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Abstract

Understanding the relationship between localized anatomical damage, reorganization, and
functional deficits is a major challenge in stroke research. Previous work has shown that
localized lesions cause widespread functional connectivity alterations in structurally intact
areas, thereby affecting a whole network of interconnected regions. Recent advances suggest
an alternative to discrete functional networks by describing a connectivity space based on a
low-dimensional embedding of the full connectivity matrix. The dimensions of this space,
described as conmnectivity gradients, capture the similarity of areas’ connections along a
continuous space. Here, we defined a three-dimensional connectivity space template based on
functional connectivity data from healthy controls. By projecting lesion locations into this
space, we demonstrate that ischemic strokes resulted in dimension-specific alterations in
functional connectivity over the first week after symptoms onset. Specifically, changes in
functional connectivity were captured along connectivity Gradients 1 and 3. The degree of
change in functional connectivity was determined by the distance from the lesion along these
connectivity gradients regardless of the anatomical distance from the lesion. Together, these
results provide a novel framework to study reorganization after stroke and suggest that, rather
than only impacting on anatomically proximate areas, the indirect effects of ischemic strokes

spread along the brain relative to the space defined by its connectivity.
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1.1 Introduction

Stroke is defined as a sudden neurological deficit caused by a localized injury to the central
nervous system due to vascular pathology (Sacco et al., 2013). Outside of the localized
structural damage, areas connected to the lesion undergo functional alterations that are
implicated in symptomology and the recovery from neurological deficits. This phenomenon is
known as diaschisis (Andrews, 1991; Carrera and Tononi, 2014) and provides a theoretical and

empirical motivation to study brain connectivity following stroke.

Functional connectivity based on the temporal correlation of ongoing blood-oxygen-level-
dependent (BOLD) fluctuations (resting-state functional magnetic resonance imaging; rs-
fMRI) has been successfully used to study alterations associated with reorganization within
functional networks. Previous studies found a reduction in functional connectivity after stroke
in structurally intact areas connected to the lesion (i.e., the affected network). Reduction in
functional connectivity was associated with the severity of the clinical deficit and recovery of
symptoms (Baldassarre et al., 2014; Carter et al., 2010; He et al., 2007; Ovadia-Caro et al.,
2013; Siegel et al., 2016; Wang et al., 2010; Warren et al., 2009). Importantly, normalization
of connectivity patterns was found following both spontaneous recovery (He et al., 2007; Park
et al., 2011; Ramsey et al., 2016; van Meer et al., 2010) and interventions using non-invasive
brain stimulation (Volz et al., 2016). Taken together, these findings support the phenomenon
of diaschisis and the view of stroke as a network disruption rather than a mere localized

phenomenon (Corbetta, 2010; Ovadia-Caro et al., 2014; Ward, 2005).

While previous studies demonstrate the role of the affected network in stroke pathology, the
impact of a lesion is not necessarily limited by network definitions. Graph models of brain
connectivity have demonstrated that the local disruption of a single node is likely to extend
beyond the affected network and impact, to varying degrees, the whole graph (Aerts et al., 2016;
Bassett and Bullmore, 2006; van den Heuvel and Sporns, 2013). Using predefined functional
networks assumes sharp boundaries between different functional domains. In addition, it
assumes that the effects of stroke are uniformly distributed within a given network. Contrary to
these assumptions, recent studies report that connectivity may be better captured by dimensions
representing the continuous space of the connectome (Atasoy et al., 2016; Cerliani et al., 2012;
Haak et al., 2018). With the shift in our understanding of cognitive brain functions as emerging

from global states (Bertolero et al., 2018; Cole et al., 2014; Sporns et al., 2005), so too our
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87  models of brain dysfunction should attempt to characterize alterations at the whole-brain level,
88  taking the full connectome into account (see Figure 1).

89

90

91 Figure 1. Two complementary views on brain organization and the corresponding
92 representation of distal effects of focal lesions. (A) Representing a focal lesion (yellow node)
93  on the brain anatomical surface. (B) A schematic description of discrete networks parcellation
94  superimposed on a functional connectivity graph-space with nodes and edges. Using this
95  approach to study the effects of focal lesions (yellow node) restricts us to singular networks.
96  Additionally, distal effects of the lesion are assumed to be equally disruptive for all nodes in
97  the affected network (red nodes). (C) Representing functional connectivity in a continuous
98  manner without sharply defined borders using connectivity gradients. The lesioned node affects
99  all other nodes in the system as a function of the distance from the lesion in graph space (dark

100  red to light red). Using this approach does not assume sharp boundaries between functional

101  networks and provides a more realistic model of distant effects of localized lesions.

