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Abstract:

There has been much effort to prioritize genomic variants with respect to their impact on “function”.
However, function is often not precisely defined: Sometimes, it is the disease association of a
variant; other times, it reflects a molecular effect on transcription or epigenetics. Here we coupled
multiple genomic predictors to build GRAM, a generalized model, to predict a well-defined
experimental target: the expression-modulating effect of a non-coding variant in a cell-specific
manner. As a first step, we performed feature engineering: using a LASSO regularized linear
model, we found transcription factor (TF) binding most predictive, especially for TFs that are hubs
in the regulatory network; in contrast, evolutionary conservation, a popular feature in many other
functional-impact predictors, has almost no contribution. Moreover, TF binding inferred from in
vitro SELEX is as effective as that from in vivo ChIP-Seq. Second, we implemented GRAM
integrating SELEX features and expression profiles. The program combines a universal regulatory
score for a variant in a non-coding element with a modifier score reflecting the particular cell type.
We benchmarked GRAM on a large-scale MPRA dataset in the GM12878 cell line, achieving a
ROC score of ~0.73; performance on the K562 cell line was similar. Finally, we evaluated the
performance of GRAM on targeted regions using luciferase assays in MCF7 and K562 cell lines.
We noted that changing the insertion position of the construct relative to the reporter gene gives
very different results, highlighting the importance of carefully defining the functional target the
model is predicting.
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Author Summary

Noncoding variants lie outside of protein-coding regions, and are found to have disease
associations. However, knowledge on the molecular effect of these non-coding variants in a cell-
specific context is very limited. Also, different output between multiple experiment platforms may
introduce extra complexity in analyzing the molecular function of these variants. We developed
GRAM, a generalized model to predict molecular effect of non-coding variants in multiple cell
types for different experimental platforms. We first selected the most informative cell-independent
SELEX transcription factor binding score on the variant locus as features and then combine cell-
specific gene expression profile to build a multi-step prediction model. GRAM has been
successfully tested on both MPRA and Luciferase assay, and on three different cell lines:
GM12878, K562 and MCF7, shows high performance.

Introduction

Advances in next-generation sequencing (NGS) technologies have enabled high-throughput
whole genome and exome sequencing [1], which has led to the identification and characterization
of many disease-associated mutations [2] and the vast majority of common single nucleotide
variants (SNVs) in the human population [3, 4]. Genome-wide association studies (GWAS) have
found that these variants mostly lie outside of protein-coding regions [5], emphasizing the
functional importance of non-coding regulatory elements in the human genome. This also defines
an urgent need to develop high-throughput methods to sift through this deluge of sequencing data
to quickly determine the functional relevance of each non-coding variant [6].

Evidence suggests that only a fraction of non-coding variants are functional, and the majority of
functional variants show only modest effects[7]. Therefore, highly quantitative assays are needed
to study large numbers of variants. Luciferase reporter assays are a common method to measure
the regulatory effects of functional elements [8]. Comparing the difference of luciferase expression
with and without a mutation can be used to estimate the experimental molecular effect of non-
coding variants lying in a functional element. By using high-throughput microarray and NGS
technology, the massively parallel reporter assay (MPRA) has extended the scales to the
genome-wide level [9-14]. Recently, Tewhey and colleagues demonstrated the capability of
MPRA to identify the causal variants that directly modulate gene expression [15]. This study
identified 842 expression-modulating variants (emVARs) showing significantly differential
expression modulation effects and provided a high-quality data source for computational modeling
[15, 16].
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There is an increasing need for computational methods to effectively predict the molecular effects
of variants and improve our understanding of the underlying biology of these effects. Several
approaches have been developed to address the problem of variant prioritization from different
perspectives. Based on the target of predictions, these methods comprise two major categories:
1) disease-causing effect predictors (e.g., DeepSEA [17], GWAVA [18] and CADD [19]), which
aim to prioritize causal disease variants and distinguish them from benign ones; and 2) fitness
consequence prioritization (e.g., fitCons [20] and LINSIGHT [21]), which attempt to identify the
variants based on evolutionary fitness. Other tools (e.g., Funseq2 [6]) do not belong to these
categories because they integrate a comprehensive data context and unsupervised scoring
system [6]. These computational methods are designed to predict and prioritize deleterious and
disease-associated variants, but not specific molecular phenotypes of these variants (i.e., their
effects on the activities of functional elements). Most importantly, none of the above tools take
into account cell specificity in their models. One reason may be that some cell-specific features
derived from chromatin immunoprecipitation sequencing (ChlP-Seq) data are only available in a
few cell lines, which is a major hindrance to the generalization of a model.

