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Abstract

Background: Welding exposes different types of fumes, gases and radiant energy that can
be potentially dangerous for unsafe welder’s health. Welding fumes (WFs) are a significant
problem among all those exposed. WFs are a complex mixture of metallic oxides, silicates
and fluorides that may result in different health effects. If a welder inhales such fumes in
large quantities over a long period of time, there is a risk of various neurodegenerative dis-
eases (NDGDs) development.
Methods: We developed quantitative frameworks to identify the genetic relationship of WFs
and NDGDs. We analyzed Gene Expression microarray data from WFs exposed tissues and
NDGDs including Parkinson’s disease (PD), Alzheimer’s disease (AD), Lou Gehrig’s disease
(LGD), Epilepsy disease (ED), Multiple Sclerosis disease (MSD) datasets. We constructed
disease-gene relationship networks and identified dysregulated pathways, ontological path-
ways and protein-protein interaction sub-network using multilayer network topology and
neighborhood-based benchmarking.
Results: We observed that WFs shares 18, 16, 13, 19 and 19 differentially expressed genes
with PD, AD, LGD, ED and MSD respectively. Gene expression dysregulation along with
relationship networks, pathways and ontologic analysis showed that WFs are responsible for
the progression of PD, AD, LGD, ED and MSD neurodegenerative diseases.
Conclusion: Our developed network-based approach to analysis and investigate the genetic
effects of welding fumes on PD, AD, LGD, ED and MSD neurodegenerative diseases could
be helpful to understand the causal influences of WF exposure for the progression of the
NDGDs.
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1. Introduction

Welding process is very dangerous because it exposes different types of fumes, gases and
radiant energy. Welding fumes (WFs) are the most venturous partial among all welding
exposers [1]. WFs are an intricate mixture of metallic oxides, silicates and fluorides include
Beryllium, Aluminum, Cadmium, Chromium, Copper, Iron, Lead, Manganese, Magnesium,
Nickel, Vanadium, and Zinc etc. [2]. If a welder inhales welding fumes in large quantities
over a long period of time, this may convey various NDGDs [1, 3].

Neurodegenerative diseases (NDGDs) are a collective term for a heterogeneous group of
disorders that are incurable and characterized by the progressive degeneration of the function
and structure of the central nervous system [4]. NDGDs primarily attack the neurons of
the central nervous system and progressively damage the function of them. Neurons are
most vulnerable to injury and normally dont reproduce or replace themselves [5]. If neurons
become damaged or die they cannot be replaced by medical treatments. So that NDGDs are
very dangerous and currently they dont have any cure. We studied several NDGDs include
PD, AD, LGD, ED and MSD to find the effects of welding fumes on them.

PD is the second-most neurologic disease that affects neural cells in the brain which
produce dopamine in the substantia nigra [6]. There are several symptoms of PD include
tremors, muscle rigidity, and changes in gait and speech. Welding fumes contain Manganese
that can develop Parkinsons disease [7]. The AD is the most common type of incurable
dementia that causes problems with progressive memory loss and other cognitive abilities.
Existing medical treatments for AD produce only a modest improvement of symptoms but
there is currently no cure [8]. Aluminum exposure to welding is a risk factor to produce AD.
LGD also cognizant as Amyotrophic lateral sclerosis (ALS), is a neurodegenerative disease
that progressively damages motor neurons and muscle atrophy controlling voluntary muscle
movement. The initial symptoms of LGD are muscle weakness or stiffness, can bring death
by progressive muscular paralysis and respiratory system failure within 2 to 5 years. US
Food and Drug Administration (FDA) approved Riluzole and Edaravone drugs that could
prolong LGD survival. But still, there is no effective cure or prevention for this devastating
disease [9, 10]. ED is a heterogeneous group of neurodegenerative disorder that affects neural
cells in the brain which are recognized by recurrent seizures or unusual behavior, awareness
and sensations suffering over 60 million people in the world. AEDs are Current anti-epileptic
drugs that can minimize symptoms but there is no permanent cure or prevention of ED [11].
MSD is a devastating neurodegenerative disorder that attacks the neurons of the central
nervous system in the spinal cord and brain, on young adults most commonly [12]. The
symptom of MSD can be included as muscle weakness, trouble with sensation, blindness in
one eye or double vision. Medical treatments of MSD could prolong only survival but there
is no permanent cure or prevention of MSD. Manganese exposure to welding is a main risk
factor on the progression of LGD, ED and MSD [13].

Our study employed a systematic and quantitative approach to find the genetic effects of
WFs on NDGDs. For these purposes, we studied several NDGDs including PD, AD, LGD,
ED and MSD. To understand the effects of WFs on NDGDs, we examined gene expression
dysregulation, disease association network, dysregulated pathway, gene expression ontology
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and protein-protein interaction. We also investigated the validation of our study by using
the gold benchmark databases (dbGAP and OMIM).

