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Abstract 

• Background: Whole genome sequencing (WGS) has increased in popularity and decreased 

in cost over the past decade, rendering this approach as a viable and sensitive method for 

variant detection. In addition to its utility for single nucleotide variant detection, WGS data 

has the potential to detect Copy Number Variants (CNV) to fine resolution. Many CNV 

detection software packages have been developed exploiting four main types of data: read 

pair, split read, read depth, and assembly based methods. The aim of this study was to 

evaluate the efficiency of each of these main approaches in detecting deletions. 

• Methods: WGS data and high confidence deletion calls for the individual NA12878 from the 

Genome in a Bottle consortium were the benchmark dataset.  The performance of 

Breakdancer, CNVnator, Delly, FermiKit, and Pindel was assessed by comparing the 

accuracy and sensitivity of each software package in detecting deletions exceeding 1kb.  

• Results: There was considerable variability in the outputs of the different WGS CNV 

detection programs. The best performance was seen from Breakdancer and Delly, with 92.6% 

and 96.7% sensitivity, respectively and 34.5% and 68.5% false discovery rate (FDR), 

respectively. In comparison, Pindel, CNVnator, and FermiKit were less effective with 

sensitivities of 69.1%, 66.0%, and 15.8%, respectively and FDR of 91.3%, 69.0%, and 

31.7%, respectively. Concordance across software packages was poor, with only 27 of the 

total 612 benchmark deletions identified by all five methodologies. 

• Conclusions: The WGS based CNV detection tools evaluated show disparate performance in 

identifying deletions ≥1kb, particularly those utilising different input data characteristics. 

Software that exploits read pair based data had the highest sensitivity, namely Breakdancer 

and Delly. Breakdancer also had the second lowest false discovery rate. Therefore, in this 

analysis read pair methods (Breakdancer in particular) were the best performing approaches 

for the identification of deletions ≥1kb, balancing accuracy and sensitivity. There is potential 

for improvement in the detection algorithms, particularly for reducing FDR. This analysis has 

validated the utility of WGS based CNV detection software to reliably identify deletions, and 

these findings will be of use when choosing appropriate software for deletion detection, in 

both research and diagnostic medicine. 
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Introduction 

Identifying and characterising genetic variants is central to both genetic medicine and 

research. Variation is typically categorised into three main classes: single nucleotide variants 

(SNVs), small insertions and deletions (indels, typically defined as 1-50 bp), and larger 

structural variants (SVs, typically defined as >1 kb). Structural variants are further 

subdivided into two categories dependent on whether the change in genetic information is 

balanced (no gross loss of DNA) or unbalanced (loss or gain of DNA). Deletions and 

multiplications form the unbalanced copy number variants (CNVs), while translocations or 

inversions with conservation of the genetic content form balanced chromosomal 

rearrangements (BCRs). Copy number variants have historically been defined as changes in 

genetic content >1,000 bp [1]. However, as the resolution of technologies used to identify 

these variants have improved, this classification has become one of nomenclature rather than 

practicality, and it is becoming clear that individuals can harbour changes in genetic content 

in a continuous scale from 1 bp to several Mb. 

The study of copy number changes began at a microscopic level in 1959, where visualisation 

of whole chromosomes (karyotyping) allowed for the first identification of human copy 

number changes, namely trisomy 21 in Down syndrome patients [2]. This has culminated in 

attempts to map and catalogue the variation in the human genome represented by copy 

number variants (CNVs) [3–6] Advances in technology in the intervening decades has 

resulted in drastic improvement in the ability to detect unbalanced genomic changes, and 

today partial chromosome changes in genomic content can be detected using multiple 

techniques. The current diagnostic standard for identifying CNV is chromosomal microarray 

analysis (CMA). This technology however has limitations in resolution, with clinical 

reporting thresholds typically >200 kb [7]. Chromosomal microarray analysis reveals the 

extent of copy number change effecting the region but is unable to resolve the breakpoints to 

base pair level, and can only detect gross changes in genomic content, not single nucleotide, 

other small variants, or balanced chromosomal rearrangements.  

