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ABSTRACT

Set-based analysis that jointly tests the association of variants in a group has emerged as a
popular tool for analyzing rare and low-frequency variants in sequencing studies. The existing
set-based tests can suffer significant power loss when only a small proportion of variants are
causal, and their powers can be sensitive to the number, effect sizes and effect directions of the
causal variants and the choices of weights. Here we propose an Aggregated Cauchy
Association Test (ACAT), a general, powerful and computationally efficient p-value combination
method to boost power in sequencing studies. First, by combining variant-level p-values, we use
ACAT to construct a set-based test (ACAT-V) that is particularly powerful in the presence of
only a small number of casual variants in a variant set. Second, by combining different variant
set-level p-values, we use ACAT to construct an omnibus test (ACAT-O) that combines the
strength of multiple complimentary set-based tests including the burden test, Sequence Kernel
Association Test (SKAT) and ACAT-V. Through analysis of extensively simulated data and the
whole-genome sequencing data from the Atherosclerosis Risk in Communities (ARIC) study, we
demonstrate that ACAT-V complements the SKAT and burden test, and that ACAT-O has a

substantially more robust and higher power than the alternative tests.
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INTRODUCTION

With the advent of next generation sequencing technology, whole genome and exome
sequencing in large cohorts enables the discovery of low-frequency and rare genetic variation
that are likely to have substantial contributions to the “missing heritability” and new genetic
discovery of complex traits and diseases® >. For example, an exome sequencing study of
human height in > 710,000 individuals identified 83 rare and low-frequency coding variants that
explained an additional 1.7% of the height heritability®. As rare and low-frequency variants
appear infrequently in the population, the standard single-variant analysis that has been applied
for common variants in genome-wide association studies (GWAS) is underpowered without very
large effect sizes and/or sample sizes®. Set-based methods, which jointly analyze variants in a
group (e.g., exon variants in a gene ), have been proposed and become increasingly popular®.
These methods perform analysis by grouping rare variants in a set to aggregate their small and

moderate effects to increase statistical power.

Over the past a few years, the Sequence Kernel Association Test (SKAT)® and burden tests®®
have emerged as the most widely-used methods for set-based rare-variant analysis, partly
because of their undemanding computational requirement, flexibility to adjust covariates for
analyzing both binary and quantitative data, and ability to incorporate functional annotations and
to allow for related subjects. In order to be power-robust to the directionality of variant effects,
an omnibus test SKAT-O° was also proposed to combine SKAT and burden test statistics
adaptively based on the observed data. However, SKAT, SKAT-O and burden tests can lose

substantial power under sparse alternatives™® **

, i.e., only a small proportion of variants in a set
are associated with a disease/trait. Sparse alternatives are natural and reasonable hypothesis in
sequencing studies, as most variants in a set are anticipated to have no influence on the risk or

related traits of a disease. The exponential combination test*? was proposed to improve power

in the sparse situation, but it requires permutation to evaluate the set significance, which is
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computationally burdensome or even infeasible for large-scale whole genome sequencing

studies.

The power of different set-based tests depends on the underlying genetic architecture, which
may differ in the numbers, effect sizes and effect directions of the casual variants in different
variant sets. For instance, a proper choice of weights in SKAT and burden tests can boost the
power substantively for rare-variant analysis. Wu et al.” proposed to use the family of beta
densities of minor allele frequencies of the variants in a region as the weights. If rarer variants
are more likely to have larger effects, upweighting the rarer variants would enhance the analysis
power. However, if all the variants have the same or similar effect sizes, the use of equal
weights might be better. In practice, the genetic architecture of complex traits is rarely known in
advance and likely to vary from one region to another across the genome and from one trait to
another. Another important limitation of the existing set-based tests is that they could suffer a
substantial loss of power if their assumptions are violated. Hence, it is desirable to have an
omnibus test that combines the strength of multiple tests and is robust to the sparsity of casual

variants, directionality of effects, and the choice of weights.

A widely adopted approach for combining multiple tests is to take the minimum p-value of tests
as a summary of the significance. This approach, however, often requires numerical simulations
to evaluate the significance of the omnibus test and is computationally expensive as the multiple
tests are often correlated. We note that SKAT-O also uses the minimum p-value approach to
combine SKAT and the burden test, and its p-value can be calculated efficiently without
simulations. However, the particular technique of p-value calculation for SKAT-O is not
applicable to the combination of different tests in general (e.g., the combination of SKAT tests
under different choices of weights). Fisher's method*® can also be used for the combination of
complementary tests'. However, it suffers from the same computational issue as the minimum
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p-value method and could result in a considerable loss of power as the combined test statistics

are calculated from analyzing the same data and often highly correlated.

In this paper, we propose an Aggregated Cauchy Association Test (ACAT), a flexible and
computationally efficient p-value combination method to boost power in sequencing studies.
ACAT first transforms p-values to be Cauchy variables, takes the weighted summation of them
as the test statistic and then evaluates the significance analytically. ACAT is a general method
for combining p-values and can be used in different ways depending on the types of p-values
being combined. When applied to combining variant-level p-values, ACAT is a set-based test
that is particularly powerful in the presence of a small number of causal variants in a variant set,
and therefore complements the existing SKAT and burden test. When applied to combining set-
level p-values from multiple variant set tests, ACAT is an extremely fast omnibus testing
procedure that performs the multiple testing adjustment analytically and is applicable to the

combination of any tests.

