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Abstract:  
There has been much effort to prioritize genomic variants with respect to their impact on “function”. 
However, function is often not precisely defined: Sometimes, it is the disease association of a 
variant; other times, it reflects a molecular effect on transcription or epigenetics. Here we coupled 
multiple genomic predictors to build GRAM, a generalized model, to predict a well-defined 
experimental target: the expression-modulating effect of a non-coding variant in a cell-specific 
manner. As a first step, we performed feature engineering: using a LASSO regularized linear 
model, we found transcription factor (TF) binding most predictive, especially for TFs that are hubs 
in the regulatory network; in contrast, evolutionary conservation, a popular feature in many other 
functional-impact predictors, has almost no contribution. Moreover, TF binding inferred from in 
vitro SELEX is as effective as that from in vivo ChIP-Seq. Second, we implemented GRAM 
integrating SELEX features and expression profiles. The program combines a universal regulatory 
score for a variant in a non-coding element with a modifier score reflecting the particular cell type. 
We benchmarked GRAM on a large-scale MPRA dataset in the GM12878 cell line, achieving a 
ROC score of ~0.73; performance on the K562 cell line was similar. Finally, we evaluated the 
performance of GRAM on targeted regions using luciferase assays in MCF7 and K562 cell lines. 
We noted that changing the insertion position of the construct relative to the reporter gene gives 
very different results, highlighting the importance of carefully defining the functional target the 
model is predicting.  
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Author Summary 
 
Noncoding variants lie outside of protein-coding regions, and are found to have disease 
associations. However, knowledge on the molecular effect of these non-coding variants in a cell-
specific context is very limited. Also, different output between multiple experiment platforms may 
introduce extra complexity in analyzing the molecular function of these variants. We developed 
GRAM, a generalized model to predict molecular effect of non-coding variants in multiple cell 
types for different experimental platforms. We first selected the most informative cell-independent 
SELEX transcription factor binding score on the variant locus as features and then combine cell-
specific gene expression profile to build a multi-step prediction model. GRAM has been 
successfully tested on both MPRA and Luciferase assay, and on three different cell lines: 
GM12878, K562 and MCF7, shows high performance.  
 

Introduction  
Advances in next-generation sequencing (NGS) technologies have enabled high-throughput 
whole genome and exome sequencing [1], which has led to the identification and characterization 
of many disease-associated mutations [2] and the vast majority of common single nucleotide 
variants (SNVs) in the human population [3, 4]. Genome-wide association studies (GWAS) have 
found that these variants mostly lie outside of protein-coding regions [5], emphasizing the 
functional importance of non-coding regulatory elements in the human genome. This also defines 
an urgent need to develop high-throughput methods to sift through this deluge of sequencing data 
to quickly determine the functional relevance of each non-coding variant [6]. 
 
Evidence suggests that only a fraction of non-coding variants are functional, and the majority of 
functional variants show only modest effects[7]. Therefore, highly quantitative assays are needed 
to study large numbers of variants. Luciferase reporter assays are a common method to measure 
the regulatory effects of functional elements [8]. Comparing the difference of luciferase expression 
with and without a mutation can be used to estimate the experimental molecular effect of non-
coding variants lying in a functional element. By using high-throughput microarray and NGS 
technology, the massively parallel reporter assay (MPRA) has extended the scales to the 
genome-wide level [9-14]. Recently, Tewhey and colleagues demonstrated the capability of 
MPRA to identify the causal variants that directly modulate gene expression [15]. This study 
identified 842 expression-modulating variants (emVARs) showing significantly differential 
expression modulation effects and provided a high-quality data source for computational modeling 
[15, 16]. 
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There is an increasing need for computational methods to effectively predict the molecular effects 
of variants and improve our understanding of the underlying biology of these effects. Several 
approaches have been developed to address the problem of variant prioritization from different 
perspectives. Based on the target of predictions, these methods comprise two major categories: 
1) disease-causing effect predictors (e.g., DeepSEA [17], GWAVA [18] and CADD [19]), which 
aim to prioritize causal disease variants and distinguish them from benign ones; and 2) fitness 
consequence prioritization (e.g., fitCons [20] and LINSIGHT [21]), which attempt to identify the 
variants based on evolutionary fitness. Other tools (e.g., Funseq2 [6]) do not belong to these 
categories because they integrate a comprehensive data context and unsupervised scoring 
system [6]. These computational methods are designed to predict and prioritize deleterious and 
disease-associated variants, but not specific molecular phenotypes of these variants (i.e., their 
effects on the activities of functional elements). Most importantly, none of the above tools take 
into account cell specificity in their models. One reason may be that some cell-specific features 
derived from chromatin immunoprecipitation sequencing (ChIP-Seq) data are only available in a 
few cell lines, which is a major hindrance to the generalization of a model. 
 