Decreasing cost has rendered whole genome sequencing (WGS) a viable and sensitive 

method for CNV detection with rapidly increasing application in genomic research. WGS has 

the ability of exact base pair resolution; with no theoretical limit on the size of CNV able to 
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be detected. Application of suitable analytical tools has the potential to reveal all types of 

genetic variation including CNVs, BCRs, indels, and SNVs.  

As such, there has been an explosion in the development of software tools to identify CNVs 

from WGS, with over 80 tools currently available [8]. These tools primarily exploit four 

different WGS metrics: read depth, split read, read pair, and assembly based, which each rely 

on distinct information from the sequence data (reviewed in [9, 10]). Briefly, read depth 

based methods rely upon the theory that the depth of read coverage of a genomic region 

reflects the relative copy number of the loci, whereby a gain in copy number would result in 

greater than average coverage. Conversely, a loss in copy number would result in lower than 

average read coverage of the region. Split read based approaches rely upon paired end 

sequencing in which only one read from each pair is aligned to the reference genome, while 

the other one either does not to map or only partially maps to the reference genome. Read 

pair or paired-end methods exploits discordantly mapped paired-reads where the mapped 

distance between the read pairs is significantly different from the average fragment size of the 

library, or if one or both members of the pair is aligned in an unexpected orientation. Finally, 

unlike the previous approaches which rely on the initial alignment to a reference sequence, 

assembly based methods de novo assemble reads into contigs, which are then aligned and 

compared to a reference genome. 

As each method utilises different information extracted from sequence data, each method has 

unique strengths and weaknesses. For example, read depth based methods can only identify 

SVs where there has been an overall change in genetic content (CNVs not BCRs) but 

confidently detect the direction of genomic change of the CNVs discovered. The performance 

of read pair methods are reliant on the choice of the alignment algorithm, which can be an 

issue for repetitive regions due to ambiguities in the correct placement of reads. In general 

read pair methods are less susceptible to GC bias and are able to identify both CNVs and 

BCRs. Split read methods require reads that cross the breakpoint and therefore the ability to 

detect SVs is sensitive to read length. However, this method resolves the breakpoints with 

single nucleotide accuracy. Finally, the analysis of genome sequence using assembly can 

have very long run times and require high performance computing resources. This approach 

does however enable the identification of complex SVs. Taking these points into 

consideration, a number of software employ a combination of methods to identify CNVs. 
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The performance of WGS-based CNV detection methods has been characterised by fewer 

reports than those applied to whole exome sequencing based CNV detection [11–15]. 

However, a recent publication reported the evaluation of read depth-based WGS CNV 

detection methods and presented a suggested workflow for WGS based CNV detection [16]. 

Other comparisons of WGS CNV detection methods have been performed in the context of 

the initial report of the software. Here, we report an unbiased quantitative comparison of the 

accuracy and sensitivity of all fundamental WGS CNV methodologies for human CNV 

prediction, testing one representative of each method, and one of the most commonly used 

combinatorial methods. The resulting performance metrics presented here emphasises the 

importance of selecting appropriate fit for purpose CNV detection tools. 

Methods 

Sample data 

FASTQ and binary alignment map (bam) files aligned to the GRCh37/hg19 reference 

genome for individual NA12878 was downloaded from the European Nucleotide Archive 

repository [17] . 

WGS-based CNV software 

One CNV detection tool was selected from each of the read depth, split read, read pair, and 

assembly methodologies based on the following criteria: single sample analysis, optimised 

for high-coverage genomic data (~30-fold coverage), detection of CNVs down to 1kb in size, 

use in peer-reviewed research, and the software package had to be available to download with 

a free licence for research/academic use. Based on these criteria, the software packages 

Breakdancer (v1.4.5) [18], CNVnator (v0.3) [19], Delly (v0.7.7) [20], FermiKit (v0.13) [21], 

and Pindel (v0.2.5b8) [22] were selected for further analysis (Table 1).  