The most distinctive feature of ACAT is that it only takes the p-values (and weights) as input and
the p-value of ACAT can be well approximated by a Cauchy distribution. Specifically, neither the
linkage disequilibrium (LD) information in a region of the genome nor the correlation structure of
set-level test statistics are needed for calculating the p-value of ACAT. This feature offers
several advantages. First, the computation of ACAT only involves simple analytic formulae and
is extremely fast. Given the variant-level or set-level p-values, applying ACAT for analysis at the
whole-genome scale requires just a few seconds on a single laptop. Second, as a set-based
test, ACAT only requires variant-level summary statistics (from a single study or meta-analysis)
and no population reference panel is needed. Third, when the p-values aggregated by ACAT
are calculated from appropriate models that correct for spurious association due to cryptic

relatedness and/or population stratification, then ACAT also automatically controls for the
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spurious association. Another important feature of ACAT is that it allows flexible weights that
can be used to incorporate prior information such as functional annotations to further boost

power.

For analyzing rare and low-frequency variants, we adapt ACAT to construct set-based tests to
increase the analysis power in sequencing studies. We first propose a set-based test ACAT-V,
which combines the variant-level p-values and has strong power against sparse alternatives. As
mentioned earlier, SKAT and burden tests have limited power if most variants in a set are not
associated with the trait. In contrast, the proposed ACAT-V could also lose power in the
presence of many weakly associated variants. In addition, the choice of weights could also have
a substantial impact on the analysis power. Therefore, we further propose to combine the
evidence of association from SKAT, the burden test and ACAT-V, each with two types of
weights (i.e., equal weights and weights that upweight rare variants), to improve the overall
power. We use ACAT to combine the p-values of the multiple set-based tests and refer to this

omnibus test as ACAT-O.

We conducted extensive simulations to investigate the type | error of ACAT-V and ACAT-O and
compare their power with that of alternative set-based tests across a broad range of genetic
models for both continuous and dichotomous traits. Through the analysis of Atherosclerosis
Risk in Communities (ARIC) whole-genome sequencing data®®, we demonstrate the
complementary performance of ACAT-V, SKAT and the burden test, and that ACAT-O identifies
more significant regions than each individual test and is very robust across different studies. A

summary of the proposed methods and their relationships are provided in Figure 1.

MATERIAL AND METHODS

Aggregated Cauchy Association Test
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The aggregated Cauchy association test (ACAT) is a general and flexible method to combine p-
values, which can represent the statistical significance of different kinds of genetic variations in
sequencing studies. Let pq, p,, ..., px denote the p-values combined by ACAT. For set-based
testing, the p-values may correspond to k variants in a region and can be calculated from a
variety of models for single-variant analysis, including linear regression or mixed model for
continuous traits and logistic regression or mixed model for binary traits. For the combination of
different tests, p;'s can be the p-values of k different set-based tests (such as SKAT, the burden
test or tests with different choices of weights) for a same region. As ACAT only aggregates p-
values, cryptic relatedness and/or population stratification are automatically controlled by fitting
appropriate models that p;’s are calculated from through methods such as principal components

analysis™® or mixed models®’ ‘2.

Similar to the classical Fisher's test'*, ACAT uses a linear combination of transformed p-values
as the test statistic, except that the p-values are transformed to follow a standard Cauchy
distribution under the null hypothesis and flexible weights are allowed in the combination.
Specifically, the ACAT test statistic is

Tpcar = Li=q witan{(0.5 — p;)T},
where p;’s are the p-values, w;’s are nonnegative weights, and the transformation tan{(0.5 —

p;)m}is Cauchy distributed if p; is from the null.

For both set-based analysis and combination of tests, the p-values are expected to have
moderate or strong correlations due to the LD of different variants or the fact that the p-values
represent the significance of different tests of a same region based on the same data. The most
distinctive feature of ACAT is that the null distribution of the test statistic T4, can be well

approximated by a Cauchy distribution with a location parameter 0 and a scale parameter
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w = Y, w; without the need to estimate and account for the correlation among p-values™.
Therefore, based on the cumulative density function of the Cauchy distribution, the p-value of
ACAT is approximated by

p —value = 1/2 — {arctan(T/w)}/m.

Because this approximation does not need information about the correlation of p-values,
calculating the p-value of ACAT requires almost negligible computation and is extremely fast.
For instance, given the summary statistics of variants, set-based analysis using ACAT for the
whole genome can be performed on a single laptop and only takes a few seconds. Furthermore,
the approximation is particularly accurate when ACAT has a very small p-value, which is a very
useful feature in sequencing studies as only very small p-values can pass the stringent genome-
wide significance threshold and are of particular interest. The reason that ACAT maintains these
notable features is due to the heavy tail of the Cauchy distribution, which makes the distribution
of the test statistic T4 (especially the tail of the distribution) insensitive to the correlation of the
p-values and can be approximated without the correlation information. See Appendix A for more
details about the theoretical justification of the Cauchy-distribution-based approximation and

general practical guidelines regarding its approximation accuracy.

