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ABSTRACT

There is significant current interest in decoding mental states
from electro-encephalography (EEG) recordings. EEG sig-
nals are subject-specific, sensitive to disturbances, and have
a low signal-to-noise ratio, which has been mitigated by the
use of laboratory-grade EEG acquisition equipment under
highly controlled conditions. In the present study, we inves-
tigate single-trial decoding of natural, complex stimuli based
on scalp EEG acquired with a portable, 32 dry-electrode
sensor system in a typical office setting. We probe generaliz-
ability by a leave-one-subject-out cross-validation approach.
We demonstrate that Support Vector Machine (SVM) classi-
fiers trained on a relatively small set of de-noised (averaged)
pseudo-trials perform on par with classifiers trained on a
large set of noisy single-trial samples. For visualization of
EEG signatures exploited by SVM classifiers, we propose a
novel method for computing sensitivity maps of EEG-based
SVM classifiers. Moreover, we apply the NPAIRS resam-
pling framework for estimation of map uncertainty and show
that effect sizes of sensitivity maps for classifiers trained on
small samples of de-noised data and large samples of noisy
data are similar. Finally, we demonstrate that the average
pseudo-trial classifier can successfully predict the class of
single trials from withheld subjects, which allows for fast
classifier training, parameter optimization and unbiased per-
formance evaluation in machine learning approaches for brain
decoding.

1. INTRODUCTION

Decoding of brain activity aims to predict the perceptual
and semantic content of neural processing based on activity
measured in one or more brain imaging modalities, such as
electro-encephalography (EEG), magneto-encephalography
(MEG), and functional magnetic resonance imaging (fMRI).
Decoding studies based on fMRI have matured signifi-
cantly during the last 15 years (see e.g. [Haynes and Rees,
2006, Gerlach, 2007] for review), and human brain activ-
ity has been successfully decoded from natural images and
movies [Kay et al.,, 2008, Prenger et al., 2009, Nishimoto

et al., 2011, Huth et al., 2012, Huth et al., 2016, Giiclii and
van Gerven, 2017].

In case of decoding of scalp EEG, the research area is still
progressing, and relatively few studies document detection of
brain states in regards to semantic categories (often discrim-
ination between two high-level categories) [Simanova et al.,
2010, Murphy et al., 2011, Wang et al., 2012, Taghizadeh-
Sarabi et al., 2014, Stewart et al., 2014, Kaneshiro et al.,
2015, Zafar et al., 2017]. EEG-based decoding of human
brain activity has significant potential due to excellent time
resolution and the possibility of real-life acquisition, however,
the signal is extremely diverse, subject-specific, sensitive to
disturbances, and has a low signal-to-noise ratio, hence, pos-
ing a major challenge for both signal processing and machine
learning [Nicolas-Alonso and Gomez-Gil, 2012].

Due to before-mentioned challenges, previous studies
have been performed in controlled laboratory settings with
high-grade EEG acquisition equipment [Simanova et al.,
2010, Murphy et al., 2011, Wang et al., 2012, Stewart et al.,
2014, Kaneshiro et al., 2015, Zafar et al., 2017]. Visual stim-
uli paradigms can often not be described as naturalistic, due to
1) repeated presentation of identical experimental trials, and
2) iconic views of objects and lack of complexity of semantic
context [Simanova et al., 2010, Murphy et al., 2011, Wang
et al., 2012, Taghizadeh-Sarabi et al., 2014, Stewart et al.,
2014, Kaneshiro et al., 2015]. Generalizability of decoding
classifier models to novel participants is rare, due to subject-
specific modelling approaches [Simanova et al., 2010, Wang
et al., 2012, Stewart et al., 2014, Taghizadeh-Sarabi et al.,
2014, Kaneshiro et al., 2015, Zafar et al., 2017]. More-
over, a number of participants are occasionally excluded
from analysis due to artifacts and low classification accuracy
[Taghizadeh-Sarabi et al., 2014, Zafar et al., 2017].

The motivation for the present study is to overcome the
highlighted limitations in EEG-based decoding. The current
experimental paradigm and decoding work is centered around
1) ecological validity and portability, and 2) generalizability.
Therefore, we acquired scalp EEG signals in a typical office
setting using a portable, user-friendly, wireless EEG Enobio
system with 32 dry electrodes. Experimental image stimuli
consisted of non-iconic views of objects embedded in com-
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plex everyday scenes (Figure 1A) of 23 different semantic
categories from an open image database [Lin et al., 2014].
All images presented were unique and not repeated for the
same subject throughout the experiment (Figure 1B), akin to
how visual stimuli are experienced in real life. We created
classifiers based on single-trial responses as well as general-
ized category representations by averaging responses of im-
ages from the same semantic category.

We acquired data from 15 healthy participants (5 female).
We are interested in exploring the limitations of inter-subject
generalization, i.e., population models, hence no participants
are excluded from analysis. Decoding ability is evaluated
in an inter-subject design, i.e., in a leave-one-subject-out ap-
proach (as opposed to within-subject classification) to probe
generalizability across participants [Kjems et al., 2002].

The work in the present study is focused on the binary
classification problem between two classes: Brain process-
ing of animate and inanimate image stimuli. Kernel meth-
ods, e.g., support vector machines (SVM) are frequently ap-
plied for learning of statistical relations between patterns of
brain activation and experimental conditions. In classifica-
tion of EEG data, SVMs have shown good performance in
many contexts [Murphy et al., 2011, Taghizadeh-Sarabi et al.,
2014, Stewart et al., 2014, Andersen et al., 2017], see [Lotte
et al., 2007] for review.

