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ABSTRACT

Case-control genome-wide association (CC-GWAS) studies might provide valuable
clues to the underlying pathophysiologic mechanisms of complex diseases, such as
neurodegenerative disease, cancer. A commonly overlooked complication is that
multiple distinct disease states might present with the same set of symptoms and hence
share a clinical diagnosis. These disease states can only be distinguished in a
biomarker evaluation that might not be feasible on the whole set of cases in the large
number of samples that are typically needed for CC-GWAS. Instead, the biomarkers are
measured on a subset of cases. Or an external reliability study estimates frequencies of
the disease states of interest within the clinically diagnosed set of cases. These
frequencies often vary by the genetic and/or non-genetic variables. We derive a simple
approximation that relates the genetic effect estimates obtained in a logistic regression
model with the clinical diagnosis as an outcome variable to the estimates in the
relationship to the true disease state of interest. We performed simulation studies to
assess accuracy of the approximation that we've derived. We next applied the derived
approximation to the analysis of the genetic basis of innate immune system of

Alzheimer’s disease.


https://doi.org/10.1101/483198
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/483198; this version posted November 29, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

INTRODUCTION

Case-control genome-wide analyses scan (CC-GWAS) is a tool that is widely used to
elucidate the genetic basis of complex diseases. A common complication is that multiple
distinct disease states share the observed symptoms and hence the clinical diagnosis.
Frequencies of the disease states within the clinical diagnosis often vary by the key
variables. If the disease states have distinct genetic basses, the analyses with a clinical

diagnosis as an outcome variable might be substantially biased (Carroll et al, 2006).

The specific example that motivated this study is the analyses of the genetic
susceptibility to Alzheimer’s disease (AD). The clinical diagnosis of AD is typically made
based on a set of descriptive criteria and only a small subset of cases receives positron
emission tomography (PET) to evaluate for amyloid positivity, what is a requirement for
the true, or pathologically defined, AD. Recent biomarker studies (Salloway and
Sperling, 2015) estimate that 36% of ApoE 4 non-carriers and 6% of ApoE ¢4 carriers
diagnosed with AD do not have evidence for amyloid as measured by PET, hence do

not qualify for the true AD diagnosis.

We are interested to examine the role of the genetic variants serving the innate immune
system in susceptibility to AD, i.e. the AD symptoms underlined by the amyloid
deposition. The usual analyses define the outcome variable in a regression analysis to
be the clinical diagnosis. We, however, recognize heterogeneity of the clinical diagnosis

where the underlying disease state separates the cases into a subset with amyloid-
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related AD, what is the disease state of interest; and non-amyloid-related AD, what is
the nuisance disease state. We derive the theoretical approximation that provides a
simple and general relationship between B and I' estimates using Kullback-Leibler

divergence (Kullback, 1959).

Our paper is organized as follows. First, in the Material and Methods section we present
the setting, notation, and the proposed approximation for various models. Next, in the
Simulation Experiments section we describe the empirical studies that are conducted to
compare the resulting performance of the approximation that we derived relative to the
average observed across many simulated datasets. We then compare the estimates in
a practical setting of an Alzheimer’s disease study that aims to investigate the genetic
basis of innate immune system in the relationship to the AD symptoms underlined by

amyloid pathology. We conclude our paper with brief Discussion.
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MATERIALS AND METHODS

We define G to be the genotype of single nucleotide polymorphisms (SNPs) measured
at multiple locations. Let X and Z be the environmental variables that might interact. We
assume that the genotype is independent of the environment and follows Hardy-

Weinberg equilibrium model Q(g; 8), where 6 is the frequency of the minor allele.

We define DL be the observed clinical diagnosis that is inferred based on a set of
descriptive criteria that characterize symptoms. Let D denote the true disease states,
where D = 1 indicates the disease state of interest and D = 1 is the nuisance disease
state. It might not be possible to measure D on the set of cases in a GWAS, instead D is
available on a subset or frequencies of D within the clinically defined set of cases are
reliably estimated in an external reliability study. We define the clinical-pathological
diagnosis relationship using 7(X) = pr(D = 1|D‘ = 1,X), what is a frequency of the
disease state of interest within the clinically diagnosed set and the frequency varies by
X. In the context of AD study, pr(D = 1*|DL = 1,X) =1 —1(X), pr(D = 0|D** = 1,X) =
0, pr(D =1* DL =0,X) =pr(D =1ID* =0,X) =0 and pr(D =1* D" =0,X) =
pr(D = 0|DL = 0,X) = 1. We define the probabilities of the clinical diagnosis in the
population to be m c. =pr(D¢F =d%). Similarly, we let frequencies of the true

pathologic state in the population to be 7y = pr(D = d).

