

1 **Effect of partial substitution of rice with sorghum and inclusion of hydrolyzable tannins**
2 **on digestibility and postprandial glycemia in adult dogs**

3

4

5 **Liege Teixeira, Caroline Fredrich Dourado Pinto, Alexandre de Mello Kessler, Luciano**
6 **Trevizan***

7

8

9 **Running title: Tannins in diet of dogs**

10

11

12 Department of Animal Science, Federal University of Rio Grande do Sul, Porto Alegre, Rio
13 Grande do Sul, Brazil

14

15

16 * Corresponding author

17 E-mail: ltrevizan@ufrgs.br (LT)

18

19

20

21 **Abstract**

22 Sorghum is used as a substitute of rice in dog food, owing to its nutritional similarity
23 and low cost. However, its use has been associated with negative effects, like a reduction in
24 palatability, digestibility, and enzyme activity, which can decrease nutrient absorption. The
25 presence of condensed tannins (CT) in sorghum may cause these effects. Another tannin group,
26 the hydrolysable tannins (HT), is known for its antioxidant properties. Research has shown the
27 nutritional effects of sorghum on dogs, but the effect of HT on dogs remains unknown. We
28 evaluated the effects of substituting rice with sorghum containing CT and inclusion of
29 commercial extract of HT on digestibility, fecal and urinary characteristics, and postprandial
30 blood glucose levels in adult dogs. Nine adult Beagle were randomly subjected to 4 treatments:
31 (R) 50% rice; (RS) 25% rice + 25% sorghum; (RHT) 50% rice + 0.10% HT; (RSHT) 25% rice
32 + 25% sorghum + 0,10% HT. Tannins did not affect food intake. The digestibility of dry matter,
33 organic matter, crude protein, acid hydrolyzed fat, gross energy, and metabolizable energy
34 (ME) decreased with sorghum inclusion ($P < 0.05$). Sorghum also decreased protein
35 digestibility ($P < 0.05$). Greater fecal dry matter was observed with the RHT diet. HT associated
36 with sorghum reduced ME ($P < 0.05$). Sorghum inclusion enhanced fecal output, without
37 altering fecal score ($P > 0.05$). No alterations in urinary characteristics were observed. Sorghum
38 and HT did not affect the postprandial blood glucose response measured by the area under the
39 curve ($P > 0.05$). The substitution of rice by sorghum negatively affected protein absorption
40 and ME of the diets. Sorghum can be considered as a good source of carbohydrates in
41 therapeutic diets for weight control. HT may potentiate the effect of CT, but more research is
42 needed to evaluate its potential use in dog nutrition.

43

44

45 Introduction

46 Carbohydrates are the main source of energy for most commercial dry-extruded diets
47 for adult dogs, with cereal grains representing 30 - 60% of the final formula [1]. Rice is a
48 functional ingredient regularly used in extruded dog food, due to its high digestibility. But,
49 with the growing pet population over the past years, as well as the pet food industry, the search
50 for alternative ingredients to provide nutritional quality and functional properties is becoming
51 increasingly important [2].

52 In this scenario, sorghum (*Sorghum bicolor* L. Moench) appears as a viable option
53 owing to its high productivity per hectare, drought tolerance, resistance to pests, good
54 nutritional value, and lower cost of production, when compared with rice and corn [3].
55 Sorghum is commonly used—partially or wholly—as a source of energy in diets for non-
56 ruminant animals, such as pigs and poultry [4,5]. It has been associated with some negative
57 effects, however, especially on animal performance. Research has shown that those negative
58 effects are linked to the presence of phenolic compounds, particularly tannins, which are
59 secondary compounds of plant metabolism that affect different biological processes through
60 their antimicrobial, antiparasitic, antioxidant, anti-inflammatory and antiviral properties [6].
61 However, tannins can also inhibit enzymes and form complexes with carbohydrates, proteins,
62 and metal ions, thereby reducing nutrient intake and digestibility [7]. Tannins are classified
63 according to their chemical structure into condensates (CT) and hydrolysables (HT). CT,
64 designated as proanthocyanidins, are polymers of flavan-3-ols and flavan-3,4-diols, which can
65 be oxidized to yield anthocyanidins. They are compounds resistant to hydrolysis, but soluble
66 in aqueous organic solvents according to their chemical structure [8]. The HT are composed of
67 simple phenols, gallotannins and elagitannins, which after hydrolysis produce gallic acid and
68 ellagic acid. They are more easily hydrolyzed by acids and bases, and in some cases by

69 enzymatic hydrolysis [9]. Sorghum is a solely source of CT [10]. HT are present in the leaves,
70 flowers, twigs, and bark of some plants, and can also be found in a purified form as a
71 commercial extract [11].

72 Although sorghum may contain varying levels of antinutritional factors, it is composed
73 of up to 70% starch, of which 70–80% occur in the form of amylopectin and 20–30% occur as
74 amylose [12]. Similarly, rice contains 75% starch, of which up to 35% is amylose [13,14]. The
75 amylose / amylopectin ratio is one of the main indicators used to determine starch digestibility
76 [15]. Amylopectin has a higher gelatinization capacity during the extrusion process, which
77 increases starch digestibility. On the contrary, amylose possesses greater power of
78 retrogradation during the same process, which reduces starch digestibility [16].

79 In addition to its effects on digestibility, starch is the main dietary component
80 responsible for variation in postprandial glycemia in animals [17]. The faster and more
81 complete the digestion, the faster and more intense glycemic the curve [18]. The slower
82 digestion of amylose-rich starch appears to reduce the glycemic rate of animals by releasing
83 glucose gradually into the bloodstream. Carciofi et al. [19] observed greater immediate
84 postprandial glucose response for rice and corn and later response for sorghum in adult dogs.

