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Abstract

o Background: Whole genome sequencing (WGS) hasincreased in popularity and decreased
in cost over the past decade, rendering this approach as a viable and sensitive method for
variant detection. In addition to its utility for single nucleotide variant detection, WGS data
has the potential to detect Copy Number Variants (CNV) to fine resolution. Many CNV
detection software packages have been developed exploiting four main types of data: read
pair, split read, read depth, and assembly based methods. The aim of this study was to
evaluate the efficiency of each of these main approaches in detecting deletions.

e Methods: WGS data and high confidence deletion calls for the individual NA12878 from the
Genome in a Bottle consortium were the benchmark dataset. The performance of
Breakdancer, CNVnator, Delly, FermiKit, and Pindel was assessed by comparing the
accuracy and sensitivity of each software package in detecting deletions exceeding 1kb.

o Results: There was considerable variability in the outputs of the different WGS CNV
detection programs. The best performance was seen from Breakdancer and Delly, with 92.6%
and 96.7% sensitivity, respectively and 34.5% and 68.5% false discovery rate (FDR),
respectively. In comparison, Pindel, CNVnator, and FermiKit were less effective with
sensitivities of 69.1%, 66.0%, and 15.8%, respectively and FDR of 91.3%, 69.0%, and
31.7%, respectively. Concordance across software packages was poor, with only 27 of the
total 612 benchmark deletions identified by all five methodologies.

e Conclusions: The WGS based CNV detection tools evaluated show disparate performancein
identifying deletions >1kb, particularly those utilising different input data characteristics.
Software that exploits read pair based data had the highest sensitivity, namely Breakdancer
and Delly. Breakdancer also had the second lowest false discovery rate. Therefore, in this
analysis read pair methods (Breakdancer in particular) were the best performing approaches
for the identification of deletions >1kb, balancing accuracy and sensitivity. Thereis potential
for improvement in the detection algorithms, particularly for reducing FDR. This analysis has
validated the utility of WGS based CNV detection software to reliably identify deletions, and
these findings will be of use when choosing appropriate software for deletion detection, in

both research and diagnostic medicine.
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I ntroduction

Identifying and characterising genetic variants is central to both genetic medicine and
research. Variation is typically categorised into three main classes. single nucleotide variants
(SNVs), small insertions and deletions (indels, typically defined as 1-50 bp), and larger
structural variants (SVs, typically defined as >1 kb). Structural variants are further
subdivided into two categories dependent on whether the change in genetic information is
balanced (no grossloss of DNA) or unbalanced (loss or gain of DNA). Deletions and
multiplications form the unbalanced copy number variants (CNV's), while translocations or
inversions with conservation of the genetic content form balanced chromosomal
rearrangements (BCRs). Copy number variants have historically been defined as changesin
genetic content >1,000 bp [1]. However, as the resolution of technologies used to identify
these variants have improved, this classification has become one of nhomenclature rather than
practicality, and it is becoming clear that individuals can harbour changes in genetic content

in a continuous scale from 1 bp to several Mb.

The study of copy number changes began at a microscopic level in 1959, where visualisation
of whole chromosomes (karyotyping) allowed for the first identification of human copy
number changes, namely trisomy 21 in Down syndrome patients [2]. This has culminated in
attempts to map and catalogue the variation in the human genome represented by copy
number variants (CNVs) [3-6] Advancesin technology in the intervening decades has
resulted in drastic improvement in the ability to detect unbalanced genomic changes, and
today partial chromosome changes in genomic content can be detected using multiple
techniques. The current diagnostic standard for identifying CNV is chromosomal microarray
analysis (CMA). Thistechnology however has limitationsin resolution, with clinical
reporting thresholds typically >200 kb [7]. Chromosomal microarray analysis reveals the
extent of copy number change effecting the region but is unable to resolve the breakpoints to
base pair level, and can only detect gross changes in genomic content, not single nucleotide,

other small variants, or balanced chromosomal rearrangements.

Decreasing cost has rendered whole genome sequencing (WGS) aviable and sensitive
method for CNV detection with rapidly increasing application in genomic research. WGS has

the ability of exact base pair resolution; with no theoretical limit on the size of CNV able to
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be detected. Application of suitable analytical tools has the potential to reveal all types of
genetic variation including CNVs, BCRs, indels, and SNVs.