For clarity of presentation we assume that genotype is binary to indicate presence of a

minor allele, environmental variables X and Z are Bernoulli with frequencies ny and n;,
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respectively. In the Appendix we discuss how to extend the approximation to the

categorical and continuous variables.

Model 1. B.: We first consider a setting when only the genetic variable G is in the risk

model, i.e. the true disease risk model is

o8 {prB,A(D=O|G)} = Po t+ B X G;

(1)

pre,a(D=171G)| _ )
log {—WB’A(MO'G)} =y +a; XG; (2)

while the model used is the usual logistic regression model with the clinical diagnosis as
an outcome variable, i.e.

prr(D€l=1|6)) _
g{m}—)’oﬂ/(;x(?. -
Derivations provided in Appendix Al show that

Yo = log{exp(By) + exp(ay)};

(4a)

Y6 = log{exp(B, + Bs) + exp(ay + ag)} — log {exp (B,) + exp (ay)}

~ loglexp(By) + exp(ao + a5)} — loglexp(By) + exp(ag)} + ———2P)__y g . (4b)

exp(Bo)+exp(ao+ag)
From (4a) and (4b), we derive that

Bo ~ logfexp(y,) — exp(ao)};

(4c) B = log{exp(y, + v¢) —exp(ay + ag)} — log{exp(yo) — exp(ao)}.

(4d)
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Appendix A3 describes how to obtain S,, B; @, «a; assuming estimates of y,, y;
are available from the usual logistic regression and reliable estimates of 7 = 7(1) X
pr(X =1) +1(0) X pr(X = 0) and 7r; are available in the literature.

Model 2. B, and Bx: We next consider a setting when the genetic variable ¢ and an

environmental variable X are in the risk model, i.e. the true disease risk model is

log {prB,A(D=0|G,X)} = PBo+ P X G+ fx X X;

(5)

log {prB,A(D=1*|G,X)
prR,A(D=0|G.X)

}=a0+aGXG+a’XXX,
(6)

while the model used is

{prr (D¢t=1]6,x)
Elprr(0el=0/6,%)

(7)

Derivations provided in Appendix A2 show that

}=y0+yG><G+yX><X.

Yo = log{exp(B,) + exp(ay)};

(8a)

¥ = 0.5 x Y [log{exp(B, + B + By X x) + exp(ay + ag + ay x x)} — log {exp (B, + By X
x) + exp (&g + ax X x)}]

~ 0.5 x Y, [log{exp(By + Bx X x) + exp(ay + a; + ax X x)} — log{exp(B, + Bx X x) +

exp(Bo+PxXx) B
G

exp(Bo+Bxxx)+exp(ag+ag+ayxx)

exp(ay + ay X x)}] +0.5x Y,
(8b)
Yx & 0.5 X Y g[loglexp(By + Bx + B X g) + exp(ay + ax + ag X g)} —log {exp (B, + B X

g) +exp (ap + ag X g)}]


https://doi.org/10.1101/483198
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/483198; this version posted November 29, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

~ 0.5 X Y, ,[log{exp(By + B X g) + exp(ay + ay + ag X g)} — log{exp(fy + B¢ X g) +

exp(Bo+BcXg) X 3
exp(Bo+Bexg)+exp(ag+ay+agxg) X

exp(ay, +ag X g)}] +0.5%x Y,

(8c)

Model 3. B¢, Bx, Bz, and Bx.z. A model with interaction between the environmental

variables X and Z is discussed in Appendix.

Model 4. B¢, ,Bg, and B¢,x¢,: A model with gene-gene interactions is discussed in

Appendix.