ACAT-V for rare-variant association analysis

We use ACAT to combine variant-level p-values and develop a set-based test (ACAT-V) that is
particularly powerful under sparse alternatives, i.e. the presence of a small number of causal
variants in a set. The variant-level p-values are calculated based on the normal approximation,
which becomes inaccurate as the number of minor alleles decreases. In addition, the behavior
of the variant-level p-value/test statistic for a very rare variant under the alternative will be

attenuated towards the null in comparison to a common variant for a given effect size due to the
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extremely low number of minor alleles. Therefore, a direct application of ACAT to aggregate the
variant-level p-values in a region would result in an overly conservative type | error and lowered
power. To address this issue, we first use the burden test to aggregate variants with a minor
allele count (MAC) less than a certain number, e.g., 10, and then combine the p-value of this
burden test of very rare variants with variant-level p-values of the other variants in a region
using ACAT. Specifically, let p, denote the p-value of the burden test and p,, ..., p; denote the

variant-level p-values of variants with a MAC > 10. The ACAT-V test statistic is

Tacar—v = Zi=o WiZ,ACAT—Vtan{(O-S — p)m},
where wg,ACAT_V is the weight for the burden test p-value of variants with MAC<10 and
waCAT_V, : ..,WS%ACAT_V are weights for the other individual variants. For dichotomous traits, the
normal approximation could be inaccurate even for variants with MAC = 10 and we use a

saddlepoint approximation® to improve the accuracy of the variant-level p-values.

Similar to SKAT and the burden test, including appropriate weights in ACAT-V can yield
improved power. One natural and straightforward way of choosing weights for ACAT-V is to use
the same weights as in SKAT. However, the weights in SKAT and ACAT-V are not directly
comparable and have different interpretations as the SKAT weights are on the individual variant
score statistic scale while the ACAT-V weights are on the individual variant transformed p-value

scale.

Specifically, the SKAT test statistic* can be written as

2

k k
Tskar = z Wisgar ST = z wiskar {Gi(y - ﬁ)} ,
i=1 i=1
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where S; = GiI(Y — 1) is the single-variant score test statistic, waKAT is the weight and G; is a
vector of allele counts for the ith variant, Y is the phenotype vector and fi is the predicted mean
of Y under the null hypothesis. SKAT puts weights on the single-variant score test statistics,
whose scales (i.e., variances) are different and depend on the minor allele frequencies (MAF) of
variants. In contrast, ACAT-V puts weights on the transformed p-values, which have the same
scale and follow a standard Cauchy distribution under the null hypothesis. To make a
connection between the weights in SKAT and ACAT-V, we can standardize the single-variant

score test statistics to have the same scale by multiplying the inverse of the sample standard

derivations of the variants G; s, i.e.,/2 X MAF;(1 — MAF;). Hence, we can set the weights in

ACAT-V as

Wiacar—v = Wiskar X  MAF;(1 — MAF)) (Equation 1)

to make them comparable with those in SKAT.

For rare-variant analysis, Wu et al.> proposed to set W; skar = Beta(MAF;, aq, ay), the beta
density function with two parameters a, and a, evaluated at the MAF of the i-th variant in a
region. Common choices of the parameters are a;, = 1 and a, = 25, which correspond to the
assumption that rarer variants have larger per-allele effect, and a; = a, = 1, which corresponds
to the assumption of same per-allele effect for all variants. As a demonstrating example, we will
also use the beta densities and Equation (1) to set weights for ACAT-V in our simulations and

real-data analyses.

Because the p-value p, (and MAF,) of the burden test for variants with MAC<10 in ACAT-V
corresponds to multiple variants, we set MAF, to be the average MAF of the variants with MAC<

10
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10 and calculate the weight (wg 4car—v) for the burden test p-value based on Equation (1)
accordingly. In addition, the weights in this burden test for variants with MAF<10 also needs to
be specified. In fact, there are two layers of weights in ACAT-V. Here we choose the two layers
of weights to have the same type to be consistent. For instance, if the beta density Beta(1,25) is
applied for weighting in ACAT-V, it is used to weight the p-values in the outer layer based on
Equation (1) and also used to weight the variants with MAC< 10 in the burden test in the inner

layer.

While we choose weights based on the MAFs of the variants here, other forms of weights, such
as those based on the functional annotations, can also be used. As long as the weights do not
depend on the phenotypes, the p-value of ACAT-V can be approximated efficiently via the

Cauchy distribution.

An omnibus test: ACAT-O

In the ACAT-V test statistic, the Cauchy transformed p-values increases very fast as the p-value
approaches to 0 and the weighted summation is essentially dominated by the components with
very small p-values. Therefore, ACAT-V mainly uses a few smallest p-values to represent the
significance of a region and is particularly powerful when only a small number of variants are
casual. In contrast, the SKAT and burden test are more powerful than ACAT-V if a region
contains a moderate or large number of casual variants. Further, in the case of a high proportion
of causal variants, the burden test could have stronger power than SKAT if the casual variants
have the same direction of association but lose power compared with SKAT if the effects of
casual variants are bi-directional. The choice of weights could also affect the power of a set-

based test. If the effect size of a causal variant has a negative relationship with the MAF of a
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variant, then the beta weights using MAF with parameters a, = 1 and a, = 25 would lead to
stronger power than the weights with a; = a, = 1 (i.e., the equal weights). But if the negative
relationship is not true (for instance, there is no relationship between the effect size and MAF),
the weights with a, = a, = 1 may be better. In practice, we rarely have the prior information
about the number, effect sizes and effect directions of underlying casual variants, which could
also vary from one region to another across the genome and from one trait to another.
Therefore, it is desirable to determine the test adaptively based on the observed data to
combine the strength of multiple tests. We can use ACAT to combine the p-values of multiple
set-based tests to construct an omnibus test (ACAT-O) that has robust power under various
genetic architectures. While the p-values of set-based tests correspond to the significance of a
same region and are (highly) correlated, ACAT does not require the correlation structure of the

p-values of different set-based tests, and therefore is well-suited for omnibus testing.