In this study, we addressed the problem of molecular effect prediction of variants from a new
perspective. Instead of predicting phenotypic consequences from genotypes, which is a common
practice, we aimed to directly predict the expression-modulating effect of the variants from various
sources of information. Our model incorporates selected transcription factor (TF) binding
information from in vitro SELEX assays, representing the general binding potential of TFs on the
variant’s location, and cell type-specific expression profiles, representing cellular contexts.
Combining cell type-independent and -dependent features gives our model both flexibility and
specificity. Evaluation results from MPRA and luciferase assay experiments show our model
achieved high predictive performance and can be easily transferred to other cell types and assay
platforms.

Results

Overall analysis flow

In this study, we first collected a dataset from Tewhey et al. [15] for estimation of expression
modulation differences between wild type and mutants in the GM12878 cell line. This MPRA-
generated dataset contains 3,222 SNVs filtered by logSkew value, which measures the log-fold
change of the expression-modulating differences between wild-type and mutant alleles. Among
them, 792 variants (hamed emVARs) had a significant expression-modulating effect compared
with their respective wild-type allele, which indicates the molecular effect of the variant. Here, we
treated emVARs and non-emVARSs as a positive and negative dataset in our GRAM model.
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As described in Fig. 1, our GRAM model is implemented with three steps: the first step predicts
the universal regulatory consequences of the element with variant using SELEX TF binding score;
the second step combines TF binding score with cell type-specific TF expression profiles to
predict the cell type modifier score in a specific cellular context; the third step integrates outputs
from the previous two phases to estimate the expression modulating effect in a cell-type- and
assay-platform-specific context.

Exploring conservation and TF binding features

We first investigated the potential of evolutionary conservation and transcription binding features
as predictors. Evolutionary conservation is associated with deleterious fitness consequence and
is widely used in prioritization algorithms of non-coding variants, such as PhyloP [22] and
PhastCons [23] score in LINSIGHT [21] and CADD [19], and GERP [22] score in Funseg?2 [6]. We
performed comparative analyses for these three conservation features across different datasets
(Fig. 2a). We found that the PhastCons and PhyloP pattern of emVARs and non-emVARs are
different from Human Gene Mutation Database (HGMD) [24] variants but similar to non-HGMD
variants, which are thought to be benign. GERP scores show a similar pattern but have smaller
variance in emVARs and non-emVARs compared to other datasets, with slightly larger values for
emVARs. As we did not find differential patterns when comparing emVARs and non-emVARs, we
further discovered that the correlation between logSkew and conservation scores was low with
the explained variance very close to 0 for all three evolution features by linear regression. These
results indicate that these conservation scores have little or no contribution to molecular effects
on their own.

TF binding can link the molecular effect of non-coding variants to a cascade of a regulatory
network, which is thought to be an important contributing factor to the variants’ regulatory effects
[17,19, 25, 26]. Tewhey et al. found that the logSkew value positively associates with TF binding
scores. To thoroughly evaluate the effect of TF binding, we tested TF binding peaks overlapping
with the SNVs and TF motif break events in the Tewhey dataset. We annotated and analyzed the
emVAR and non-emVAR variant sets with Funseq2 [6], and found that the emVAR set had more
TF binding events compared with the non-emVAR set (Fig. 2b). In addition to TF binding
enrichment, we examined the motif break scores for these TFs. After removing TFs with
insufficient observations, the differences between the distribution of motif-break score for mutant
and wild-type genotypes in emVARSs are larger than those in the non-emVAR dataset (Fig. 2c).
According to this analysis, the emVAR set tends to have not only more TF binding events, but
also larger binding alterations compared with the non-emVAR set. Thus, TF binding shows high
association with the expression-modulating effects of the variants.


https://doi.org/10.1101/482992
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/482992; this version posted January 2, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

Model-based feature selection

We generated TF binding features for potential training features using 515 Deepbind models
inferred from both ChIP-Seq [27] and in vitro SELEX assays [28]. With a comprehensive feature
selection framework to select impactful TF binding features, we prioritized these features across
models with LASSO stability selection [29] and Random Forest (shown in Fig. 3a). The 20 most
important features (out of 515) with respect to mean importance across all methods is shown in
decreasing order in Fig. 3a. Both ChlIP-Seq and SELEX Deepbind features showed high
importance, with the top two being GM12878 ChlIP-Seq features (SP1 and BCL3), which are cell
line specific, followed by SELEX features starting with ETP63. The top-ranked impactful TFs tend
to have more TF-TF interactions than the bottom-ranked TFs, indicating that the importance of a
TF reflects its role in the TF-TF cascade regulatory network (Fig. 3b).