Each tool was run using the recommended parameters and filtering steps as described in the 

original publications; CNVnator: 100 for bin size and retaining only variants with a fraction 

of reads mapped with q0 quality > 0.5, Breakdancer: retaining only variants with a 

confidence score threshold of Q ≥ 60, Pindel: the number of supporting reads for each CNV 

was ≥ 2, with Delly and FermiKit using only default parameters with no recommended 

filtering steps. Comparative evaluation was restricted to deletion calls ≥1kb. More details on 

the implementation of each tool can be found in Supplementary Text 1. 
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Deletion detection 

The deletion ‘truth-set’ was obtained from the Genome in a Bottle (GIAB) Consortium [23] 

benchmark SV calls resource, as called by svclassify, a machine learning based approach 

[24]. This dataset was generated using one-class Support Vector Machines (SVM) where the 

training data-set was from deletions identified by Personalis Genetics and 1000 Genomes 

pilot phase deletion calls, and insertions from Spiral Genetics. The 1000 Genomes deletions 

were called using examples from each methodology: : AB Large Indel Tool, PEMer, 

BreakDancer, VariationHunter, WTSI, CNVnator, mrFast, Event-Wise-Testing, Pindel, 

MOSAIK, Cortex, TIGRA, NovelSeq, AbySS, SOAPdenovo, Genome STRiP, and 

SPANNER. The majority of these calls were independently validated by PCR or array-based 

experiments. From these deletions, SVM identified annotations that identify CNVs different 

from random regions of the genome in Illumina HiSeq, PacBio, and Moleculo genome 

sequence data. The high confidence SVs were therefore called based upon the annotations 

associated with SVs identified from the machine learning algorithm. 

These CNVs have been made available by GIAB to use as a reference standard and have been 

used in this capacity in a number of studies both in software development and validation [25, 

26], as well as the recent read depth WGS deletion detection software evaluation [16]. For 

this report deletions ≥ 1kb were considered for statistical analysis; consisting of 612 of the 

2744 total CNVs reported by GIAB. 

The performance of each of the bioinformatic tools was determined by the comparison 

between the truth-set and predicted deletions generated by the tools. True positives were 

classified as variants with at least a 50% reciprocal overlap with one or more of the 612 

deletions in the filtered GIAB set, as determined by BEDTools (2.26.0)[27]. Concordance 

between tools was determined as CNVs detected by one or more software, with 50% 

reciprocal overlap using the python package Intervene [28] 

 

Results 

We selected one software package for each of the four main methodologies of WGS CNV 

detection and one combinatorial approach for evaluation. Here the predicted deletions from 

Breakdancer (read pair), CNVnator (read depth), Delly (read pair and split read), FermiKit 

(assembly), and Pindel (split read) were assessed for accuracy and sensitivity. 
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Size distribution of predicted deletions and comparison across tools 

We arbitrarily designated bins of eight CNV sizes for investigation of WGS-based variant 

calls from individual NA12878 (Fig 1). The ‘truth-set’ deletions are relatively evenly divided 

amongst the bins, with the majority of deletions ≤5 kb (71.6%). Deletions greater than or 

equal to 1kb predicted by Breakdancer, CNVnator, and FermiKit had a similar size 

distribution to that of the GIAB identified deletions. In contrast, the outputs from Delly and 

Pindel were biased towards larger deletions, particularly Pindel with 49.4% >10 kb. This bias 

is curious given split read based methods are purported to be better suited to detected small 

deletions than other methodologies [10, 22], however this observation was to extremely small 

variants (<300 bp). 

Detection sensitivity of GIAB deletions 

The overall performance of each software tool is displayed in Table 2. Viewing the truth-set 

deletions as a whole, the sensitivity of Delly, Breakdancer, Pindel, CNVnator, and FermiKit, 

were 96.7%, 92.6%, 69.1%, 66.0%, and 15.8%, respectively. The performance of each tool 

varied across the size range of deletions (Fig 2A). Pindel displays low sensitivity for small 

deletions, with 3.29% of deletions correctly identified within the 1-1.5kb range. This is 

consistent with the low proportion of deletions predicted by Pindel in this size range. The 

sensitivity for FermiKit was consistently low across all sizes, which likely reflects the small 

number of deletions predicted by this tool (141 vs 5139 predicted by Pindel, for example). 