102

103

104  Recently, non-linear decomposition approaches have been introduced to represent whole-brain
105  rs-fMRI connectivity data in a continuous, low-dimensional space. This data-driven analysis
106  results in connectivity gradients that provide a low-dimensional description of the connectome
107  (Langs et al., 2016, 2014; Margulies et al., 2016). Each voxel is located along a connectivity
108  gradient according to its similarity of connections. Voxels that share a similar pattern of
109 functional connectivity are situated close to one another along a given connectivity gradient
110  (Huntenburg et al., 2018). Different functional modules are therefore clustered along a
111  continuum of a given connectivity gradient (Krienen and Sherwood, 2017) without the need of
112 apriori defined network parcellation.

113

114  Here, we studied the impact of localized lesions on continuous connectivity gradients.
115  Longitudinal rs-fMRI data were collected from patients following ischemic stroke. Data were
116  collected within 24 hours, as well as one and five days after the onset of stroke symptoms.
117  Changes in functional connectivity over the week were quantified using spatial concordance
118 (Lohmann et al., 2012). Data from healthy subjects were used to create a template of three
119  connectivity gradients representing all possible connections in a continuous manner.

120
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121  Based on previous findings in discrete networks (Baldassarre et al., 2014; Carter et al., 2010;
122 Heetal., 2007; Nomura et al., 2010; Ovadia-Caro et al., 2013; Siegel et al., 2016; Wang et al.,
123 2010; Warren et al., 2009) and computational models (Alstott et al., 2009; Honey and Sporns,
124 2008; van Dellen et al., 2013; Young et al., 2000), we hypothesized that a lesion along a
125  connectivity gradient would induce a gradual impact on the whole connectome. Functional
126  connectivity alterations would be most pronounced in areas that share a similar connectivity
127  pattern with the lesion.

128

129 2.1 Materials and methods

130

131 2.2 Participants

132

133  Fifty-four stroke patients (20 females, age: 63.78 £ 12.03 years, mean + SD) and 31 healthy
134  controls (13 females, age: 64.90 + 8.49 years) were initially recruited for the study. Inclusion
135  criteria for patients were: patients older than 18 years, first ever ischemic stroke — small cortical
136  (<1.5 cm) or subcortical, which was evident in imaging. A Wahlund score < 10 (Wahlund et
137  al.,, 2001) to limit the extent of white matter lesions. Exclusion criteria included: clinical
138  evidence for antecedent lesions (n=3), fewer than 3 resting-state scans post-stroke (n=10),
139  lesions located solely within white matter (n=3 patients), corrupted MRI raw data or distorted
140  images (n=1 control, n=4 patients), high degree of head motion (n=1 control, n=6 patients), and
141  poor registration quality (n=1 control). For further details on quality assessment see
142 Supplementary Material M1.

143

144  Following the exclusion procedure, 28 stroke patients (11 females, age: 65.04 + 13.27 years,
145 mean * SD), and 28 healthy controls (13 females, age: 65.21 + 8.84 years) were included in
146  the analysis. The groups were matched for age and sex (age: Welch’s t-test, P=0.95; sex:
147  Kruskal-Wallis H-test, P=0.59). For further details on patients’ information see Supplementary
148  Table 1. The study was approved by the ethics committee of the Charité - Universititsmedizin
149  Berlin, Germany (EA 1/200/13). Written informed consent was obtained from all participants.
150