Interestingly, many SELEX features, though not cell type-dependent, achieved similar predictive
power as cell type-specific ChlP-Seq features. We compared the predictive performances of cell
type-dependent ChlP-Seq features, cell type-independent SELEX features, and combination of
both feature sets using LASSO regressor, support vector machine (SVM) regressor and Random
Forest. Incorporating ChIP-Seqg-derived features did not boost the accuracy significantly for any
of the three models (Fig. 3c and S1 Table ). As the availability of ChIP-Seq is restricted to a few
cell lines, we instead used SELEX features to build a generalized model across different cell types.

We then used the features generated from disease-association prediction tools (CADD [30],
Funseq2 [31], DeepSEA [32], GWAVA [33], LINSIGHT [34], and Eigen [35]) to predict the same
molecular effect target. As shown in Fig. 3c, this analysis indicated that the prediction of disease-
associated variants is not equivalent to that of expression modulating variants.

Building a generalized model by multi-step learning

Using the TF binding features from DeepBind models and the MPRA dataset from Tewhey et al.
[15], we implemented our multi-step GRAM model. In the first step, we predicted the universal
regulatory activity of an element with or without a variant. The 10-fold cross validation
demonstrated exemplary performance of the model with an area under the receiver operating
characteristic curve (AUROC) of 0.938 and an area under the precision-recall curve (AUPRC) of
0.924 (Fig. 4a and S1 Fig).

In the second step, we calculated a cell-type modifier score as an indicator of the experimental
assay’s cell-specific nature (see Methods for details). Briefly, we defined the prediction target
using a top and bottom quantile of Vodds (S3 Fig). Vodds is the standard deviation of log odds
for each variant’s read count in MPRA and it shows cell line-specific patterns (S2 Fig). We found
that variants with higher Vodds tend to include more non-emVARs (Chi-square test p-value:
0.0002). Hence, the cell type modifier score can be used to adjust the universal regulatory effect
to a cell type-specific context.
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Gene expression profile, especially TF expression, are more generally available and can
represent the cellular environment. We incorporated TF gene expression and TF binding scores
as features to predict the cell type modifier target, and got an AUROC of 0.65 and 0.8, respectively,
using LASSO 10-fold cross-validation (S4 Fig and Fig. 4b).

The final step of our GRAM model is to predict the molecular effect of a variant that can
significantly modulate reporter gene expression. To do this, we fed the output from the first and
second step into a LASSO model, with the emVAR and non-emVAR labels as targets. We found
that the AUROC of 10-fold cross-validation for the optimal model is 0.728 (Fig. 4c) and the AUPRC
was 0.505, which are higher than the state-of-the-art method (KSM) using the same dataset
(AUROC: 0.684, AUPRC: 0.478) [36].

We also tried to build a generalized model by removing cell type-specific ChlP-Seq features. We
repeated step one and two on the same dataset using GRAM cell-independent features from the
SELEX assay, which achieved comparable performance with AUROC = 0.674 (Fig. 4d) and
AUPRC = 0.452.

Validating the GRAM model using experimental assays

We next evaluated performance of the model on different cell types and assay platforms. We use
the generalized model trained on GM12878 cells and tested it on another MPRA dataset in K562
cells [10], which includes 2,400 elements in 149bps with a variant centered on the inserted
fragment (Fig. 5a-b). The AUROC for Step 1 universal regulatory activity was as high as 0.68
when we set the g-value cutoff to 10°%; the molecular effect prediction was also over 0.8 if we used
a more stringent g-value cutoff (10°®).