2. Materials and Methods

2.1. Datasets employed in this study

To investigate the effects of WFs on NDGDs at the molecular level, we used gene expres-
sion microarray data. In this study, we used Gene Expression Omnibus from the National
Center for Biotechnology Information (NCBI) (http://www.ncbi.nlm.nih.gov/geo/). We
analyzed 6 different datasets for our study with accession numbers GSE62384, GSE19587,
GSE28146, GSE833, GSE22779 and GSE38010 [14, 15, 16, 17, 18, 19]. The WFs dataset
(GSE62384) is a result of gene expression analysis of fresh welding fumes influence on upper
airway epithelial cells (RPMI 2650). This Data is collected from the people with spark-
generated welding fumes at high (760 g/m3) and low (85 g/m3) concentrations. The donors
inhaled welding fumes for 6 hours continuously, followed by zero hours or four hours post-
exposure incubation. The PD dataset (GSE19587) is taken from 6 postmortem brains of PD
patients and from 5 control brains. The AD dataset (GSE28146) is a microarray data on
RNA from fresh frozen hippocampal tissue blocks that contain both white and gray matter,
potentially obscuring region-specific changes. The LGD dataset (GSE833) is an Affymetrix
Human Full Length HuGeneFL [Hu6800] Array. In this data, postmortem spinal cord grey
matter from sporadic and familial ALGD patients are compared with controls. The ED
dataset (GSE22779) is a gene expression profiles of 4 non-leukemic individuals (1 healthy
and 3 with epilepsy) is generated from the mononuclear cells isolated from the peripheral
blood samples before, and after 2, 6, and 24 hours of in-vivo glucocorticoid treatment. The
MSD dataset (GSE38010) is a microarray data of multiple sclerosis (MS) patients brain
lesions compared with control brain samples.

2.2. Overview of analytical approach

We used systematic and quantitative approach to identify the effect of WFs on the
progression of the NDGDs using different sources of available microarray datasets. The
graphical representation of this approach is shown in figure 1. This approach included
gene expression, signaling pathway, Gene Ontology (GO) and protein-protein interaction
analyses. This approach also used Gold benchmark data to verify the validity of our study.

Figure 1: Flow-diagram of the analytical approach used in this study.

3

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 2, 2018. ; https://doi.org/10.1101/480806doi: bioRxiv preprint 

https://doi.org/10.1101/480806
http://creativecommons.org/licenses/by-nc-nd/4.0/


2.3. Analysis methods
Gene expression analysis using microarrays is a global and popular method to develop

and refine the molecular determinants of human disorders that have proven to be a sensitive
method [20]. We used these technologies to analyze the gene expression profiles of Parkin-
son’s disease (PD), Alzheimer’s disease (AD), Lou Gehrig’s disease (LGD), Epilepsy disease
(ED) and Multiple Sclerosis disease (MSD) to find the effects of welding fumes on them.
To uniform the mRNA expression data of different platforms and to avoid the problems
of experimental systems, we normalized the gene expression data (disease state or control
data) by using the Z-score transformation (Zij) for each NDGD gene expression profile using

Zij =
gij−mean(gi)

SD(gi)
,

where SD implies the standard deviation, gij represents the value of the gene expression
i in sample j. After this transformation we can directly compare of gene expression values of
various diseases under different platforms. We applied two conditions for t-test statistic. We
performed unpaired T-test to identify differentially expressed genes in patients over control
data and selected significant genes. We have chosen a threshold of at least 1 log2 fold change
and a p-value of <= 1 ∗ 10−2.

We applied the topological methods and neighborhood based benchmark to find gene-
disease associations. Gene-disease network (GDN) was constructed by using the gene-disease
associations, where the nods in the network represent either gene or disease. This network
can also be characterized as a bipartite graph. The diseases are connected in GDN when
they share at least one or more significant differentially expressed genes. Let D is a specific
set of diseases and G is a set of dysregulated genes, gene-disease associations attempt to find
whether gene g ∈ G is associated with disease d ∈ D. If Gi and Gj, the sets of significant
dysregulated genes associated with diseases Di and Dj respectively, then the number of
shared dysregulated genes (ng

ij) associated with both diseases Di and Dj is as follows [20]:

ng
ij = N(Gi ∩Gj) (1)

The common neighbours are the based on the Jaccard Coefficient method, where the
edge prediction score for the node pair is as [20]:

E(i, j) =
N(Gi ∩Gj)

N(Gi ∪Gj)
(2)

where G is the set of nodes and E is the set of all edges. We used R software packages
”comoR” [21] and ”POGO” [22] to cross check the genes-diseases associations.