We adopt a novel methodological approach for comput-
ing and evaluating SVM classifiers based on two approaches:
1) single-trial training and single-trial test classification, and
2) training on an averaged response of each of the 23 image
categories for each subject (corresponding to 23 pseudo-trials
per subject) and single-trial test classification. Furthermore,
we open the black box and visualize which parts of the EEG
signature are exploited by the SVM classifiers. In particu-
lar, we propose a method for computing sensitivity maps of
EEG-based SVM classifiers based on a methodology origi-
nally proposed for fMRI [Rasmussen et al., 2011]. To eval-
uate effect sizes of sensitivity maps and event related poten-
tial (ERP) difference maps, we use a modified version of an
NPAIRS resampling scheme [Strother et al., 2002]. Lastly,
we investigate how the pseudo-trial classifier based on aver-
aged category responses compares to the single-trial classifier
in terms of prediction accuracy of novel subjects.

2. MATERIALS AND METHODS

2.1. Participants

A total of 15 healthy subjects with normal or corrected-to-
normal vision (10 male, 5 female, mean age: 25, age range:
21-30), who gave written informed consent prior to the ex-
periment, were recruited for the study. Participants reported
no neurological or mental disorders. Non-invasive experi-
ments on healthy subjects are exempt from ethical committee
processing by Danish law [Den Nationale Videnskabsetiske

Komité, 2014].

2.2. Stimuli

Stimuli consisted of 690 images from the Microsoft Common
Objects in Context (MS COCO) dataset [Lin et al., 2014].
Images were selected from 23 semantic categories, with each
category containing 30 images. Of the 23 categories, 10 cat-
egories contained animals and the remaining 13 categories
contained inanimate items, such as food or man-made objects.
Thus, each participant was exposed to 300 animate trials and
390 inanimate trials, resulting in a chance level of 56.5% for
prediction of the larger, inanimate class. For categories and
image labels used in the experiment, see Supplementary File
1. All images presented were unique and not repeated for the
same subject throughout the experiment. The initial selec-
tion criteria were 1) image aspect ratio of 4:3, 2) only a single
super- and subcategory per image, and 3) minimum 30 images
within the category. Furthermore, we ensured that all 690 im-
ages had a relatively similar luminance and contrast to avoid
the influence of low-level image features in the EEG signals.
Thus, images within 77% of the brightness distribution and
87% of the contrast distribution were selected. Images that
were highly distinct from standard MS COCO images were
manually excluded (see Appendix A for exclusion criteria).
Stimuli were presented using custom Python scripts built on
PsychoPy?2 software [Peirce, 2009].

2.3. Experimental Design

Participants were shown 23 blocks of trials composed of 30
images each. The order of categories and images within the
categories was random for each subject. At the beginning of
each category, a probe word denoting the category name was
displayed for 5 s followed by the 30 images from the cor-
responding category. Each image was displayed for 1 s, set
against a mid-grey background. Inter-stimuli intervals (IST)
of variable length were displayed between each image. The
ISI length was randomly sampled according to a uniform dis-
tribution from a fixed list of ISI values between 1.85 s and
2.15 s in 50 ms intervals, ensuring an average ISI duration of
2 s. To minimize eye movements between trials, the ISI con-
sisted of a white fixation cross superimposed on a mid-grey
background in the center of the screen (Figure 1B).

Subjects viewed images on a computer monitor with a
viewing distance of 57 cm. The size of stimuli was 4 x 3
degrees of visual angle. Duration of the experiment was 39.3
min, which included five 35 s breaks interspersed between
the 23 blocks. Before the experimental start, participants un-
derwent a familiarization phase with two blocks of reduced
length (103 s).
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2.4. EEG Data Collection

A user-friendly, portable EEG equipment, Enobio (Neuro-
electrics) with 32 dry-electrode channels, was used for data
acquisition. The EEG was electrically referenced using a
CMS/DRL ear clip. The system recorded 24-bit EEG data
with a sampling rate of 500 Hz, which was transmitted wire-
lessly using Wifi. LabRecorder was used for recording EEG
signals. Lab Streaming Layer (LSL) was used to connect Psy-
choPy2 and LabRecorder for unified measurement of time se-
ries. The system was implemented on a Lenovo Legion Y520,
and all recordings were performed in a normal office setting.

2.5. EEG Preprocessing

Among the 15 recordings, no participants were excluded
during data preprocessing, as we would like to generalize
our results to a broad range of experimental recordings.
Preprocessing of the EEG was done using EEGLAB (scen.
ucsd.edu/eeglab). The EEG signal was bandpass filtered to
1-25 Hz using Finite Impulse Response filters, and down-
sampled to 100 Hz. Artifact Subspace Reconstruction (ASR)
[Mullen et al., 2015] was applied to reduce non-stationary
high variance noise signals. Temporal trends in the EEG
signals were investigated before and after ASR for each
subject (Figures S2-S3). Generally, the time dependencies
of the EEG signal were reduced by ASR. Channels which
were removed by artifact rejection were interpolated from
the remaining channels, and the data were subsequently re-
referenced to an average reference. Epochs of 600 ms, 100 ms
before and 500 ms after stimulus onset, similar to [Kaneshiro
et al., 2015], were extracted for each trial.