Other than measuring read counts as in MPRA, some other assays, such as luciferase and GFP
reporter assays, measure luminescence and fluorescence readouts instead. [37, 38]. To evaluate
how our model, trained with MPRA data, can be transferred to these assay platforms we tested
its performance on luciferase assay results of eight potential regulatory elements with mutations
from the MCF7 cell line [39]. For regulatory activity, the predicted probability of being an active
regulator was positively correlated with luciferase assay fold change between the inserted
element and background control. The results show perfectly prediction (AUROC=1) using fold
change cutoffs from 1.2 to 2 (Fig. 5c¢). For the prediction of expression-modulating effects, we
defined the significant changes between mutant and wild type by using an absolute log2(odds
ratio) cutoff. The predicted probability also showed a positive correlation with absolute log2 fold
change (S5 Fig). The AUROC value ranged from 0.7 to 0.9 given the absolute log2 cutoff from
0.5 to 1.5 (Fig. 5d). This indicates that our model performs very well on luciferase assay or MPRA
dataset from different cell lines, though these assays use different measurements.

In MPRA, the element is inserted upstream (5’-terminal) of the reporter gene, but for some assays,
such as STARR-Seq, the element is inserted downstream (3’-terminal). Therefore, we further
tested the effect of insertion location of an element in luciferase reporters in K562 cells using 14
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randomly selected elements with potential regulatory activity. As shown in Fig. 5e, the 5’ terminal
log odds were similar to the 3’ terminal odds for region 3, 4, 5, and 13, but showed significant
differences for region 6, 8, 9, 10, and 14. The prediction of GRAM for the 5’ terminal was much
better than that for the 3’-terminal insertions; the AUROC was 0.25 higher for universal regulatory
activity and 0.32 higher for the expression-modulating effect prediction, indicating different
mechanisms for the two ends. Therefore, GRAM is optimal for 5’ terminal assays.

Discussion

There has been an increasing number of computational methods can prioritize non-coding
variants. Also, accumulating high-throughput whole-genome sequencing data have become the
primary source for identifying disease-associated variants. However, we still lack a tool that can
estimate the expression-modulating effect of a variant in a cell-specific manner. In this study, we
developed a multi-step generalized model called GRAM that can specifically predict the cell-type
specific expression-modulating effect of a non-coding variant in the context of a particular
experimental assay.

In this paper, we aimed to precisely define the expression-modulating effect as a function of the
response variables extracted from genomic data. Unlike other variant impact prediction methods,
we did not include evolutionary features in our model because it had very limited impact on the
performance. We selected a variety of TF binding features that could be useful for predicting
variant effects. We used direct measurements from TF binding and a straightforward LASSO
regression to assess the importance of each feature. We found that in vitro SELEX TF features
(aka non-cell-specific features) can achieve high predictive performance, which was further
validated by SVM and Random Forest.

The three-step GRAM model predicts the expression-modulating effects of variants by integrating
two intermediate predictive targets: universal regulatory activity and cell type modifier score. The
universal regulatory activity reflects the regulatory effect of an element with/without a mutation in
a vector-based assay without cell type-specific chromatin contexts and epigenomics information.
Since cell-specific information cannot be ignored for predicting the variant’s effects, we further
adjusted the universal regulatory effect with the cell type modifier score in the final step of the
prediction model, resulting in much better performance by the model. We note that our framework
can be further converted to a Bayesian hierarchy model with the intermediate targets as hidden
variables.

GRAM performed well with targeted validations on MPRA and luciferase assay platforms, even
across different cell types. In addition to target validations, we could explore in great detail the
sensitivity of these methods and the impact of vector construct. The insertion position of the
element affected the outcome of the assay, which may correspond to different types of regulatory
elements. Because our model is trained on 5’-terminal insertion data, the prediction is consistent
with outcomes from the same position, but not for 3’-terminal assay results. This indicates different


https://doi.org/10.1101/482992
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/482992; this version posted January 2, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

mechanisms for two insertion positions: an element inserted upstream of a reporter gene may
detect either the promoter or enhancer activity of the element. On the other hand, if it is inserted
downstream of the gene’s transcriptional start site or the 3’ terminal, it may specifically target to
the enhancer activity. However, large-scale experimental validation is required to further elucidate
the underlying mechanisms.

The GRAM model will be a useful tool for elucidating the underlying patterns of variants that
modulate expression in a cell-type context. By leveraging the accumulating data generated from
multiple cell lines, future studies can be performed in-depth investigation using GRAM. We will
keep abreast with the growing availability of comprehensive datasets and further expand our
analysis.