As such, there has been an explosion in the development of software tools to identify CNV's
from WGS, with over 80 tools currently available [8]. These tools primarily exploit four
different WGS metrics: read depth, split read, read pair, and assembly based, which each rely
on distinct information from the sequence data (reviewed in [9, 10]). Briefly, read depth
based methods rely upon the theory that the depth of read coverage of a genomic region
reflects the relative copy number of the loci, whereby a gain in copy number would result in
greater than average coverage. Conversely, alossin copy number would result in lower than
average read coverage of the region. Split read based approaches rely upon paired end
sequencing in which only one read from each pair is aligned to the reference genome, while
the other one either does not to map or only partially maps to the reference genome. Read
pair or paired-end methods exploits discordantly mapped paired-reads where the mapped
distance between the read pairsis significantly different from the average fragment size of the
library, or if one or both members of the pair is aligned in an unexpected orientation. Finally,
unlike the previous approaches which rely on theinitia alignment to a reference sequence,
assembly based methods de novo assemble reads into contigs, which are then aligned and

compared to areference genome.

As each method utilises different information extracted from sequence data, each method has
unique strengths and weaknesses. For example, read depth based methods can only identify
SV's where there has been an overall change in genetic content (CNV's not BCRs) but
confidently detect the direction of genomic change of the CNV's discovered. The performance
of read pair methods are reliant on the choice of the alignment algorithm, which can be an
issue for repetitive regions due to ambiguities in the correct placement of reads. In general
read pair methods are less susceptible to GC bias and are able to identify both CNV's and
BCRs. Split read methods require reads that cross the breakpoint and therefore the ability to
detect SVsis sensitive to read length. However, this method resolves the breakpoints with
single nucleotide accuracy. Finally, the analysis of genome sequence using assembly can
have very long run times and require high performance computing resources. This approach
does however enable the identification of complex SVs. Taking these points into

consideration, a number of software employ a combination of methods to identify CNVs.
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The performance of WGS-based CNV detection methods has been characterised by fewer
reports than those applied to whole exome sequencing based CNV detection [11-15].
However, arecent publication reported the evaluation of read depth-based WGS CNV
detection methods and presented a suggested workflow for WGS based CNV detection [16].
Other comparisons of WGS CNV detection methods have been performed in the context of
theinitial report of the software. Here, we report an unbiased quantitative comparison of the
accuracy and sensitivity of all fundamental WGS CNV methodologies for human CNV
prediction, testing one representative of each method, and one of the mast commonly used
combinatorial methods. The resulting performance metrics presented here emphasises the

importance of selecting appropriatefit for purpose CNV detection tools.

M ethods

Sample data
FASTQ and binary alignment map (bam) files aligned to the GRCh37/hg19 reference

genome for individual NA 12878 was downloaded from the European Nucleotide Archive

repository [17] .

WGS-based CNV software

One CNV detection tool was selected from each of the read depth, split read, read pair, and
assembly methodol ogies based on the following criteria: single sample analysis, optimised
for high-coverage genomic data (~30-fold coverage), detection of CNVs down to 1kb in size,
use in peer-reviewed research, and the software package had to be available to download with
afreelicence for research/academic use. Based on these criteria, the software packages
Breakdancer (v1.4.5) [18], CNVnator (v0.3) [19], Delly (v0.7.7) [20], FermiKit (v0.13) [21],
and Pindel (v0.2.5b8) [22] were selected for further analysis (Table 1).

Each tool was run using the recommended parameters and filtering steps as described in the
original publications; CNVnator: 100 for bin size and retaining only variants with a fraction
of reads mapped with q0 quality > 0.5, Breakdancer: retaining only variants with a
confidence score threshold of Q > 60, Pindel: the number of supporting reads for each CNV
was > 2, with Delly and FermiKit using only default parameters with no recommended
filtering steps. Comparative evaluation was restricted to deletion calls >1kb. More details on

the implementation of each tool can be found in Supplementary Text 1.
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Deletion detection

The deletion ‘truth-set’ was obtained from the Genome in aBottle (GIAB) Consortium [23]
benchmark SV calls resource, as called by svclassify, a machine learning based approach
[24]. This dataset was generated using one-class Support Vector Machines (SVM) where the
training data-set was from deletions identified by Personalis Genetics and 1000 Genomes
pilot phase deletion calls, and insertions from Spiral Genetics. The 1000 Genomes deletions
were called using examples from each methodology: : AB Large Indel Tool, PEMer,
BreakDancer, VariationHunter, WTSI, CNVnator, mrFast, Event-Wise-Testing, Pindel,
MOSAIK, Cortex, TIGRA, NovelSeq, AbySS, SOAPdenovo, Genome STRIiP, and
SPANNER. The magjority of these calls were independently validated by PCR or array-based
experiments. From these deletions, SVM identified annotations that identify CNV's different
from random regions of the genome in Illumina HiSeq, PacBio, and Moleculo genome
sequence data. The high confidence SVs were therefore called based upon the annotations

associated with SVsidentified from the machine learning algorithm.

