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Abstract

Models of large-scale brain networks that are informed by the underlying anatomical connectivity
contribute to our understanding of the mapping between the structure of the brain and its dynamical
function. Connectome-based modelling is a promising approach to a more comprehensive
understanding of brain function across spatial and temporal scales, but it must be constrained by
multi-scale empirical data from animal models. Here we describe the construction of a macaque
connectome for whole-cortex simulations in TheVirtualBrain, an open-source simulation platform. We
take advantage of available axonal tract-tracing datasets and enhance the existing connectome data
using diffusion-based tractography in macaques. We illustrate the utility of the connectome as an
extension of TheVirtualBrain by simulating resting-state BOLD-fMRI data and fitting it to empirical

resting-state data.
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Background & Summary

Linking cellular and circuit-level neural activity with macroscopic signals collected using noninvasive
imaging techniques remains a significant challenge to understanding the underlying mechanisms
associated with BOLD-fMRI and M/EEG signals. TheVirtualBrain (TVB) is an open-source software
platform developed to meet this challenge through simulations of whole-brain network dynamics
constrained by multimodal neuroimaging data'?. TVB models link biophysical parameters at the
cellular level with systems-level functional neuroimaging signals3. This linkage across spatial and
temporal scales needs to be constrained by multi-scale data available from animal models. Recently,
simulations of whole mouse brain dynamics have been made available in TVB%. In addition to rodents,
nonhuman primates have become a valuable animal model for studying large-scale network
interactions>®. With unique similarities in brain, cognition, and behaviour to humans’, nonhuman
primate models are well poised to bridge multiple scales of investigation. Here, we describe the
development of a macaque structural connectome as an initial step towards establishing a multi-scale
macaque model in TVB.

Simulations of large-scale network dynamics in which neural mass models are coupled
together depend on neuroanatomical connectivity to define the spatial and temporal interactions of
the system%1, The connectome is a critical aspect of these models, with its white matter fiber tract
capacities (i.e., weights) and tract lengths acting to scale network interactions. However, the
construction of any individual connectome is nontrivial and, in the macaque, can be approached using
a variety of datatypes. Neuroanatomical data from axonal tract-tracing studies are commonly
considered the gold standard and are publicly available from a few sources. One, for example, is the
CoCoMac database!?!3, which can be queried for any number of cortical and subcortical brain
regions'#>. It offers extensive coverage of the macaque brain but its description of fiber tract
capacities is limited to categorical assighments. In another tracer dataset, Markov and colleagues?®
provide a fully-weighted description of the macaque connectome. The edge-complete connectome,

however, describes only 29 of 91 brain regions of a single hemisphere and its utility for whole brain
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simulations is limited. Alternatively, connectome construction could be performed using tractography
on diffusion weighted imaging (DWI) data, as is commonly done for human subjects'’. Probabilistic
tractography has been shown to yield reasonable estimates of fiber tract capacities in macaques!®2°
and can also provide estimates of tract length. But the resulting connectomes are undirected and
therefore unable to capture the known impact of structural asymmetries on functional network
topology??? and dynamics?3. Moreover, connectomes derived from probabilistic tractography are
tainted by a large number of false positive connections?*?° that can dramatically change the topology
of the reconstructed network?%:26:27,

We approached the problem of constructing a fully-weighted whole-cortex macaque
connectome by synthesizing the information available from both tracer and tractography data (Fig. 1).
We took advantage of the specificity of tracer connectivity and enhanced a whole-cortex tracer
connectome with weights estimated from tractography. Consistent with previous studies?®-3°, we have
recently shown using a diffusion imaging dataset from macaques that the accuracy of tractography
algorithms varies as a function of their parameter settings?°. Drawing on these findings, we first
optimized the tractography algorithm to best reproduce the fully-weighted but partial-cortex tracer
connectome from Markov and colleagues'® before estimating whole-cortex connectome weights. We
also estimated connectome tract lengths using tractography, which for tracer datasets is usually

limited to Euclidean or geodesic distance estimates between ROI centers.
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Figure 1. Schematic outline of connectome construction and rsfMRI simulations in TheVirtualBrain
(TVB). Tractography parameters were optimized for each subject by comparing tractography results
using the 29-ROI parcellation to the 29-ROI tracer connectome from Markov and colleagues3! while
tractography and connectome construction parameters were varied. The set of parameters yielding the
maximum AUC were selected and tractography repeated using the whole-cortex RM parcellation .
Tractography-based estimates of weights and tract lengths were averaged and symmetrized and then
applied to the nonzero elements of the whole-cortex tracer network. The resultant connectome
consisted of a weights and tract lengths matrix, which served as input to TVB for simulations. In this
example, the Reduced Wong-Wang-Deco® neural field model was used to simulate population activity
for each ROI and a Balloon-Windkessel hemodynamic model®?* was applied to generate BOLD
signals. Simulated FC was computed for each parameter set and data fitting to empirical FC was
performed to obtain the optimal simulation parameter set.