85 Therefore, we hypothesized that sorghum can help modulate glycemic absorption due
86 to the action of phenolic compounds. Thus, the ingredient is slowly digested, contributing to a
87 longer satiety, delaying gastric emptying, and allowing slow glucose uptake compared to other
88 cereals [10,20]. Such properties may be useful in cases of obesity, which - when untreated -
89 can lead to decreased longevity, diabetes mellitus, orthopedic and respiratory diseases [21].
90 Some studies have observed a slight reduction in the digestibility of some nutrients with the
91 inclusion of sorghum in the diets for dogs, although the supplemented diet was still accepted
92 for commercial purposes [1,22]. Based on this evidence and on the lack of complementary
93 information of the effect of sorghum on postprandial glycemia in adult dogs, this study aims to

94 evaluate the partial replacement of rice by sorghum with CT and the inclusion of HT
95 commercial extract, and their combined effect on the digestibility and postprandial glycemic
96 response in adult dogs.

97

98 **Materials and methods**

99 All animal care and handling procedures were approved by The Institutional Animal Care and
100 Use Committee at the Federal University of Rio Grande do Sul, protocol number 26.275.

101 **Animals**

102 Nine healthy adult Beagle (5 males and 4 females) were used in this study. They were all intact,
103 between 2 and 3 years old, weighing 12.4 ± 0.97 kg, with a body condition score (BCS) ranging
104 from 4.5 to 5.5 out of 9 points [23] and free of endo- and ectoparasites. All dogs were regularly
105 immunized and submitted to clinical and laboratory tests to measure complete blood count
106 (CBC) and to perform biochemical and coproparasitological analyses before the start of the
107 study. The dogs were housed in individual stainless steel metabolic cages ($1.0 \times 1.0 \times 1.5$ m)
108 equipped with a feces and urine collector, feeders, and drinkers, in a controlled room at 24°C ,
109 with a light:dark cycle of 14:10 h.

110

111 **Diets**

112 Rice was partially substituted with sorghum as a way to introduce CT into the diets.
113 Additionally, purified HT obtained from a commercial extract of the chestnut bark (Silvafeed
114 ENC®, Piedmont, Italy) was included into the diets. The extract was obtained by heating the
115 chestnut bark with water at low pressure, and subsequently dehydrating the water-soluble

116 fraction. The final product was a fine brown powder containing HT, hydrolyzable polyphenols,
117 cellulose, hemicellulose, simple sugars, lignin, minerals, and 8% moisture; its fiber content was
118 < 3% and it had a relative density of 0.5–0.6% and pH < 4.0. Four experimental diets were
119 formulated and extruded to be isonutritives: (R) 50% rice; (RS) 25% rice + 25% sorghum;
120 (RHT) 50% rice + 0.10% HT; (RSHT) 25% rice + 25% sorghum + 0.10% HT (see Table 1 and
121 2). The dogs were fed twice a day (at 8:30 and 17:00) to meet the energetic and nutritional
122 requirements of adult dogs, as recommended by the NRC [24]. The leftovers were collected,
123 weighed, and discounted to calculate consumption. Water was provided *ad libitum*.

124 **Table 1. Chemical composition of sorghum (*Sorghum bicolor* L. Moench)**

Item, % DM basis	Sorghum
DM	86.9
Starch	63.6
Crude protein	7.59
Ether extract	2.56
Ash	1.42
Crude fiber	0.72
Gross energy, kcal/kg	4.446
Polyphenol tannins, %	4.8
Polyphenol non-tannins, %	2.6

125 DM, dry matter.

126

127 **Table 2. Ingredients and chemical composition of experimental diets**

Ingredient, %	Treatments
---------------	------------

	R	RS	RHT	RSHT
Broken rice	50.7	26.2	50.7	26.2
Sorghum	-	25.0	-	25.0
Hydrolysable tannins ¹	-	-	0.10	0.10
Wheat bran	14.0	14.0	14.0	14.0
Poultry byproducts meal	11.1	11.4	11.1	11.4
Meat and bone bovine meal	8.00	8.00	8.00	8.00
Poultry fat	6.00	5.81	6.00	5.81
Corn gluten 60% CP	5.00	5.00	5.00	5.00
Digest ²	1.50	1.50	1.50	1.50
Cellulose	1.17	1.15	1.17	1.15
Flaxseed	1.00	1.00	1.00	1.00
Soybean oil	0.52	-	0.52	-
Premix mineral/vitamin ³	0.40	0.40	0.40	0.40
Salt	0.38	0.38	0.38	0.38
Potassium chloride	0.17	0.07	0.17	0.07
Starch	0.10	0.10	0.00	0.00
Total	100	100	100	100

Analyzed chemical composition, % DM basis

Dry matter	91.6	87.0	88.2	90.3
Starch	39.6	38.0	39.6	37.7
Crude protein	19.5	20.7	21.5	18.8
Acid hydrolyzed fat	8.99	8.71	9.05	8.80
Ash	6.34	7.11	7.54	7.39
Crude fiber	3.64	4.21	3.64	4.13

Total dietary fiber	22.5	21.2	22.5	22.7
GE, kcal/kg	4.903	4.881	4.799	4.815
Gelatinization index of starch, %	92.0	91.3	90.2	92.3
Polyphenol tannins, %	-	1.2	0.1	1.3

128 R, rice; RS, rice + sorghum; RHT, rice + hydrolysable tannins; RSHT, rice + sorghum +
129 hydrolysable tannins; CP, crude protein; GE, gross energy.