These CNV's have been made available by GIAB to use as a reference standard and have been
used in this capacity in a number of studies both in software development and validation [25,
26], as well as the recent read depth WGS del etion detection software evaluation [16]. For
this report deletions> 1kb were considered for statistical analysis; consisting of 612 of the
2744 total CNVs reported by GIAB.

The performance of each of the bioinformatic tools was determined by the comparison
between the truth-set and predicted deletions generated by the tools. True positives were
classified as variants with at least a 50% reciprocal overlap with one or more of the 612
deletions in the filtered GIAB set, as determined by BEDTools (2.26.0)[27]. Concordance
between tools was determined as CNV s detected by one or more software, with 50%

reciprocal overlap using the python package Intervene [28]

Results

We selected one software package for each of the four main methodologies of WGS CNV
detection and one combinatorial approach for evaluation. Here the predicted deletions from
Breakdancer (read pair), CNVnator (read depth), Delly (read pair and split read), FermiKit
(assembly), and Pindel (split read) were assessed for accuracy and sensitivity.
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Sizedistribution of predicted deletions and comparison acr oss tools

We arbitrarily designated bins of eight CNV sizes for investigation of WGS-based variant
calls fromindividual NA12878 (Fig 1). The ‘truth-set’ deletions arerelatively evenly divided
amongst the bins, with the majority of deletions <5 kb (71.6%). Deletions greater than or
equal to 1kb predicted by Breakdancer, CNVnator, and FermiKit had a similar size
distribution to that of the GIAB identified deletions. In contrast, the outputs from Delly and
Pindel were biased towards larger deletions, particularly Pindel with 49.4% >10 kb. This bias
is curious given split read based methods are purported to be better suited to detected small
deletions than other methodologies [10, 22], however this observation was to extremely small
variants (<300 bp).

Detection sensitivity of GI AB deletions

The overall performance of each software tool is displayed in Table 2. Viewing the truth-set
deletions as awhole, the sensitivity of Delly, Breakdancer, Pindel, CNVnator, and FermiKit,
were 96.7%, 92.6%, 69.1%, 66.0%, and 15.8%, respectively. The performance of each tool
varied across the size range of deletions (Fig 2A). Pindel displays low sensitivity for small
deletions, with 3.29% of deletions correctly identified within the 1-1.5kb range. Thisis
consistent with the low proportion of deletions predicted by Pindel in this size range. The
sensitivity for FermiKit was consistently low across all sizes, which likely reflects the small
number of deletions predicted by thistool (141 vs 5139 predicted by Pindel, for example).
Deletion identification by CNVnator was variable across the size range, without consistent
relationship between size and sensitivity. Finally, Breakdancer and Delly performed
consistently across the entire size distribution of deletions, with comparable performance

between the two tools.

Softwar e false discovery rate

There isanatural trade-off between sensitivity and false discovery rate. Often software that
delivers a high sensitivity also produce a high proportion of false positive deletions, and thus
generate considerable validation work. For deletions>1kb, FDR for FermiKit, Breakdancer,
Delly, CNVnator, and Pindel were 31.7%, 34.5%, 68.5%, 69.0%, and 91.3%, respectively
(Table 2). The FDR for each tool across the deletion size distribution isillustrated in Fig 2B.
Pindel had the highest FDR out of all tools across all deletion sizes. The poor performance of
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Pindel may be duein large part to the substantialy higher number of deletions predicted by
Pindel than al other tools. Overall, the FDR from CNV nator decreases with increasing
deletion size. All tested programs demonstrate FDR > 50% for deletions exceeding 10kb.
FDRs for FermiKit and Breakdancer were similar across the deletion size range tested here,
while FDR for Delly was consistently higher than that of Fermikit and Breakdancer.

Concordance of predicted deletions acr oss platforms

There was considerable concordance of correctly identified del etions between individual
software packages, where 589 of the 604 correctly identified truth-set deletions where
identified by at least 2 tools (Supplementary Table 1). However, the concordance across al
packages (Breakdancer, CNVnator, Delly, FermiKit, and Pindel) was relatively poor with
only 27 deletions (4.4% of all deletions from the truth-set) identified by all (Fig 3). Only 10
deletions were missed by all tools, the majority of which (60%) were biased towards either
end of the size range investigated (>10 kb and 1-1.5 kb in size, Supplementary Figure 1).
Relative to the 27 deletions identified by all methods, those missed had fewer interspersed
repeat elements (average of 46.59% - including LINES, SINES and Long terminal repeats)
compared to 66.57% in the 27 deletions identified by all tools as determined by

RepeatM asker.[29].