We construct the omnibus test (ACAT-O) for a variant set by combining six set-based tests, i.e.,
ACAT-V, SKAT, burden test and each test with two choices of weights (i.e., the weights with
a, = a, = 1 and weights with a; = 1 and a, = 25), to be robust to the sparsity of causal variants,

directionality of effects, and the choice of weights. Specifically, the ACAT-O test statistic is

6

1
Tacar-o0 = gz tan{(0.5 — p;)m},

i=1
where p;’s are the p-values of the six tests and the tests are treated equally in the combination.
We will apply this test in all the simulations and real data analyses. One can also use ACAT to
combine other set-based tests. The p-value of ACAT-O can be calculated very fast via the

Cauchy-distribution-based approximation.

As the underlying true genetic architecture is seldomly known in advance, it is possible that

some tests incorporated by ACAT-O do not have sufficient statistical power and therefore would

12


https://doi.org/10.1101/482240
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/482240; this version posted November 29, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

lead to loss of power in the omnibus testing. For example, if the protective and harmful variants
in a region have the same numbers and effect sizes, the burden test would be powerless. Thus,
it is desirable that the omnibus testing procedure is not sensitive to the inclusion of
underpowered tests such that the power loss can be minimized and does not exceed the power
gain from other powerful tests in the omnibus testing. As mentioned earlier, ACAT mainly
focuses on the few smallest p-values, which is also an attractive feature for omnibus testing and
makes ACAT-O robust even when some of the incorporated tests are underpowered. The
minimum p-value method also has a similar feature. However, an advantage of ACAT over the
minimum p-value method is that calculation of the p-value of ACAT does not require accounting
for the correlation of the individual tests, while the minimum p-value method requires estimating
and accounting for the correlation of the individual tests, which is often difficult and time-

consuming.

Simulation Studies

We carried out extensive simulations to investigate the type | error of ACAT-V and the omnibus
test ACAT-O and compare their power with SKAT and the burden test under different choices of
weights. For all the simulations, we generated 100 1Mb regions of sequencing genotype data
based on a calibration coalescent model that mimics the LD structure and local recombination
rate of the European population®. Our simulation studies focus on rare and low-frequency

variants, so we excluded variants with MAF>0.05 in all of the 1 Mb regions.
Simulations of Type | error

To obtain a total of 10® phenotype-genotype data sets, we first randomly selected 1000 4 kb
sub-regions from each of the 100 1Mb regions and then generated 1000 phenotypes for each 4
kb sub-region of genotype data. The variant set length of 4kb is from a sliding window

approach™ and will also be used in the real-data analysis described in the next section. As it is
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common to adjust for covariates such as age, gender and principal components in practice, we
included four associated covariates (three continuous and one binary) in the null model for both
continuous and dichotomous traits. Specifically, we simulated continuous phenotypes according

to the linear model:

Y = 0.3X; + 0.4X, + 0.5X; + 0.4X, + ¢,

and dichotomous phenotypes according to the logistic model:

logit P(Y = 1) = a + 0.5X; + 0.5X, + 0.5X5 + 0.5X,,

where X,, X,, X5 are generated independently from a standard normal distribution, X, takes
values 0 and 1 with equal probability, € is an error term following a standard normal distribution,
a was determined to have a prevalence of 0.01 and balanced case-control sampling is used for
dichotomous trait. We set the sample size n to be 2500, 5000, 7500 and 10000. For each test,
the empirical type | error rate is calculated as the proportion of p-values less than the

significance level.

Simulations of Empirical Power

To assess the power performance of competing set-based tests, we randomly selected causal
variants within each of the 4kb regions to simulate phenotypes under the alternative. Specifically,

we generated continuous phenotypes by

Y = 03X1 + 04X2 + 05X3 + 04X4 + ﬁlGI + ﬁz Gz+ . +ﬁSGS + ¢

and dichotomous phenotypes by

14
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where G4, G, ... G, are the genotypes of randomly selected casual variants, f; s are the effect

sizes for the casual variants and the other symbols are as defined for the simulations of type |

error.

We varied the proportion, effect sizes and effect directions of casual variants to investigate the
impact of these three factors on the power of different tests. The proportion of casual variants
was set to be 5%, 20% and 50% to cover the situations of sparse and dense signals. The

casual variants in a region could be all deleterious or protective, or some of them are protective

and others deleterious. Hence, we examined two settings of effect directions: the signs of 8; s

are either in the same direction or are determined randomly and independently with an equal

probability of 0.5. We also investigated two scenarios of effect sizes: 8; s have the same

magnitude b or are set to be c|log,, MAF; | such that variants with smaller MAF have larger
effects, where constants b and ¢ depend on the proportions of casual variants and their values
are presented in Table S1. We considered all possible combinations of the three factors (i.e.,
the proportion, sizes and directions of nonzero B;'s) and had 12 simulation configurations in total
that covered a variety of genetic architecture scenarios. The significance level a was set to be
10~° to mimic genome-wide studies and the empirical power of each test was estimated as the

proportion of p-values less than « on the basis of 10> replicates.

ARIC whole genome sequencing data

The Atherosclerosis Risk in Communities (ARIC) study has been described in detail previously.
Regarding the whole genome sequencing data, DNA samples were sequenced at 7.8-fold

average depth on lllumina HiSeq instruments and genotyping was performed at the Baylor
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College of Medicine Human Genome Sequencing Center. After sample-level quality control
detailed in Morrison et al*®, there were around 55 million variants in 1,860 African American (AA)
participants and 33 million variants in 1705 European American (EA) participants. Among all the
variants, 17.3% and 19.4% of them are common variants (MAF>5%) in the AA and EA
populations, respectively. Our study primarily focuses on analyzing low-frequency (1% <

MAF < 5%, 13.4% in AA and 9.1% in EA) and rare (MAF < 1%, 69.3% in AA and 71.5% in EA)
variants across the genome using a sliding window approach™ that chooses physical windows
of 4kb in length as the analytical units and starts at position 0 bp for each chromosome with a
skip length of 2kb. A minimum number of 3 minor allele counts is required in a window, resulting
in a total of 1,337,673 and 1,337,382 4kb overlapping windows in AA and EA, respectively. The
distribution of the number of variants in a window has a median of 60 in AA and a median of 37

in EA, and is highly skewed to the right.