A sampling drift of 100 ms throughout the entire experi-
ment was observed for all subjects and was corrected for of-
fline.

Since the signal-to-noise ratio varied across trials and par-
ticipants, all signals were normalized to z-score values (i.e.,
each trial and averaged trials from each participant was trans-
formed so that it had a mean value of 0 and a standard devia-
tion of 1 across time samples and channels).

2.6. Support Vector Machines

Support vector machines (SVM) were implemented to clas-
sify the EEG data into two classes according to animate and
inanimate trials. y; € {—1, 1} is the identifier of the category,
and an observation is defined to be the EEG response in one
epoch ([—100, 500] ms w.r.t. stimulus onset). SVMs allow
adoption of a non-linear kernel function to transform input
data into a high dimensional feature space, where it is possi-
ble to linearly separate data. The iterative learning process of
the SVM will devise an optimal hyperplane with the maximal
margin between each class in the high dimensional feature
space. Thus, the maximum-margin hyperplane will form the

decision boundary for distinguishing the brain response asso-
ciated with animate and inanimate data [Saitta, 1995].

The SVM classifier is implemented by a non-linear pro-
jection of the observations x,, into a high-dimensional feature
space F.

Let ¢ : X — F be a mapping from the input space X to
F. The weight vector w can be expressed as a linear com-
bination of the training points w = 22121 an@(x,,) and the
kernel trick is used to express the discriminant function as:

N

y(x:0) =a'ky+b= Zank(xn,x)—i—b (1)
n=1

with the model now parametrized by the smaller set of pa-

rameters 6 = {c, b} [Lautrup et al., 1994]. The Radial Basis

Function (RBF) kernel allows for implementation of a non-

linear decision boundary in the input space. The RBF kernel

k holds the elements:

k(xn, %) = exp (=7||xn — x[?) (2)

where + is a tunable parameter.

Often it is desirable to allow a few misclassifications in the
decision boundary in order to obtain a better generalization
error. This trade-off is controlled by a tunable regularization
parameter c.

Two overall types of SVM classifiers were implemented:
1) single-trial classifier, and 2) average category level clas-
sifier, denoted as pseudo-trial classifier based on terminology
used in e.g. [Guggenmos et al., 2018]. Both classifiers decode
supercategories, animate versus inanimate, and both classify
between subjects. The single-trial classifier is trained on 690
trials for each subject included in the training set. The pseudo-
trial classifier averages the 30 trials within each of the 23 cat-
egories for each subject, such that the classifier is trained on
23 averaged, pseudo-trials for each subject included in the
training set, instead of 690 trials.

The performance of the single-trial classifier was es-
timated using 14 participants as the training set, and the
remaining participant was used as the test set (SVM param-
eters visualized in Figure S8). Cross-validation was per-
formed on 10 parameter values in ranges ¢ = [0.05; 10] and
v =[2.5x 1077;5 x 1073], thus cross-validating across 100
parameter combinations for each held out subject.

For a debiased estimate of the test accuracy, the single-
trial classifier was trained on 13 subjects, with one participant
held out for validation and another participant held out for
testing, thus leaving out 2 subjects in each iteration. Fifteen
classifiers were trained with different subjects held out in each
iteration. An optimal parameter set of ¢ and  was estimated
using participants 1-7 as validation subjects (mean parame-
ter value), which was used to estimate the test accuracy for
subjects 8-15 and vice versa. Thus, two sets of optimal pa-
rameters were found (Figure S10). Cross-validation was per-
formed on 10 parameter values in ranges ¢ = [0.25;15] and
v =1[5x10"7;2.5 x 1072}, i.e. 100 combinations.


https://doi.org/10.1101/481630
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/481630; this version posted February 25, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-ND 4.0 International license.

The pseudo-trial classifier is much faster to train and
was built using a basic nested leave-one-subject-out cross-
validation loop. In the outer loop, one subject was held out
for testing while the remaining 14 subjects entered the inner
loop. The inner loop was used to estimate the optimum c
and y parameters for the SVM classifier. The performance
of the model was calculated based on the test set. Each
subject served as test set once. A permutation test was
performed to check for significance. For each left out test
subject, the animacy labels were permuted and compared
to the predicted labels. This was repeated 1000 times, and
the accuracy scores of the permuted sets were compared
against the accuracy score of the non-permuted set. The
upper level of performance was estimated by choosing the
parameters based on the test set. Cross-validation was per-
formed on 10 parameter values in ranges ¢ = [0.25; 15] and
v =1[5x10"7;2.5 x 1072], i.e 100 combinations.

2.7. Sensitivity Map

To visualize the SVM RBF kernel, anapproach proposed by
[Rasmussen et al., 2011] was adapted. The sensitivity map is
computed as the derivative of the RBF kernel, c.f. Eq. (2)

Ao Tky
an

= > an2y(@n,; — z5) exp(—7 [xa — x[|*) )

n

Pseudo-code for computing the sensitivity map across
time samples and trials is found in Appendix B. A GitHub
toolbox with Python implementation of sensitivity mapping
is available:

https://github.com/gretatuckute/DecodingSensitivityMapping.

2.8. Effect Size Evaluation

The NPAIRS (nonparametric prediction, activation, influ-
ence, and reproducibility resampling) framework [Strother
et al., 2002] was implemented to evaluate effect sizes of
the SVM sensitivity map and animate/inanimate ERP differ-
ences. The sensitivity map and the ERP difference map based
on all subjects were thus scaled by the average difference of
sub-sampled partitions.