In this study, we addressed the problem of molecular effect prediction of variants from a new 
perspective. Instead of predicting phenotypic consequences from genotypes, which is a common 
practice, we aimed to directly predict the expression-modulating effect of the variants from various 
sources of information. Our model incorporates selected transcription factor (TF) binding 
information from in vitro SELEX assays, representing the general binding potential of TFs on the 
variant’s location, and cell type-specific expression profiles, representing cellular contexts. 
Combining cell type-independent and -dependent features gives our model both flexibility and 
specificity. Evaluation results from MPRA and luciferase assay experiments show our model 
achieved high predictive performance and can be easily transferred to other cell types and assay 
platforms. 
 
 

Results 
 

Overall analysis flow  
In this study, we first collected a dataset from Tewhey et al. [15] for estimation of expression 
modulation differences between wild type and mutants in the GM12878 cell line. This MPRA-
generated dataset contains 3,222 SNVs filtered by logSkew value, which measures the log-fold 
change of the expression-modulating differences between wild-type and mutant alleles. Among 
them, 792 variants (named emVARs) had a significant expression-modulating effect compared 
with their respective wild-type allele, which indicates the molecular effect of the variant. Here, we 
treated emVARs and non-emVARs as a positive and negative dataset in our GRAM model. 
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As described in Fig. 1, our GRAM model is implemented with three steps: the first step predicts 
the universal regulatory consequences of the element with variant using SELEX TF binding score; 
the second step combines TF binding score with cell type-specific TF expression profiles to 
predict the cell type modifier score in a specific cellular context; the third step integrates outputs 
from the previous two phases to estimate the expression modulating effect in a cell-type- and 
assay-platform-specific context.  
 
 
 
 

Exploring conservation and TF binding features 
We first investigated the potential of evolutionary conservation and transcription binding features 
as predictors. Evolutionary conservation is associated with deleterious fitness consequence and 
is widely used in prioritization algorithms of non-coding variants, such as PhyloP [22] and 
PhastCons [23] score in LINSIGHT [21] and CADD [19], and GERP [22] score in Funseq2 [6]. We 
performed comparative analyses for these three conservation features across different datasets 
(Fig. 2a). We found that the PhastCons and PhyloP pattern of emVARs and non-emVARs are 
different from Human Gene Mutation Database (HGMD) [24] variants but similar to non-HGMD 
variants, which are thought to be benign. GERP scores show a similar pattern but have smaller 
variance in emVARs and non-emVARs compared to other datasets, with slightly larger values for 
emVARs. As we did not find differential patterns when comparing emVARs and non-emVARs, we 
further discovered that the correlation between logSkew and conservation scores was low with 
the explained variance very close to 0 for all three evolution features by linear regression. These 
results indicate that these conservation scores have little or no contribution to molecular effects 
on their own.   
 
TF binding can link the molecular effect of non-coding variants to a cascade of a regulatory 
network, which is thought to be an important contributing factor to the variants’ regulatory effects 
[17, 19, 25, 26]. Tewhey et al. found that the logSkew value positively associates with TF binding 
scores. To thoroughly evaluate the effect of TF binding, we tested TF binding peaks overlapping 
with the SNVs and TF motif break events in the Tewhey dataset. We annotated and analyzed the 
emVAR and non-emVAR variant sets with Funseq2 [6], and found that the emVAR set had more 
TF binding events compared with the non-emVAR set (Fig. 2b). In addition to TF binding 
enrichment, we examined the motif break scores for these TFs. After removing TFs with 
insufficient observations, the differences between the distribution of motif-break score for mutant 
and wild-type genotypes in emVARs are larger than those in the non-emVAR dataset (Fig. 2c). 
According to this analysis, the emVAR set tends to have not only more TF binding events, but 
also larger binding alterations compared with the non-emVAR set. Thus, TF binding shows high 
association with the expression-modulating effects of the variants. 
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Model-based feature selection 
We generated TF binding features for potential training features using 515 Deepbind models 
inferred from both ChIP-Seq [27] and in vitro SELEX assays [28]. With a comprehensive feature 
selection framework to select impactful TF binding features, we prioritized these features across 
models with LASSO stability selection [29] and Random Forest (shown in Fig. 3a). The 20 most 
important features (out of 515) with respect to mean importance across all methods is shown in 
decreasing order in Fig. 3a. Both ChIP-Seq and SELEX Deepbind features showed high 
importance, with the top two being GM12878 ChIP-Seq features (SP1 and BCL3), which are cell 
line specific, followed by SELEX features starting with ETP63. The top-ranked impactful TFs tend 
to have more TF-TF interactions than the bottom-ranked TFs, indicating that the importance of a 
TF reflects its role in the TF-TF cascade regulatory network (Fig. 3b). 
 