The example application presented here focuses on the analysis of two quantitative traits
(lipoprotein(a) (Lp(a)) and neutrophil count). The methods for the measurement of each trait
were described in detail in Morrison et al*>. We adjusted for age, sex and the first three principal
components for both traits and additionally included current smoking status as a covariate in the
analysis of neutrophil count. Because the distributions of both Lp(a) and neutrophil count are
markedly skewed, we applied rank-based inverse normal transformation?® to both traits and
used the transformed traits as phenotypes in the analyses. For each 4kb window, we performed
set-based association using ACAT-O, ACAT-V, SKAT and burden test, and weighting the
variants by beta weights using MAFs with parameters either a;, = a, =1 0ora, =1 and a, = 25.
As around 1.3 million windows are tested in each analysis, we used the Bonferroni method and
set the genome-wide significance threshold at 3.75 x 10~8 (approximately equal to

0.05/1,337,000).
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RESULTS

Simulation of the Type | Error

The empirical type | error rates for ACAT-V and ACAT-O are presented in Table 1 for
significance levels a = 107%,107>, and 107%. The results demonstrate that the type | error rate is
protected for both continuous and dichotomous traits, although slightly conservative for very
small significance levels (e.g., « = 107%). We note that the conservativeness is not due to the
Cauchy-distribution-based approximation, but the conservativeness of the p-values of the tests
that are aggregated by ACAT. In fact, the theory provided in Appendix A suggests that the
Cauchy-distribution-based approximation becomes more accurate as the significance level
decreases when the aggregated p-values follow a uniform distribution between 0 and 1 exactly.
However, the p-values of set-based tests (e.g., SKAT) or the variant-level p-values are
conservative for rare variants and dichotomous traits®, which results in the slightly deflated type |

error rate of ACAT-V and ACAT-O.

Simulation of the power

We compared the power of ACAT-V and ACAT-O with SKAT and the burden test under a
variety of scenarios for both continuous and dichotomous traits. Except for the omnibus test
ACAT-0O, we considered two choices of weights using MAF for the other three tests, i.e., the
beta weights of MAFs with a; = a, = 1 and the beta weights of MAF with a; = 1 and a, = 25.
Figures 2 and 3 display the results under the 12 simulation configurations for continuous and
dichotomous traits, respectively. When only a small proportion (5%) of variants are casual,
ACAT-V had much higher power than SKAT and the burden test regardless of the effect

directions and choices of weights. This is expected because ACAT-V mainly uses a few
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smallest p-values to represent the significance of a region, while SKAT and burden test use a
linear combination of the (squared) score statistics and the overall signal strength is diluted by
the dominating large number of non-casual variants. ACAT-V still outperformed SKAT and
burden test in the presence of a moderate number of casual variants (20%), but had substantial

power loss when there are a large proportion of casual variants (50%).

The burden test was much more sensitive to the effect direction than SKAT and ACAT-V and
suffered severe loss of power in the presence of both protective and harmful variants. When a
large number of casual variants were present, SKAT exhibited significantly higher power than
ACAT-V and burden test in the case of bidirectional effects, while the burden test was more
powerful than SKAT and ACAT-V in the case of unidirectional effects with a large number of
causal variants. However, all three tests (i.e., ACAT-V, SKAT and burden test) were not robust
and could be particularly powerful in some situations but lose substantial power in other
situations. In contrast, the omnibus test ACAT-O combined the strength of all the other tests and
was very robust to various genetic architectures while losing little power compared to the most
powerful test. Indeed, across all the configurations, the power of ACAT-O is either the highest
among all the competing methods or just slightly lower than the highest one. In the absence of
prior knowledge about the underlying genetic architecture, we expect that ACAT-O can improve

the overall power and yield more significant findings than the other methods.

Application to the ARIC whole genome sequencing data

We applied the proposed methods to analysis of ARIC WGS data. Table 2 shows the number of
4kb sliding windows identified as significant by each method for Lp(a) and neutrophil count in

AA and EA individuals. The significant 4kb sliding windows are also reported in Table S2, S3
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and S4. None of the set-based tests (SKAT, ACAT-V, or the burden test) under a particular
choice of weights consistently exhibited higher statistical power than the other methods across
all the analyses. For instance, SKAT(1,25) (the two numbers in the parentheses are the values
of beta(MAF) weight parameters a; and a,, respectively) detected more windows than
SKAT(1,1) in the analyses of Lp(a) in both AAs and EAs, but only detected about half of the
significant windows identified by SKAT(1,1) in the analysis of neutrophil count. The relative
performance difference between the two traits may suggest that the relationship between the
effect sizes and MAFs of variants are trait-specific. Compared to SKAT, the proposed test
ACAT-V demonstrated a slightly higher overall power in the analyses of Lp(a) among EAs and
was less sensitive to the choice of weights than SKAT. Moreover, Figures S4-S6 display the
scatterplots of the p-values of the significant windows and show that ACAT-V can identify

variant sets that are challenging for the SKAT and burden tests to identify.