The scaling was calculated based on S = 100 splits. In
each split, two partitions of the data set were randomly se-
lected without replacement. A partition consisted of 7 sub-
jects, thus achieving two partitions of 7 subjects each (leaving
a single, random subject out in each iteration).

For evaluation of the ERP difference map, a difference
map was calculated for each partition (IM; and M5). Sim-
ilarly, for evaluation of the sensitivity map, an SVM classi-
fier was trained on each partition, and sensitivity maps were
computed for both SVM classifiers (corresponding to M; and
M, for the ERP difference map evaluation). The sensitivity
map for the single-trial SVM classifier was computed based

on optimal model parameters, while the sensitivity map of
the pseudo-trial classifier was based on the mean parameters
based on validation sets. The maps from the two partitions
were contrasted and squared.

Across time samples (t = 1,...,7) and trials (n =
1,...,N) an average standard deviation of the average dif-
ference between partitions was calculated:

1 S, T,N ,
o' =i 2. (Mi,—Msy,) )
i,t,n=1

The full map, My, (based on 15 subjects) was then di-
vided by the standard deviation to produce the effect size

N — Mfull. 5)
ag
3. RESULTS

We classify the recorded EEG using SVM RBF models such
that trials are labeled with the high-level category of their
presented stimuli, i.e., either animate or inanimate. We first
report results using a single-trial classifier followed by a
pseudo-trial classifier using averaged category responses, and
then apply the pseudo-trial classifier for prediction of single-
trial EEG responses. Also, we report effect sizes of ERP
difference maps and sensitivity maps for evaluation of both
SVM classifiers.

3.1. Event Related Potential Analysis

After EEG data preprocessing and Artifact Subspace Recon-
struction (ASR) (Section 2.5), we confirmed that our visual
stimuli presentation elicited a visual evoked response. The
ERPs for the trials of animate content and the trials of inan-
imate content are compared in Figure 2. The grand average
ERPs across subjects (thick lines) are shown along with the
average animate and inanimate ERPs of each subject.

It is indicated in Figure 2 which time samples were sig-
nificant for the averaged selection of channels. A full map of
significant time samples and channels can be seen in Figure
S4. The significance level was controlled for multiple com-
parisons using the conservative Bonferroni correction.

The animate and inanimate ERPs were most different 310
ms after stimuli onset. This applied both for the selected chan-
nels in Figure 2 and in general, including frontal channels
(Figure S4). The average scalp map for the two supercate-
gories as well as the difference between them at 310 ms can
be seen in Figure 2 in z-scored units.

Inspection of Figure 2 shows that visual stimuli presen-
tation elicited a negative ERP component at 80-100 ms post-
stimulus onset followed by a positive deflection at around 140
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Fig. 1. A) Example of the experimental visual stimuli. First
row contains animate trials from “sheep” and “cat” categories,
and second row contains inanimate trials from “bench” and
“boat” categories. B) Experimental design of the visual stim-
uli presentation paradigm. The time-course of the events is
shown. Participants were shown a probe word before each
category, and jittered inter-stimuli intervals consisting of a
fixation cross was added between stimuli presentation. The
experiment consisted of 690 unique trials in total, 23 cat-
egories of 30 trials, ordered randomly (both category- and
image-wise) for each subject.

ms post-stimulus onset. A P300 subcomponent, P3a, was ev-
ident around 250 ms and a P3b component around 300 ms
[Polich, 2007]. It is evident that the P3b component is more
prominent for the animate category. The observed temporal
ERP dynamics was comparable to prior ERP studies of the
temporal dynamics of visual object processing [Cichy et al.,
2014].

Mean animate/inanimate ERP responses for each subject
separately can be found in Figure S1.

3.2. Support Vector Machines

We sought to determine whether EEG data in our experi-
ment can be automatically classified using SVM models. The
Python toolbox Scikit-learn [Pedregosa et al., 2011] was used
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Fig. 2. Average animate and inanimate ERPs across subjects
(thick lines, and with standard errors around the mean) and
for each subject (thin lines). ERP analysis was performed on
the occipital/-parietal channels O1, O2, Oz, PO3, and PO4.
The horizontal black lines indicate where the time samples are
significant (paired t-test corrected for multiple comparisons,
a = 0.05/60 time samples). Scalp maps are displayed for the
animate/inanimate ERPs and difference thereof at 310 ms.

to implement RBF SVM models.

We specifically trained two different types of SVM clas-
sifiers, a single-trial, and a pseudo-trial classifier (averaged
category responses), and assessed the classifiers’ accuracy on
labeling EEG data in a leave-one-subject-out approach.

SVMs are regarded efficient tools for high-dimensional
binary as well as non-linear classification tasks, but their ulti-
mate classification performance depends heavily upon the se-
lection of appropriate parameters of ¢ and y [Bishop, 2006].
Parameters for the upper level of performance for the single-
trial classifier were found using cross-validation in a leave-
one-subject-out approach, resulting in a penalty parameter
c=1.5and vy = 5 x 1075 based on the optimum mean pa-
rameters across test subjects (Figure S9). From Figure S8
it is evident that the optimum parameters were different for
each subject, underlining inter-subject variability in the EEG
responses.