The connectome presented here will allow us to simulate whole-brain dynamics in the
macaque across different modalities and scales (e.g., LFP, M/EEG, fMRI). Simultaneous recordings of
neural signals at different spatial and temporal scales in the macaque are already possible3*-37 and
these types of data paired with TVB simulations will allow us to assess our understanding of brain
dynamics across scales. In conjunction with existing macaque empirical data and open-access
neuroimaging sharing initiatives like PRIME-DE32, the virtualized macaque brain will be a solid step

forward in our efforts to model structure-function mapping in the whole brain.
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Methods

Tracer data

Two independent tract-tracing datasets were used in the construction of the whole-cortex macaque
connectome. The first was a whole-cortex structural connectivity matrix of 82 regions-of-interest
(ROIs) as described in Shen et al?2. This connectivity matrix follows the Regional Map (RM) parcellation
of Kotter and Wanke?® and was derived from the CoCoMac database of axonal tract-tracing studies
[cocomac.g-node.org]*? 4. The matrix is directed and includes interhemispheric connectivity. Its edge
weights are categorical (‘weak’, ‘moderate’, or ‘strong’).

The second tract-tracing dataset was the edge-complete connectivity matrix of 29 ROIs as
described in Markov et al'® (Fig. 2a) [data available at core-nets.org]. This connectivity matrix
represents intrahemispheric connectivity between a subset of regions in a 91-ROI parcellation. Its
edges are fully weighted, spanning six orders of magnitude. This connectivity matrix was used to
optimize tractography within the macaque brain. For the purposes of comparison with diffusion-
derived connectivity matrices, the tracer matrix was symmetrized by taking the mean of the edge

weights of both directions between pairs of ROlIs.
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Figure 2. Optimizing connectome construction using existing tracer-derived weights. (a) Tracer-derived
29-ROI weighted connectivity matrix*é, symmetrized for comparison with tractography-derived matrices.
(b) Effect of tractography parameters (y-axis) and connectome thresholding (x-axis) on accuracy of
connectome construction for an example subject. Tractography curvature threshold was varied (0.2 —
0.8) and distance correction was toggled ‘on’ or ‘off’. Example matrices from the parameter space as
indicated in (c) are shown in panels c-f. Tractography-derived 29-ROI connectivity matrices for this
subject showing the (c) most accurate connectome (maximum AUC: 0.69); (d) effect of lowering the
curvature threshold (AUC: 0.63); (e) effect of distance correction (AUC: 0.65); and (f) effect of discarding
the weakest connections (AUC: 0.64). (g) Tractography-derived weighted connectivity matrix. Only
weights for which there is a connection in the tracer connectome are shown. (h) Tractography weight
estimates as a function of tracer weights. Connections are colour-coded according to their tract lengths,
binned into eight equally-sized bins. Connections belonging to the longest tract length bin denoted in
darkest blue with subsequent tract length bins denoted in progressively lighter shades of blue. (i)
Pearson correlations coefficients between tracer and tractography weights were negatively correlated
with tract length (r = -0.64, bootstrapped CI: -0.98, -0.21). However, even at longer distances, correlation
coefficients were statistically significant (p < 0.05, indicated with filled data points).

ROl parcellations

Volumetric parcellations corresponding to both tracer-based connectivity matrices were defined on
the F99 macaque atlas®°. Both parcellations were registered to each subject’s diffusion data to define
ROIs for tractography (see preprocessing section below). The RM parcellation was also used for
defining ROIs in the resting-state BOLD-fMRI data in order to compute functional connectivity. For the
RM parcellation, ROIs were first drawn on the F99 surface*! and converted to a labelled volume with
a 2 mm extrusion?? using the Caret software package*?
[http://brainvis.wustl.edu/wiki/index.php/Caret:About]. The 91-ROl parcellation and the F99
macaque atlas were both obtained from the SumsDB database
[http://brainvis.wustl.edu/wiki/index.php/Sums:About]. Only the 29 ROIs matching the edge-
complete tracer matrix were considered and we therefore refer to this parcellation subsequently as

the 29-ROI parcellation.