130 ¹ Silvafeed ENC®, Piedmont, Italy.

131 ² DTECH 8L, S.P.F. Argentina S.A., Argentina.

132 ³ Premix composition per kilogram: vitamin A (10.800 UI), vitamin D3 (980 UI), vitamin E
133 (60 mg), vitamin K3 (4.8 mg), vitamin B1 (8.1 mg), vitamin B2 (6.0 mg), vitamin B6 (6.0 mg),
134 12 vitamin (30 mcg), pantothenic acid (12 mg), niacin (60 mg), folic acid (0.8 mg), biotin
135 (0.084 mg), manganese (7.5 mg), zinc (100 mg), iron (35 mg), copper (7.0 mg), cobalt (10 mg),
136 iodine (1.5 mg), selenium (0.36 mg), choline (2.400 mg), taurine (100 mg), and, antioxidant
137 BHT (150 mg).

138

139 **Experiment 1: Digestibility Assay**

140 **Experimental Design**

141 The assay was conducted as an incomplete randomized block design of four treatments and
142 three 10-day periods, with 2 dogs per treatment in each period, for a total of 6 replications per
143 treatment, according to the recommendations of the American Association of Feed Control
144 Officials protocol [25]. Each period lasted 10 days, with 5 days for adaptation to the cage and
145 experimental diet, followed by 5 days of total feces and urine collection and measurement of

146 fecal and urinary pH. Between each period 5 days of rest were provided to the dogs so they
147 could exercise in which the R diet was provided.

148 **Sample procedure**

149 To establish the beginning and the end of each period of feces and urine collection, gelatin
150 capsules containing 1 g of iron oxide (III) Fe_2O_3 were orally given to the dogs. Feces were
151 collected for 5 days and scored as follows: 1 = very hard and dry stool, 2 = hard, dry, firm
152 stool, 3 = soft, moist stool, well formed, 4 = soft and shapeless stool, 5 = liquid stool, diarrhea.
153 After daily collection, feces were weighed and stored in a freezer at - 20°C until the end of the
154 trial to perform analysis. Total urine collection was performed daily in the morning and then
155 stored in plastic bottles containing 1 g of thimol (Synth, Diadema, Brazil) and the pH was
156 measured. The urine total volume was measured and kept in a freezer at - 20°C until analysis.
157 The fecal pH was measured in 2 g of fresh feces diluted in 20 mL of distilled water (Digimed
158 DM-22, Campo Grande, Brazil).

159 **Chemical Analysis**

160 Stool from each dog was thawed, homogenized, and dried in forced-air oven at 55°C for 72 h,
161 according to the recommendations of the Association of Official Analytical Chemists [26].
162 Feces and diets were ground through a 1 mm screen in a Wiley hammer mill (DeLeo
163 Equipamentos Laboratoriais, Porto Alegre, Brazil), and analyzed for dry matter (DM - AOAC
164 934.01), acid hydrolyzed fat (AOAC 954.02; model 170/3, Fanem, São Paulo, Brazil), crude
165 protein (CP - AOAC 954.01; model TE 036/2, Tecnal, Piracicaba, Brazil), crude fiber (CF -
166 AOAC 962.10; model MA 450/8, Marconi, Piracicaba, Brazil), and ash (MM) [26]. Urine
167 samples were thawed, homogenized and 150 mL aliquots were lyophilized (Micromodulyi-Fis;
168 Thermo Fisher Scientifics INC, Maryland, USA) for analysis of DM and gross energy (GE).
169 Another 50 mL aliquot was collected for analysis of CP. Dietary, fecal, and urinary GE were

170 determined using isoperibolic bomb calorimetry (calorimeter model C2000 basic, Ika-werke,
171 Staufen, Germany). All analyses were performed in duplicates, assuming a variation <1% for
172 energy and <5% for the other analyzes. The tannins were analyzed by gravimetric tests using
173 the method of Freiberg-Hide [27].

174 **Statistical Analyses**

175 Data were analyzed using the ANOVA procedure of SAS 9.4 (SAS Inst. Inc., Cary, NC).
176 Means were compared using Tukey's test at 5% probability ($P < 0.005$).

177

178 **Experiment 2: Postprandial Glycemia**

179 The dogs and the dietary treatments were the same as previously described for the digestibility
180 assay.

181 **Experimental Design**

182 The dogs were adapted to the experimental diets for 11 days, then were fasted for 12 h inside
183 the metabolic cages before starting the first blood collection. Immediately before starting the
184 experiment, the cephalic vein was cannulated with a catheter BD ANGIOCATH® 22''
185 (Becton, Dickinson and Company do Brasil, Curitiba, Brazil). Then, 1 mL of blood was
186 collected in a tube containing 0.05 mL of sodium fluoride (LABTEST®, Lagoa Santa, Brazil);
187 this sample was used to determine the baseline glycemia at time 0. Then, food was offered and
188 was consumed in 5 min by all the dogs. Sequential collections were started over 8 h, at 5, 10,
189 15, 30, 45, 60, 90, 120, 180, 240, 300, 360, 420, and 480 min after food consumption. After
190 each collection the catheter was washed with heparinized solution and before each new
191 collection, about 0.3 mL of blood were discarded.