To reduce bias of the performance estimate of the single-
trial classifier, parameters were selected based on two valida-
tion partitions, resulting in ¢ = 0.5 and v = 5 x 10~ for the
first validation set, and ¢ = 1.5 and v = 5 x 107° for the
second validation set (Figure S10).

The pseudo-trial classifier also showed inter-subject vari-
ability with respect to the model parameters, see Figures S5-
S7. The classifier had an average penalty parameter of ¢ =
7.2, and an average v = 3.7 x 10~% when based on the vali-
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Fig. 3. Test accuracies for the SVM pseudo-trial classifier trained on average categories and tested on average categories. The
x-axis refers to the hold-out test subject. Chance level prediction accuracy is 0.565 (dashed line). Significance estimated by
permutation testing (1000 iterations).
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Fig. 4. Test accuracies for a classifier trained on pseudo-trials (averaged categories) (black) or trained on single-trials (red) and
tested on single-trials. The x-axis refers to the hold-out test subject. Chance level prediction accuracy is 0.565 (dashed line).
Note: In some cases the “optimum parameters” are not found to be optimum, which can be explained by different training
phases of the two single-trial classifiers. The classifier based on validation sets was trained on 13 subjects while the classifier
with parameters based on the test set was trained on 14 subjects. For 5 out of 15 subjects the classifier based on 13 subjects was
able to obtain higher accuracies.


https://doi.org/10.1101/481630
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/481630; this version posted February 25, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-ND 4.0 International license.

A ERP difference B Single-trial SVM classifier C Pseudo-trial classifier
P7F o P7F T P7F L]
Rar 20 Rar 20 eal 20
Bz B3l Baf
P8 - 18 P8 - m 18 P8 - 18
Q1 [ ] o1+ Qi L
% | o % "
F8§ - F8 - Fer
Gir 14 G0 14 G0 14
Fp2 | Fp2 Fp2 - ]
Eg r 12 Eg [ 12 (E% r . 12
F3r F3r F3r
Flr 10 Flr - - 10 Felr = um 10
E7 T A AN
Oz 8 Oz 8 Ozr 8
PO3 + PO3 | 1 PO3 |
AF3 - AF3 - AF3 | n 1
FGh | 6 FGh | 6 ECS 6
FC1 FC1 FC1
CP5 - CP5 - CP5 F
CP1 + 4 CP1 + 4 CP1 + 4
cP2 cP2 Gp2
CP8 CP6 CP6
AF4 - 2 AF4 - 2 aFar 2
EG2 | EG2 EG2 |
FC6 - FC6 - FC6 -
PO4 t PO4 t 0 PO4 t 0

-10

0

100 200 300 400 500
Time, [ms]

-10

0

100 200 300 400 500
Time, [ms]

-10

0

100 200 300 400 500
Time, [ms]

80 ms 210 ms

330 ms

80 ms 210 ms 310 ms

310 ms 330 ms 80 ms 210 ms 310 ms 330 ms

Fig. 5. A) Effect sizes for animate/inanimate ERP difference map. B) and C) Effect sizes for the sensitivity maps of the
single-trial and pseudo-trial SVM classifiers. Effect sizes were computed based on 100 NPAIRS resampling splits.

dation sets. The average optimum parameters when based on
test sets with averaged categories and single-trials were in the
same range, with ¢ = 4.4 and v = 3.0 x 107*and ¢ = 6.7
and vy = 2.2 x 1074, respectively.

Figures 3-4 show the SVM classification performances
using the two types of classifiers. Based on the leave-one-
subject-out classification, we note the large variability of
single subject performance. While different performances
are obtained using the single-trial and pseudo-trial classifiers
on single-trial test sets, the overall accuracies are similar
(p=0.82, paired t-test), with an average of 0.574 and 0.575,
respectively (Figure 4). Thus, the pseudo-trial classifier per-
forms on par with the single-trial classifier in the prediction
of single-trial test subjects.

A standard error of the mean of 0.01 was found for both
the debiased performance measure of the single-trial classifier
and for the unbiased single-trial classifier (corrected for the
leave-one-subject-out approach [Efron and Tibshirani, 1994])

3.3. Event Related Potential Difference Map and Sensi-
tivity Map

We investigated the raw ERP difference map between animate
and inanimate categories, as well as the sensitivity maps for
the single-trial and pseudo-trial SVM classifiers. The sensi-
tivity map reveals EEG time points and channels that are of
relevance to the SVM decoding classifiers (Figure 5).

For map effect size evaluation we implement an NPAIRS
resampling scheme [Strother et al., 2002]. In this cross-
validation framework, the data were split into two partitions
of equal size (7 subjects in each partition randomly selected
without replacement). This procedure was repeated 100
times to obtain standard errors of the maps for computing
effect sizes (Section 2.8).

Figure SA displays the effect sizes of the raw ERP dif-
ference map between the animate and inanimate categories,
while Figure 5B and 5C displays effect sizes of sensitivity
maps for the single-trial and pseudo-trial classifiers, respec-
tively. Scalp maps show the spatial information exploited by
the classifiers at different time points.

From inspection of Figure 5 it is evident that occipital and
parietal channels (O1, O2, P7, P8) were relevant for SVM
classification at time points comparable to the ERP difference
map. Frontal channels (Fpl, Fp2) were exploited by both
SVM classifiers, but to a larger extent by the pseudo-trial clas-
sifier (Figure 5C). Furthermore, the pseudo-trial classifier ex-
ploited a larger proportion of earlier time points compared to
the single-trial classifier. The sensitivity maps for the single-
trial and pseudo-trial classifiers suggest that despite the differ-
ence in number and type of trials, the classifiers are similar.