151 2.3 Neuroimaging data

152

153  The MRI protocol included T1-weighted structural scans and T2*-weighted resting-state fMRI

154  scans (continuous fMRI scan with no overt task) for all participants. In addition, diffusion
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155  weighted images (DWI; TR=8.2 s, TE=0.1 s, 50 volumes, voxel size: 2x2x2.5 mm, flip angle
156  90°) and fluid attenuated inversion recovery images (FLAIR; TR=8.0 s, TE=0.1 s, 54 volumes,
157  voxel size: 0.5%0.5x5 mm) were acquired from the stroke patients as part of a standard MRI
158  protocol (Hotter et al., 2009). All MRI data were acquired on a Siemens Tim Trio 3T scanner.
159  Healthy control participants were scanned at a single time point, whereas stroke patients were
160  scanned at three consecutive time points relative to stroke symptoms onset: day 0 (within 24
161  hours), day 1 (24 - 48 hours), and day 5 (range: day 4 — 6, mean 4.93 + 0.38 SD). Structural
162  scans were acquired using a three-dimensional magnetization prepared rapid gradient-echo
163 (MPRAGE) sequence (TR=1.9 s, TE=2.52 s, TI=0.9 s, 192 slices, voxel size: 1x1x1 mm, flip
164  angle 9°). Resting-state functional scans for each participant and session were acquired using
165  blood-oxygenation-level-dependent (BOLD) contrast with an EPI sequence (TR=2.3 s,
166  TE=0.03 s, 34 slices, 150 volumes, voxel size: 3x3x3 mm, flip angle 90°, total duration=5.75
167 min).

168

169 2.4 Data preprocessing

170

171  Tl-weighted structural images were preprocessed using FreeSurfer’s recon-all pipeline (v6.0.0,
172 (Dale et al., 1999)). The pipeline generated segmentations for grey matter, white matter and
173  cerebrospinal fluid. Individual grey matter masks were registered to standard MNI space (3
174 mm?).

175

176  Preprocessing of functional images included: i) removal of the first 5 EPI volumes to avoid
177  signal saturation, ii) slice timing and motion correction (Nipype v0.14.0, (Gorgolewski et al.,
178  2011; Roche, 2011)), iii) CompCor denoising approach for time series at the voxel level
179  (Nilearn v0.4.0, (Behzadi et al., 2007)), iv) temporal normalization, v) band-pass filtering in the
180 range of 0.01 - 0.1 Hz, and vi) spatial smoothing (applied after registration) with a 6 mm full-
181  width-half maximum Gaussian kernel using FSL (v5.0.9, (Woolrich et al., 2009)). Confounds
182 removed from the time series at the denoising step were defined as i) six head motion
183  parameters, including 1st and 2nd order derivatives, ii) motion and intensity outliers (Nipype’s
184  rapidart algorithm; thresholds: > 1mm framewise head displacement, and signal intensity > 3
185  SD of global brain signal accordingly) and iii) signal from white matter and cerebrospinal fluid.
186

187  The transformation of functional images to MNI152 (3 mm?®) space included a linear

188 transformation from EPI to the high-resolution TI1-weighted image using FreeSurfer’s
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189  boundary-based register tool with 6 degrees of freedom (Greve and Fischl, 2009) and a
190 nonlinear transformation using ANTs (v2.1.0, (Avants et al., 2011)). The transformation
191 matrices obtained from both steps were concatenated and applied to the functional image using
192  asingle interpolation.

193

194 2.5 Lesion delineation

195

196  Lesions were manually delineated by identifying areas of localized hyperintensity on day 0
197 DWI images using the ITK-SNAP software (v3.4.0, (Yushkevich et al., 2006)). Delineations
198  were guided by expert radiology reports and were approved by a radiology resident. All lesion
199  masks were normalized to MNI152 (3 mm?®) space (ANTS, nearest-neighbor interpolation).
200  Individual lesion masks were smoothed in the atlas space using FSL’s dilation tool with 3x3x3
201  kernel, extending the mask by one voxel-size (v5.0.9, (Jenkinson et al., 2012)).

202

203 2.6 Computing connectivity gradients by applying nonlinear decomposition to functional
204  connectivity data from healthy controls

205

206  To create a mutual grey matter template to be used for decomposition analysis, individual grey
207  matter masks and resting-state functional masks were averaged for all healthy controls to create
208  a group mask. Averaged group maps were multiplied to create a mutual mask such that only
209  grey matter voxels with fMRI signal would be included. The resulting template (33,327 voxels)
210  was used to generate functional connectivity matrices from individual healthy controls.

211

212 Functional connectivity matrices (33,327x33,327 voxels) were computed using Pearson’s
213 correlation coefficient and were normalized using Fisher’s z-transformation. An average
214  functional connectivity matrix was computed across healthy controls and the averaged z-scores
215  were transformed back to r-scores. Each row of the group-level functional connectivity matrix
216  was thresholded at 90% of'its r-scores. This yielded an asymmetric, sparse matrix. The pairwise
217  cosine similarities of all rows were computed. By doing this, we obtained a non-negative and
218  symmetric similarity matrix, L (values in [0, 1] range).