Interestingly, many SELEX features, though not cell type-dependent, achieved similar predictive 
power as cell type-specific ChIP-Seq features. We compared the predictive performances of cell 
type-dependent ChIP-Seq features, cell type-independent SELEX features, and combination of 
both feature sets using LASSO regressor, support vector machine (SVM) regressor and Random 
Forest. Incorporating ChIP-Seq-derived features did not boost the accuracy significantly for any 
of the three models (Fig. 3c and S1 Table ). As the availability of ChIP-Seq is restricted to a few 
cell lines, we instead used SELEX features to build a generalized model across different cell types. 
 
We then used the features generated from disease-association prediction tools (CADD [30], 
Funseq2 [31], DeepSEA [32], GWAVA [33], LINSIGHT [34], and Eigen [35]) to predict the same 
molecular effect target. As shown in Fig. 3c, this analysis indicated that the prediction of disease-
associated variants is not equivalent to that of expression modulating variants.  
  

Building a generalized model by multi-step learning 
Using the TF binding features from DeepBind models and the MPRA dataset from Tewhey et al. 
[15], we implemented our multi-step GRAM model. In the first step, we predicted the universal 
regulatory activity of an element with or without a variant. The 10-fold cross validation 
demonstrated exemplary performance of the model with an area under the receiver operating 
characteristic curve (AUROC) of 0.938 and an area under the precision-recall curve (AUPRC) of 
0.924 (Fig. 4a and S1 Fig).  
 
In the second step, we calculated a cell-type modifier score as an indicator of the experimental 
assay’s cell-specific nature (see Methods for details). Briefly, we defined the prediction target 
using a top and bottom quantile of Vodds (S3 Fig). Vodds is the standard deviation of log odds 
for each variant’s read count in MPRA and it shows cell line-specific patterns (S2 Fig). We found 
that variants with higher Vodds tend to include more non-emVARs (Chi-square test p-value: 
0.0002). Hence, the cell type modifier score can be used to adjust the universal regulatory effect 
to a cell type-specific context. 
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Gene expression profile, especially TF expression, are more generally available and can 
represent the cellular environment. We incorporated TF gene expression and TF binding scores 
as features to predict the cell type modifier target, and got an AUROC of 0.65 and 0.8, respectively, 
using LASSO 10-fold cross-validation (S4 Fig and Fig. 4b). 
 
The final step of our GRAM model is to predict the molecular effect of a variant that can 
significantly modulate reporter gene expression. To do this, we fed the output from the first and 
second step into a LASSO model, with the emVAR and non-emVAR labels as targets. We found 
that the AUROC of 10-fold cross-validation for the optimal model is 0.728 (Fig. 4c) and the AUPRC 
was 0.505, which are higher than the state-of-the-art method (KSM) using the same dataset 
(AUROC: 0.684, AUPRC: 0.478) [36].  
 
We also tried to build a generalized model by removing cell type-specific ChIP-Seq features. We 
repeated step one and two on the same dataset using GRAM cell-independent features from the 
SELEX assay, which achieved comparable performance with AUROC = 0.674 (Fig. 4d) and 
AUPRC = 0.452. 
 

Validating the GRAM model using experimental assays 
We next evaluated performance of the model on different cell types and assay platforms. We use 
the generalized model trained on GM12878 cells and tested it on another MPRA dataset in K562 
cells [10], which includes 2,400 elements in 149bps with a variant centered on the inserted 
fragment (Fig. 5a-b). The AUROC for Step 1 universal regulatory activity was as high as 0.68 
when we set the q-value cutoff to 10-9; the molecular effect prediction was also over 0.8 if we used 
a more stringent q-value cutoff (10-5).   
 
Other than measuring read counts as in MPRA, some other assays, such as luciferase and GFP 
reporter assays, measure luminescence and fluorescence readouts instead. [37, 38]. To evaluate 
how our model, trained with MPRA data, can be transferred to these assay platforms we tested 
its performance on luciferase assay results of eight potential regulatory elements with mutations 
from the MCF7 cell line [39]. For regulatory activity, the predicted probability of being an active 
regulator was positively correlated with luciferase assay fold change between the inserted 
element and background control. The results show perfectly prediction (AUROC=1) using fold 
change cutoffs from 1.2 to 2 (Fig. 5c). For the prediction of expression-modulating effects, we 
defined the significant changes between mutant and wild type by using an absolute log2(odds 
ratio) cutoff. The predicted probability also showed a positive correlation with absolute log2 fold 
change (S5 Fig). The AUROC value ranged from 0.7 to 0.9 given the absolute log2 cutoff from 
0.5 to 1.5 (Fig. 5d). This indicates that our model performs very well on luciferase assay or MPRA 
dataset from different cell lines, though these assays use different measurements. 
 