4. DISCUSSION

In the current work, we approach the challenges of EEG-
based decoding: non-laboratory settings, user-friendly wire-
less EEG acquisition equipment with dry electrodes, natural
stimuli, no repetition of experimental stimuli trials, and no
exclusion of participants. Thus, our work is centered around
1) ecological validity and portability, and 2) generalizabil-
ity. The potential benefits of mitigating these challenges is
to study the brain dynamics in natural settings and for appli-
cations in real-life scenarios.

Our motivation for working with a portable, dry-electrode
EEG system is to increase the EEG usability in terms of af-
fordability, mobility, and ease of maintenance. These factors
are crucial in applied contexts in everyday settings, such as
the development of real-time EEG neurofeedback systems. It
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has recently been demonstrated that commercial-grade EEG
equipment compares to high-grade equipment in laboratory
settings in terms of neural reliability as quantified by inter-
subject correlation [Poulsen et al., 2017]. Furthermore, a sys-
tematic comparison between a wireless dry EEG system and a
conventional laboratory-based wet EEG system shows similar
performance in terms of signal quality [Kam et al., 2019].

We aim to increase the generalization ability of our de-
coding models. To do so, we evaluate decoding ability in
an inter-subject design, i.e., leave-one-subject-out approach
[Kjems et al., 2002]. Prior studies in EEG-based decoding,
in particular for BClIs, have focused on building classifiers to
decode subject-specific brain patterns, see [Cecotti, 2011] for
review. Inter-subject generalized BCI has the advantage of
saving time in BCI sessions, and several research groups have
made effort to develop inter-subject generalized BCI systems
for decoding of motor imagery-related EEG [Ray et al., 2015,
Halme and Parkkonen, 2018]. Successful inter-subject classi-
fication requires extraction of globally relevant signal features
from each training subject [Kjems et al., 2002]. In the current
work, we take a step towards increasing generalizability by
building inter-subject EEG-based decoding models.

Our ultimate goal is to decode actual semantic differences
between natural categories; thus we perform low-level visual
feature standardization of experimental trials prior to the ex-
periment, investigate time dependency of the EEG response
throughout the experiment, and perform ASR to reduce this
dependency (Section 2.5). Moreover, the stimuli in our ex-
perimental paradigm consisted of complex everyday scenes
and non-iconic views of objects [Lin et al., 2014]. Animate
and inanimate images were similar in composition, i.e., an
object or animal in its natural surroundings (Figure 1A).

4.1. Data Preprocessing of Temporal Trends

There will naturally be continuous variations in EEG record-
ings over time. Since our experimental paradigm lasted
approximately 40 minutes, we investigated temporal trends in
the EEG data (Figures S2-S3) and perform artifact subspace
reconstruction (ASR) [Mullen et al., 2015] to reduce con-
founding temporal trends in further analyses. The unwanted
non-stationarity of the EEG signal arises from electrodes
gradually losing or gaining connection to the scalp, an in-
creasing tension of facial muscles or other artifactual currents
[Delorme et al., 2007, Rowan and Tolunsky, 2003]. If the
data are epoched, the drift may misleadingly appear as a pat-
tern reproducible over trials, a tendency that may be further
reinforced by component analysis techniques that empha-
size repeatable components [de Cheveigné and Arzounian,
2018]. Slow linear drifts can be removed by employing
high-pass filters, however more complicated temporal effects
are harder to remove. Furthermore, employing high-pass
filters may risk introducing new artifacts. As an alternative
recent studies suggest performing robust detrending, where

the trend of each channel is determined and then regressed
out [de Cheveigné and Arzounian, 2018, Driel et al., 2019].
We observe that by employing ASR the time dependency
was reduced for most subjects (Figures S2-S3). However, it
would be interesting to investigate more complex detrending
algorithms to also make sure that high-pass filtering is not
impairing our results.

4.2. Event Related Potential Analysis

Previous work on visual stimuli decoding demonstrate se-
mantic category specificity at both early (~ 150 ms) and late
(~ 400 ms) intervals of the visually evoked potential [Rous-
selet et al., 2004, Rousselet et al., 2007]. ERP studies indi-
cate that category-attribute interactions (natural/non-natural)
emerge as early as 116 ms after stimulus onset over fronto-
central scalp regions, and at 150 and 200 ms after stimulus
onset over occipitoparietal scalp regions [Hoenig et al., 2008].
Kaneshiro et al., 2015, demonstrate that the first 500 ms of
single-trial EEG responses contain information for successful
category decoding between human faces and objects, and
above chance object classification as early as 48-128 ms after
stimulus onset [Kaneshiro et al., 2015]. For animate versus
inanimate images, ERP differences have been demonstrated
detectable within 150 ms of presentation [Thorpe et al., 1996].
However, there appears to be uncertainty whether these early
ERP differences represent low-level visual stimuli or actual
high-level differences. We observe the major difference be-
tween animate/inanimate ERPs around 210 ms and 320 ms
(Figure 2 and S4). Akin to our results, Carlson et al., 2013
found that high-level categories (animacy) were maximally
decodable around 240 ms from MEG recordings [Carlson
et al.,, 2013]. Lastly, we observe that ERP signatures were
highly variable among subjects (comparable to [Simanova
et al., 2010]), which challenges the inter-subject model gen-
eralizability with our sample size of 15 subjects.