Remarks:

1. Model 1, equation (4b). If ; = a; = 0, then y; = 0.

2. Model 2, equation (8b). If ; = a; = 0, theny,; = 0.

3. Model 2, equation (8c). If By = ay = 0, then yx = 0.

4. Remarks 1-3 describe when the usual logistic regression models with the clinical
diagnosis as an outcome variable correctly estimate the null effect.

5. The equations that we derived apply to several possible likelihood functions. For
example, parameter estimates in Model 3 can be estimated based on the usual
logistic regression model, i.e. the probability of the form pr.(DL|G,X,Z) orin a
pseudolikelihood (Spinka et al, 2005; Lobach et al, 2018) pr (D%, G|X,Z,6 = 1),
where ,6 = 1 is an imaginary indicator of being selected into the study. All the

derivations apply to both models.

SIMULATION STUDIES

False positive rate We first perform a series of simulation experiments to examine a

false positive rate in the estimates of ; when the data are simulated from model (1)-(2),
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but the parameter estimates are obtained from model (3). We define the false positive
rate to be the fraction of p-values<0.05 across 10,000 simulated datasets in the usual
logistic regression analyses as an outcome variable, i.e. (3), when in fact §; = 0. We
simulate the data using model (1) with coefficients g, = 0.5,8; = 0, a; = log(1) =
0,log(1.5) = 0.41,log (2) = 0.69. We next estimate parameters using model (3). Table
1 presents false positive rates in datasets with n, = n, = 3,000; 10,000. When the
genetic effect is not associated with the clinical diagnosis, the false positive rate is
nominal, i.e. is nearly 0.05. When « increases, the false positive rate gets inflated, e.g.
when a,; = log(1.5) = 0.41, the false positive rate is 0.72. Increase in sample size did

not result in decrease of the false positive rate.

Approximation vs. empirical estimates We next perform a series of simulation

experiments to assess the magnitude of bias and the approximation to the relationships
that we’'ve derived. First, we estimate the bias empirically as the average across 500
simulated datasets where the data are simulated using the true model (1)-(2), (5)-(6),
(A3)-(A4) based on coefficients B and A, but estimate the parameters I' in the usual
logistic regression model (3), (7) and (A5). We then compare these averages to the

approximations that we've derived.

We simulate genotype (G), age (4), sex (S), ApoE €4 status to be Bernoulli with
frequencies 8., 8,,6,0.,. In the context of previous notations, X is the ApoE €4 status
and Z is a set consisting of G, 4,S. We then simulated the clinical diagnosis status D¢t

according to the models (3), (7) and (A5) and the true disease states D according to
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model (1)-(2), (5)-(6), (A3)-(A4). In all simulations we let 8, = 0.10,8, = 0.50,65 =

0.52,6,, = 0.07.

Model 1 We fist simulate the data using model (1)-(2) and estimate parameters in the
logistic model (3). We set 8, = 0.5, B; = log(1) = 0,log(1.5) = 0.41,l0g(2) =
0.69,l0g(2.5) = 0.92, log(3)=1.1, a; =log(1) = 0,log(1.5) = 0.41,= 0.69 and simulate
datasets with 3,000 cases and 3,000 controls. Table 2 presents empirical estimates of
B and the approximation (4b). Across all values of 5, and «, the approximation (4b) is

accurate relative to the empirical estimate.

Model 2 We next generate data using models (5)-(6) but estimate parameters using
model (7). We let §, = a, = 0.5,

Be =log(1) = 0,log(1.5) = 0.41,log(2) = 0.69,l0g(2.5) = 0.92,l0g(3) = 1.1, By = Ay =
log(8),a; =log(1) = 0,log(2) = 0.41,log(3) = 0.69,log(4) = 1.1 and generate datasets
with 3,000 cases and 3,000 controls. Approximations and the empirical estimates for y,;
shown in Table 3 demonstrate that the approximation (8b) is accurate relative to the
empirical estimates. The empirical estimate of y., is 2.09, while the approximation is

2.08.