Neuroimaging data acquisition & preprocessing

Neuroimaging data from 9 male adult macaque monkeys (8 Macaca mulatta, 1 Macaca fascicularis)
were used for the construction and validation of the macaque connectome®. These neuroimaging
data were a subset of data presented in previous studies?®#4. The methods described here for diffusion
image preprocessing, tractography and connectome construction were developed following the
findings of our related work that examined the ability of probabilistic tractography to faithfully

reconstruct large-scale network topology?°. All surgical and experimental procedures were approved
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by the Animal Use Subcommittee of the University of Western Ontario Council on Animal Care and
were in accordance with the Canadian Council of Animal Care guidelines.

Surgical preparation and anaesthesia® as well as imaging acquisition and preprocessing
protocols?®** have been previously described. Briefly, animals were lightly anaesthetized before their
scanning session and anaesthesia was maintained using 1-1.5% isoflurane during image acquisition.
Images were acquired using a 7-T Siemens MAGNETOM head scanner with an in-house designed and
manufactured coil optimized for the non-human primate head*®. Two diffusion weighted scans were
acquired for each animal, with each scan having opposite phase encoding in the superior-inferior
direction at 1 mm isotropic resolution. For six animals, data were acquired with 2D EPI diffusion while
for the remaining three animals, a multiband EPI diffusion sequence was used. In all cases, data were
acquired with b = 1000 s/mm?, 64 directions, 24 slices. Four resting-state BOLD-fMRI scans were also
acquired for each animal using a 2D multiband EPI sequence (600 volumes, TR = 1000 ms, 42 slices,
resolution: 1 x 1 x 1.1 mm). Finally, a 3D T1w structural volume was also collected for all animals (128
slices, resolution: 500 um isotropic).

The Brain Extraction Tool (BET) from the FMRIB Software Library package (FSL v5) was used to
extract the brain from skull and soft tissue for all image modalities prior to all other preprocessing
steps. Brain extraction of T1w images using BET was suboptimal for all but one animal and brain mask

outputs from BET for those animals were manually edited using ITK-SNAP*” (www.itksnap.org).

Segmentation of the T1lw images into three tissue classes was performed using FSL’s FAST tool with
bias field correction. Diffusion-weighted images were preprocessed using FSL’s topup, eddy and
bedpostx tools for image distortion correction and modelling of fiber directions. Both parcellations in
F99 atlas space were nonlinearly registered to each animal’s T1w structural volume and then linearly
registered to diffusion space using the Advanced Normalization Tools (ANTS) software package®®. All
images were visually inspected following brain extraction and registrations to ensure correctness.
FSL’s FEAT toolbox was used for preprocessing the fMRI data, which included motion

correction, high-pass filtering, registration, normalization and spatial smoothing (FWHM: 2 mm).
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Motion in the fMRI data was minimal, with an average framewise displacement across all animals and
all scans of 0.015 mm (range: 0.011-0.019 mm). Global white matter and cerebrospinal fluid signals
were linearly regressed using AFNI’s (Analysis of Functional Neurolmages) 3dDeconvolve function. The

global mean signal was not regressed.

Tractography optimization for fiber tract capacity estimates

Tractography was performed between all ROIs of the 29-ROI parcellation using FSL’s probtrackx2
function. First, white matter and gray matter voxels that were adjacent to each other were identified
in the T1lw images. This white-gray matter interface was linearly registered to diffusion space. The
white matter voxels of the interface were assigned to ROIs based on their adjacent gray matter ROI
assignments. If the adjacent gray matter voxel had no assignment due to inaccuracies in the
conversion of the parcellation from surface to volume space, the white matter voxel was given the
assignment of the nearest gray matter voxel with an ROl assignment. White matter ROIs were used as
seed and target masks. The gray matter voxels adjacent to each seed mask were used as their
exclusion mask. As the parcellation was defined in the left hemisphere, an exclusion mask of the right
hemisphere was also applied. Tractography parameters were set to 5000 seeds per voxel, a maximum
of 2000 steps, and 0.5 mm step length. Paths were terminated if they looped back on themselves and
rejected if they passed through an exclusion mask. Tractography was performed repeatedly with
various curvature thresholds (0.2, 0.4, 0.6, 0.8) as well as with and without distance correction.