219

220 We implemented the diffusion embedding approach on the similarity matrix to obtain a low-
221  dimensional representation of the whole-brain functional connectivity matrix (Coifman and

222 Lafon, 2006; Langs et al., 2016), as done in Margulies et al., 2016. This approach resulted in
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223 gradients of functional connectivity. Voxels along each gradient are assigned unitless
224  embedding values. Along each gradient, voxels that share similar connectivity pattern have
225  similar embedding values.

226

227 2.7 Mapping individual stroke lesions onto connectivity gradients from healthy controls
228

229  Individual lesion masks were projected onto the individual gradients obtained in healthy
230 controls. Lesioned voxels were marked according to their location along a specific gradient.
231  The lesion site along each gradient was defined as the minimum embedding value of all lesioned
232 voxels.

233

234 To quantify the functional similarity of non-lesioned voxels to the lesion site, distance-to-lesion
235 maps were computed for each non-lesioned voxel (Figure 2B). Distance values reflect the
236 mutual difference between embedding values of non-lesioned and lesioned voxels. Low
237  distance values reflect voxels that share similar functional connectivity pattern with the lesion

238  site.

239
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241  Figure 2. A schematic description of the analysis steps. (A) Individual lesions were
242 delineated for each patient. Here, an example of a lesion located in the left occipital lobe
243 (green). (B) Distance-to-lesion maps were computed for each of the three connectivity
244  gradients. Distance values reflect the mutual difference between embedding values of non-
245  lesioned and lesioned voxels. Low distances (dark-copper) represent voxels that share a similar
246  functional connectivity pattern with the lesion site. This example shows the distance-to-lesion
247  map for the first gradient. (C) A voxel-wise spatial concordance map was computed for each
248  patient across the three resting-state scans after stroke. Concordance correlation coefficient
249  (CCC) values reflect the degree of change in the connectivity pattern over time for each voxel.
250 Low CCC values (dark-purple) represent voxels that underwent a larger change in their
251  functional connectivity pattern over time. (D) Spearman’s rank correlation coefficient (r5) was
252  used to test the relationship between distance-to-lesion and degree of functional connectivity
253  alteration across all voxels. A positive correlation depicts a larger change in functional

8
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254  connectivity for voxels that were closer to the lesion site along the corresponding connectivity
255  gradient.
256

257 2.8 Quantifying longitudinal alterations in functional connectivity matrices for stroke
258  patients

259

260  For each patient, a functional mask was obtained from each of the three consecutive functional
261  scans. These masks were multiplied with the grey matter template of the healthy cohort. The
262  dilated lesion segmentations were then excluded from the patient-specific grey matter template.
263  This approach ensured that functional images of patients included only identical grey matter
264  voxels as healthy controls, except for the lesion site. The patient-specific grey matter templates
265  varied slightly in number of voxels included (ranging from 32,659 to 33,212 voxels).

266

267  To control for the slight variation in the number of voxels in patient-specific grey matter
268  templates, a control analysis was applied such that the grey matter template used for the analysis
269  contained 30,314 voxels in all patients prior to lesion removal. Using this more restricted mask
270  had no influence on our main results (see Supplementary Material M2 and Supplementary
271  Figure S1).

272

273 Functional connectivity matrices were computed using Pearson’s correlation coefficient at each
274 of the three time points for individual patients. The voxel-wise spatial concordance map was
275  computed using the concordance correlation coefficient (CCC) (Lin, 2016) at the single-voxel
276  level across the three time points (Lohmann et al., 2012). CCC-values range between -1 and 1,
277  such that the lower concordance reflects larger alterations in the functional connectivity pattern
278  over time (Figure 2C).

279

280 2.9 The relationship between lesion location along connectivity gradients and alterations
281  in functional connectivity after stroke

282

283  Concordance correlation coefficient (CCC) values were correlated with distance-to-lesion
284  values using Spearman’s rank-order correlation coefficient (Figure 2D). This analysis was
285  repeated for each connectivity gradient separately. Positive correlations suggest that changes in
286  functional connectivity are more pronounced in voxels that are close to the infarct region in the
287  corresponding gradient.

288  For a detailed description of the analysis steps see Supplementary Figure S2.
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289  2.10 The relationship between changes in functional connectivity over time and
290 anatomical lesion location

291

292  Euclidean distances from each voxel to the infarct area in MNI152 (3 mm?) space using three-
293  dimensional voxel coordinates were computed for each patient. The resulting anatomical
294  distance values were correlated with concordance values (using Pearson’s correlation
295  coefficient). A regression analysis was applied to remove the contribution of this factor from
296  CCC-values. Residuals were correlated with gradient-based distance-to-lesion values (using
297  Spearman’s rank-order correlation coefficient).