Methods

Dataset

We downloaded the dataset from R. Tewhey et al.’s paper [15]. From about 79K tested elements,
we only kept variants for which either wild-type or mutant elements show regulatory activity. This
reduced the set to 3,222 SNVs in the GM12878 cell line. Each SNV was extended in both
directions by 74bp, in total 149bp. We used another dataset from Ulirsch 2016 [10], which included
2,756 variants tested in the K562 cell line.

The protein-protein interaction network used in our downstream analysis was constructed by
merging all interaction pairs identified by BioGrid [40], STRING [41] and InBio Map [42].

Feature extraction:

GERRP features were extracted using the Funseq2 annotation pipeline, which searches the region
of elements over the whole genome GERP score file to get an average score. We downloaded
phyloP [22] and Phastcons [23] scores from the UCSC genome browser data portal
(http://hgdownload-test.cse.ucsc.edu/goldenPath/hg19/).

We performed motif enrichment analysis using a hypergeometric test. For the motif break and
gain score comparison, we removed the TFs that covered less than two variants for either
emVARs or non-emVARs from the top 40 TFs. Then, we performed a Wilcoxon test for the motif
break score.
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Motif break and motif gain scores were calculated using Funseg2. We also calculated the motif
score using Deepbind [26] with both the SELEX and ChIP-Seq motif model. The SELEX motif
model is based on an in vitro binding assay: systematic evolution of ligands by exponential
enrichment. However, ChIP-Seq models are inferred using sequences from the TF binding site
from different cell lines. A total of 515 motif models were calculated (table s1:
tbls1.deepbind.list.txt).

Model-based feature selection

To examine the importance of features, we compared different metrics, which included LASSO
stability selection [29] and Random Forest regression. The feature importance for each selection
method was scaled to [0, 1]; we took the mean of all the selection methods to represent the overall
ranking.

We compared our models’ mean standard error (MSE) with CADD, Eigen, LINSIGHT, Funseq2,
GAWVA, and DeepSea. Features from the above tools were collected and tested using both SVR
and Random Forest regression, which considered all Deepbind features and SELEX-based and
ChiIP-Seqg-based features, respectively. For the other variant prioritization tools, we took the
output of these methods, and then used the same SVR and Random Forest to train and predict
the logSkew value.

GRAM — multi-step generalized model
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Pseudocode:

i: variant id

j: TF id

M: the total number of variants

N: the total number of TF

B;j: TF j binding score on i variant

E;;: Expression of jth high-affinity TF on i variant
c: cell type

U(i), S(i,c), F(i,c): model for step 1-3

Step1: simple Universal score to be a regulatory element using randomForest
classifier, U(i) € [0,1]
U(i) = F1 (Bj1, Bz, ..., Bin)

Step2: cell type modifier score, S(i,c) € [0,1]
S(l, C) = FZ(Bil'BiZ' "'iBiN' Eill Eiz, ""EiN) = logit(bilBil + biz Biz + -+ BiNTiN +
bi1 Ei1 + by Eig + -+ byyEyy + bic)

Objective function: minwﬁ IS - S||2 + allbll,

Step2: molecular effect score, S(i, c) € [0,1]
0dds(i) = abs(log2(—2mu)__Twe )y 444(;) € [0, ]

1-0(imue) ' 1-0Gwe)

F(i,c) = F3(odds(i), S(i, c)) = logit(b, 0dds(1) + bs $(i,c) + b(i, c))

Objective function: minwﬁ |F - F||2 + allbll,

We defined the emVARSs as positive and non-emVARs as negative classes following [15], where
‘expression modulating’ means having a molecular effect that significantly increases or decreases
regulatory activities. In total, we used 3,222 data records, including 799 positive and 2,423
negative.

We built a three-step GRAM model. Model 1 predicts the universal element regulatory activity U
for wild type and mutant. The ground-truth of regulatory activity is determined by experimental
assay platforms, like luciferase assay or MPRA. An element inserted into plasmid with or without
a mutation is defined as a regulatory element if the fold change between the element and the
control is larger than a statistically significant cutoff. For example, for the MPRA study, a statistical
test based on DESeq?2 indicates whether it is significantly changed; for the luciferase assay, we
considered a testing element that has a fold change greater than 1.5 or 2 compared to control
(eGFP) as a regulatory element. The response variable is the TF binding score changes from wild
type to mutant, which is estimated by Deepbind. A Random Forest classifier was trained to predict
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the universal regulatory activity. The predicted log odds of probability between the wild type and

U(iwt)
1-U(iwt)

U(imut)
mutant was calculated by log2 (1_"“’”"0).