Fiber tract capacity estimates (i.e., ‘weights’) between each ROI pair were taken as the
number of streamlines detected between them and dividing by the total number of streamlines that
were sent from the seed mask, with the exclusion of those streamlines that were rejected or excluded.
A structural connectivity matrix of all ROl pairs was generated with these capacity estimates and
symmetrized by taking the mean of the estimates of both directions between ROI pairs. This procedure
was repeated for the various tractography settings and resulted in a total of eight connectivity

matrices (4 curvature thresholds x 2 distance correction options) for each subject. Each of these eight
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matrices were then thresholded by discarding the lowest capacity estimates in increments of 5%,
resulting in a total of 160 connectivity matrices for each subject.

The optimal set of tractography parameters for each subject was determined by computing
the area-under-the ROC curve (AUC) of the 160 matrices in comparison with the “ground truth” tracer-
derived connectivity matrix (see Fig. 2b-f for an example subject). The set of tractography parameters
yielding the maximum AUC was determined for each subject. In all cases, the maximum AUC value
was obtained without distance correction. This was likely because distance correction of all but the
longest connections is known to result in lower true positive rates*®. Applying distance correction to
all tract reconstructions regardless of the distance between seed and target ROls may therefore have
been detrimental to most connections. We have also previously shown how applying distance
correction results in worse estimates of connection weights than if distance correction is not applied?°,
likely due to the reweighting of connection strengths as a function of the distance between seed and
target ROIs (see Fig. 2e for an example). Optimal curvature thresholds ranged between 0.2 and 0.8,
while the optimal percentage of weak connections to discard ranged between 0 and 35% (Table 1).
Determining tractography parameters this way allowed for tractography to optimally detect the
presence and absence of connections for each individual without regard for the accuracy of weight
estimates. This method was chosen in favour of explicitly trying to match the tractography weights to
the tracer ones (e.g., tractography parameters selected on the basis of having the maximal correlation
coefficient between tractography and tracer edge weights) to avoid the variability in tracer weights
that cannot been accounted for here. Since different tracer edges were contributed from different
animals'®, and in some cases from a single animal, it is difficult to know to what extent outlier tracer
weights exist in the tracer data. If particularly strong or weak weights are poorly represented in the
tracer dataset, then they could incorrectly skew the selection of tractography parameters in their
favour.

Tractography was repeated for the RM parcellation using the optimal set of tractography

parameters for each subject in the same manner as described above. For intrahemispheric tracking in
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the RM parcellation, exclusion masks of the opposite hemisphere were applied. Structural
connectivity matrices were symmetrized and thresholded to each subject’s optimal threshold for
discarding weak weights (Table 1). Due to the relationship between connection weights and distances
(see Fig. 2h), thresholding the weakest weights generally corresponded to discarding the longest
connections. For the animals whose tractography results were thresholded, the mean discarded
connection distance was 50.4 mm (range: 38.9-58.9 mm) and 27 connections were consistently
discarded (i.e., thresholded away in at least 6 of 8 animals). The majority of the consistently discarded
connections were false positives (70%; 19/27) and the remaining 8 connections were mostly
intrahmemispheric ones between visual and frontal/prefrontal cortices (between V2/VACv and
M1/FEF/PMC). The weights of these 8 connections may therefore be poorly represented in the
resulting macaque connectome as only a few animals contribute to their estimation. However, the
impact of this on the overall connectome is likely very minimal given the size of the connectome, which
includes 3389 connections.

Tractography between all ROls of the RM parcellation was then repeated with the distance
correction option in probtrackx2 in order to estimate tract lengths. This was done by first dividing the
number of streamlines detected between a seed voxel and the target ROl in the distance corrected
tractography by the number of streamlines when distance correction was not used. The median value

across all seed voxels was taken as the tract length between the seed and target ROls.

Macaque connectome construction

Tractography-derived structural connectivity matrices in the RM parcellation were averaged across
subjects. These averaged fiber tract capacity estimates were applied to the corresponding nonzero
elements of the tracer-derived matrix. The resulting matrix represents a whole-cortex macaque
connectome that is both directed (as informed by tracer data) and weighted (as informed by diffusion
imaging data) (Fig. 3a)°°. For technical validation, the weights were fit with a lognormal function and

visualized using MATLAB's Distribution Fitting Tool from its Statistics Toolbox (MATLAB R2011b).
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Tract length estimates were averaged across subjects and the matrix symmetrized. Only those