298

299  2.11 The relationship between changes in functional connectivity along connectivity

300 gradients and changes in clinical scores

301

302 Individual gradients were divided into uniform parcels (bins). We varied the number of bins
303 used for the parcellation from 5 to 3000 in order to consider the continuous nature of
304  connectivity gradients while allowing us to classify parts of the gradients as affected by the
305 lesion. At each bin number and for each stroke patient, bins that overlapped with lesioned-
306 voxels were identified as “lesion-affected”, whereas the remaining bins were defined as “lesion-
307 unaffected”. An overall delta-concordance measure, ACCC, was computed as the difference
308 between average concordances in lesion-unaffected and lesion-affected bins, such that ACCC =
309 Wunaffected — Maffectea- A positive ACCC score reflects a higher functional connectivity
310 alteration over time in affected bins. Of note is that lesioned voxels were removed from this
311  computation, thereby the difference in concordance reflects the degree of preferential change
312  in functional connectivity in affected yet structurally intact areas.

313

314  To explore the link between changes in clinical scores and the overall delta-concordance
315 measure detected along gradients, the National Institute of Health Stroke Scale (NIHSS) was
316  used. The NIHSS values were assessed at the day of admission (day 0) and discharge (day 5).
317  Twenty-seven patients out of 28 completed the NIHSS assessment at both time points. Patients
318  were divided into two groups; those who changed in clinical score from day 0 to day 5 (“clinical
319 change”, n = 16), and those who did not change (‘“no clinical change”, n = 11).

320

321  Permutation test (with 10,000 iterations) was used to examine the significance of the difference

322  in mean ACCC values for the two groups of patients (“clinical change” versus “no clinical

10
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323  change”). The test was repeated for each variation of bin numbers as well as for each of the
324  three connectivity gradients. Positive values reflect that a preferential change in concordance
325  over affected bins is more pronounced in patients who changed their clinical score from day 0
326 today 5. To control for the multiple comparison problem resulting from varying the number of
327  bins (N= 2996 tests), the False Discovery Rate (FDR) correction (Benjamini and Hochberg,
328  1995) was applied with a threshold of 0.1.

329

330 3.1 Results

331

332 3.2 Mapping stroke lesions onto connectivity gradients

333

334  To map heterogeneous lesions across our sample of patients, individualized lesion masks were
335  delineated and projected onto a standard MNI brain (Figure 3A), as well as onto the first three
336  connectivity gradients (Figure 3B). Lesions were heterogeneous in both location and size (mean
337  volume=4.11 cm? SD=2.80 cm?), and distributed in subcortical (n=13), cortical (n=14), and
338  brainstem (n=1) regions. For further details on individual lesion location and affected vascular
339 territories, see Supplementary Table 1.

340

341  Projecting lesion locations onto the connectivity gradients enabled us to assess which portions
342  of connectivity space were affected by the stroke. The template connectivity space was based
343  on a decomposition of voxelwise functional connectivity data from healthy controls. Voxels
344  that share functional connectivity patterns are situated closer to one another along a given
345  connectivity gradient. For example, voxels that are part of the default-mode network are
346  clustered at the high end of Gradient 1, and those that are part of primary sensory areas at the
347  low end (Margulies et al., 2016). Here, we used the first three gradients that account for a total
348  variance of 50.84% in the healthy control connectivity data (see Supplementary Figure S3).
349

350 Figure 3B demonstrates the distribution of lesioned voxels within the three-dimensional
351  connectivity space. We found that although the anatomical location of lesions was
352  heterogeneous (Figure 3A), within the connectivity space lesions were predominantly clustered
353  at the extremes of each gradient, especially those of Gradients 1 and 3 (Figure 3B).