Model 3 We next simulate data using models (A3)-(A4) and estimate parameters using

model (A5), with the approximation derived in (A6a-c).
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Setting 1. We first consider a setting when the nuisance disease is not associated with
the genotype (a; = 0) and when €4 and A x €4 are not associated with the nuisance
disease status (a., = 0,a; = 0, 2444 = 0). We simulate the clinical diagnosis and
disease states with coefficients g, = —1,8s = log(0.92) = —0.08, ., = log(8) =

2.1,B8, = log(2) = 0.69,

B = log(1),l0g(1.5),l0g9(2),10g(2.5),109(3), Baxes = log(1),1l0g(2),log(3),10g(3),
ay=-1,as =109(0.92),a.4 = 0,04 =log(2),a; =0, a4%cs = 0.

Figure 1 presents biases in estimates of ., (panel A), 8, (panel B), B (panel C), S..
(panel D) and 4%+ (panel E) in studies with 3,000 cases and 3,000 controls; values of
Baxes are shown along the x-axis and values of g are indicated by color. Figure 1
panels A and D show that bias in the estimates of 8; and ., can be substantial with
largest bias of -0.06; panel E shows that bias in §,.., iS notable in this case ranging
from 0.01 to -0.06; estimates of g, and s are nearly unbiased consistent with the
theoretical observations that the null effect in some settings can be estimated with no
bias even in a misspecified model. We note that magnitude of bias in 3; and

Baxea INCreases as the true value of the coefficient increases.

Shown on Figure 2 are the empirical bias (Emp) and the approximation (AX) of bias in
B¢ indicated by color with values of ,.., along the x-axis and values of 5, along the
panels. The difference between the Emp and AX starts at = 0.6 when §; = 0.41 and
increases to = 1.2 when 8, = 1.1. Bias of f; and B, is approximated to be <0.0001.
Shown on Figure 3 are Emp and AX of estimates of §.,, and Figure 4 is presenting

estimates of fx¢4-
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Setting 2. We next simulate datasets with 30,000 cases and 30,000 controls in the
Setting 1. Supplementary Figure 1 shows that biases in the estimates noted in Setting

1 persists for larger sample sizes.

Setting 3. We next consider a setting when with the nuisance disease the genotype is
associated (a; = log(1.5)), a., is associated (a., = log(2)), and no interaction a,y., =
0. We next change the parameters for the nuisance state to be oy, = =1, a5 =
l0og(0.92),a., = log(2),a, = log(2),a; = log(1.5), a4x.. = 0 and all other parameters
as in Setting 1. Shown on Supplementary Figure 2 are biases in the estimates of the

parameters of interest that reach -1.4 for 5, are near -0.5 for f_,, and can reach -0.15

for Baxea -

Setting 4. We next consider a Setting 1 but with more common disease of interest, i.e.
Bo = 1.5. Supplementary Figure 3 is showing empirical bias in all estimates. The

estimates can still be substantially biased.

Setting 5. We next consider a setting where the genetic variable is associated with the
nuisance disease state (a; = log(2)) and there is significant A X €4 interaction (o xc. =
log(2)). We next change the parameters for the nuisance state to be a, = 0.5, a5 =
log(0.80),a., = log(4),a, = log(3),a; = log(2), asxes = log(2). Figure 5 presents
biases in the estimates and Supplementary Figures 4-5 show the empirical estimates

and the approximations.
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Supplementary Figure 7: Frequency of the disease state of interest (D = 1) and the
nuisance disease (D = 1*) when S, = 1.5, 85 = log(0.80), 8., = log(8), 84 = log(3),

B = log(1),log(1.5),l0g9(2),10g(2.5),109(3), Boxes = log(1),log(2),109(3),log(3),

ay =0.5,as =10g(0.80),a., = log(4),as =log(3),a; =log(2), ayxes = log(2),

6; = 0.10,6, = 0.50,05, = 0.52,6,, = 0.07. Shown along the x-axis are values of g, and
indicated by color are values of S,... We note that these frequencies are similar to

those in context of Alzheimer’s disease.

ROLE OF THE GENETIC VARIANTS SERVING INNATE IMMUNE

SYSTEM IN SUSCEPTIBILITY TO ALZHEIMER’s DISEASE

We apply the usual logistic analyses with the clinical diagnosis as an outcome variable
to a dataset collected as part of the Alzheimer’s Disease Genetics Consortium. We next
apply the approximations (7)-(10) and (11)-(14) to see how the genetic estimates
change when presence of the nuisance disease state is recognized.