tract lengths with corresponding nonzero elements in the tracer-derived matrix were kept (Fig. 3b)*°.
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Figure 3. Whole-cortex macaque connectome for large-scale network simulations. Structural
connections between 82 ROIs of the RM parcellation were determined from the CoCoMac database of
tracer studies. Weights (a) and tract lengths (b) of those connections were estimated using
tractography. (c) The lognormal distribution (green) derived from fitting to the tractography-derived
weights (red). Tracer weights from the 29-ROI parcellation (cf. Fig. 2a) shown in black. Shading denotes
95% CI. Inset: Frequency distribution of the tractography-derived weights. (d) Relationship between
estimated tract lengths and the Euclidean distance between ROI pairs. (e) Frequency distributions of
the intra- (blue) and inter- (purple) hemispheric connectivity tract lengths. Median values indicated by
arrows.

Functional connectivity

Functional connectivity (FC) for each subject was computed by first calculating a weighted average time
series?? for each ROI in the RM parcellation for each resting-state fMRI scan. The pairwise Pearson
correlation coefficients between time series were determined and a Fisher z-transform was applied to
each resultant FC matrix. FC matrices were then averaged within subjects to obtain individual FC for

each subject. FC matrices were also then averaged across subjects to obtain an overall average FC

for the group.
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TVB simulations

Large-scale network dynamics were simulated using TheVirtualBrain (TVB) software platform
(thevirtualbrain.org) based on previously described methodologies3>°*52, For input to TVB, the
connectome’s weights matrix was normalized to its maximum value but not thresholded.

The Reduced Wong-Wang3*? dynamic mean field model, implemented using C code for
efficient parameter exploration, was used to model the local dynamics of each brain region. This mean
field model consists of excitatory and inhibitory populations coupled together by excitatory (NMDA)
and inhibitory (GABA) synapses. The strength of the coupling from the inhibitory population on the
excitatory population was scaled by a feedback inhibition control parameter (J;). The 82 mean field
models, one for each brain region, were then coupled together according to the macaque
connectome’s weights matrix and scaled using a global coupling parameter (G). Conduction velocity
was fixed across the network so that time delays between regions were governed by the connectome’s
tract length matrix. The uncorrelated Gaussian noise of each region was scaled in amplitude by a single
noise parameter (sigma).

Model fitting was performed by a parameter space exploration in which G and sigma were
varied systematically to optimize the fit between empirical and simulated functional connectivity.
These parameters were chosen because previous studies have shown how they are crucial to
determining the dynamics of the model3? and have been implicated in brain disease®'>2. G was varied
between 0.1 and 5 in 100 equally-sized steps while sigma was varied between 0.01 and 0.1 in 30
equally-sized steps for a total of 3000 iterations of the parameter search. Excitatory population firing
rates have been reported to be in the range of 5 £ 5 Hz in the macaque>3¢. Tuning the excitatory
neural mass models with J; to constrain their firing rates to ~3 Hz is known to result in better models
of FC with biologically-plausible dynamical properties32. Therefore, within each parameter search
iteration, J; was first tuned for each region individually to constrain its excitatory population firing rate
to ~3 Hz32. J; tuning was performed for up to 100 iterations as described by Schirner and colleagues®’.

Simulations in which 100 iterations of J; tuning still resulted in unrealistic excitatory population firing
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rates (mean >= 10 Hz across regions) were not considered for analysis. Conduction velocities in the
macaque brain have been estimated to be in the range of 3-10 m/s°%>° and were set to 4 m/s in our
simulations to reflect the median of the distribution reported by Girard and colleagues?®. All other
parameters of the model were the same as those from Deco and colleagues®?. Resting-state BOLD-
fMRI data with the same duration (10 mins) and sampling rate (TR = 1 s) as the empirical BOLD-fMRI
data were then simulated by applying a Balloon-Windkessel hemodynamic model®33* to the excitatory
synaptic activity of each region. Simulated FC was computed and the cosine similarity (aka uncentered
Pearson correlation3?) between the upper triangles of the simulated and empirical FC matrices was
used to determine the goodness of fit. The simulated data with values of G and sigma giving the
maximum cosine similarity to empirical FC was used for further analysis. The statistical significance of
our goodness of fit measure was assessed by creating a distribution of 1000 shuffled networks using
the empirical FC. This was done by randomly rewiring the empirical network using the
‘null_model_und_sign’ function from the Brain Connectivity Toolbox (BCT;

https://sites.google.com/site/bctnet/), which preserved the degree-, weight- and strength-

distributions from the empirical network. The cosine similarity between each of the 1000 shuffled
networks and the simulated FC was then computed to create a null distribution of cosine similarity
values. A p-value was computed as the proportion of the null distribution with a cosine similarity value
greater than or equal to the observed value.