354

11
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357 Figure 3. Lesion location across patients shown in anatomical space and along
358 connectivity gradients (A) Anatomical lesion distribution in individual stroke patients (n=28)
359  projected onto an MNI brain. The red-to-yellow color bar indicates the percentage of patients
360 with lesions in that voxel. (B) Location of lesions projected onto the first three connectivity
361 gradients. The three connectivity gradients represent a low-dimensional description of the
362  whole-brain connectivity matrix obtained using healthy controls’ data (n=28). Corresponding
363  spatial maps of each connectivity gradient are projected on brain surface mesh near respective
364 axes. Colors represent positive (sienna) and negative (dark blue) embedding values, in
365 accordance with values along the axes. Along each gradient, voxels that share similar
366  connectivity patterns are situated close to one another and have similar embedding values. Grey
367  scatter plots depict a two-dimensional connectivity space created as a combination of any two
368 given gradients. Lesion location along each gradient is projected onto the two-dimensional
369  space as an alternative approach to anatomical lesion mapping. The red-to-yellow color bars
370 indicates the percentage of patients with lesions in that voxel. Lesioned voxels are mostly
371  clustered around the edges of the connectivity gradients such that they affect sensorimotor areas
372  and ventral and dorsal areas associated with attention.

373

374

375 3.3 The impact of lesion location along specific connectivity gradients on reorganization
376

377  To determine if the location of lesions along specific gradients is associated with changes in
378 functional connectivity after stroke, we computed for each voxel: 1) spatial concordance, which
379  reflected the degree of change in the functional connectivity pattern over time. Spatial
380 concordance values range between -1 and 1 such that lower values reflect a larger change in
381 functional connectivity pattern over time; and, 2) distance-to-lesion along each connectivity

382  gradient. Distance values represent the similarity of functional connectivity patterns for any
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383  given voxel with the lesioned area. Low distance values reflect voxels that share similar
384  functional connectivity pattern with the lesion site. Importantly, the lesioned voxels were
385 excluded from both these analyses such that only the indirect effects of the lesion (i.e.,
386  diaschisis) were assessed. Spatial concordance and distance-to-lesion were correlated for
387  individual patients, and individual connectivity gradients.

388

389  We found a significant relationship between the degree of functional connectivity alterations
390 over time and proximity of non-lesioned voxels to lesion locations along Gradient 1 and
391  Gradient 3. No significant relationship was found for Gradient 2 (Figure 4A, Table 1).

392

393  Figure 4B demonstrates the correspondence between the connectivity space described by
394  Gradients 1 and 3, and a canonical set of seven resting-state networks (Yeo et al, 2011).
395 Gradient 1 captures the dissociation between the default-mode network (DMN) and the
396 sensorimotor/visual networks, while Gradient 3 captures the dissociation between dorsal
397  attention/fronto-parietal networks and sensorimotor/visual/ DMN networks. For a descriptive
398 analysis of the relationship between connectivity gradients and cognitive functions see

399  Supplementary Material M3 and Supplementary Figure S4.
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402  Figure 4. The relationship between lesion location along connectivity gradients and the
403  degree of changes in functional connectivity in non-lesioned voxels over time. (A)
404  Correlation values between distance-to-lesion and spatial concordance (y-axis) are shown for
405 individual patients and the three connectivity gradients (x-axis). The spatial map of each
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406  connectivity gradient is shown below the respective location on the x-axis. Correlations were
407  significantly positive for Gradient 1 (P=0.0027, W=71.0, one-tailed Wilcoxon signed-rank test)
408 and Gradient 3 (P=0.0001, W=35.0), but not for Gradient 2 (P=0.76, W=189.0). The closer a
409  voxel is to the lesioned site mapped on connectivity gradients 1 and 3, the more pronounced its
410 functional connectivity changes over time. (B) Continuous connectivity gradients and
411  corresponding seven canonical resting-state networks (Thomas Yeo et al., 2011). Voxels are
412  situated based on their embedding values along Gradient 1 (x-axis) and 3 (y-axis) and colored
413  according to their network assignment. Gradient 1 captures the dissociation between the
414  default-mode network (DMN) and the sensorimotor networks on its two edges, while Gradient
415 3 captures the dissociation between dorsal attention/fronto-parietal networks and
416  sensorimotor/DMN networks on its two edges. Lesion distributions along connectivity
417  gradients are overlaid on the individual gradient axes. Lesions overlap most frequently with the
418  lowest ends of Gradients 1 and 3.