192 **Chemical Analyses**

193 The tubes were centrifuged at 3000 g during 10 min, and plasma was transferred to Eppendorf
194 tubes of 1.5 mL, cooled between 2 and 4°C, and analyzed in sequence. Blood glucose was
195 analyzed by the enzymatic colorimetric method according to the manufacturer's instructions
196 (Wiener Lab Group, Rosário, Argentina). All samples were analyzed in duplicate.

197 **Statistical Analyses**

198 The results were analyzed using the ANOVA with repeated measures in time. The area under
199 the curve (AUC) was calculated, and the mean of each treatment was compared by Tukey's
200 test ($P < 0.05$) using the SAS 9.4 (SAS Inst. Inc., Cary, NC).

201

202 **Results**

203 The dogs normally consumed all the experimental diets offered quickly, without refusal. The
204 inclusion of sorghum and HT did not promote clinical alterations such as vomiting and
205 diarrhea. Initial and final CBC and biochemical profiles remained within the normal range for
206 adult dogs [28].

207 Sorghum contained around 4.8% of polyphenol tannins (see Table 1), and was the only
208 ingredient in the diets containing a significant amount of tannins. According to this inclusion,
209 1.2% of tannins compound is ensured in the diets. The food was well cooked, based on the
210 gelatinization of starch, and all the diets presented a gelatinization index greater than 90%.
211 Diets had small differences in nutrient concentration owing to rice substitution with sorghum
212 (Table 2), which had some influence on the variable nutrient uptake for the different diets (see
213 Table 3). The intake of crude fiber was higher in dogs fed diets containing sorghum ($P <$
214 0.0005) but this was not the case when total dietary fiber was evaluated, as dogs had the same

215 dry matter consumption, and the concentration of total dietary fiber was similar among diets.

216 Dogs fed diets containing CT and HT together consumed more ash ($P < 0.0164$).

217

218 **Table 3. Nutrient intake, and apparent total tract digestibility of macronutrients and**
219 **energy of dogs fed experimental diets**

Item	Diets				<i>P</i> -value	SEM
	R	RS	RHT	RSHT		
Daily nutrient intake, g						
DM	206	201	194	197	0.4223	12.7
OM	193	187	179	183	0.2635	11.8
AHF	18.5	17.5	17.6	17.4	0.3254	1.13
CP	40.0 ^a	41.7 ^a	41.8 ^a	36.8 ^{ab}	0.0136	2.42
FDT	37.5 ^b	42.3 ^a	35.3 ^b	40.7 ^{ab}	0.0005	2.43
Ash	13.0 ^b	14.3 ^{ab}	14.6 ^a	14.6 ^a	0.0164	0.85
NFE	134 ^a	128 ^{ab}	120 ^b	124 ^{ab}	0.0496	8.21
Apparent total tract digestibility, %						
DM	81.8 ^a	78.5 ^{ab}	81.2 ^a	76.7 ^b	0.0015	1.95
OM	85.3 ^a	81.9 ^b	85.3 ^a	80.9 ^b	0.0007	1.74
AHF	92.8	89.4	92.6	90.3	0.2122	3.06
CP	84.9 ^a	82.3 ^{ab}	87.0 ^a	79.6 ^b	<0.0001	1.94
CF	31.7	30.8	37.2	33.7	0.6901	10.1
Ash	30.2	33.2	30.8	24.3	0.2224	6.93
NFE	84.4 ^a	80.8 ^{bc}	83.6 ^{ab}	79.3 ^c	0.0015	1.96
GE	85.4 ^a	82.1 ^b	85.2 ^a	80.7 ^b	0.0004	1.69

Nutritional value, kcal/kg

ME	3.978 ^a	3.793 ^{bc}	3.857 ^{ab}	3.698 ^c	0.0002	78.7
----	--------------------	---------------------	---------------------	--------------------	--------	------

220 R, rice; RS, rice + sorghum; RHT, rice + hydrolysable tannins; RSHT, rice + sorghum +
221 hydrolysable tannins; SEM, standard error of the mean; DM, dry matter; OM, organic matter;
222 AHF, acid hydrolyzed fat; CP, crude protein; CF, crude fiber; NFE, nitrogen-free extractive;
223 GE, gross energy; ME, metabolizable energy.

224

225 Sorghum inclusion reduced the digestibility coefficients of DM, OM, CP, DE, and ME ($P <$
226 0.05), especially in the RSHT treatment (see Table 3), which contained both tannins. The
227 inclusion of HT was not enough to reduce the ME content, only when added with sorghum (P
228 < 0.0002). The nutrient and energy digestibility coefficients of the RHT treatment did not differ
229 significantly from the control group (R), which presented the best results regarding digestibility
230 compared to the others. The results suggest that there was a potentiate effect of tannins, CT
231 plus HT, influencing the reduction in nutrient and energy digestibility.

232 The inclusion of HT reduced the fecal water content, and this effect was greater in dogs fed
233 diets containing sorghum ($P < 0.0045$) (see Table 4). Dogs fed RHT treatment had lower daily
234 fecal production compared to those treated with sorghum ($P < 0.0059$). Despite these
235 alterations, the mean fecal score did not differ between diets, resulting in dry and firm stools,
236 a desired aspect in the extruded diets.