Model 2 predicts cell type modifier scores using gene expression and binding scores of TF. The
cell type modifier score is defined according to the cell specificity of the experimental assay. Given
the reads count of MPRA for wild type, mutant, and their null control, it forms a 2x2 categorical
table. The standard deviation of log(odds) of the categorical table (n1,n2,n3,n4 for the average

reads count) is calculated as \/n_ll + n—12 + n—13 + n—14. By comparing principal component loading of the

Vodds from three cell lines: GM12878, GM19239, and HepG2, we found that the two GM cell
lines are closer to each other than to HepG2 (Fig. s2), which indicates that Vodds contains cell
type information. The underlying biology may reflect the cell specificity of the experiment, such as
the success rate of transfection. We then further compared two groups of variants with the top
quantile and bottom quantile of Vodds in GM12878, and found that there were more non-emVAR
variants in the top quantile group, which indicates the Vodds are also associated with the
molecular effects of the variants. Then, we defined a cell type modifier target using the top and
bottom quantile variants.

Reads Wild-type Mutant
Assay n1 n3
Null-control n2 n4

The TF expression profile was used to predict cell type index modifier class. For each mutation
region, we adjusted the expression based on the TF binding score. Given 258 TFs with a
Deepbind SELEX model score S for 3,222 SNVs, the TF expression matrix for each variant was
adjusted and shuffled using the rank of SELEX TF binding scores among all the SNVs. Then, we
used the TF binding score and gene expression to predict the cell type modifier class.

The final model predicts the molecular effect of a variant using the estimated universal odds ratio
and cell type modifier from TF binding and expression as predictors. A simple LASSO was used
to build the model.

Experiment validation on MCF7 cells

Each regulatory region (both wild and mutant types) was separately synthesized. Enhancer
regions were designed in such a fashion where based on the candidate SNV site, 250bp upstream
and 250bp downstream was included for each enhancer region. These regions were then cloned


https://doi.org/10.1101/482992
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/482992; this version posted January 2, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

into the pGL4.23[luc2/minP] vector (Promega, Cat# E841A). Each candidate region was placed
upstream of the minP promoter to determine the effect of each putative enhancer region on
luciferase expression. 100ng of each candidate construct and 100ng of Nano-luc control was co-
transfected into MCF-7 cells (5,000 cells per well in DMEM media containing 10% FBS and 1%
Penicillin-Streptomycin antibiotic) using the Lipofectamine 3000 reagent (Thermo Fisher, Cat#
L3000001) according to manufacturer’s instructions. Cells were incubated for 48 hrs before
reading the luciferase signal using Promega Nano-Glo luciferase kit (Promega, Cat# N1521)
according to manufacturer’s instructions.

Model validation using MPRA data from K562 cells

Enhancer Selection

Based on the enhancer prediction and histone mark signaling overlap, we randomly selected 14
putative regulatory elements, and then randomly picked one or two mutations based on Funseq2
whole genome scores (http://funseq3.gersteinlab.org). Next, we used a web tool to design site-
directed mutagenesis primers to introduce the target SNVs into the 14 elements. Two SNVs were
introduced into each element, with only one predicted to result in a significant change in enhancer
activity.

Reporter Generation

Elements were amplified via PCR from human genomic DNA (Promega) with Platinum SuperFi
polymerase (Invitrogen) and primers containing attB1 and attB2 sequences (see S2 Table).
Elements were then cloned into pPDONR223 using Gateway BP clonase and transformed into E.
coli cells. Four colonies for each element were picked and sequenced via Sanger sequencing
using the RV3 primer. One clone for each element with the correct sequence was then cloned
into pDEST-hSCP1-luc or pGL4-Gateway-SCP1 using Gateway LR clonase, and luciferase
reporters containing the elements were then transfected into K562 cells. pGL4-Gateway-SCP1
was a gift from Alexander Stark (Addgene plasmid # 71510) [44]. To construct a positive control
for the enhancer activity assays, we cloned the widely used Rous sarcoma virus promoter that
has been implied to possess enhancer activities.