The burden tests detected markedly fewer significant windows than the other methods, which
may result from the bidirectional variant effects on the two traits and/or sparsity of casual variant
in most regions. In contrast, the omnibus test ACAT-O was robust across all the analyses. It
identified considerably more Lp(a)-associated windows than all the other individual test in both
AAs and EAs, and also had a comparable performance to SKAT(1,1) in the analysis of
neutrophil count. These results are consistent with our simulation studies, in which ACAT-O
either achieved or are very close to the highest power among all the methods and are very

robust to diverse genetic architectures.

To facilitate further insights into the performance of different tests, we also presented the
genomic landscapes of the windows that were significantly associated with Lp(a) among AAs,
Lp(a) among EAs and neutrophil count among AAs in Figure S1, S2 and S3, respectively.
Overall, the results of SKAT and ACAT-V complemented each other, indicating that both
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situations of dense and sparse causal variants could appear in different regions across the
genome. By combining the complementary results, ACAT-O covered the majority of windows
identified by each method and achieved substantial power gain compared to the individual tests.
For the Lp(a) trait, the significant windows reside in an 850 kb region on chromosome 6 that
includes five genes (PLG, SLC22A2, SLC22A3, LPA and LPAL?2). Previous studies have also
identified common variants in these five genes that are significantly associated with Lp(a). Two
common variants in LPA, which encodes the apolipoprotein(a) component of the Lp(a)
lipoprotein particle, showed very strong association and explained 36% of the variation of Lp(a)
level**. Several intronic variants of LPAL2 and PLG were also found to be strongly associated
with Lp(a)® . The SLC22A3-LPAL2-LPA gene cluster has been identified as a strong
susceptibility locus for coronary artery disease?®’, which an increased level of the Lp(a)

lipoprotein is an independent risk factor for.

For neutrophil count, all of the significant sliding windows reside in a 7.2 Mb region on
chromosome 1. SKAT(1,1) was the most powerful approach in the analysis of neutrophil count,
but SKAT(1,1) did not identify any significant association with Lp(a) in LPAL2 among EA
individuals or in PLG among EA and AA individuals. This illustrates that the genetic architecture
varies across different regions and traits, and a single test such as SKAT(1,1) is not robust and
can miss important regions in some analyses. ACAT-V detected some unigue regions and
complemented the SKAT and burden test. For instance, ACAT-V had a wider significant area
defined by significant windows surrounding LPAL2 than SKAT and the results are consistent in
both AA and EA populations, suggesting that casual variants might sparsely spread over the
region surrounding this gene. Many variants in these unique regions identified by ACAT-V also
have large CADD? Phred scores (Figures S7-S9), which indicates that these regions are likely
to contain functional variants. The omnibus test ACAT-O was able to detect the majority of
windows that are only significant by ACAT-V or SKAT and thus had the most robust
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performance across all the analyses. While the burden tests were substantially less powerful
than ACAT-V and SKAT in our analyses, ACAT-O only suffered little loss of power and was also
robust to the incorporation of underpowered tests. Hence, ACAT-O not only enables the

identification of maore significant findings, but also is less likely to miss important regions.

DISCUSSION

We have proposed ACAT as a general and flexible method for combining p-values and used
ACAT to develop two set-based tests (ACAT-V and ACAT-O) for association analysis in
sequencing studies. Through extensive simulation studies and analysis of the ARIC whole
genome sequencing data using a sliding window approach, we demonstrated that ACAT-V is a
powerful test to complement the SKAT and burden test in the presence of a small number of
casual variants in a set, and that power improvement can be achieved by combining the p-
values of multiple complementary tests using ACAT-O. Our simulations also show that the type |
error rates of ACAT-V and ACAT-O are protected for both continuous and dichotomous traits

although slightly conservative for very small significance levels.

The most important feature of ACAT is that its p-value can be accurately approximated without
the need to account for the correlation of p-values of individual tests, which makes the
computation extremely fast. This remarkable feature also enables a wide range of applications

of ACAT to various genetic studies beyond the rare-variant analysis considered in this paper.

When used to combine variant-level p-values, ACAT can also be applied to analyses of
pathways, genes, gene-sets, gene-environment interactions, or common variants in genome-
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wide association studies (GWAS). In these analyses, ACAT requires only summary statistics (or
p-values) instead of individual-level data to test the association between a trait and a group of
genetic variants. Analyses of summary statistics protects privacy by circumventing the need for
sharing individual-level data and offers huge computational advantages. In addition, compared
to other methods for analyzing summary statistics, ACAT does not need the LD information that
is often estimated from a population reference panel, which greatly speeds up the computation
and avoids the potential issues caused by the estimation accuracy of the LD structure®. For
example, it is very convenient and simple to use ACAT to perform gene-based analysis to
complement the standard single-variant analysis in GWAS. The p-values from single-variant
analysis can be directly used and are the only input required by ACAT for gene-based or

pathway/network-based analysis, and therefore the computation can be done very efficiently.

