

�� 

�� 

Log(1)=0 Log(1.5)=0.41 Log(2)=0.69 Log(2.5)=0.92 Log(3)=1.1 

Log(1)=0 0.003, 0 0.23, 0.22 0.41, 0.40 0.57, 0.56 0.70, 0.69 

Log(2)=0.41 0.41, 0.41 0.57, 0.56 0.70, 0.69 0.82, 0.81 0.92, 0.92 

Log(3)=0.69 0.70, 0.69 0.82, 0.81 0.93, 0.92 1.0, 1.0 1.1, 1.1 

Log(4)=1.1 0.93, 0.92 1.02, 1.01 1.1, 1.1 1.2, 1.2 1.3, 1.3 

Table 2: Empirical estimates of  � and approximation (4b). The data are simulated from 

models (1)-(2) and is estimated using model (3). Empirical estimates are the averages 

across 500 datasets with 3,000 cases and 3,000 controls. We let  � � #� � 0.5, 

 � � log�1� � 0 , log�1.5� � 0.41 , log�2� � 0.69 , log�2.5� � 0.92 , log�3� � 1.1,  %& � #%& �
log�8� , #� � log�1� � 0, log�2� � 0.41 , log�3� � 0.69, log�4� � 1.1. 
 

 

 

�� 

�� 

Log(1)=0 Log(1.5)=0.41 Log(2)=0.69 Log(2.5)=0.92 Log(3)=1.1 

Log(1)=0 0.0056, 0 0.23, 0.22 0.41, 0.40 0.57, 0.56 0.70, 0.69 

Log(2)=0.41 0.41, 0.41 0.57, 0.56 0.79, 0.69 0.82, 0.81 0.92, 0.92 

Log(3)=0.69 0.70, 0.69 0.82, 0.81 0.92, 0.92 1.0, 1.0 1.1, 1.1 

Log(4)=1.1 0.92, 0.92 1.02, 1.01 1,1, 1.1 1.2, 1.2 1.2, 1.3 

Table 3: Empirical estimates of &� and approximation (8b). The data are simulated from 

models (5)-(6) and is estimated using model (7). Empirical estimates are the averages 

across 500 datasets with 3,000 cases and 3,000 controls. We let  � � #� � 0.5, 

 � � log�1� , log�1.5� , log�2� , log�2.5� , log�3� ,  %& � #%& � log�8� , #� �
log�1� , log�2� , log�3� , log�4� .
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Model 
used for 
estimation 

SNP only SNP + ApoE ε4 + Age + Sex 

 
(3) 

 
(1-2) 

 
Bias 

 
(7) 

 
(5-6) 

 
Bias 

SNP Esti
mate 

P-
Value 

Esti
mat
e 

P-
value 

Empir
ical  

Appro
ximati
on 
(4b) 

Esti
mat
e 

P-
Value 

Esti
mate 

P-
value 

Emp
irica
l  

Appro
ximati
on 
(8b) 

SNPs with p-value <0.05 in the univariable model (3) 