237

238 **Table 4. Fecal and urinary characteristics of dogs fed diets containing tannins**

Item	Diets				<i>P</i> -value	SEM
	R	RS	RHT	RSHT		
Fecal characteristics						

Fecal DM, %	38.9 ^{ab}	38.4 ^b	41.1 ^a	37.6 ^b	0.0045	1.42
Fecal output, g/d	96.5 ^b	113 ^{ab}	88.6 ^b	123 ^a	0.0059	15.0
Fecal output, g/d (DM)	37.4 ^b	43.2 ^{ab}	36.5 ^b	46.2 ^a	0.0107	4.83
Feces pH	6.65	6.60	6.70	6.65	0.7919	0.17
Fecal score, 1 to 5	2.05	2.13	2.04	2.11	0.2050	0.08
Urinary characteristics						
Volume, mL ¹	2334	2461	1663	2549	0.2782	835
Total DM, %	3.70	4.21	4.08	3.96	0.9547	1.66
Urine CP, DM%	7.75	8.78	9.46	8.52	0.8305	3.28
Urine pH	7.42	7.35	7.50	7.42	0.6975	0.21

239 R, rice; RS, rice + sorghum; RHT, rice + hydrolysable tannins; RSHT, rice + sorghum +

240 hydrolysable tannins; SEM, standard error of the mean; DM, dry matter; CP, crude protein.

241 ^{ab}Letters superscript indicate the differences among diets.

242 ¹Volume produced in 5 days.

243

244 No change was observed in the urinary characteristics analyzed ($P > 0.05$) (see Table 4).

245 However, the urine and feces produced by the dogs fed with diets containing sorghum

246 presented a darker coloration than in the control diet (R).

247 The postprandial glycemic response, measured by the AUC, from 0 to 480 minutes after meal

248 was not significantly different among groups. However, when the initial period is discounted,

249 between 30 and 300 min, dogs fed the RHT diet tended to show the largest area under the curve

250 ($P = 0.07$), meaning that absorption was greater than other diets in this period. But neither

251 sorghum nor HT in the diets affected the basal, average, minimum, or maximum glycemia (P

252 > 0.05) (see Table 5).

253

254 **Table 5. Area under curve without basal glycemic area (AUC), plasma basal glucose**
255 **concentration (PBC), plasma glucose concentration (PGC), and values of the glycemic**
256 **peak**

Item	Diets				<i>P</i> -value	SEM
	R	RS	RHT	RSHT		
AUC total (0-480) mg/dL*min	38554	40350	41910	39615	0.35	705
AUC (30-300) mg/dL*min	16209	17182	18564	15936	0.07	1303
Basal glycemia, mg/dL	79.6	78.2	80.7	80.0	0.88	0.53
Maximum glycemia, mg/dL	92.6	99.7	102	97.2	0.42	2.01
Average glycemia, mg/dL	79.8	83.1	85.9	82.2	0.34	1.26
Minimum glycemia, mg/dL	71.6	68.7	74.1	71.2	0.44	1.11
Maximum glycemic increase, mg/dL	13.0	21.0	21.5	17.2	0.56	1.97

257 R, rice; RS, rice + sorghum; RHT, rice + hydrolysable tannins; RSHT, rice + sorghum +
258 hydrolysable tannins; SEM, standard error of the mean; AUC, area under the curve.
259 Peak glycemia time of dogs fed experimental diet.

260

261 **Discussion**

262 The objective of the present study was to determine if the inclusion of sorghum and HT
263 in the diet would modify the digestibility of those diets, and how it would impact the
264 postprandial glycemic index of adult dogs, based on the ability of tannins to form complexes
265 with proteins and carbohydrates. Tannins are responsible for reducing enzyme activity in the
266 gut, reducing the postprandial peaks of glycemia, promoting a long and flat curve of glycemia
267 after the meal, and increasing the time of glucose absorption, as reported by Carcioletti et al. [19].

268 In this study, we expected that sorghum would be used as a source of CT in canine diets, as
269 rice and other sources of ingredients do not contain tannins. We hypothesized that sorghum or
270 HT would work as functional ingredients to change the glycemic index of rice, which is
271 considered to be an ingredient with high glycemic index. Diets were made to replace the
272 included rice content by half and to maintain the same amount of starch and other
273 macronutrients, including total dietary fiber content. HT was included to check for additional
274 effect, as it has been used in diets for poultry and swine with some effects on feces quality.
275 Schiavone et al. [29] used levels of 0.15%, 0.20%, and 0.25% of the same HT extract in broiler
276 diets and did not obtain significant results in terms of digestibility and carcass quality related
277 to the control diet. However, there was an increase in the DM content of the feces, and feces
278 had a firmer consistency and a reduction in the water content. The presence of tannins did not
279 alter the consumption of the diets: all dogs consumed quickly all the food provided. Acceptance
280 is a crucial point when a new ingredient is tested. The diets formulated with sorghum and
281 tannins were well acceptable by the dogs and the palatability test was not performed. There is
282 no consensus on the effect of tannins on voluntary consumption, but it is known that the
283 formation of complexes between tannins, proline-rich salivary proteins, and the mucosal
284 epithelium of the oral cavity, and the direct connection of tannins with gustatory receptors,
285 both contribute to the formation of tannins' astringency [30]. Mole et al. [31] observed that
286 dogs as well as cats produced small amounts of proline-rich salivary proteins, and did not have
287 tannin affinity *in vitro*. This fact may partially explain the voluntary consumption we observed,
288 as there was no precipitation of the complex tannin-proline-rich salivary proteins, thus no
289 sensation of astringency. Similar results were observed in a study by Kore et al. [32], where
290 dogs normally consumed the diet containing sorghum, without refusing or leaving leftovers.