4.3. Support Vector Machine Classification

In this study, we adopted RBF kernel SVM classifiers to
classify between animate/inanimate natural visual stimuli in
a leave-one-subject-out approach. SVM classifiers have pre-
viously been implemented for EEG-based decoding. SVM
in combination with independent component analysis data
processing has been used to classify whether a visual object
is present or absent from EEG [Stewart et al., 2014]. Zafar
et al., 2017, propose a hybrid algorithm using convolutional
neural networks for feature extraction and likelihood-ratio-
based score fusion for prediction of brain activity from EEG
[Zafar et al., 2017]. Taghizadeh-Sarabi et al., 2015, extract
wavelet features from EEG, and selected features are clas-
sified using a “one-against-one” SVM multiclass classifier
with optimum SVM parameters set separately for each sub-
ject [Taghizadeh-Sarabi et al., 2014].
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We implemented single-trial and pseudo-trial (i.e. av-
eraged categories) SVM classifiers, and found very similar
performance of the single-trial and pseudo-trial classifiers for
prediction of single-trial subjects (Figure 4). As the pseudo-
trial classifier is significantly faster to train, a full nested
cross-validation scheme was feasible. The fact that the two
classifiers have similar performance indicates that the reduced
sample size in the pseudo-trial classifier is offset by the better
signal-to-noise ratio of averaged trials. The fast training of
the pseudo-trial classifier allows for parameter optimization
and unbiased performance evaluation.

Based on the leave-one-subject-out classification perfor-
mance (Figures 3-4), it is evident that there is a difference
in how well the classifier generalizes across subjects, which
partly is due to the diversity of ERP signatures across subjects
(Figure S1). For some subjects, low accuracy is caused by a
parameter mismatch between trials belonging to that subject
and its validation sets. For other subjects, the SVM model
is not capable of capturing their data even when parameters
are based on that subject, due to poor signal-to-noise level.
Furthermore, inter-subject generalizability in EEG is compli-
cated by multiple factors: The signal-to-noise ratio at each
electrode is affected by the contact to the scalp which is in-
fluenced by local differences in skin condition and hair, the
spatial location of electrodes relative to underlying cortex will
vary according to anatomical head differences, and there may
be individual differences in functional localization across par-
ticipants.

Both SVM classifiers utilized a relatively large number
of support vectors. The single-trial SVM classifier used for
computing the sensitivity map had model coefficients o =
—1.5,...,1.5, where 1204 « values out of 10350 were equal
to 0 (9146 support vectors). The pseudo-trial classifier had
model coefficients in the range o = —7.2,...,7.2, and 46
out of 345 coefficients were zero (299 support vectors). The
high number of obtained support vectors indicates a poor EEG
signal-to-noise ratio and the complexity of the classification
problem [Saitta, 1995].

4.4. Sensitivity Mapping

In the current work, we ask which parts of the EEG signa-
tures are being exploited by the SVM decoding classifiers. We
investigated the probabilistic sensitivity map for single-trial
and pseudo-trial SVM classifiers based on a binary classifica-
tion task. We identified spatial and temporal regions where
discriminative information resides, and found these EEG fea-
tures comparable to the difference map between raw ERP re-
sponses for animate and inanimate trials. We observe the most
prominent difference in animate/inanimate ERPs around 210
ms and 320 ms (Figure 2 and S4), and these time points are
also exploited by the SVM classifiers to a large extent (Figure
5).

The sensitivity maps for both SVM classifiers reveal that

the occipital/-parietal channels where visual stimuli is known
to be processed [Simanova et al., 2010, Kaneshiro et al., 2015]
are major channels of interest in the classification task. Fur-
thermore, we note that Fpl and Fp2 channels are also im-
portant in the constructed classifiers (Figure 5). These two
frontal channels also display significant differences in ani-
mate/inanimate ERPs across all subjects (Figure S4), which
might be explained by a difference in eye movements depend-
ing on semantic category. Some studies report that frontal
cortex activation is involved in distinguishing between visual
stimuli [Wang et al., 2012], and it has been proposed that
frontal activation during visual processing is a result of the at-
tentional and anticipatory state of the subject [Foxe and Simp-
son, 2002]. However, it also possible that the frontal channels
explain the noise in the informative channels [Blankertz et al.,
2011].

Based on the similarity between the sensitivity maps for
single-trial and pseudo-trial classifiers (Figure 5), we con-
clude that these classifiers exploit the same EEG features to
a large extent. We therefore investigated whether the pseudo-
trial classifier is able to predict on single-trial test subjects.
We demonstrate that classifiers trained on averaged pseudo-
trials perform on par with classifiers trained on a large set of
noisy single-trial samples (Figure 4).

4.5. Conclusion

We investigate scalp EEG recorded with a portable 32 dry-
electrode EEG equipment from healthy subjects under nat-
ural stimuli. We accomplish unbiased decoding of single-
trial EEG using SVM models trained on de-noised (averaged)
pseudo-trials, thus facilitating fast classifier training, param-
eter optimization and unbiased performance evaluation. The
SVM classifiers were evaluated in a inter-subject approach,
thus probing generalizability across participants. We propose
a novel methodology for evaluating and computing sensitivity
maps for EEG-based SVM classifiers, allowing for visualiza-
tion of discriminative SVM classifier information. We im-
plement an NPAIRS resampling scheme to compute sensitiv-
ity map effect sizes, and demonstrate high similarity between
sensitivity map effect sizes of classifiers trained on small sam-
ples of de-noised, averaged data (pseudo-trial) and large sam-
ples of noisy data (single-trial). Finally, by linking temporal
and spatial features of EEG to training of SVM classifiers, we
take an essential step in understanding how machine learning
techniques exploit neural signals.