rs906227 1.2 0.038 1.2 0.09 0.008 0.008 2.2 0.03 1.6 0.12 0.60 0.63 

rs7582453 -0.22 0.028 2.4 0.02 -2.7 -2.7 -0.24 0.03 -0.09 0.24 -0.15 -0.17 

rs402681 -0.19 0.047 2.3 0.008 -2.4 -2.4 -0.19 0.07 0.06 0.38 -0.25 -0.28 

rs4896278 0.22 0.02 -1.6 0.01 1.9 1.9 0.23 0.03 0.61 0.21 -0.38 -0.43 

rs4521619 0.22 0.03 0.93 0.044 -0.70 -0.70 0.15 0.18 0.26 0.13 -0.11 -0.17 

rs11988857 0.18 0.049 2.5 0.01 -2.3 -2.3 0.20 0.06 0.28 0.17 -0.09 -0.10 

rs7046061 -0.21 0.016 -0.22 0.006 0.01 0.01 -0.27 0.005 -0.09 0.49 -0.18 -0.20 

rs10745937 -0.19 0.049 2.3 0.01 -2.5 -2.5 -0.14 0.20 -0.06 0.53 -0.09 -0.12 

rs4758919 -0.24 0.007 0.19 0.02 -0.43 -0.43 -0.25 0.01 -0.19 0.19 -0.06 -0.08 

rs4982421 -0.23 0.008 -0.83 0.004 0.59 0.59 -0.22 0.03 -0.60 0.21 0.39 0.40 

rs6573553 0.19 0.04 0.16 0.02 -1.3 -1.3 0.20 0.045 0.30 0.35 -0.10 -0.14 
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rs2239281 0.24 0.006 1.8 0.01 -1.5 -1.5 0.25 0.01 0.38 0.28 -0.13 -0.15 

rs1242558 0.22 0.01 1.8 0.02 -1.5 -1.5 0.20 0.046 0.27 0.13 -0.07 -0.08 

rs2469206 -1.04 0.046 -2.1 0.02 1.0 1.0 -1.1 0.069 NA NA NA NA 

rs1654558 -0.50 0.03 0.59 0.006 -1.1 -1.1 -0.52 0.047 -0.54 0.13 0.01 0.01 

rs6056427 0.27 0.048 -0.28 0.04 0.55 0.55 0.28 0.06 -1.4 0.03 1.7 2.0 

SNPs with p-value <0.05 for estimate of �� in the univariable model (1)-(2) 
 

rs9380764 0.08 0.61 0.38 0.006 -0.42 -0.42 0.25 0.19 1.1 0.04 -0.85 -0.87 

rs957140 -0.18 0.07 -0.15 0.042 -0.048 -0.048 -0.12 0.29 NA NA NA NA 

rs12900401 -1.7 0.10 -1.7 0.036 -0.01 -0.01 -1.6 0.13 -1.6 0.01 -0.88 -0.78 

rs2469206 -0.36 0.12 -0.35 0.042 -0.01 -0.01 -0.19 0.43 -1.1 0.02 0.92 0.97 

rs165810 -0.21 0.06 -0.18 0.01 -0.03 -0.03 -0.05 0.71 -0.09 0.48 0.04 0.03 

rs330773 0.16 0.14 0.68 0.048 -0.79 -0.79 0.15 0.21 0.09 0.48 0.06 0.08 

rs6781037 0.17 0.06 0.19 0.04 -0.03 -0.03 0.21 0.04 0.19 0.36 0.02 0.01 

rs10051127 0.56 0.36 1.7 0.04 -1 -1 0.45 0.46 -0.17 0.37 0.62 0.74 

rs2402789 0.36 0.22 1.6 0.04 -1.3 -1.3 0.50 0.14 1.3 0.01 -0.80 -0.90 

rs1859333 0.13 0.14 0.23 0.03 -0.03 -0.03 0.12 0.23 -0.19 0.37 0.31 0.40 

rs2283379 0.14 0.12 0.15 0.04 -0.002 -0.002 0.21 0.05 -0.14 0.38 0.34 0.37 

rs17117337 -0.10 0.46 2.2 0.004 0.10 0.10 -0.06 0.67 -0.15 0.38 0.08 0.08 

rs1702447 0.21 0.16 0.58 0.006 -0.08 -0.08 0.22 0.20 0.20 0.24 0.02 0.03 

Table 4: Main effect estimates of SNPs obtained using the usual logistic regression with the clinical diagnosis as an 
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outcome variable in a univariable model (3) and with adjustment for SNP + ApoE ε4 + Age + Sex (7); and the 

corresponding models (1-2) and (5-6) that recognize presence of the nuisance disease state. In the univariable setting the 

empirical bias is estimated as the difference between the main effect estimates obtained in model (3) and model (1-2), 

and the approximation is as derived in (4b). In the multivariable model, the empirical bias is the difference between main 

effect estimates obtained in model (7) and (5-6), and the approximation is as derived in (8b). 
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