Deletion identification by CNVnator was variable across the size range, without consistent 

relationship between size and sensitivity. Finally, Breakdancer and Delly performed 

consistently across the entire size distribution of deletions, with comparable performance 

between the two tools. 

Software false discovery rate 

There is a natural trade-off between sensitivity and false discovery rate. Often software that 

delivers a high sensitivity also produce a high proportion of false positive deletions, and thus 

generate considerable validation work. For deletions ≥1kb, FDR for FermiKit, Breakdancer, 

Delly, CNVnator, and Pindel were 31.7%, 34.5%, 68.5%, 69.0%, and 91.3%, respectively 

(Table 2). The FDR for each tool across the deletion size distribution is illustrated in Fig 2B. 

Pindel had the highest FDR out of all tools across all deletion sizes. The poor performance of 
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Pindel may be due in large part to the substantially higher number of deletions predicted by 

Pindel than all other tools. Overall, the FDR from CNVnator decreases with increasing 

deletion size. All tested programs demonstrate FDR > 50% for deletions exceeding 10kb. 

FDRs for FermiKit and Breakdancer were similar across the deletion size range tested here, 

while FDR for Delly was consistently higher than that of Fermikit and Breakdancer. 

 

Concordance of predicted deletions across platforms 

There was considerable concordance of correctly identified deletions between individual 

software packages, where 589 of the 604 correctly identified truth-set deletions where 

identified by at least 2 tools (Supplementary Table 1). However, the concordance across all 

packages (Breakdancer, CNVnator, Delly, FermiKit, and Pindel) was relatively poor with 

only 27 deletions (4.4% of all deletions from the truth-set) identified by all (Fig 3). Only 10 

deletions were missed by all tools, the majority of which (60%) were biased towards either 

end of the size range investigated (>10 kb and 1-1.5 kb in size, Supplementary Figure 1). 

Relative to the 27 deletions identified by all methods, those missed had fewer interspersed 

repeat elements (average of 46.59% - including LINES, SINES and Long terminal repeats) 

compared to 66.57% in the 27 deletions identified by all tools as determined by 

RepeatMasker.[29]. 

 The majority (568) of true deletions were identified by Breakdancer and Delly, with very 

few (36) of the remaining deletions identified by other packages (and not Breakdancer). Of 

the 568 deletions correctly identified by Breakdancer, all of these were also discovered by 

Delly (Table S1). In order to investigate if there was extra discriminating power in combining 

the analysis of Breakdancer and Delly, the number of separately and jointly called false 

positives was calculated. Only 11 false positive deletions were excluded compared with the 

application of Breakdancer alone. Thus the FDR for Breakdancer alone (34.5%) showed 

minor reduction to 33.7% when considering only pairwise deletions with Delly.  

 

Discussion 
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The accurate identification of CNVs is important for both research and clinical diagnostics, 

particularly given CNVs are responsible for the largest percentage of per base genetic 

variation within genomes (~1.5%) [30]. In comparison, despite the greater number of SNVs 

per individual (approximately 3.6 million SNVs [31] vs 1,117-1,488 CNVs [30]), they 

collectively only account for 0.1% of per base genome variation. Chromosomal microarray 

analysis is the current standard for diagnostic testing for CNVs in human health, however 

clinical thresholds limit its application to the identification of relatively large scale CNVs of  

>200kb [7]. Inclusion of WGS for CNV diagnostic testing has the potential to result in a four-

fold increase in sensitivity for identification of clinically relevant CNVs (compared to CMA 

using clinical thresholds alone)  [32]. Thus, the increased sensitivity of WGS not only allows 

for the identification of both small and large scale structural variants, but also enables for the 

identification of SNV and indels, all within a single test.  