We mapped lllumina Human 660K markers onto human chromosomes using NCBI

dbSNP database (https://www.ncbi.nim.nih.gov/projects/SNP/). Chromosomal location,

proximal gene or genes and gene structure location (e.g. intron, exon, intergenic, UTR)
has been recorded for all SNPs. From these data we inferred 165 SNPs to reside in
genes serving innate immune system.

The dataset consists of 727 controls and 2,797 cases diagnosed with AD.
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We are interested to examine a relationship between the pathologic disease state of AD
characterized by presence of amyloid deposition and each of the 165 SNPs serving the
innate immune system. We include ApoE ¢4 status, age, and sex in the model with an
interaction between ApoE and age. The genetic variant is modeled as a Bernoulli
variable as an indicator of presence or absence of a minor allele. Age is Bernoulli as

well that corresponds to a median split in the dataset.

Table 4 presents estimates of effects of the SNPs obtained using the usual logistic
regression model with the clinical diagnosis as an outcome variable in a univariable
model (3) and with adjustment for SNP + ApoE ¢4 + Age + Sex (7); and the
corresponding models (1-2) and (5-6) that recognize presence of the nuisance disease
state. In the univariable setting the empirical bias is estimated as the difference between
the main effect estimates obtained in model (3) and model (1-2), and the approximation
to the bias is estimated as derived in (4b). In the multivariable setting, the empirical bias
is the difference between main effect estimates obtained in model (7) and (5-6), and the

approximation is as derived in (8b).

First shown in Table 4 are 16 estimates with p-value<0.05 after the Benjamini-Hochberg
multiple testing adjustment in a univariable model (3) and then added are 13 SNPs with
p-value <0.05 in a univariable model (1-2). Across all these SNPs, the approximation

was accurate relative to the empirical bias.
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DISCUSSION

We've examined a situation when multiple disease states share observed symptoms
and hence the clinical diagnosis. Both theoretically and in extensive simulation studies
we observed that the magnitude of bias can be substantial in situations when frequency
of the nuisance disease state within the clinically diagnosed set varies by the key
variables. We derived a simple and general approximation to the relationship between
the genetic effect estimates that use the clinical diagnosis as an outcome variable and

the estimates that recognize presence of the nuisance disease state.

While the effect of misclassification of the disease status has been examined
extensively in statistical literature (Carroll et al, 2006), we extend the literature by
deriving a simple and general approximation to the bias in a multivariable setting. The
approximation provides a simple formula to assess how elastic the estimates of interest
are to the values of parameters in the nuisance risk model. The regression coefficients
or plausible ranges for the coefficients of the nuisance disease state are often available

in the literature.

Simulation studies that we conducted showed that when presence of the nuisance
disease is ignored, the genetic effect estimates can be biased in either direction. These
biases can be substantial in magnitude leading to false positive and false negative

results.
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While our study is motivated by the setting of Alzheimer’s disease, the results are
readily applicable for other complex diseases. For example, Manchia el al (2013)
examined the effect of heterogeneity, i.e. presence of non-cases, in the context of
diabetes and showed that ignoring the heterogeneity leads to reduced statistical power
to detect an association and also reduced the estimated risks attributable to

susceptibility alleles.

The approximation that we’ve derived is widely applicable in other areas of research
where the diagnosis is heterogeneous. For example, when disease states correspond to
subtypes of a complex disease. We also see the application to the analyses of
Electronic Health Records, where the disease status might be subject to exposure-

dependent differential misclassification (Chen et al, 2017).
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APPENDIX

Al. Approximation using Kullback-Leibler divergence

We show schematics of the derivations based on Model 3, the other models can be
derived accordingly. We denote the model the true model (9)-(10) based on probability
prr(DC|G, X, Z) or prr(D°,G|X,Z,6 = 1) as Qp (D", G,X,Z) = prg 4(D°L, G|X,Z,8 =
1). Similarly, we denote model (3) with (4) as Q. (D", G, X,Z) = prr(D*|G, X, 7).
Kullback (1959) showed that parameters I' converge to values that minimize Kullback-