In MPRA, the element is inserted upstream (5’-terminal) of the reporter gene, but for some assays, 
such as STARR-Seq, the element is inserted downstream (3’-terminal). Therefore, we further 
tested the effect of insertion location of an element in luciferase reporters in K562 cells using 14 
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randomly selected elements with potential regulatory activity. As shown in Fig. 5e, the 5’ terminal 
log odds were similar to the 3’ terminal odds for region 3, 4, 5, and 13, but showed significant 
differences for region 6, 8, 9, 10, and 14. The prediction of GRAM for the 5’ terminal was much 
better than that for the 3’-terminal insertions; the AUROC was 0.25 higher for universal regulatory 
activity and 0.32 higher for the expression-modulating effect prediction, indicating different 
mechanisms for the two ends. Therefore, GRAM is optimal for 5’ terminal assays.  
 

Discussion 
 
There has been an increasing number of computational methods can prioritize non-coding 
variants. Also, accumulating high-throughput whole-genome sequencing data have become the 
primary source for identifying disease-associated variants. However, we still lack a tool that can 
estimate the expression-modulating effect of a variant in a cell-specific manner. In this study, we 
developed a multi-step generalized model called GRAM that can specifically predict the cell-type 
specific expression-modulating effect of a non-coding variant in the context of a particular 
experimental assay.  
 
In this paper, we aimed to precisely define the expression-modulating effect as a function of the 
response variables extracted from genomic data. Unlike other variant impact prediction methods, 
we did not include evolutionary features in our model because it had very limited impact on the 
performance. We selected a variety of TF binding features that could be useful for predicting 
variant effects. We used direct measurements from TF binding and a straightforward LASSO 
regression to assess the importance of each feature. We found that in vitro SELEX TF features 
(aka non-cell-specific features) can achieve high predictive performance, which was further 
validated by SVM and Random Forest.  
 
The three-step GRAM model predicts the expression-modulating effects of variants by integrating 
two intermediate predictive targets: universal regulatory activity and cell type modifier score. The 
universal regulatory activity reflects the regulatory effect of an element with/without a mutation in 
a vector-based assay without cell type-specific chromatin contexts and epigenomics information. 
Since cell-specific information cannot be ignored for predicting the variant’s effects, we further 
adjusted the universal regulatory effect with the cell type modifier score in the final step of the 
prediction model, resulting in much better performance by the model. We note that our framework 
can be further converted to a Bayesian hierarchy model with the intermediate targets as hidden 
variables. 
 
GRAM performed well with targeted validations on MPRA and luciferase assay platforms, even 
across different cell types. In addition to target validations, we could explore in great detail the 
sensitivity of these methods and the impact of vector construct. The insertion position of the 
element affected the outcome of the assay, which may correspond to different types of regulatory 
elements. Because our model is trained on 5’-terminal insertion data, the prediction is consistent 
with outcomes from the same position, but not for 3’-terminal assay results. This indicates different 
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mechanisms for two insertion positions: an element inserted upstream of a reporter gene may 
detect either the promoter or enhancer activity of the element. On the other hand, if it is inserted 
downstream of the gene’s transcriptional start site or the 3’ terminal, it may specifically target to 
the enhancer activity. However, large-scale experimental validation is required to further elucidate 
the underlying mechanisms. 
 
The GRAM model will be a useful tool for elucidating the underlying patterns of variants that 
modulate expression in a cell-type context. By leveraging the accumulating data generated from 
multiple cell lines, future studies can be performed in-depth investigation using GRAM. We will 
keep abreast with the growing availability of comprehensive datasets and further expand our 
analysis.  

Methods  
 

Dataset 
 
We downloaded the dataset from R. Tewhey et al.’s paper [15]. From about 79K tested elements, 
we only kept variants for which either wild-type or mutant elements show regulatory activity. This 
reduced the set to 3,222 SNVs in the GM12878 cell line. Each SNV was extended in both 
directions by 74bp, in total 149bp. We used another dataset from Ulirsch 2016 [10], which included 
2,756 variants tested in the K562 cell line.  
 
The protein-protein interaction network used in our downstream analysis was constructed by 
merging all interaction pairs identified by BioGrid [40], STRING [41] and InBio Map [42]. 
 