A principal component analysis (PCA) was performed on the simulated timeseries data to
identify the dominant networks in the simulated resting-state data. The first three components were
chosen for interrogation as together they explained 79.1% of the covariance in the data. We arbitrarily
selected the 10 nodes with the highest loadings within each component for the purpose of
visualization.

As the best fit simulated network had only positively-weighted edges, comparison of its
topology with that of the empirical network was done by first thresholding the empirical network to

only the positive weights using the BCT function ‘threshold_absolute’ and then thresholding the
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simulated network to have the same density as the empirical one using the BCT function
‘threshold_proportional’. The sum of each node’s weights within each network were then calculated
using the ‘strengths_und’ BCT function to derive the nodal strengths for comparison.

To test the extent to which our average macaque connectome can be used for modelling any
individual macaque’s brain dynamics, we repeated our fitting procedure using the empirical FC matrix
from each individual subject. To assess the goodness of fit for each subject, we repeated the shuffling
procedure on each individual FC matrix to produce nine sets of 1000 shuffled networks. We
additionally tested the extent to which using an individual’s structural connectome for simulations
could provide a better fit to that individual’s empirical FC by repeating the entire simulation procedure
using each animal’s optimized structural connectome (based solely on DWI tractography). As before,
weights matrices were normalized to their maximum value but not thresholded.

Significant testing for correlations was done using permutation tests, whereby the the
correlation coefficient between two variables x and y was recalculated after randomly shuffling y 1000
times to produce a null distribution of correlation coefficients. The p-value was taken as the
proportion of the null distribution with a correlation coefficient greater than or equal to the observed

coefficient.

Code availability

Custom code written in MATLAB for the generation of the macaque connectome, including wrapper
scripts for neuroimaging preprocessing and DWI tractography, is available upon request from the
corresponding author. The C code for the Reduced Wong-Wang model in TVB is available at

https://github.com/BrainModes/TVB_C.

Data Records
The neuroimaging data used for generating the macaque connectome (T1w & DWI) and for data fitting
(fMRI) of the TVB simulations is available at OpenNEURO*. Each subject directory contains raw data

(reconstructed into NIFTI format from DICOMS but otherwise unprocessed) that includes:
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e /anat/
o *_Tlw.nii.gz: 3D structural volume used for segmentation (GM, WM & CSF) and
registration
e /dwi/
o *_run-01_dwi.nii.gz, *_run-02_dwi.nii.gz: diffusion weighted images having opposite
phase encoding;
o * _run-01_dwi.bvec, *_run-01_dwi.bval, *_run-02_dwi.bvec, *_run-01_dwi.bval:
corresponding bvec and bval files for DWI images
e /func/
o * task-rest_run-01_bold.nii.gz, * task-rest_run-02_bold.nii.gz, * task-rest_run-
03_bold.nii.gz, *_task-rest_run-04_bold.nii.gz: four resting-state fMRI scans
In addition, preprocessing derivatives for each subject are provided and include:
e /anat/
o * space-subject_desk-skullstripped T1w.nii.gz: skull-stripped T1w image
e /dwi/
o *_space-subject_desc-eddy_dwi.nii.gz: eddy-corrected DWI images, runs 01 and 02
concatenated
o *_space-subject_desc-eddy_dwi.bvec, * _space-subject_desc-eddy_dwi.bval,:

corresponding bvec and bval files for eddy-corrected concatenated DWI images

e /func/
o *_task-rest_run-01_space-F99_desc-confoundregressed_bold.nii.gz, * task-
rest_run-02_space-F99_desc-confoundregressed_bold.nii.gz, * task-rest_run-
03_space-F99_desc-confoundregressed_bold.nii.gz, * task-rest_run-04_space-

F99_desc-confoundregressed_bold.nii.gz: four preprocessed (up to confound

regression) resting-state fMRI scans, registered to F99 macaque template
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The macaque connectome dataset is openly available for download from Zenodo®°. Available files for
download include:
e weights.txt: Weights matrix representing a directed and weighted connectome in the 82-node
RM whole-cortex parcellation; ROl order as presented in the look-up table
e tract_lengths.txt: Tract length matrix, in mm
e TVBmacaque_RM_LUT.txt: Look-up table for RM parcellation; includes ROI ordering, label
indices, ROl names and abbreviations
e RM_inF99.nii.gz: labelled volume of gray matter ROls of RM parcellation, in F99 macaque atlas
space; labels as specified in the look-up table
o surf faces.txt, surf_vertices.txt, surf_labels.txt: F99 macaque atlas surface and corresponding