A number of CNV detection software packages have been developed which use WGS in 

various ways including: read depth, split reads, read pair, and assembly based methodologies, 

or a combination of these methods. However, before WGS CNV detection can be 

implemented in molecular diagnostics it is necessary to comprehensively assess the 

methodological performance. A comparative analysis of read depth based methods has 

recently been reported by Trost, et al., [16]. Here we report an unbiased quantitative 

comparison of the four primary deletion detection approaches exploiting different features of 

WGS. We selected Breakdancer (utilising read pair), CNVnator (read depth), Delly (read 

depth and split read), FermiKit (assembly), and Pindel (split read) software packages for 

performance assessment. The deletions predicted by each package were compared to high 

quality deletions (≥1kb) defined in a single individual (NA12878). This dataset has been 

presented as a reference standard by the Genome in a Bottle (GIAB) Consortium [24], and 

used in several other studies which quantified the ability of bioinformatic tools to discover 

CNVs [16, 25, 26]. We found that only Breakdancer and Delly consistently achieved 

sensitivities over 80% for all deletion sizes, while sensitivities of CNVnator, Pindel, and 

FermiKit were below 70%. Delly, however had a FDR of 46-91% over the size range of 

predicted deletions, and the distribution differed to that of GIAB deletions. The deletions 

predicted by Breakdancer had a distribution that mirrored that of the truth-set deletions, with 

a relatively low FDR of 21-36% across the size spectrum of deletions.  
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Concordance analysis of GIAB defined true deletions ≥1 kb for NA12878 discovered 

between the packages, indicated that there was little overlap between the deletions predicted 

by the detection software (27 of the total 604 predicted by all packages). Additionally, there 

was little benefit in combining the best performing tools (Breakdancer and Delly), with only 

a 0.8% decrease in FDR and a consistent level of sensitivity relative to the performance of the 

best performing tool (Breakdancer) alone. This was due to no difference in the number of 

correctly identified deletions when only considering deletions predicted by both packages vs. 

deletions predicated by Breakdancer alone. Although overall concordance between all 

software packages was poor, there were a number of deletions predicted by more than one 

package but not included in the truth-set. Specifically, five deletions were identified by all 

five packages, but not by the GIAB consortium. Therefore, five loci harbour all 

characteristics of deletions which can be used to bioinformatically identify deletions from 

WGS. These loci predicted as deletions by all tools utilising different methodologies whilst 

not included in the GIAB truth-set indicates the GIAB analyses may not have identified all 

CNVs in this individual.  

The selection of an appropriate truth-set is important for accurate assessment of the 

performance of biological and bioinformatic tools. Previous comparative CNV studies have 

utilised results from chromosomal microarray analysis to validate against [12–14], however 

standard microarrays typically detect CNVs >20 kb making the validation of small CNVs 

impossible. As many disease-causing deletions reported in the literature are smaller than this 

threshold, including those identified by this group [33], for this analysis a dataset which 

included smaller-scale CNVs was required. As such, the GIAB high confidence deletion call 

set for NA12878 was considered. This is potentially problematic as some of the programs 

used to generate the calls in the machine learning training dataset are also being evaluated in 

our analysis (Breakdancer, CNVnator and Pindel). However, these three tools were included 

in combination with 15 other deletion callers. 

To further mitigate confounding impacts, deletions called by Breakdancer, CNVnator and 

Pindel were only included in the 1000 Genomes dataset if they were confirmed by PCR or 

array-based experiments. In addition, these deletion calls were only used in the generation of 

the high-confidence call-set by GIAB to identify the signatures which denote deletions within 

sequence data from multiple sequencing technologies. Therefore, the potential bias towards 

identifying deletions called by these software is likely minimal. Interestingly, neither 
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Breakdancer, CNVnator, nor Pindel had the best performance in terms of sensitivity in our 

analysis, despite their contribution to the development of the training data for the truth-set. 

Therefore, along with several others [16, 26, 34–36], we deemed this the most appropriate 

truth set for this analysis, despite some inherent potential biases.  