 

Feature extraction: 
 
GERP features were extracted using the Funseq2 annotation pipeline, which searches the region 
of elements over the whole genome GERP score file to get an average score. We downloaded 
phyloP [22] and Phastcons [23] scores from the UCSC genome browser data portal 
(http://hgdownload-test.cse.ucsc.edu/goldenPath/hg19/). 
 
We performed motif enrichment analysis using a hypergeometric test. For the motif break and 
gain score comparison, we removed the TFs that covered less than two variants for either 
emVARs or non-emVARs from the top 40 TFs. Then, we performed a Wilcoxon test for the motif 
break score. 
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Motif break and motif gain scores were calculated using Funseq2. We also calculated the motif 
score using Deepbind [26] with both the SELEX and ChIP-Seq motif model. The SELEX motif 
model is based on an in vitro binding assay: systematic evolution of ligands by exponential 
enrichment. However, ChIP-Seq models are inferred using sequences from the TF binding site 
from different cell lines. A total of 515 motif models were calculated (table s1: 
tbls1.deepbind.list.txt). 
 

Model-based feature selection 
 
To examine the importance of features, we compared different metrics, which included LASSO 
stability selection [29] and Random Forest regression. The feature importance for each selection 
method was scaled to [0, 1]; we took the mean of all the selection methods to represent the overall 
ranking.  
 
We compared our models’ mean standard error (MSE) with CADD, Eigen, LINSIGHT, Funseq2, 
GAWVA, and DeepSea. Features from the above tools were collected and tested using both SVR 
and Random Forest regression, which considered all Deepbind features and SELEX-based and 
ChIP-Seq-based features, respectively. For the other variant prioritization tools, we took the 
output of these methods, and then used the same SVR and Random Forest to train and predict 
the logSkew value.   
 

GRAM – multi-step generalized model 
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We defined the emVARs as positive and non-emVARs as negative classes following [15], where 
‘expression modulating’ means having a molecular effect that significantly increases or decreases 
regulatory activities. In total, we used 3,222 data records, including 799 positive and 2,423 
negative.  
 
We built a three-step GRAM model. Model 1 predicts the universal element regulatory activity 𝑈 
for wild type and mutant. The ground-truth of regulatory activity is determined by experimental 
assay platforms, like luciferase assay or MPRA. An element inserted into plasmid with or without 
a mutation is defined as a regulatory element if the fold change between the element and the 
control is larger than a statistically significant cutoff. For example, for the MPRA study, a statistical 
test based on DESeq2 indicates whether it is significantly changed; for the luciferase assay, we 
considered a testing element that has a fold change greater than 1.5 or 2 compared to control 
(eGFP) as a regulatory element. The response variable is the TF binding score changes from wild 
type to mutant, which is estimated by Deepbind. A Random Forest classifier was trained to predict 

Pseudocode: 
i: variant id 
j: TF id 
M: the total number of variants 
N: the total number of TF 
𝐵$%: TF j binding score on 𝑖 variant  
𝐸$%: Expression of jth high-affinity TF on 𝑖 variant 
c: cell type 
U(i), S(i,c), F(i,c): model for step 1-3 
 
Step1: simple Universal score to be a regulatory element using randomForest 
classifier, 𝑈(𝑖) ∈ [0,1] 
𝑈(𝑖) = 𝐹1 (𝐵$., 𝐵$0, … , 𝐵$2) 

	 
Step2: cell type modifier score, 𝑆(𝑖, 𝑐) ∈ [0,1] 
𝑆(𝑖, 𝑐) = 𝐹2(𝐵$., 𝐵$0, … , 𝐵$2, 𝐸$., 𝐸$0,… , 𝐸$2) = 	 𝑙𝑜𝑔𝑖𝑡(𝑏$.𝐵$. + 𝑏$0	𝐵$0 + ⋯+ 𝐵$2𝑇$2 +
𝑏$@.𝐸$. + 𝑏$@0	𝐸$0 +⋯+ 𝑏$@2𝐸$@2 + 	𝑏$A)  
 
Objective function: 𝑚𝑖𝑛D

.
0E
	F𝑆G − 𝑆F0

0
+ 𝛼‖𝑏‖.  

 
Step2: molecular effect score, 𝑆(𝑖, 𝑐) ∈ [0,1] 
𝑂𝑑𝑑𝑠N (𝑖) = abs(𝑙𝑜𝑔2( RS($TUV)

.WRS($TUV)
/ RS($YV)
.WRS($YV)

)), 𝑂𝑑𝑑𝑠(𝑖) ∈ [0, ∝] 

𝐹(𝑖, 𝑐) = 𝐹3(𝑜𝑑𝑑𝑠(𝑖), 𝑆(𝑖, 𝑐)) = 𝑙𝑜𝑔𝑖𝑡(𝑏_	𝑂𝑑𝑑𝑠(𝚤)N +	𝑏a	𝑆G(𝑖, 𝑐) + 𝑏(𝑖, 𝑐)) 
 
Objective function: 𝑚𝑖𝑛D

.
0E
	F𝐹b − 𝐹F0

0
+ 𝛼‖𝑏‖.  