RM parcellation labels; labels as specified in the look-up table

Technical Validation

Tractography was used to estimate the fiber tract capacities of the macaque connectome via an
optimization procedure that selected the tractography and connectome threshold parameters that
produced the most accurate connectome for each subject, as assessed by comparison with tracer data
(Figure 2). The average 29-ROI connectome that resulted from this optimization procedure had
weights that were correlated with the tracer weights (r = 0.70, p < 0.001)3s°see 20 gyggesting that the
optimized tractography parameters for each subject could reasonably be applied to the estimation of
fiber tract capacities across the whole brain.

Tractography was therefore repeated using the whole-cortex RM parcellation and the average
weights and tract length estimates across subjects were applied to the tracer-derived RM connectivity
matrix to generate a canonical macaque connectome (Fig 2a-b). As reported in tracer studies,
macaque fiber tract capacities follow a lognormal distribution®®3!, We fit our tractography-derived
weight estimates with a lognormal function (mu=-5.07, sigma=1.92) and found that they also generally

followed a lognormal distribution (Fig 3c). In sum, despite optimizing tractography parameters to the
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detection of the presence and absence of connections while ignoring the effect of parameter choices
on weight estimates, tractography produced reasonably good estimates of edge weights.

As expected, tract length estimates were correlated with the Euclidean distance between ROI
pairs (Pearson correlation, r =0.72, p < 0.001; Fig. 3d), with tract length estimates (median: 38.8 mm)
being on average longer than Euclidean distances (median: 31.4 mm; Wilcoxon rank sum test, p <
0.001). Tract length estimates were also significantly shorter on average for intrahemispheric
connections (median: 33.2 mm) than interhemispheric ones (median: 51.4 mm; Wilcoxon rank sum
test, p < 0.001) (Fig 3e). Using a tracer connectome as the basis for the macaque brain’s
neuroanatomical pathways is still limited by the lack of available interhemispheric connectivity data
as well as by sources of variability in tracer data that have not been considered here (see % for a
discussion). However, it has been shown that limiting false positives at the expense of false negatives
allows for better representation of network topology?’. As such, we believe that building the macaque
connectome based on the available tracer data and only using tractography to estimate the edge
weights is the best approach given the current limitations of probabilistic tractography.

For the purposes of validating the connectome and demonstrating a use case for the dataset,
we simulated macaque resting-state BOLD-fMRI data in TVB. A parameter space exploration that fit
the simulated FC to the overall grand average empirical FC across a range of G and sigma values was
performed. The best fit simulated FC occurred with parameter values G = 0.298 and sigma = 0.0255
(Fig. 4a-c). This corresponded with a cosine similarity fit of 0.75, which was significantly greater than
the cosine similarity fits with null networks (p < 0.001). This best fit simulation was chosen for further
analysis. Example simulated BOLD timeseries from five randomly chosen ROls are shown in Figure 4d.
We inspected the top 10 nodes from the three most dominant networks identified using a PCA on the
simulated BOLD timeseries. The first network (59.3% of the covariance) was comprised of lateral
prefrontal and anterior cingulate regions bilaterally as well as left intraparietal area (Fig 4d, red). The
second network (12.3% of the covariance) included superior and central temporal cortical regions,

primary and secondary auditory cortices, as well as the insula bilaterally (Fig 4e, green). The third
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(7.6% of the covariance) was composed of V1, V2 and exstrastriate visual cortices bilaterally (Fig 4e,
blue). These networks are similar to the frontal, superior temporal, and visual resting-state networks
previously reported in macaques**%1, We additionally computed the nodal degree (sum of weights,
or strengths) of the simulated and empirical FC networks to compare their topologies. The strength of
each node in the simulated network was correlated with its strength in the empirical network (r=0.51,

p < 0.001) (Fig. 4f).
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Figure 4. Large-scale network simulations of resting-state fMRI data in the macaque. (a) Goodness of
fit (cosine similarity) between simulated FC grand average empirical FC with various instantiations of
global coupling ‘G’ and noise ‘sigma’ parameters. Maximum cosine similarity denoted by black asterisk.
(b) Simulated FC matrix associated with best fit G and sigma values. (c) Grand average empirical FC
matrix. (d) Simulated BOLD signals of five randomly selected ROIs. (e) Networks associated with the
first three principal components (PC) of the simulated timeseries. The 10 nodes having the largest
loadings were plotted for the first PC in red, the second PC in green and the third PC in blue. (f) Strength
of each node (i.e., sum of its weights) in the simulated network as a function of its strength in the
empirical network. Only positive empirical FC was considered, and the simulated network was
thresholded to the same density as the average empirical one.