The most accurate method for deletion detection identified in this study is read-pair based as 

two best performing software packages, Breakdancer and Delly, use this methodology. 

However, one would assume that the performance of tools incorporating multiple signals 

would show improved performance in the accuracy and sensitivity of deletion detection. 

Delly, the only approach tested that used two methods, indeed did show improved sensitivity 

over the other packages tested. However, Delly also showed a higher FDR across all the size 

ranges. There is therefore room for improvement in CNV algorithm development, especially 

in the reduction of the false positive rate, which is particularly important for clinical 

diagnosis. Determination of the best software package and methodology for the identification 

of the total scope of SV size (including those less than 1kb) and type (including 

multiplications and BCRs) will require further investigation. 

Conclusions 

WGS based CNV detection tools in this evaluation show widely disparate performance in 

identifying deletions (≥1kb). Using frequently analysed and comprehensively verified 

genome alignments for individual NA12878, we conclude that software that exploit read pair-

based methods (namely Breakdancer and Delly) showed the highest sensitivity. Of these 

packages, Breakdancer also had the second lowest false discovery rate over the entire size 

distribution (34.5%). There was poor concordance in deletions detected by all tools, however 

there was a large overlap of validated deletions between Breakdancer and Delly. There was 

little benefit analysing deletions using both packages however, as deletions predicted by both 

resulted in identical sensitivity (as both packages detected the same number of ‘true’ 

deletions) and there was only a 0.8% decrease in FDR from 34.5% to 33.7%. While 

opportunities to improve the detection algorithms remain, primarily reduction of the FDR, 

read pair-based methods (Breakdancer in particular) are able to effectively identify the 

majority of deletions and will be of utility as part of bioinformatic pipelines in research and 

diagnostic medicine. 
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BCR: balanced chromosomal rearrangements 

CMA: chromosomal microarray analysis  

CNV: Copy Number Variant 

FDR: false discovery rate 

GIAB: Genome in a Bottle consortium  

WGS: Whole genome sequencing  
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Figures, tables and additional files 

Table 1. CNV detection tools used 

Tool Signals used SV types detected Reference 
BreakDancer v1.4.5 RP Del, Ins, ITX, Inv, CTX [18] 
CNVnator v0.3 RD Del, Dup [19] 
DELLY v0.7.7 RP, SR Del, Ins, ITX, Inv, CTX [20] 
FermiKit v0.13 AS Del, Ins, Inv, CTX [21] 
Pindel v0.2.5b8 SR Del, Ins, Inv [22] 
RP: read pair based, RD: read depth based, SR: split read based, AS: assembly based, Del: 
deletion, Ins: insertion, ITX: intra-chromosomal translocation, Inv: inversion, CTX: inter-
chromosomal translocation. 

 

Table 2. Deletion detection tool performance 

 Breakdancer CNVnator Delly FermiKit Pindel 
Total predicted 868 1300 1884 141 5139 
True positives 567 404 592 97 423 
False negatives 45 208 20 515 189 
False positives 300 898 1292 45 4693 
Sensitivity 0.926 0.660 0.967 0.158 0.691 
FDR 0.345 0.690 0.685 0.317 0.913 
Table outlining sensitivity and accuracy of detection for deletions ≥1 kb from individual 
NA12878 across the five separate bioinformatic tools tested 

 

Figure 1. Number and size distribution of deletions ≥1kb predicted by Breakdancer, 
CNVnator, Delly, FermiKit, and Pindel compared to the GIAB truth-set 

Figure 2. Comparative performance of WGS detection tools across deletion size. (a) 
Sensitivity of GIAB truth-set (b) False discovery rate of each tool 

Figure 3. Concordance of deletions ≥1kb correctly identified by WGS software. 

Supplementary Figure 1. Total number and size distribution of deletions ≥1kb detected in 
the GIAB truth-set compared to deletions missed by all WGS CNV detection tools in the 
same truth-set. Total number of deletions in each category listed above. 
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