The majority (568) of true deletions were identified by Breakdancer and Delly, with very
few (36) of the remaining deletions identified by other packages (and not Breakdancer). Of
the 568 deletions correctly identified by Breakdancer, al of these were aso discovered by
Delly (Table S1). In order to investigate if there was extra discriminating power in combining
the analysis of Breakdancer and Delly, the number of separately and jointly called false
positives was calculated. Only 11 false positive deletions were excluded compared with the
application of Breakdancer alone. Thus the FDR for Breakdancer aone (34.5%) showed

minor reduction to 33.7% when considering only pairwise deletions with Delly.

Discussion
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The accurate identification of CNVsisimportant for both research and clinical diagnostics,
particularly given CNVs are responsible for the largest percentage of per base genetic
variation within genomes (~1.5%) [30]. In comparison, despite the greater number of SNV's
per individual (approximately 3.6 million SNVs[31] vs 1,117-1,488 CNVs [30]), they
collectively only account for 0.1% of per base genome variation. Chromosomal microarray
analysisisthe current standard for diagnostic testing for CNVsin human health, however
clinical thresholds limit its application to the identification of relatively large scale CNV's of
>200kb [7]. Inclusion of WGS for CNV diagnostic testing has the potential to result in a four-
fold increase in sensitivity for identification of clinically relevant CNV's (compared to CMA
using clinical thresholds alone) [32]. Thus, the increased sensitivity of WGS not only allows
for the identification of both small and large scale structural variants, but also enables for the
identification of SNV and indels, all within asingle test.

A number of CNV detection software packages have been developed which use WGSin
various ways including: read depth, split reads, read pair, and assembly based methodologies,
or acombination of these methods. However, before WGS CNV detection can be
implemented in molecular diagnosticsit is hecessary to comprehensively assess the
methodological performance. A comparative analysis of read depth based methods has
recently been reported by Trost, et al., [16]. Here we report an unbiased quantitative
comparison of the four primary deletion detection approaches exploiting different features of
WGS. We selected Breakdancer (utilising read pair), CNVnator (read depth), Delly (read
depth and split read), FermiKit (assembly), and Pindel (split read) software packages for
performance assessment. The deletions predicted by each package were compared to high
quality deletions (>1kb) defined in asingle individual (NA12878). This dataset has been
presented as a reference standard by the Genome in aBottle (GIAB) Consortium [24], and
used in several other studies which quantified the ability of bioinformatic tools to discover
CNVs[16, 25, 26]. We found that only Breakdancer and Delly consistently achieved
sensitivities over 80% for all deletion sizes, while sensitivities of CNVnator, Pindel, and
FermiKit were below 70%. Delly, however had a FDR of 46-91% over the size range of
predicted deletions, and the distribution differed to that of GIAB deletions. The deletions
predicted by Breakdancer had a distribution that mirrored that of the truth-set deletions, with
arelatively low FDR of 21-36% across the size spectrum of deletions.
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Concordance analysis of GIAB defined true deletions>1 kb for NA12878 discovered
between the packages, indicated that there was little overlap between the deletions predicted
by the detection software (27 of the total 604 predicted by all packages). Additionally, there
was little benefit in combining the best performing tools (Breakdancer and Delly), with only
a0.8% decreasein FDR and a consistent level of sensitivity relative to the performance of the
best performing tool (Breakdancer) alone. This was due to no difference in the number of
correctly identified deletions when only considering deletions predicted by both packages vs.
deletions predicated by Breakdancer alone. Although overall concordance between al
software packages was poor, there were anumber of deletions predicted by more than one
package but not included in the truth-set. Specifically, five deletions were identified by all
five packages, but not by the GIAB consortium. Therefore, five loci harbour all
characteristics of deletions which can be used to biocinformatically identify deletions from
WGS. These loci predicted as deletions by all tools utilising different methodol ogies whilst
not included in the GIAB truth-set indicates the GIAB analyses may not have identified al
CNVsin thisindividual.

The selection of an appropriate truth-set is important for accurate assessment of the
performance of biological and bioinformatic tools. Previous comparative CNV studies have
utilised results from chromosomal microarray analysis to validate against [12—14], however
standard microarrays typically detect CNV's >20 kb making the validation of small CNV's
impossible. As many disease-causing deletions reported in the literature are smaller than this
threshold, including those identified by this group [33], for this analysis a dataset which
included smaller-scale CNV's was required. As such, the GIAB high confidence deletion call
set for NA 12878 was considered. Thisis potentially problematic as some of the programs
used to generate the calls in the machine learning training dataset are also being evaluated in
our analysis (Breakdancer, CNVnator and Pindel). However, these three tools were included

in combination with 15 other deletion callers.