419
Gradient 1 Gradient 2 Gradient 3
r-values [-0.22, 0.34] [-0.30, 0.39] [-0.23, 0.32]
median 0.11 -0.01 0.16
W 71.00 189.00 35.00
p-values 0.0027* 0.76 0.0001*
420

421  Table 1: summary of statistical results
422  W; Wilcoxon signed-rank test.
423

424  Given the expected partial correlation between distance from the lesion in connectivity space
425 and anatomical distance, we further assessed whether anatomical location contributed to the
426  relationship with connectivity space. We found a significant relationship between distance from
427  the lesion in anatomical space and changes in functional connectivity over time (P = 0.0042,
428  one-tailed Wilcoxon signed-rank test). However, using anatomical distance as a regressor of no
429 interest did not alter the significance of our main result (see Supplementary Figure S5).
430  Functional connectivity therefore preferentially changes after stroke in voxels that are proximal
431  to the lesion location along Gradients 1 and 3. This relationship cannot be solely explained by
432  the anatomical distance from the lesion.
433
434 3.4 Clinical relevance of functional connectivity alterations detected along connectivity
435  gradients
436
437  Previous studies have linked alterations in functional connectivity with clinical trajectory (He
438 et al., 2007; Ovadia-Caro et al., 2013; Park et al., 2011; Ramsey et al., 2016; van Meer et al.,
439  2010), thereby supporting the functional significance of connectivity changes after stroke. We
440  thus explored the relationship between functional connectivity changes and patients’ clinical
441  trajectory for each connectivity gradient.
442
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443  We tested for a group difference in spatial concordance in affected yet structurally intact areas
444  between patients who demonstrated a change in clinical scores from day 0 to day 5 and those
445  who did not. A positive difference in the mean of the two groups reflects an association between
446  preferential changes in functional connectivity in affected areas and a change in clinical scores
447  over the first week after stroke. To maintain the continuous nature of connectivity gradients,
448  we varied the number of bins used to divide the gradients into parcels of equal size (bin numbers
449  ranged from 5 to 3000). We found no significant difference between patients who changed in
450 clinical scores and those who did not for any of the connectivity gradients, across different bin
451  numbers. The averaged difference in mean for the two groups was 0.0014 (range: -0.004 to
452  0.015) for Gradient 1, 0.0095 (range: 0.003 to 0.015) for Gradient 2, and 0.011 (range: 0.0012
453 - 0.019) for Gradient 3. The range of corresponding p-values was 0.15 to 0.61 for Gradient 1,
454  0.12 to 0.4 for Gradient 2, and 0.03 to 0.46 for Gradient 3 (see Supplementary Figure S6).

455

456 4.1 Discussion:

457

458 We found that stroke induces a gradual change in functional connectivity along specific
459  connectivity gradients. Beginning with data acquired on the day of symptom onset, we showed
460 that the degree of reorganization over the first week is influenced by the lesion location along
461  connectivity Gradients 1 and 3. Voxels that are close to the lesion within this connectivity space
462  demonstrate a preferential change in functional connectivity over time, regardless of their
463  anatomical distance from the lesion.

464

465  We have implemented a decomposition approach that overcomes the necessity to parcellate the
466  brain into discrete networks, retains information from single voxels and provides a data-driven
467  template for studying reorganization at the connectome-level. We therefore show that strokes
468  result in widespread connectivity changes that progress gradually along the connectome.

469

470  Our results are in line with previous studies that have used a priori defined networks. Functional
471  connectivity alterations after stroke have been reported for sensorimotor, language and attention
472  networks (Baldassarre et al., 2014; Carter et al., 2010; He et al., 2007; Ovadia-Caro et al., 2013;
473  Siegel et al., 2016; Wang et al., 2010; Warren et al., 2009). These previous studies support the
474  notion that localized lesions induce widespread effects in structurally intact areas connected to
475  the lesion, creating a diaschisis effect (Andrews, 1991; Carrera and Tononi, 2014). Stroke is
476  therefore not a strictly localized pathology (Corbetta, 2010; Ovadia-Caro et al., 2014; Ward,
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477  2005). Remote, structurally intact areas undergo functional changes as part of the
478  reorganization process.

479

480 Here, we extend these findings to the continuous representation of the connectome. We
481  demonstrate that reorganization, as reflected in functional connectivity alterations, changes as
482  a function of the distance along specific connectivity gradients. However, it is not exclusively
483  restricted to the affected network. Thus, while most pronounced changes take place in
484  connected areas, the effects of stroke gradually spread along the connectome.