Leibler divergence criteria between the two models, specifically

y = argmin {EG,X,Z (EDCL|G,X,Z [log {%}D}

Considerable algebraic derivations arrive to the following system of equations to be

solved for parameters I’
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g, [Prea@ =16, X,2) + prpa(D = 171G, X, 2)] X pr(G)
oz prr(D = 1|G, X, Z)

3 exp(Yo+yx XX +yeXGH+y; XZ+ Yz XX XZ)
Ol +exp(yo+yx XX +ys XG+yzXZ+yxuz XX XZ)

prea(D =0|G,X,Z) X pr(G)
prr (D¢t =0\G,X,Z)

0 1
x_
Ol 1+exp(Yo+ Vs XX +VeXG+y; XZ+yyuz XX XZ)

=0
(A1)

1 ex + XX+ xXG+ XZ+ XXXZ
Define M(X,G,Z;T) = pr(G) X P(YotYxXX+YGXG+YzXZ+Yxxz )
1+exp(Yo+YxXX+YeXG+YzXZ+YxxzXXXZ)

Then (A1) becomes

prB,A(D = 1|GJXIZ) +prB,A(D = 1*|G,X,Z)
prr(Dt = 1|6, X, Z)

EG,X,Z

X xM(X,G,Z; r){

pr.a(D = OIG,X,Z)}
prr(D¢t = 01G,X,2)

prpa(D =1|G,X,Z) + prp (D = 1°|G, X, Z)
prr (D¢t =11G,X,Z)

Ecxz [Z XM(X,G,Z; F){

pTB,A(D = OlGlXIZ)}]
prr (D¢t =01G,X,2)

pra(D =1|G,X,Z) + prg .(D = 17|G, X, Z)
prr (D¢t = 11G,X,Z)

Ecxz [G XM(X,G,Z; F){

prB,A(D = OlGleZ)}] _
pr+(DCL = 0|G, X, 2))]

pra(D =1|G,X,Z) + prg4(D = 1°|G, X, Z)
prr (Dt =1|G,X,7)

Egxz [X X ZXMX,G,Z; r){

prB,A(D = OlG,X,Z)}]
er(DCL = OlG,X,Z)
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Values of T" such that

pTB‘A(D = 1|G,X,Z) +prB,A(D = 1*|G,X,Z) _ pTB’A(D = OlG,X,Z) _
prr(DCL = 1|G, X, 2) - prr(DCL = 0|G,X,Z)

for all G, X, Z solve the system of equations (Al).
By definition,

Yo = 0.25 x Y [logit{pry(D* = 1|G = 1,X = x,Z = z)} — logit{pry (D" = 1|G = 0,X
X,z

=x,Z = z)}].
With Taylor series expansion around S, = 0 we arrive at (12a). Derivation for the other
parameters is similar. If X is continuous, then e.g.,

¥x = 0.5 X Y[logit{pry (DL =1|G = g,X = x + 1,Z = 0)} — logit{prr(D* = 1|G = g,X =
g

x,Z = 0.
ag = Log(1) =0 Log(1.5) = 0.41 Log(2) = 0.69
ny =n, = 3,000 0.052 0.72 0.99
ny =n, = 10,000 0.048 0.79 0.99

Table 1: False positive rate defined as the proportion of p-values<0.05 across 10,000
simulated datasets in the usual logistic regression analyses as an outcome variable (3),
when in fact 5, = 0 and the data are generated from (1)-(2). We let 5, = 0.5, B; = 0,

a; = log(1l) =0,log(1.5) = 0.41,log (2) = 0.69.
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Be
ag Log(1)=0 Log(1.5)=0.41 Log(2)=0.69 Log(2.5)=0.92 Log(3)=1.1
Log(1)=0 0.003, 0 0.23, 0.22 0.41, 0.40 0.57, 0.56 0.70, 0.69
Log(2)=0.41 | 0.41,0.41 0.57, 0.56 0.70, 0.69 0.82,0.81 0.92, 0.92
Log(3)=0.69 | 0.70, 0.69 0.82,0.81 0.93,0.92 10,10 11,11
Log(4)=1.1 0.93, 0.92 1.02,1.01 11,11 1.2,1.2 1.3,1.3

Table 2: Empirical estimates of S, and approximation (4b). The data are simulated from

models (1)-(2) and is estimated using model (3). Empirical estimates are the averages

across 500 datasets with 3,000 cases and 3,000 controls. We let 8, = a, = 0.5,

Be =log(1) = 0,log(1.5) = 0.41,log(2) = 0.69,l0g(2.5) = 0.92,l0g(3) = 1.1, By = Ay =

log(8),a; =log(1) = 0,log(2) = 0.41,log(3) = 0.69,log(4) = 1.1.