Mutagenesis

The wild-type templates for site-directed mutagenesis were sequence-verified entry clones
containing putative regulatory elements. The mutagenesis primers containing the pre-designed
mutations were designed with a web tool (http://primer.yulab.org/). The mutagenesis reactions
were carried out following the Clone-seq pipeline [43]. Each mutagenesis reaction contained a
wild-type template and its corresponding mutagenesis primers. The products of the mutagenesis
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reaction were Dpnl-digested and transformed into TOP10 chemically competent cells (Invitrogen).
The transformants were spread on LB-spectinomycin agar plates and incubated at 37°C overnight.
Single colonies yielded from the mutagenesis were picked, propagated, and sequence-verified
before they were used in downstream experiments.

Cell Lines

K562 cells were a gift from the Melnick lab (Weill Cornell Medicine). Cells were cultured in
Iscove’s Modified Dulbecco’s Medium (Gibco) supplemented with 10% fetal bovine serum and
1% Pen-Strep at 37°C with 5% CO2.

Luciferase Assay

K562 cells were transfected with 200 ng of the above reporters and 20 ng of Renilla luciferase
(pPRL-CMV, Promega) in triplicate in 96-well plates with Lipofectamine 3000 (Invitrogen). At 48
hours post-transfection, luciferase activity was assayed with the Dual-Glo Luciferase Assay
System (Promega).
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Figures

Fig. 1 Overall flow of GRAM

The model predicts functional effects given the genotype with three steps: the first step predicts
a universal regulatory activity using TF binding features; the second step predicts a cell type-
specific modifier score using TF binding score and expression profiles; the final step integrates
the results from the previous two steps to predict the expression-modulating effect of the
variant.

Fig. 2 Preliminary selection of predictive features

(a) Distribution of conservation scores among different annotation categories. (b) Enrichment of
TF binding peaks in emVAR and non-emVAR sets. x-axis is ratio of variants overlapping with
the TF peaks over all variants in the same set. The TFs are sorted with p-values in
hypergeometric distribution test in an decreasing order. The number in the bracket indicates the
observed motif break event count. TFs with sufficient number observations are highlighted in
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bold. (c) Motif break scores in wild-type and mutant alleles for TFs with sufficient observed
event count.

Fig. 3 Model based feature selection

(a) Importance of the top-ranked features for SELEX- and ChIP-Seq-derived models. The features
are sorted according to the mean of LASSO stability selection and random forest importance
scores. (b) Regulatory network degree of relevant TFs for the top-ranked and bottom-ranked TFs
in LASSO stability selection and random forest. (c) Comparison of the performance of different
feature sets, including cell-line specific ChlP-Seq TF binding scores and SELEX TF binding
scores, as well as features defined from previous disease-association prediction tools.

Fig. 4 Performance of the GRAM multi-step model

(a) ROC curve for regulatory activity prediction. (b) The prediction of cell specificity using TF
expression profiles. (c) (d) ROC for model with/without tissue-specific ChlP-Seq Deepbind
features.

Fig. 5 Experimental validation

(a) Regulatory activity prediction results on an independent K562 MPRA dataset (b) Expression-
modulating effect prediction results on an independent K562 MPRA dataset. (c) Regulatory
activity prediction for luciferase assay in K5662. The x-axis represents fold change from the
experiment. The vertical dot lines represent the cut off (1.5, or 2) to determine positive
(enhancer) and negative, and the horizontal dot line is the predicted probability cutoff (0.5). (d)
The AUROC value versus the different absolute log2 odds cutoff [0.5, 2.0]; (e) Experimental
results (in odds ratio) for luciferase assay in K562. The 5’ terminal and 3’ terminal insertions are
compared.

Supporting Information

S1 table Predictive performance of different feature sets, including cell-line specific ChIP-Seq
TF binding scores and SELEX TF binding scores, using Lasso, SVM and Random Forest

S2 table Primers for 14 regions cloning in K562
S1 Fig PRC curve for regulatory activity prediction

S2 Fig Principal component analysis using Vodds for three cell lines: GM12878, GM19239 and
HepG2
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S3 Fig Distribution of Vodds score for GM12878. The high and low variable cell specificity class
are defined by the top and bottom quantile.

S4 Fig The prediction of cell type modifier score using TF binding profiles.