 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 2, 2019. ; https://doi.org/10.1101/482992doi: bioRxiv preprint 

https://doi.org/10.1101/482992
http://creativecommons.org/licenses/by-nc/4.0/


 

 

the universal regulatory activity. The predicted log odds of probability between the wild type and 

mutant was calculated by 𝑙𝑜𝑔2c
d(eTUV)

fgd(eTUV)
d(eYV)

fgd(eYV)

h. 

 
 
Model 2 predicts cell type modifier scores using gene expression and binding scores of TF. The 
cell type modifier score is defined according to the cell specificity of the experimental assay. Given 
the reads count of MPRA for wild type, mutant, and their null control, it forms a 2x2 categorical 
table. The standard deviation of log(odds) of the categorical table (n1,n2,n3,n4 for the average 

reads count) is calculated as j .
k.
+ .

k0
+ .

kl
+ .

km
. By comparing principal component loading of the 

Vodds from three cell lines: GM12878, GM19239, and HepG2, we found that the two GM cell 
lines are closer to each other than to HepG2 (Fig. s2), which indicates that Vodds contains cell 
type information. The underlying biology may reflect the cell specificity of the experiment, such as 
the success rate of transfection. We then further compared two groups of variants with the top 
quantile and bottom quantile of Vodds in GM12878, and found that there were more non-emVAR 
variants in the top quantile group, which indicates the Vodds are also associated with the 
molecular effects of the variants. Then, we defined a cell type modifier target using the top and 
bottom quantile variants. 
 
 
Reads Wild-type Mutant 
Assay n1 n3 

Null-control n2 n4 
 
 
The TF expression profile was used to predict cell type index modifier class. For each mutation 
region, we adjusted the expression based on the TF binding score. Given 258 TFs with a 
Deepbind SELEX model score S for 3,222 SNVs, the TF expression matrix for each variant was 
adjusted and shuffled using the rank of SELEX TF binding scores among all the SNVs. Then, we 
used the TF binding score and gene expression to predict the cell type modifier class. 
 
The final model predicts the molecular effect of a variant using the estimated universal odds ratio 
and cell type modifier from TF binding and expression as predictors. A simple LASSO was used 
to build the model. 
 

Experiment validation on MCF7 cells  
 
Each regulatory region (both wild and mutant types) was separately synthesized. Enhancer 
regions were designed in such a fashion where based on the candidate SNV site, 250bp upstream 
and 250bp downstream was included for each enhancer region. These regions were then cloned 
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into the pGL4.23[luc2/minP] vector (Promega, Cat# E841A). Each candidate region was placed 
upstream of the minP promoter to determine the effect of each putative enhancer region on 
luciferase expression. 100ng of each candidate construct and 100ng of Nano-luc control was co- 
transfected into MCF-7 cells (5,000 cells per well in DMEM media containing 10% FBS and 1% 
Penicillin-Streptomycin antibiotic) using the Lipofectamine 3000 reagent (Thermo Fisher, Cat# 
L3000001) according to manufacturer’s instructions. Cells were incubated for 48 hrs before 
reading the luciferase signal using Promega Nano-Glo luciferase kit (Promega, Cat# N1521) 
according to manufacturer’s instructions.  
 

Model validation using MPRA data from K562 cells  
 

Enhancer Selection 
Based on the enhancer prediction and histone mark signaling overlap, we randomly selected 14 
putative regulatory elements, and then randomly picked one or two mutations based on Funseq2 
whole genome scores (http://funseq3.gersteinlab.org). Next, we used a web tool to design site-
directed mutagenesis primers to introduce the target SNVs into the 14 elements. Two SNVs were 
introduced into each element, with only one predicted to result in a significant change in enhancer 
activity.  
  

Reporter Generation 
Elements were amplified via PCR from human genomic DNA (Promega) with Platinum SuperFi 
polymerase (Invitrogen) and primers containing attB1 and attB2 sequences (see S2 Table). 
Elements were then cloned into pDONR223 using Gateway BP clonase and transformed into E. 
coli cells. Four colonies for each element were picked and sequenced via Sanger sequencing 
using the RV3 primer. One clone for each element with the correct sequence was then cloned 
into pDEST-hSCP1-luc or pGL4-Gateway-SCP1 using Gateway LR clonase, and luciferase 
reporters containing the elements were then transfected into K562 cells. pGL4-Gateway-SCP1 
was a gift from Alexander Stark (Addgene plasmid # 71510) [44]. To construct a positive control 
for the enhancer activity assays, we cloned the widely used Rous sarcoma virus promoter that 
has been implied to possess enhancer activities.  
 