5. OVERVIEW SUPPLEMENTARY MATERIAL

Appendix A: Manual exclusion criteria for image selection.
Appendix B: Sensitivity map Python pseudo-code.

Supplementary file 1: Image IDs, supercategories and cat-
egories for all images used in the experiment from Microsoft
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Common Objects in Context (MS COCO) image database.
Figures S1-S10 contain supplementary material, and are
used for reference in the main manuscript.

6. DATA AVAILABILITY

Code available:
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10. APPENDIX

Appendix A

Manual exclusion criteria for MS COCO images [Lin et al.,
2014] for the experimental paradigm:

- Object unidentifiable

- Object not correctly categorized

- Different object profoundly more in focus

- Color scale manipulation

- Frame or text overlay on image

- Distorted photograph angle

- Inappropriate image

Appendix B

The following piece of pseudo-code shows how to compute
the sensitivity map for an SVM classifier with an RBF kernel
across all trials using Python and NumPy (np).

map
np.matmul (X, np.matmul (np
(np.matmul (X, (np.diag (np
s =
np.sum(np.square (map),axis=1) /np.size (alpha)

.diag(alpha),hk)) -
.matmul (alpha,k)))))

v a license to display the preprint in perpetuity. It is made available
ternational license.

k denotes the (N x N) RBF training kernel matrix from
equation 2, with N as the number of training examples.
alpha denotes a (1 x N) vector with model coefficients. X
denotes a (P x N) matrix with training examples in columns.
s is a (P x 1) vector with estimates of channel sensitivities
for each time point, which can be re-sized into a matrix of
size [no. channels, no. time points] for EEG-based sensitivity
map visualization.
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Fig. S1. Animate and inanimate ERPs for each subject separately with two standard errors around the mean.
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«10“Regression analysis on autocorrelation across trials
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Fig. S2. Time dependency as quantified by autocorrelation. A high regression coefficient means that a channel (or an average
of all channels) had an autocorrelation which increased or decreased linearly with time lags, and is thus indicative of high time
dependency.
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Fig. S3. Time dependency as quantified by variance of trials. A high regression coefficient means that a channel (or an average
of all channels) had a trial variance which increased or decreased linearly with trial number, and is thus indicative of high time
dependency.
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Fig. S4. Significant ERP differences between animate and inanimate trials (all subjects). Significance tested using a paired
t-test. Figure thresholded at & = 0.05/(60 - 32), i.e. Bonferroni corrected for multiple comparisons.
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Fig. S5. Validation accuracies (mean over validation sets) for the pseudo-trial classifier. ¢ values are displayed on the x-
axis, and consisted of values: [0.25,0.5,1,1.5,1.75,2,2.5,5,10,15]. ~ values are displayed on the y-axis, and consisted of
values: [5x 1077,2.5 x 10765 x 107¢,2.5 x 107%,5 x 107°,2.5 x 107%,5 x 1074,2.5 x 1073,5 x 1073,2.5 x 1072].

Same scaling for all subjects.
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Fig. S6. Test accuracies for pseudo-trial classifier. Tested on the pseudo-trials (averaged categories) of the withheld subject.
Same cross-validation parameter values as in Figure S5.
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Fig. S7. Test accuracies for pseudo-trial classifier. Tested on the pseudo-trials (averaged categories) of the withheld subject.
Same cross-validation parameter values as in Figure S5.
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Fig. S8. Cross-validation with a single held out subject to estimate parameters for the upper level per-
formance single-trial SVM classifier. ¢ values are displayed on the x-axis, and consisted of values:
[0.05,0.25,0.5,1,1.5,1.75,2,2.5,5,10]. v values are displayed on the y-axis, and consisted of values:
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Optimum parameters for single-trial SVM classifier
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Fig. S9. Upper level performance parameters for the single-trial SVM classifier based on the mean parameters for held out
subjects in Figure S8.
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Fig. S10. Optimum parameters for the single-trial SVM classifier based on the mean parameters of validation partition 1
(subjects 1-7) and partition 2 (subjects 8-15). Same cross-validation parameter values as in Figure S5.


https://doi.org/10.1101/481630
http://creativecommons.org/licenses/by-nd/4.0/

	 Introduction
	 Materials and methods
	 Participants
	 Stimuli
	 Experimental Design
	 EEG Data Collection
	 EEG Preprocessing
	 Support Vector Machines
	 Sensitivity Map
	 Effect Size Evaluation

	 Results
	 Event Related Potential Analysis
	 Support Vector Machines
	 Event Related Potential Difference Map and Sensitivity Map

	 Discussion
	 Data Preprocessing of Temporal Trends
	 Event Related Potential Analysis
	 Support Vector Machine Classification
	 Sensitivity Mapping
	 Conclusion

	 Overview Supplementary Material
	 Data Availability
	 Conflicts of Interest
	 Funding Statement
	 Authors' Contributions
	 Appendix
	 References