To find molecular pathways of several NDGDs, we have analyzed pathway and gene
ontology using Enrichr (https : //amp.pharm.mssm.edu/Enrichr/), a comprehensive gene
set enrichment analysis web-based tool. We used STRING (https : //string − db.org.) for
analyzing protein-protein interactions.

3. Results

3.1. Gene Expression Analysis
To investigate the effects of WFs on NDGDs, we analyzed the gene expressing mi-

croarray data from the National Center for Biotechnology Information (NCBI) (http :
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//www.ncbi.nlm.nih.gov/geo/). We found that 903 genes were differentially expressed for
WFs with adjusted P <= .01 and |logFC| >= 1. Among them, 392 and 511 were up and
down regulated respectively. Similarly, our analysis identified the most significant differen-
tially expressed genes for each NDGD after various steps of statistical analysis. We identified
differentially expressed genes, 774 (263 up and 511 down) in PD, 565 (291 up and 274 down)
in AD, 501 (296 up and 205 down) in LGD, 725 (350 up and down) in ED and 834 (455
up and 388 down) in MSD. The cross-comparative analysis was also performed to find the
common differentially expressed genes between WFs and each NDGD. We observed that
WFs shares 18, 16, 13, 19 and 19 differentially expressed genes with PD, AD, LGD, ED and
MSD respectively. To find the significant associations among these NDGDs with WFs, we
built two separate disease relationships networks for up and down-regulated genes, centered
on the WFs as shown in figure 2 and 3. Two diseases are associated with each if there exist
one or more common genes in between these diseases [23]. Noticeably, 2 significant genes,
N4BD2L2 and NAAA are commonly differentially expressed among WFs, LGD and WD;
one gene DAAM1 is commonly dysregulated among WFs, ED and MSD.

Figure 2: Disease network of Welding fumes (WFs) with Parkinson’s disease (PD), Alzheimer’s disease (AD),
Lou Gehrig’s disease (LGD), Epilepsy disease (ED) and Multiple Sclerosis disease (MSD). Red colored
octagon-shaped nodes represent different categories of disease, and round-shaped sky blue colored nodes
represent commonly up-regulated genes for WFs with the other neurodegenerative disorders. A link is
placed between a disorder and a disease gene if mutations in that gene lead to the specific disorder.

3.2. Pathway and Functional Association Analysis

Pathways are the key to know how an organism reacts to perturbations in its internal
changes. The pathway-based analysis is a modern technique to understand how different
complex diseases are related to each other by underlying molecular or biological mechanisms
[24]. We analyzed pathways of the common differentially expressed genes using Enrichr, a
comprehensive gene set enrichment analysis web-based tool [25]. Pathways of the commonly
dysregulated genes in between WFs and each NDGD were analyzed using four databases
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Figure 3: Disease network of Welding fumes (WFs) with Parkinson’s disease (PD), Alzheimer’s disease
(AD), Lou Gehrig’s disease (LGD), Epilepsy disease (ED) and Multiple Sclerosis disease (MSD). Red col-
ored octagon-shaped nodes represent different categories of disease, and round-shaped green colored nodes
represent commonly down-regulated genes for WFs with the other neurodegenerative disorders. A link is
placed between a disorder and a disease gene if mutations in that gene lead to the specific disorder.

includes KEGG, WikiPathways, Reactome and BioCarta. We combined pathways from
four mentioned databases and identified the most significant pathways of each disease after
various steps of statistical analysis.

We observed that PD has five significant pathways as shown in table 1. Among these
pathways, ’Glutamate Neurotransmitter Release Cycle’ is responsible to release the gluta-
mate from the presynaptic neuron and its binding to glutamate receptors on the postsynaptic
cell to generate a series of events that lead to the propagation of the synaptic transmission
[26]. The pathway ’Sphingolipid de novo biosynthesis’ is responsible to provide signals in
molecules that regulate various biological functions [27]. The pathway ’Intrinsic Pathway
for Apoptosis’ is responsible to manage a variety of intracellular stress signal including
DNA damage, growth factor withdrawal, unfolding stresses in the endoplasmic reticulum
and death receptor stimulation [28]. Kinesins are a super-group of motor proteins based on
microtubule that has various functions in the transport of vesicles, organelles, chromosomes,
and regulate microtubule dynamics [29]. The pathway ’Neurotransmitter Release Cycle’
is responsible to control electrical signals passing through the axons in the form of action
potential.

We observed that AD has four significant pathways as shown in table 2. Among these
pathways, ’Circadian rhythm pathway’ is responsible to feed and influence clocks in other
tissues by hormone secretion and nervous stimulation from the brain [30]. Sphingomyelin
synthesis appears to be regulated primarily at the level of this transport process through
the reversible phosphorylation of CERT (Saito et al. 2008). ’Amyotrophic lateral sclerosis
(ALS)’ is responsible for most common motor neuron disease [31]. ’MAPKinase Signaling
Pathway’ is responsible for manage signals of reactions that regulate cell proliferation and
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Table 1: Pathways Associated with Significantly Commonly Differentially Expressed Genes of the PD with
WFs.

apoptosis [32].