To determine whether a canonical macaque connectome could be used to simulate resting-
state BOLD-fMRI of individual macaques, we fit the set of 3000 simulations generated from the
parameter space search to the empirical FC of each of our subjects. The best fit cosine similarity for

each animal (range: 0.47 — 0.80) (Fig. 5a) was significantly greater than the fits with each animal’s null
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FC distribution (all p < 0.01). Using each subject’s individual connectome for simulations resulted in
similar fits to individual empirical FC (cosine similarity: 0.47 —0.79) (Fig. 5a) that were not significantly
different from the fits obtained using the canonical connectome (paired t-test, p = 0.35). Together
with the observation that structural connectomes exhibit far less variance than functional ones®?, this
suggests that a canonical macaque connectome can be used in simulations to capture some aspects

of individual macaque whole-brain dynamics.
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Figure 5. Specificity of TVB simulations when using canonical and individualized connectomes. (a)
Goodness of fit (cosine similarity) between simulated FC with individual FC for canonical (black) and
individualized (red) connectome simulations. (b) Individual parameter sets shown in parameter space.
Using the canonical connectome for simulating individual FC resulted in identical parameter sets for 4
of 9 subjects (black) while individualized connectome simulations gave unique parameter sets (red) for
all subjects.

While the fits of the individualized simulations to empirical data may be no better than when
using the canonical connectome, an examination of the best-fit simulation parameters under each
condition suggests that individual specificity may instead be captured within the biophysical
parameters of the model (Fig. 5b). In the case of the canonical connectome simulations, 4 of 9 subjects
had identical G and sigma parameters and the simulated FC were all fairly similar to each other (cosine
similarity range: 0.80 — 1). For individualized connectome simulations, however, all parameter sets
were different across subjects and resulted in simulated FC that varied more across subjects (cosine
similarity range: 0.76 — 0.99). This is in line with our recent findings that individualized TVB model

parameters are better at predicting cognitive status in dementia than the coupling between structural
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and functional connectivity®! and suggests that generative models based on individual connectomes
may be able to capture subject-specific characteristics that are not identifiable from the empirical data
alone. The modelling approach may therefore extract the portion of the measured variance in the
empirical data that is most closely related to the underlying biophysics, increasing the sensitivity to

individual differences.

Usage Notes

In the technical validation section above, we described an example of how the macaque connectome
dataset can be used for region-based simulations. However, the dataset also includes a labelled
cortical surface, allowing for surface-based simulations such as those presented by Proix and
colleagues®. Further information on the TVB software platform, including the download package,

documentation and tutorials can be found at https://www.thevirtualbrain.org (also see

https://github.com/the-virtual-brain).

Our choice to construct the macaque connectome using the RM parcellation was a deliberate
one. The RM is one of the few whole cortex macaque parcellations whose ROls are generally well
represented by tracer data in CoCoMac®. Finer parcellations of the macaque brain such as the full 91-
ROI Markov-Kennedy®® or the 175-ROI Paxinos®® parcellations could be considered in the future in
combination with methods such as tractography or distance-based models for estimating missing
tracer data?®®%¢’, An additional advantage to the RM parcellation is that it was intended to harmonize
cytoarchitectonic, topographic and functional definitions of brain regions across primate species3’.
The application of the RM parcellation to the human brain therefore allows for direct cross-species
comparisons. The RM parcellation, with the addition of 14 subcortical regions, and the corresponding

connectome in humans is already available in TVB®®,
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Tables

Table 1. Optimal tractography parameters for each subject. In all cases, the maximum AUC value was
achieved without distance correction.

Connectome
Subject Curvature threshold threshold Max AUC
(% discarded)
1 0.2 5 0.70
2 0.2 15 0.68
3 0.8 35 0.64
4 0.6 5 0.69
5 0.6 25 0.66
6 0.2 10 0.69
7 0.4 5 0.69
8 0.4 0 0.73
9 0.6 5 0.71
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