Mutagenesis 
The wild-type templates for site-directed mutagenesis were sequence-verified entry clones 
containing putative regulatory elements. The mutagenesis primers containing the pre-designed 
mutations were designed with a web tool (http://primer.yulab.org/). The mutagenesis reactions 
were carried out following the Clone-seq pipeline [43]. Each mutagenesis reaction contained a 
wild-type template and its corresponding mutagenesis primers. The products of the mutagenesis 
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reaction were DpnI-digested and transformed into TOP10 chemically competent cells (Invitrogen). 
The transformants were spread on LB-spectinomycin agar plates and incubated at 37°C overnight. 
Single colonies yielded from the mutagenesis were picked, propagated, and sequence-verified 
before they were used in downstream experiments. 
 

Cell Lines 
K562 cells were a gift from the Melnick lab (Weill Cornell Medicine). Cells were cultured in 
Iscove’s Modified Dulbecco’s Medium (Gibco) supplemented with 10% fetal bovine serum and 
1% Pen-Strep at 37°C with 5% CO2. 
 

Luciferase Assay 
K562 cells were transfected with 200 ng of the above reporters and 20 ng of Renilla luciferase 
(pRL-CMV, Promega) in triplicate in 96-well plates with Lipofectamine 3000 (Invitrogen). At 48 
hours post-transfection, luciferase activity was assayed with the Dual-Glo Luciferase Assay 
System (Promega). 
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Figures 
 
Fig. 1 Overall flow of GRAM 
The model predicts functional effects given the genotype with three steps: the first step predicts 
a universal regulatory activity using TF binding features; the second step predicts a cell type-
specific modifier score using TF binding score and expression profiles; the final step integrates 
the results from the previous two steps to predict the expression-modulating effect of the 
variant. 
 
Fig. 2 Preliminary selection of predictive features 
(a) Distribution of conservation scores among different annotation categories. (b) Enrichment of 
TF binding peaks in emVAR and non-emVAR sets. x-axis is ratio of variants overlapping with 
the TF peaks over all variants in the same set. The TFs are sorted with p-values in 
hypergeometric distribution test in an decreasing order. The number in the bracket indicates the 
observed motif break event count. TFs with sufficient number observations are highlighted in 
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bold. (c) Motif break scores in wild-type and mutant alleles for TFs with sufficient observed 
event count.  
 
 
Fig. 3 Model based feature selection 
(a) Importance of the top-ranked features for SELEX- and ChIP-Seq-derived models. The features 
are sorted according to the mean of LASSO stability selection and random forest importance 
scores.  (b) Regulatory network degree of relevant TFs for the top-ranked and bottom-ranked TFs 
in LASSO stability selection and random forest. (c) Comparison of the performance of different 
feature sets, including cell-line specific ChIP-Seq TF binding scores and SELEX TF binding 
scores, as well as features defined from previous disease-association prediction tools. 
 
Fig. 4 Performance of the GRAM multi-step model 
(a) ROC curve for regulatory activity prediction. (b) The prediction of cell specificity using TF 
expression profiles. (c) (d) ROC for model with/without tissue-specific ChIP-Seq Deepbind 
features. 
 
Fig. 5 Experimental validation 
(a) Regulatory activity prediction results on an independent K562 MPRA dataset (b) Expression-
modulating effect prediction results on an independent K562 MPRA dataset. (c) Regulatory 
activity prediction for luciferase assay in K562. The x-axis represents fold change from the 
experiment. The vertical dot lines represent the cut off (1.5, or 2) to determine positive 
(enhancer) and negative, and the horizontal dot line is the predicted probability cutoff (0.5). (d) 
The AUROC value versus the different absolute log2 odds cutoff [0.5, 2.0]; (e) Experimental 
results (in odds ratio) for luciferase assay in K562. The 5’ terminal and 3’ terminal insertions are 
compared. 
 
 
 

Supporting Information 
 
S1 table Predictive performance of different feature sets, including cell-line specific ChIP-Seq 
TF binding scores and SELEX TF binding scores, using Lasso, SVM and Random Forest 
 
S2 table Primers for 14 regions cloning in K562 
 
S1 Fig PRC curve for regulatory activity prediction 
 
S2 Fig Principal component analysis using Vodds for three cell lines: GM12878, GM19239 and 
HepG2 
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S3 Fig Distribution of Vodds score for GM12878. The high and low variable cell specificity class 
are defined by the top and bottom quantile. 
 