485

486 We found that connectivity Gradients 1 and 3 better predicted the impact of a lesion on
487  functional connectivity than Gradient 2. The three connectivity gradients capture distinct
488  connectivity axes, with different functional domains on their extremes. One crucial difference
489  between these gradients is that Gradient 2, in contrast to the others, represents a spectrum of
490 relatively local patterns of connectivity (Felleman and Van Essen, n.d.; Markov et al., 2014),
491  spanning sensory and motor systems. Regions emphasized in Gradient 2 are less likely to
492  demonstrate changes following localized lesions, as there is little redundancy owing to long-
493  distance connectivity. However, it remains to be investigated if changes in functional
494  connectivity can be captured along Gradient 2 using a more homogenous lesion sample
495  impacting only the far extremes of this gradient.

496

497  Our study demonstrates the importance of the lesion location within connectivity space for
498  understanding the reorganization of functional connectivity. However, distance from the lesion
499  in connectivity space is partially related to the anatomical distance, as areas close to one another
500 often have similar connectivity patterns. In addition, local physiological changes in areas
501  directly surrounding the lesion (Dirnagl et al., 1999) can also contribute to changes in functional
502  connectivity (Khalil et al., 2017; Siegel et al., 2016). We therefore calculated in a control
503 analysis the Euclidian distances from each voxel to the infarct area using a three-dimensional
504  anatomical space. We found a significant relationship between distance based on anatomy and
505 changes in functional connectivity as measured by spatial concordance. However, when
506 regressing out the contribution of this factor from our main analysis, the results did not change
507 (see Supplementary Figure S5). Consequently, changes in functional connectivity detected
508 along connectivity gradients could not be solely explained by lesion topography or

509 physiological processes occurring in the vicinity of the lesion site. In addition, this analysis
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510 emphasizes the significant contribution of functional connectivity changes in distant areas to
511  the global process of reorganization.

512

513  The link between changes in functional connectivity after stroke, clinical deficits and clinical
514  recovery has been previously shown (He et al., 2007; Ovadia-Caro et al., 2013; Park et al.,
515 2011; Ramsey et al., 2016; van Meer et al., 2010). Here, we applied an exploratory analysis of
516 the relationship between lesion location along connectivity gradients, changes in functional
517  connectivity, and changes in clinical scores (NIHSS) over the first week. We divided the
518 patients into two groups according to whether or not a clinical change took place over the first
519  week.

520

521  Given previous findings, we expected a significant difference between the groups in the degree
522  of change in functional connectivity patterns, however, we found no such difference for any of
523  the connectivity gradients. Of interest nevertheless is that for Gradient 2 and Gradient 3, group
524  differences were not randomly distributed and were positive in values (see Supplementary
525  Figure S6).

526

527  The lack of a relationship between changes in functional connectivity and changes in clinical
528 scores could be explained by the usage of NIHSS. NIHSS is the most commonly used
529  assessment scale in routine acute stroke management. However, this score is fairly coarse and
530 is not designed to accurately detect individual neurological deficits. It is instead intended to
531 provide a standardized and reproducible overall assessment of how stroke affects a patient’s
532  neurological status (Lyden, 2017). The relationship between functional connectivity changes
533  along specific connectivity gradients and stroke symptomology assessed using a more detailed
534  clinical assessment (which would better fit the voxelwise information retained in the gradients,
535  particularly for parcellations that contain a small number of voxels) remains to be investigated
536 in a larger sample of patients.

537

538 The conceptual shift from mapping brain regions to networks has provided a substantial
539  improvement in how we understand the organization of functional systems. Here we aimed to
540 translate the recent descriptions of a low-dimensional connectivity space to the clinical question
541  of stroke-induced damage. While future studies will be necessary to better understand the utility
542  of this framework for stroke prognosis, the current findings provide support for conceptualizing

543  brain connectivity within a continuous connectivity-defined space. Brain networks describe
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544  interconnected regions, but similar to the problem of lesion delineation, they also require the
545  delineation of discrete boundaries. Connectivity space offers an advance by representing the
546  continuous nature of brain networks, but also by capturing their relative similarity. Further work
547  isnecessary to develop a mode of describing this space in a cognitive and clinical neuroscience
548  context. Nevertheless, the current findings demonstrate its utility for capturing the impact of
549  localized damage to the space.

550

551 5.1 Conclusions

552

553  Studying changes in functional connectivity after stroke in a longitudinal manner provides
554  insight into the process of reorganization during the recovery of function. Connectivity
555  gradients represent a methodological advancement in how we depict functionally meaningful
556  information in the connectome. Using this fine-grained template that considers all connections
557  has the potential of informing more targeted stroke therapies that have yet to translate to clinical
558 usage, mostly due to oversimplified models of brain reorganization (Di Pino et al., 2014).

559

560
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