S5 Fig Predicted probability for emVar and non-emVAR versus absolute log2 odds from
luciferase assay
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$1 table Predictive performance of different feature sets, including cell-line specific ChIP-Seq
TF binding scores and SELEX TF binding scores, using Lasso, SVM and Random Forest

MSE Lasso 1se SVM Random Forest
ChIPseq+SELEX 0.106 0.105 0.102
ChiPseq 0.124 0.116 0.130
SELEX 0.111 0.108 0.107

S2 table Primers for 14 regions cloning in K562

Element Number

Forward Primer

Reverse Primer

GGGGACAACTTTGTACAAAAAAGTTGGCACCG
GTACACGAAGGCTGGG

GGGGACAACTTTGTACAAGAAAGTTGGCAACTG
CTGTAGCCCACCA

GGGGACAACTTTGTACAAAAAAGTTGGCACCG
GCAGTTGGAAAGGGC

GGGGACAACTTTGTACAAGAAAGTTGGCAAGTC
CTCAGGAACCGGC

GGGGACAACTTTGTACAAAAAAGTTGGCACCCG

GGGGACAACTTTGTACAAGAAAGTTGGCAATCC

3 TGATCAACCAAAATCACCTCA TCTGCTCTACGGAATGGA
GGGGACAACTTTGTACAAAAAAGTTGGCACCTA | GGGGACAACTTTGTACAAGAAAGTTGGCAACCC
4 TCCGGAAGGGGTGGAACC CAGGTCACTCAGACCAC
GGGGACAACTTTGTACAAAAAAGTTGGCACCTA | GGGGACAACTTTGTACAAGAAAGTTGGCAAAAG
5 AGCCCAGTCCTCAGC GAAGACTAATTGGGTCCC

GGGGACAACTTTGTACAAAAAAGTTGGCACCAG
AACTAGCAGCGGAGAC

GGGGACAACTTTGTACAAGAAAGTTGGCAATCC
TTCTTGCATGGTCGG

GGGGACAACTTTGTACAAAAAAGTTGGCACCTC
CCCTGCTTTTCGATCTCTC

GGGGACAACTTTGTACAAGAAAGTTGGCAACTT
TAGCCGCCCCTTTCCA

GGGGACAACTTTGTACAAAAAAGTTGGCACCCC
TTTTCTAATCACCATTTCCGATA

GGGGACAACTTTGTACAAGAAAGTTGGCAATAA
CAGGGGCAATGCACTTT

GGGGACAACTTTGTACAAAAAAGTTGGCACCTG

GGGGACAACTTTGTACAAGAAAGTTGGCAAAG

9 TTTTGCTTTTAACCTGATGAT GAGGTGGGGTGGCT
GGGGACAACTTTGTACAAAAAAGTTGGCACCCT | GGGGACAACTTTGTACAAGAAAGTTGGCAAAAC
10 TTCACGCAAAACCTGCTCA CTTTTTCCTTGAACCTTAGAC

11

GGGGACAACTTTGTACAAAAAAGTTGGCACCG
GTCTTGACGCTGGCC

GGGGACAACTTTGTACAAGAAAGTTGGCAATGC
TGGGAGAAACCGAT

12

GGGGACAACTTTGTACAAAAAAGTTGGCACCG
GCTTCACTAACCTTAAATTCTAAA

GGGGACAACTTTGTACAAGAAAGTTGGCAATGC
CCTTAAACAAGATGGC

13

GGGGACAACTTTGTACAAAAAAGTTGGCACCGT
TCCCCTTCTGTCTCAGG

GGGGACAACTTTGTACAAGAAAGTTGGCAATTC
ATTCAGGGGCTCCC

14

GGGGACAACTTTGTACAAAAAAGTTGGCACCGA
CCCCACCCCTTCCC

GGGGACAACTTTGTACAAGAAAGTTGGCAATTT
TGGCAGGAGCAGGA
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Fig. S1 PRC curve for regulatory activity prediction
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Fig. S2 Principal component analysis using Vodds for three cell lines: GM12878, GM19239 and
HepG2
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Fig. S3 Distribution of Vodds score for GM12878. The high and low variable cell specificity class
are defined by the top and bottom quantile.
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Fig. S4 The prediction of cell type modifier score using TF binding profiles.
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Fig. S5 Predicted probability for emVar and non-emVAR versus absolute log2 odds from
luciferase assay
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