,BG
ag Log(1)=0 Log(1.5)=0.41 Log(2)=0.69 Log(2.5)=0.92 Log(3)=1.1
Log(1)=0 0.0056, 0 0.23,0.22 0.41, 0.40 0.57, 0.56 0.70, 0.69
Log(2)=0.41 | 0.41,0.41 0.57, 0.56 0.79, 0.69 0.82,0.81 0.92,0.92
Log(3)=0.69 | 0.70, 0.69 0.82,0.81 0.92,0.92 1.0,1.0 11,11
Log(4)=1.1 | 0.92,0.92 1.02, 1.01 1,1,1.1 1.2,1.2 1.2,1.3

Table 3: Empirical estimates of y, and approximation (8b). The data are simulated from

models (5)-(6) and is estimated using model (7). Empirical estimates are the averages

across 500 datasets with 3,000 cases and 3,000 controls. We let 8, = a, = 0.5,

B = log(1),log(1.5),l0g(2),10g(2.5),10g(3), fes = acs = 10g(8) ,ag =

log(1),log(2),log(3),log(4).
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Model SNP only SNP + ApoE €4 + Age + Sex
usgd fo_r
estimation 3) (1-2) Bias (7) (5-6) Bias
SNP Esti | P- Esti |P- Empir |Appro |Esti |P- Esti |P- Emp |Appro
mate | Value |mat |value |ical ximati |mat |Value |mate |value |irica |ximati
e on e I on
(4b) (8b)
SNPs with p-value <0.05 in the univariable model (3)
rs906227 1.2 |0.038 1.2 |0.09 |0.008 |[0.008 |2.2 |0.03 |16 0.12 0.60 |0.63
rs7582453 |-0.22 {0.028 |24 0.02 (2.7 -2.7 -0.24 10.03 |-0.09 |0.24 -0.15 |-0.17
rs402681 -0.19 10.047 |{2.3 |0.008 |-2.4 -2.4 -0.19|/0.07 |0.06 |0.38 -0.25|-0.28
rs4896278 |0.22 [0.02 |-1.6 [0.01 |1.9 1.9 0.23 |0.03 |0.61 |0.21 -0.38 |-0.43
rs4521619 |0.22 |{0.03 |0.93 [0.044 |-0.70 |-0.70 |0.15 {0.18 |0.26 |0.13 -0.11 |-0.17
rs11988857|0.18 {0.049 |25 |0.01 |-2.3 -2.3 0.20 |0.06 |0.28 |0.17 -0.09 |-0.10
rs7046061 |-0.21 |0.016 |-0.22 | 0.006 |0.01 0.01 -0.27 | 0.005 |-0.09 |0.49 -0.18 |-0.20
rs10745937|-0.19 {0.049 |23 |0.01 |-2.5 -2.5 -0.14/0.20 |-0.06 |0.53 -0.09 |-0.12
rs4758919 |-0.24|0.007 |0.19 [0.02 |-043 |-043 |-0.25|0.01 |-0.19 |0.19 -0.06 | -0.08
rs4982421 |-0.23 |0.008 |-0.83 |0.004 | 0.59 0.59 -0.220.03 |-0.60 |0.21 0.39 |0.40
rs6573553 |0.19 |{0.04 |0.16 |0.02 |-1.3 -1.3 0.20 |0.045 |0.30 |0.35 -0.10 |-0.14