S4 Fig The prediction of cell type modifier score using TF binding profiles. 
 
S5 Fig Predicted probability for emVar and non-emVAR versus absolute log2 odds from 
luciferase assay 
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S1 table Predictive performance of different feature sets, including cell-line specific ChIP-Seq 
TF binding scores and SELEX TF binding scores, using Lasso, SVM and Random Forest 
 
MSE Lasso 1se SVM Random Forest 
ChIPseq+SELEX 0.106 0.105 0.102 
ChIPseq 0.124 0.116 0.130 
SELEX 0.111 0.108 0.107 

 
 
S2 table  Primers for 14 regions cloning in K562 
 

Element Number Forward Primer Reverse Primer 

1 
GGGGACAACTTTGTACAAAAAAGTTGGCACCG
GTACACGAAGGCTGGG 

GGGGACAACTTTGTACAAGAAAGTTGGCAACTG
CTGTAGCCCACCA 

2 
GGGGACAACTTTGTACAAAAAAGTTGGCACCG
GCAGTTGGAAAGGGC 

GGGGACAACTTTGTACAAGAAAGTTGGCAAGTC
CTCAGGAACCGGC 

3 
GGGGACAACTTTGTACAAAAAAGTTGGCACCCG
TGATCAACCAAAATCACCTCA 

GGGGACAACTTTGTACAAGAAAGTTGGCAATCC
TCTGCTCTACGGAATGGA 

4 
GGGGACAACTTTGTACAAAAAAGTTGGCACCTA
TCCGGAAGGGGTGGAACC 

GGGGACAACTTTGTACAAGAAAGTTGGCAACCC
CAGGTCACTCAGACCAC 

5 
GGGGACAACTTTGTACAAAAAAGTTGGCACCTA
AGCCCAGTCCTCAGC 

GGGGACAACTTTGTACAAGAAAGTTGGCAAAAG
GAAGACTAATTGGGTCCC 

6 
GGGGACAACTTTGTACAAAAAAGTTGGCACCAG
AACTAGCAGCGGAGAC 

GGGGACAACTTTGTACAAGAAAGTTGGCAATCC
TTCTTGCATGGTCGG 

7 
GGGGACAACTTTGTACAAAAAAGTTGGCACCTC
CCCTGCTTTTCGATCTCTC 

GGGGACAACTTTGTACAAGAAAGTTGGCAACTT
TAGCCGCCCCTTTCCA 

8 
GGGGACAACTTTGTACAAAAAAGTTGGCACCCC
TTTTCTAATCACCATTTCCGATA 

GGGGACAACTTTGTACAAGAAAGTTGGCAATAA
CAGGGGCAATGCACTTT 

9 
GGGGACAACTTTGTACAAAAAAGTTGGCACCTG
TTTTGCTTTTAACCTGATGAT 

GGGGACAACTTTGTACAAGAAAGTTGGCAAAG
GAGGTGGGGTGGCT 

10 
GGGGACAACTTTGTACAAAAAAGTTGGCACCCT
TTCACGCAAAACCTGCTCA 

GGGGACAACTTTGTACAAGAAAGTTGGCAAAAC
CTTTTTCCTTGAACCTTAGAC 

11 
GGGGACAACTTTGTACAAAAAAGTTGGCACCG
GTCTTGACGCTGGCC 

GGGGACAACTTTGTACAAGAAAGTTGGCAATGC
TGGGAGAAACCGAT 

12 
GGGGACAACTTTGTACAAAAAAGTTGGCACCG
GCTTCACTAACCTTAAATTCTAAA 

GGGGACAACTTTGTACAAGAAAGTTGGCAATGC
CCTTAAACAAGATGGC 

13 
GGGGACAACTTTGTACAAAAAAGTTGGCACCGT
TCCCCTTCTGTCTCAGG 

GGGGACAACTTTGTACAAGAAAGTTGGCAATTC
ATTCAGGGGCTCCC 

14 
GGGGACAACTTTGTACAAAAAAGTTGGCACCGA
CCCCACCCCTTCCC 

GGGGACAACTTTGTACAAGAAAGTTGGCAATTT
TGGCAGGAGCAGGA 
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Fig. S1 PRC curve for regulatory activity prediction 
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Fig. S2 Principal component analysis using Vodds for three cell lines: GM12878, GM19239 and 
HepG2 
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Fig. S3 Distribution of Vodds score for GM12878. The high and low variable cell specificity class 
are defined by the top and bottom quantile. 
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Fig. S4 The prediction of cell type modifier score using TF binding profiles. 
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Fig. S5 Predicted probability for emVar and non-emVAR versus absolute log2 odds from 
luciferase assay 
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