As an omnibus testing procedure, ACAT in principle can be applied to combine complementary
methaods in nearly all kinds of genetic studies, including single-variant analysis, multiple-traits
analysis and set-based analysis considered in this paper. In these studies, there often exists
multiple competitive methods developed based on different reasonable assumptions. For
instance, in set-based analysis, the assumptions of SKAT, ACAT-V and the burden test differ in
the number and directionality of the casual variants. In multiple-trait analysis, the performance of
different methods depends on many factors such as the number of traits associated with a
variant and the heterogeneity of effect sizes. Due to the absence of prior knowledge about the
underlying genetic architecture, omnibus testing can lead to robust analysis result and enhance
the overall power. The ability of ACAT to obtain a p-value efficiently without simulation-based
approaches allows for rapid combination of multiple methods and makes omnibus testing

feasible for large studies even at the whole-genome scale.
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While equal weights are employed in ACAT-O to combine different set-based tests, one can
also consider upweighting the tests that are more likely to be powerful in a particular analysis to
further boost the power. For example, if there are previous studies showing the existence of
both protective and harmful variants for a trait, one can give less weight to the burden test and
more weight to SKAT and ACAT-V. Hence, as the understanding of a trait progresses, the
omnibus test constructed by ACAT has the capacity to mature to increase power. In contrast,
the minimum p-value method and the Fisher’'s method do not allow for flexible weights for the

combination of tests.

The whole genome sequencing analysis of the ARIC data clearly demonstrates that the choices
of weights can have a substantial impact on the power of a test. In the analysis results, SKAT
with the default beta(MAF; 1,25) weights performs better for Lp(a) but identifies markedly fewer
significant windows for neutrophil count than SKAT with the equal weights (or the beta(MAF; 1,1)
weights). This also indicates that a single type of weights does not uniformly give the best
performance across different studies and it is necessary to determine the weights in an adaptive
manner based on the observed data. Besides MAF, one can also consider incorporating various
functional annotations as weights for SKAT, ACAT-V and the burden test to further boost power,
if the functional annotations are expected to be predictive for effect sizes and/or the probabilities
of variants being causal. Since it is rarely known in advance that which functional annotation
would lead to the optimal power, one can also use ACAT to combine the p-values of set-based

tests weighted by multiple functional annotations that are potentially informative.
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Another interesting observation from our analysis of the ARIC sequencing data is that even
though some underpowered tests are included for omnibus testing, ACAT-O would only have
little power loss. For example, the significant windows detected by the burden tests are only a
small proportion of those detected by SKAT and ACAT-V in all the analyses. Including the
burden tests in ACAT-O, however, resulted in little power loss. Hence, applying ACAT to
combine multiple functional annotations could still be beneficial even if some non-informative

functional annotations are incorporated.
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Web Resources

The URLSs for software programs referenced in this article are as follows:

ACAT, https://github.com/yaowuliu/ACAT

Appendix A. The approximation accuracy of the ACAT p-value

The theory

The theory of ACAT was studied in details in Liu and Xie'®, and we provide a brief description
related to rare-variant analysis here. Recall that the ACAT test statistic is defined as Tyc 1 =
Yk  witan{(0.5 — p;)m}, where p;’s are the p-values, w;'s are nonnegative weights. We can
transform the p-values to z-scores Z;'s, i.e., p; = 2{1 — ®(| Z;|)} fori = 1,2,..., k. If each pair of
the z-scores follows a bivariate normal distribution with mean 0 under the null hypothesis, then
we have

im P{(Tacar/w) >t}
e P{Cauchy(0,1) > )}

where w = YX . w; and Cauchy(0,1) denotes a random variable following the standard Cauchy
distribution. This result holds under an arbitrary correlation structure of the z-scores/p-values
and indicates that the tail of the ACAT test statistic is approximately Cauchy distributed. As p-
value corresponds to the tail probability of the null distribution, the theoretical result suggests
that the Cauchy distribution can be used to approximate the p-value of ACAT and the
approximation would be particularly accurate when the ACAT p-value is very small. Because of
the necessity of adopting stringent p-value threshold in sequencing studies to control for the rate

of false-positive findings, the Cauchy-distribution-based approximation would be very accurate
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for the regions that are significantly associated with the trait. In some cases, the p-values
combined by ACAT might not exactly follow a uniform distribution between 0 and 1 under the
null hypothesis. For instance, the calibrated SKAT or variant-level p-value based on the analytic
approximations is often conservative for very rare variants and dichotomous traits. When the p-
values combined by ACAT are conservative, we have

P{(T, w
i — P /)

tornP{Cauchy(0,1) > t)} —

which indicates that the p-value of ACAT based on the Cauchy approximation would be also

conservative.

Practical guidelines

As ACAT is a general method for combing p-values and can be used for many other
applications beyond variant set analysis in WGS, we provide guidelines regarding the accuracy
of the ACAT p-value calculated by the Cauchy-distribution-based approximation. The guidelines
are based on the assumption that the p-values aggregated by ACAT are accurate in the sense
that they follow a uniform distribution between 0 and 1 under the null hypothesis. If this
assumption is violated and the p-values are conservative, then the ACAT p-value generally

would also be conservative as mentioned earlier.

The approximation accuracy certainly would depend on many factors, among which the ACAT
p-value (i.e., pacar) itself and the correlation among the p-values are most important. In general,
as implied by the theory, the smaller p,. 41 iS, the less impact the correlation could have on the
accuracy of pscar. When the ACAT p-value is very small (e.9., pacar < 107°), the type | error
would be well controlled under almost all kinds of correlation structures, unless in a very rare
situation that we will describe later. When the ACAT p-value is moderately small (e.g., 1073 <

pacar < 107%), the accuracy is generally satisfactory for practical use but a slight inflation is
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possible. When the ACAT p-value is large (e.9., pacar < 1073), one may need to pay attention

to the potential type | error inflation when the correlations are moderately strong.

A rare situation that one should be always cautious of is when there exist many strong negative
correlations among the p-values. Fortunately, this situation seldomly happens in practice. For
example, if the p-values are calculated from two-sided z-scores, it is impossible to have strong
negative correlation between two p-values. Moreover, the p-values of competitive methods (e.g.,

the burden test, SKAT and ACAT-V) are also often positively correlated.
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Figure 1

Summary of the proposed methods ACAT, ACAT-V and ACAT-O, and the relationship
among them.