291 Despite our attempt to make isonutritive diets, the substitution of rice with sorghum
292 produced diets with some significant differences on nutrient consumption due to moisture of

293 the final diets. The diets were mixed and extruded separately, which may have exacerbated this
294 impact. The inclusion of sorghum negatively affected the digestibility of DM, organic matter
295 (OM), CP, digestible energy, and ME of the diets. This fact may be due to the greater inhibitory
296 power of CT on enzymatic activity compared to that of HT [33]. Kore et al. (2009) found
297 similar results when evaluating different cereals for dogs, with sorghum presenting the lowest
298 coefficients of digestibility of DM, OM, CP, and CF.

299 One of the main factors affecting the DM and OM digestibility coefficients is the starch
300 gelatinization index. Starch grains absorb water, swell, release part of the amylose, and become
301 more susceptible to enzymatic degradation [34]. The high gelatinization of the starch
302 determines better extrusion and a better granule [35]. In this study, the gelatinization index was
303 above 90% for all diets (see Table 2), indicating that the extrusion was effective to allow
304 enzymatic access during digestion. Some researchers suggest that, during cooking, CT undergo
305 structural modification through depolymerization into oligomers and monomers, but maintain
306 the stable basic structure [3]. There are indications that in the intestine, the tannins will
307 polymerize again and bind to proteins, forming compounds resistant to digestion. Thus, they
308 reach the colon and may or may not be degraded into simple phenols [36]. The undigested
309 tannins remain in the lumen, where they can antagonize the effects of pro-oxidants produced
310 during the metabolism of microbiota [37]. Saura-Calixto et al. [38] did not observe any effect
311 of digestive enzymes on the release and bioaccessibility of *in vitro* CT polymers in human
312 diets, suggesting that they come unchanged in the colon. Another *in vitro* study using highly
313 polymerized CT indicated that they were not affected by the intestinal microbiota [39].

314 The inclusion of HT did not affect the digestibility of the CP and did not differ
315 significantly from the control treatment (R). There is some indication that HT must interact
316 with proteins, forming less stable bonds than CT and allowing the intestinal microbiota to
317 metabolize its components and make them more soluble [40]. Thus, HT may have a lower

318 impact on digestibility than do CT. HT are absorbed mainly in the small intestine, being
319 fermented in less quantity in the colon [39]. Hagerman et al. [41] observed a reduction in the
320 digestibility of CP in sheep fed a diet containing CT, HT did not present the same effects.

321 The reduction in DE and ME of the diets containing sorghum observed in this study concurs
322 with previous studies [42]. DE and ME tend to decrease with the increase of dietary tannin
323 content, through the formation of complexes with carbohydrates, reducing the activity of the
324 amylolytic enzymes and their energetic use [43].

325 The addition of HT reduced the water content of dog feces, a desired trait in extruded
326 diet. However, such an effect was not observed with the dietary association of HT and CT. The
327 excess of non-digestible content into the lumen may have some impact on fecal water content.
328 The dogs that consumed diets containing sorghum presented greater production of feces, due
329 to the lower digestibility of the ingredient. However, the mean fecal score was not altered
330 between diets, resulting in dry and firm stools. Twomey et al. [42] observed that dogs fed diets
331 with sorghum produced firmer feces than those fed rice-based diets ($P < 0.05$), but all values
332 were still within the ideal range.

333 No changes were observed in fecal and urinary pH. Dows et al. [44], using diets with
334 CT in wild rodents, observed the production of more alkaline urine, which did not occur in this
335 study. However, the urine and feces of dogs fed diets containing sorghum and HT presented a
336 darker coloration than did the urine and feces of dogs fed rice-based diet, indicating the
337 metabolism of tannins and excretion of their components in urine and feces. Purified tannins
338 have darker coloration, which ranges from dark brown to black. Additionally, the sorghum
339 used had a dark red coloration.

340 The presence of HT tended to promote a increase in the postprandial glycemic response
341 of dogs, from 30 to 300 min, the time during which most parts of glucose are absorbed during
342 the digestion. It was against our hypothesis, as we expected a reduction in the area under the

343 curve. Hydrolysable tannins contain glucose in their molecular structure, to which galo- and
344 elagio- tannin remains associated. From the dark color of the urine, it is possible to speculate
345 that HT, including glucose present in HT, were digested; however, this is still unlikely to have
346 produced an increase in glycemia, since the inclusion of HT in the diet was very less.

347 Carciofi et al. [19] observed a greater area under the curve for dogs fed sorghum
348 compared to those fed with rice 30 min after the consumption of the experimental diets. The
349 contrasting results can be explained by the variation in the chemical composition of the
350 sorghum, which is influenced by genetic and environmental factors [45].

351 The amount of CT in sorghum has been reduced through genetic improvement of
352 cultivars, allowing the grain to be used to feed non-ruminant animals without compromising
353 digestibility and, consequently, animal performance. To test sorghum in the experimental diets
354 we analyzed three varieties of sorghum to select the one with a higher concentration of
355 condensed tannins.

356 Myer et al. [46] evaluated sorghum with different tannin levels for growing-finishing
357 swine and considered a tannin content of 1.3 to 3.6% as high and 0.1 to 0.7% as low. The
358 variety used in this study had a tannin content of 4.8%, classified as a high tannin grain
359 sorghum. Although sorghum has no influence on the reduction of the postprandial glycemic
360 response, the ingredient has desirable characteristics in specific products, such as calorie-
361 restricted diets. Finally, more studies are needed to determine the actual effects of HT on dog
362 health.