To further mitigate confounding impacts, deletions called by Breakdancer, CNV nator and
Pindel were only included in the 1000 Genomes dataset if they were confirmed by PCR or
array-based experiments. In addition, these deletion calls were only used in the generation of
the high-confidence call-set by GIAB to identify the signatures which denote deletions within
sequence data from multiple sequencing technologies. Therefore, the potential bias towards

identifying deletions called by these software is likely minimal. Interestingly, neither
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Breakdancer, CNVnator, nor Pindel had the best performance in terms of sensitivity in our
analysis, despite their contribution to the development of the training data for the truth-set.
Therefore, along with several others [16, 26, 34—-36], we deemed this the most appropriate

truth set for this analysis, despite some inherent potential biases.

The most accurate method for deletion detection identified in this study is read-pair based as
two best performing software packages, Breakdancer and Delly, use this methodology.
However, one would assume that the performance of tools incorporating multiple signals
would show improved performance in the accuracy and sensitivity of deletion detection.
Delly, the only approach tested that used two methods, indeed did show improved sensitivity
over the other packages tested. However, Delly also showed a higher FDR across all the size
ranges. Thereis therefore room for improvement in CNV agorithm development, especially
in the reduction of the false positive rate, which is particularly important for clinical
diagnosis. Determination of the best software package and methodology for the identification
of the total scope of SV size (including those less than 1kb) and type (including
multiplications and BCRs) will require further investigation.

Conclusions

WGS based CNV detection toolsin this evaluation show widely disparate performance in
identifying deletions (>1kb). Using frequently analysed and comprehensively verified
genome alignments for individual NA12878, we conclude that software that exploit read pair-
based methods (namely Breakdancer and Delly) showed the highest sensitivity. Of these
packages, Breakdancer also had the second lowest false discovery rate over the entire size
distribution (34.5%). There was poor concordance in deletions detected by all tools, however
there was alarge overlap of validated deletions between Breakdancer and Delly. There was
little benefit analysing deletions using both packages however, as deletions predicted by both
resulted in identical sensitivity (as both packages detected the same number of ‘true’
deletions) and there was only a 0.8% decrease in FDR from 34.5% to 33.7%. While
opportunities to improve the detection algorithms remain, primarily reduction of the FDR,
read pair-based methods (Breakdancer in particular) are able to effectively identify the
majority of deletions and will be of utility as part of bioinformatic pipelinesin research and

diagnostic medicine.
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Figures, tables and additional files

Table 1. CNV detection tools used

Tool Signalsused | SV types detected Reference
BreakDancer v1.4.5 RP Ddl, Ins, ITX, Inv, CTX | [18]
CNVnator v0.3 RD Del, Dup [19]
DELLY vO0.7.7 RP, SR Ddl, Ins, ITX, Inv, CTX | [20]
FermiKit v0.13 AS Ddl, Ins, Inv, CTX [21]
Pindel v0.2.5b8 SR Ddl, Ins, Inv [22]

RP: read pair based, RD: read depth based, SR: split read based, AS: assembly based, Del:
deletion, Ins: insertion, I TX: intra-chromosomal translocation, Inv: inversion, CTX: inter-
chromosomal translocation.

Table 2. Deletion detection tool performance

Breakdancer | CNVnator | Delly FermiKit Pindel
Total predicted 868 1300 1884 141 5139
True positives 567 404 592 97 423
False negatives 45 208 20 515 189
False positives 300 898 1292 45 4693
Sensitivity 0.926 0.660 0.967 0.158 0.691
FDR 0.345 0.690 0.685 0.317 0.913

Table outlining sensitivity and accuracy of detection for deletions>1 kb from individual
NA 12878 across the five separate bioinformatic tools tested

Figure 1. Number and size distribution of deletions>1kb predicted by Breakdancer,
CNVnator, Delly, FermiKit, and Pindel compared to the GIAB truth-set

Figure 2. Comparative performance of WGS detection tools across deletion size. (a)
Sensitivity of GIAB truth-set (b) False discovery rate of each tool

Figure 3. Concordance of deletions >1kb correctly identified by WGS software.

Supplementary Figure 1. Total number and size distribution of deletions >1kb detected in
the GIAB truth-set compared to deletions missed by all WGS CNV detection toolsin the
same truth-set. Total number of deletions in each category listed above.
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