"9su89|| [euolfeusslul 0"y AN-DN-AgG-DDe Japun
a|ge|rene apew si 1| “Aumadiad uljuudaid ayy Aejdsip 03 asuadl| e AlxHolq pajuelb sey oym ‘Japuny/ioyine ay si (Maiaal 1aad Ag payiiad jou

sem yaiym) Juudaid siy 4oy 1spjoy 1ybuAdod sy "8T0Z ‘62 JoquianoN palsod UoISIaA SIU) :86TE8Y/TOTT 0T/B10"10p//:sdny :1op Juidaid AIxHoIq
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Table 4:

rs2239281 |0.24 |0.006 |1.8 |0.01 |-1.5 -1.5 0.25 |0.01 |0.38 |0.28 |-0.13|-0.15

rs1242558 |0.22 |0.01 |1.8 |0.02 |-1.5 -1.5 0.20 /0.046 |0.27 |0.13 |-0.07|-0.08

rs2469206 |-1.04 10.046 |-2.1 |0.02 |1.0 1.0 -1.1 10.069 |[NA NA NA | NA

rs1654558 |-0.50 10.03 |0.59 |0.006 |-1.1 -1.1 -0.52 /0.047 |-0.54 |0.13 |0.01 |0.01

rs6056427 |0.27 |0.048 |-0.28 |0.04 |0.55 |0.55 |0.28 |0.06 |-14 |0.03 |17 |20

SNPs with p-value <0.05 for estimate of B in the univariable model (1)-(2)

rs9380764 |0.08 |0.61 |0.38 |0.006 -0.42 |-0.42 |0.25 0.19 |1.1 0.04 |-0.85|-0.87

rs957140 -0.18 |0.07 |-0.15/0.042 |-0.048 |-0.048 |-0.12 10.29 |NA NA NA |NA

rs12900401 |-1.7 |0.10 |-1.7 |0.036 |-0.01 |-0.01 |-1.6 |0.13 |-1.6 |0.01 -0.88 |-0.78

rs2469206 |-0.36 |0.12 |-0.35|0.042 -0.01 |-0.01 |-0.19/0.43 |-1.1 |0.02 |0.92 |0.97

rs165810 |-0.21/0.06 |-0.18|0.01 |-0.03 |-0.03 |-0.05|0.71 |-0.09 |0.48 |0.04 |0.03

rs330773 |0.16 [0.14 |0.68 |0.048 -0.79 |-0.79 |0.15 |0.21 |0.09 |0.48 |0.06 |0.08

rs6781037 |0.17 |0.06 |0.19 |0.04 |-0.03 |-0.03 |0.21 |0.04 |0.19 |0.36 |0.02 |0.01

"9SUB9I| [UOITRUISIU| 0" AN-ON-AG-D0® Japun

rs10051127|0.56 |0.36 |1.7 |0.04 |-1 -1 0.45 |0.46 |-0.17 |0.37 0.62 |0.74

rs2402789 |0.36 |0.22 |16 |0.04 |-1.3 -1.3 0.50 |0.14 1.3 0.01 |-0.80-0.90

rs1859333 |0.13 |0.14 |0.23 |0.03 |-0.03 |-0.03 |0.12 |0.23 |-0.19 |0.37 |0.31 |0.40

rs2283379 |0.14 0.12 |0.15 [0.04 |-0.002 |-0.002 |0.21 |0.05 |-0.14 [0.38 |0.34 |0.37

rs17117337 |-0.10 |0.46 |2.2 |0.004 |[0.10 |0.10 |-0.06/0.67 |-0.15 |0.38 |0.08 |0.08

rs1702447 |0.21 |0.16 |0.58 |0.006 |-0.08 |-0.08 |0.22 |0.20 |0.20 |0.24 |0.02 |0.03

Main effect estimates of SNPs obtained using the usual logistic regression with the clinical diagnosis as an
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outcome variable in a univariable model (3) and with adjustment for SNP + ApoE ¢4 + Age + Sex (7); and the
corresponding models (1-2) and (5-6) that recognize presence of the nuisance disease state. In the univariable setting the
empirical bias is estimated as the difference between the main effect estimates obtained in model (3) and model (1-2),
and the approximation is as derived in (4b). In the multivariable model, the empirical bias is the difference between main

effect estimates obtained in model (7) and (5-6), and the approximation is as derived in (8b).
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