363

364 **Conclusions**

365 The inclusion of tannins in canine diets did not affect the voluntary consumption of
366 food by dogs. However, the presence of sorghum caused a reduction in the digestibility of DM,
367 OM, CP, DE, and ME, and promoted greater fecal production. The fecal score was kept in good

368 standard. There was a darkening of feces and urine of the dogs that received sorghum and HT
369 in the diet, strongly indicating that there is metabolism and excretion of its constituents. The
370 addition of HT reduced DM and water content in feces. Although the expected glycemic
371 response results were not observed, sorghum-containing tannins have good applicability in
372 canine diets. By reducing the ME content of the diets, sorghum can become a key ingredient
373 in the development of therapeutic diets for weight control in dogs.

374

375 **Acknowledgement**

376 The authors are thankful for the financial support given by Brazilian governmental research
377 support institution Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-CAPES and
378 Nutribarrasul, Brasil, for the diets extrusion.

379

380 **References**

- 381 1. Murray SM, Fahey GC, Merchen NR, Sunvold GD, Reinhart GA. Evaluation of
382 selected high-starch flours as ingredients in canine diets. *J Anim Sci.* 1999;77(8):
383 2180-6.
- 384 2. Carciofi AC, Jeremias JT. Progresso científico sobre nutrição de animais de
385 companhia na primeira década do século XXI. *Rev Bras Zoot.* 2010; 39:35-41 (supl.
386 especial).
- 387 3. Lemlioglu-Austin D. Sorghum: obliging alternative and ancient grain. *Cereal
388 Foods World.* 2014;59(1):12-20.
- 389 4. Kopinski J, Willis S. Recent advances in utilization of sorghum for growing pigs.
390 In, *Proceedings of the Third Australian Science, Melbourne. Occasional
391 Publication No.93.* Foale MA, Henzell RG and Kneipp JF (Eds). 1996;93:235-50.

392 5. Selle PH, Cadogan DJ, Li X, Bryden WL. Implications of sorghum in broiler
393 chicken nutrition. *Anim Feed Sci Technol.* 2010;156(3-4):57-74.

394 6. Huang QQ, Liu XL, Zhao GQ, Hu TM, Wang YX. Potential and challenges of
395 tannins as an alternative to in-feed antibiotics for farm animal production. *Anim*
396 *Nutr.* 2018;4(2):137-50.

397 7. Kumari M, Jain S. Tannin: An Antinutrient with Positive Effect to Manage
398 Diabetes. *Res J Recent Sci.* 2012;1(12):4.

399 8. Costa CTC, Bevilaqua CML, Moraes SM, Vieira LS. Taninos e sua utilização em
400 pequenos ruminantes. *Rev Bras Pl Med.* 2008;10(4):108-16.

401 9. Etuk E, J Okeudo N, O Esonu B, B I Udedibie A. Antinutritional Factors in
402 Sorghum: chemistry, Mode of action and Effects on livestock and poultry. *Online J*
403 *Anim Feed Res.* 2012;2(2):113-119.

404 10. Dicko M, Gruppen H, Traore A, Voragen A, Berkel W. Review: Sorghum Grain as
405 Human Food in Africa: Relevance of Starch Content and Amylase Activities. 2006.

406 11. Battestin V, Katsumi L, Alves G. Fontes e aplicações de taninos e tanases em
407 alimentos. *Alimentos e Nutrição.* 2004;15:63-72.

408 12. Zhu F. Structure, Physicochemical Properties, Modifications, and Uses of Sorghum
409 Starch. *Compr Rev Food Sci Food Saf.* 2014;13:597-610.

410 13. Rostagno HS, Albino LFT, Hannas MI, Donzele JL, Sakomura NK, et al. Tabelas
411 Brasileiras Para Aves e Suínos: Composição de Alimentos e Exigências
412 Nutricionais. 4^a ed. UFV, MG, UFV, Viçosa. 2011. 488.

413 14. Wani AA, Singh P, Shah M, Schweiggert-Weisz U, Gul K, Wani I. Rice Starch
414 Diversity: Effects on Structural, Morphological, Thermal, and Physicochemical
415 Properties - A Review. *Compr Rev Food Sci Food Saf.* 2012;11:417-36.

416 15. Svhuis B, Uhlen A, M. Harstad O. Effect of starch granule structure, associated
417 components and processing on nutritive value of cereal starch: A review. *Anim
418 Feed Sci Technol.* 2005;122:303-20.

419 16. França J, Saad F, Saad CEP, Silva RC, Reis JS. Avaliação de ingredientes
420 convencionais e alternativos em rações de cães e gatos. *Rev Bras Zoot.* 2011;40:
421 222-31.

422 17. Nguyen P, Dumon H, Biourge V, Pouteau E. Glycemic and Insulinemic Responses
423 after Ingestion of Commercial Foods in Healthy Dogs: Influence of Food
424 Composition. *J Nutr.* 1998;128(12) :2654S-8S.

425 18. Jenkins DJA, Wolever TMS, Taylor RH, Barker HM, Fielden H, Baldwin JM, et
426 al. Glycemic index of foods: A physiological basis for carbohydrate exchange. *Am
427 J Clin Nutr.* 1981;34:362-6.

428 19. Carciofi AC, Takakura FS, De-Oliveira LD, Teshima E, Jeremias JT, Brunetto MA,
429 et al. Effects of six carbohydrate sources on dog diet digestibility and post-prandial
430 glucose and insulin response. *J Anim Physiol Anim Nutr.* 2008;92(3): 326-36.

431 20. Queiroz VAV, Moraes ÉA, Schaffert RE, Moreira ANAV, Ribeiro SMR, Martino
432 HSD. Potencial funcional e tecnologia de processamento do sorgo [sorghum
433 bicolor (L.) moench], para alimentação humana. *Rev Bras Milho e Sorgo.*
434 2012;10(3): 180-95.