A general p-value combination method

ACAT

variant-level p-values set-level p-values

ACAT-V ACAT-O
A set-based test that combines the An omnibus test that combines the
variant-level p-values using ACAT set-level p-values of six tests
and is particularly powerful when including ACAT-V to be robust to the
only a small proportion of variants sparsity of casual variants,
in a set are casual. directionality of effects and choice
of weights.
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Figure 2

Power comparisons of ACAT-O, ACAT-V, SKAT and burden tests for continuous traits.
Each bar represents the empirical power estimated as the proportion of p-values less than

a = 107°. The proportion of casual variants is set to be 5%, 20% and 50%, which correspond to
the three rows of each panel. The left panel assumes the effects of the causal variants to have

the same direction, while the right panel assumes the effect directions are randomly determined

with an equal probability. The effect sizes (|3;|'s) of the casual variants are either all the same

as |f;| = b (left column in each panel) or have a decreasing relationship with MAF (right column
in each panel) as |B;| = c|log,o MAF; |, where constants b and c depend on the proportions of
casual variants and their values are presented in Table S1. For each configuration, the total
sample sizes considered are 2500, 5000, 7500, and 10000. Seven methods are compared:
ACAT-V(1,25), ACAT-V(1,1), SKAT(1,25), SKAT(1,1), Burden(1,25), Burden(1,1) and the
omnibus test ACAT-O that combines the other six tests, where the two numbers in the

parentheses indicate the choice of the beta(MAF) weight parameters a; and a, in the test.
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Figure 3

Power comparisons of ACAT-O, ACAT-V, SKAT and burden tests for dichotomous traits.
Each bar represents the empirical power estimated as the proportion of p-values less than

a = 107°. The proportion of casual variants is set to be 5%, 20% and 50%, which correspond to
the three rows of each panel. The left panel assumes the effects of the causal variants to have

the same direction, while the right panel assumes the effect directions are randomly determined

with an equal probability. The effect sizes (|3;|'s) of the casual variants are either all the same

as |f;| = b (left column in each panel) or have a decreasing relationship with MAF (right column
in each panel) as |B;| = c|log,o MAF; |, where constants b and c depend on the proportions of
casual variants and their values are presented in Table S1. For each configuration, the total
sample sizes considered are 2500, 5000, 7500, and 10000. Seven methods are compared:
ACAT-V(1,25), ACAT-V(1,1), SKAT(1,25), SKAT(1,1), Burden(1,25), Burden(1,1) and the
omnibus test ACAT-O that combines the other six tests, where the two numbers in the

parentheses indicate the choice of the beta(MAF) weight parameters a; and a, in the test.
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Table 1

Type | error estimates of ACAT-V and ACAT-O aimed at testing the association between

randomly selected 4kb regions with a continuous or dichotomous trait. In each 4kb region,

common variants with MAF>5% are excluded to focus on only rare and low-frequency variants.
Each cell represents type | error rate estimates as the proportion of p values less than « under
the null hypothesis on the basis of 108 replicates. For ACAT-V, the two numbers in the
parentheses correspond to the beta(MAF) weight parameters a; and a,, respectively.

Sampl Continuous traits Dichotomous traits
Tests e(sn')ze «a=10"% a=10"°% «=10"° «=10"* «=10"° o=10"°
2500 93x107° 86x10° 61x1077 1.0x107* 91x10°® 63x1077
ACAT- 5000 9.1x107° 74x10® 99x1077 97x107° 88x107°% 4.0x1077
V(1,1) 7500 1.1x107* 9.0x10® 67x1077 9.0x107°> 75x10°® 55x1077
10000 93 x10° 9.0x10® 11x10® 93x10°> 9.0x10°° 6.7x1077
2500 94x107° 86x10°® 78x1077 97x107° 94x10® 59x1077
ACAT- 5000 9.2x10™°> 73x107°% 1.0x10® 98x10° 82x10°% 39x1077
V(1,25) 7500 1.1x107° 9.1x107® 82x1077 87x107° 74x10°% 46x1077
10000 9.2x107° 82x107® 92x1077 92x10> 91x10°° 7.7x1077
2500 9.7x107° 9.1x107® 87x1077 92x107° 7.0x107% 47x1077
ACAT-O 5000 9.8x107° 9.1x107® 77x1077 98x107° 85x107% 48x1077
7500 1.1x107° 9.6x107® 88x1077 92x10"° 80x107°® 6.1x1077
10000 95x%x107° 99x10® 79x1077 9.6x107° 84x10° 47x1077
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Table 2

The number of significant sliding windows identified by each test (ACAT-O, ACAT-V, SKAT,
Burden) that are associated with lipoprotein(a) or neutrophil count among AAs or EAs in the
analysis of the ARIC whole genome sequencing data. For ACAT-V, SKAT and the burden test,
the two numbers in the parentheses correspond to the beta(MAF) weight parameters a; and a,,
respectively. The significance threshold a is 3.75 x 1078,

Lipoprotein(a) Neutrophil count

Tests AA EA AA EA
ACAT-O 153 46 113 0
ACAT-V(1,1) 123 42 74 0
ACAT-V(1,25) 122 41 57 0
SKAT(1,1) 103 31 113 0
SKAT(1,25) 127 35 62 0
Burden(1,1) 8 5 20 0
Burden(1,25) 6 3 8 0
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