435 21. German AJ, Ryan VH, German AC, Wood IS, Trayhurn P. Obesity, its associated
436 disorders and the role of inflammatory adipokines in companion animals. *Vet J.*
437 2010;185(1):4-9.

438 22. Twomey LN, Pluske J, B Rowe J, Choct M, Brown W, Pethick D. The replacement
439 value of sorghum and maize with or without supplemental enzymes for rice in
440 extruded dog foods. *Anim Feed Sci Techol.* 2003;108:1-4.

441 23. Laflamme D. Development and validation of a body condition score system for
442 dogs.: a clinical tool. *Canine Pract.* 1997;22: 10-5.

443 24. National Research C. Nutrient requirements of dogs and cats: National Academies
444 Press. 2006.

445 25. Association of American Feed Control Officials - AAFCO. Official publication.
446 Champaign, USA. 2007.

447 26. Association of Official Analytical Chemistry - AOAC. Official methods of analysis.
448 16th Ed. AOAC International. Arlington, USA. 1995.

449 27. Küntzel A. Die quantitative Gerbstoffanalyse nach dem Filterverfahren. Das
450 Leder. 1954;5: S28-S31.

451 28. Kaneko JJ, Harvey JW, Bruss ML. Clinical biochemistry of domestic animals:
452 Academic press. 2008.

453 29. Schiavone A, Guo K, Tassone S, Gasco L, Hernandez E, Denti R, et al. Effects of
454 a natural extract of chestnut wood on digestibility, performance traits, and nitrogen
455 balance of broiler chicks. *Poult Sci.* 2008;87(3): 521-7.

456 30. Arapitsas P. Hydrolyzable tannin analysis in food. *Food Chem.* 2012;135(3): 1708-
457 17.

458 31. Mole S, Butler LG, Iason G. Defense against dietary tannin in herbivores: a survey
459 for proline rich salivary proteins in mammals. *Biochem Syst Ecol.* 1990;18(4):
460 287-93.

461 32. Kore KB, Pattanaik AK, Sharma AdK. Evaluation of alternative cereal sources in
462 dog diets: effect on nutrient utilization and hindgut fermentation characteristics.
463 *J Sci Food Agric.* 2009;89: 2174-80.

464 33. McLeod MN. Plant tannins - their role in forage quality. *Nutr Abstract Rev.* 1974;
465 44:803-15.

466 34. Hauck B, Rokey G, Smith O, Herbster J, Sunderland R. Extrusion cooking systems.
467 Feed Manufacturing Technology, American Feed Industry Association Inc,
468 Arlington, SAD. 1994.

469 35. Duarte A, Saad FMdOB, Corbim JJ, Silva Júnior JWd, Pereira DAR, Fialho ET, et
470 al. Nutritional evaluation of extruded cereals for dogs. Ciênc Agrotec. 2006;30(6):
471 1177-83.

472 36. Scalbert A, Williamson G. Dietary intake and bioavailability of polyphenols. J
473 Nutr. 2000;130(8): 2073S-85S.

474 37. Serrano J, Puupponen-Pimiä R, Dauer A, Aura AM, Saura-Calixto F. Tannins:
475 current knowledge of food sources, intake, bioavailability and biological effects.
476 Mol Nutr Food Res. 2009;53(S2): S310-S29.

477 38. Saura-Calixto F, Serrano J, Goni I. Intake and bioaccessibility of total polyphenols
478 in a whole diet. Food Chem. 2007;101(2): 492-501.

479 39. Bravo L. Polyphenols: chemistry, dietary sources, metabolism, and nutritional
480 significance. Nutr Rev. 1998;56(11):317-33.

481 40. Clifford M, Scalbert A. Ellagitannins—Nature, occurrence and dietary burden. J
482 Sci Food Agric. 2000;80(7):1118-25.

483 41. Hagerman AE, Robbins CT, Weerasuriya Y, Wilson TC, McArthur C. Tannin
484 chemistry in relation to digestion. J Range Manage. 1992;45(1):57-62.

485 42. Twomey LN, Pethick DW, Rowe JB, Choct M, Pluske JR, Brown W, et al. The
486 use of sorghum and corn as alternatives to rice in dog foods. J Nutr. 2002;132(6):
487 1704S-5S.

488 43. Halley JT, Nelson TS, Kirby LK, York JO. The effect of tannin content of sorghum
489 grain in poultry rations on dry matter digestion and energy utilization. Arkansas
490 farm research - Arkansas Agricultural Experiment Station (USA). 1986.

491 44. Downs CT, McDonald PM, Brown K, Ward D. Effects of Acacia condensed
492 tannins on urinary parameters, body mass, and diet choice of an Acacia specialist
493 rodent, *Thallomys nigricauda*. J Chem Ecol. 2003;29(4): 845-58.

494 45. Bean SR, Wilson JD, Moreau RA, Galant A, Awika JM, Kaufman RC, et al.
495 Structure and Composition of the Sorghum Grain Agronomy Monographs 58.
496 Sorghum: State of the Art and Future Perspectives. Madison, WI: American Society
497 of Agronomy and Crop Science Society of America Inc. 2016.

498 46. Myer RO, Gorbet DW, Combs GE. Nutritive value of high-and low-tannin grain
499 sorghums harvested and stored in the high-moisture state for growing-finishing
500 swine. J Anim Sci. 1986;62(5): 1290-7.