Table 2: Pathways Associated with Significantly Commonly Differentially Expressed Genes of the AD with
WFs.

We observed that LGD has six significant pathways as shown in table 3. Among these
pathways, ’Rap1 signaling pathway’ is responsible for controlling a variety of processes, such
as cell adhesion, cell polarity and cell-cell junction formation [33]. ’P53 signaling pathway’
manages various stress signals, including activated oncogenes, oxidative stress and DNA
damage.

Table 3: Pathways Associated with Significantly Common Differentially Expressed Genes of the LGD with
WFs.

We observed that ED has five significant pathways as shown in table 4. Among these
pathways, ’Neurotransmitter Release Cycle’ is responsible to control electrical signals passing
through the axons in the form of action potential. ’Glycogen Metabolismserves’ serves as a
major stored fuel for several tissues. The keratinocytes function is to form a barrier against
environmental damage by fungi pathogenic bacteria, parasites, viruses, and UV radiation.

We observed that MSD has five significant pathways as shown in table 5. Among these
pathways, ’Endocrine and other factor-regulated calcium reabsorption’ is essential for numer-
ous physiological functions including muscle contraction, intracellular signalling processes,
neuronal excitability and bone formation [34]. ’Mineral absorption’ provides mineral in the
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Table 4: Pathways Associated with Significantly Common Differentially Expressed Genes of the ED with
WFs.

neural cell to sustain life. ’Cholesterol biosynthesis’ controls cholesterol to the nucleus and
activating genes.

Table 5: Pathways Associated with Significantly Common Differentially Expressed Genes of the MSD with
WFs.

3.3. Gene Ontological Analysis

The Gene Ontology (GO) refers to a universal conceptual model for representing gene
functions and their relationship in the domain of gene regulation. It is constantly expanded
by accumulating the biological knowledge to cover regulation of gene functions and the
relationship of these functions in terms of ontology classes and semantic relations between
classes [35]. GO of the significantly dysregulated genes were analyzed using Enrichr, a
comprehensive gene set enrichment analysis web-based tool [25]. GO of the commonly
differentially expressed genes (i.e. Dysregulated genes in between WFs and each NDGD) for
each NDGD and WFs were analyzed using two databases of Enrichr including GO Biological
Process and Human Phenotype Ontology. We combined ontologies from two mentioned
databases and identified the most significant GO term of each disease after various steps
of statistical analysis. We observed that 15, 15, 24, 19 and 17 gene ontology classes are
associated with the significantly commonly dysregulated (i.e. Dysregulated genes in between
WFs and each NDGD) genes for WFs with the PD, AD, LGD, Ed and MSD respectively
as shown in table 6-10.

3.4. Protein-Protein Interaction Analysis

Protein-protein interaction networks (PPINs) are the mathematical representation of the
physical contacts of proteins in the cell. Protein-protein interactions (PPIs) are essential
to every molecular and biological process in a cell, so PPIs is crucial to understand cell
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Table 6: Gene Ontologies Associated with the Significantly Commonly Dysregulated Genes of the PD with
WFs.

Table 7: Gene Ontologies Associated with the Significantly Commonly Dysregulated Genes of the AD with
WFs.

Table 8: Gene Ontologies Associated with the Significantly Commonly Dysregulated Genes of the LGD with
WFs.
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Table 9: Gene Ontologies Associated with the Significantly Commonly Dysregulated Genes of the ED with
WFs.

Table 10: Gene Ontologies Associated with the Significantly Commonly Dysregulated Genes of the MSD
with WFs.

physiology in disease and healthy states [36]. PPIs of the differentially expressed genes were
analyzed using STRING, a biological database and web resource of known and predicted
protein-protein interactions [37]. We constructed protein-protein interaction network of sig-
nificantly commonly dysregulated genes (i.e. Dysregulated genes in between WFs and each
NDGD) of all NDGDs using STRING. We clustered into five different groups of interactions
of five NDGDs as shown in figure 4.

4. Discussion

We investigated the genetic relationship of Welding fumes (WFs) and neurodegenerative
diseases (NDGDs) based on the associations of genetics, signaling pathways, gene expres-
sion ontologies and protein-protein interactions network. For the purpose of our study, we
analyzed Gene Expression Omnibus (GEO) microarray data from WFs, Parkinson’s disease
(PD), Alzheimer’s disease (AD), Lou Gehrig’s disease (LGD), Epilepsy disease (ED), Mul-
tiple Sclerosis disease (MSD) and control datasets. We found a good number of significantly
commonly dysregulated genes in between WFs and NDGDs by gene expression analysis.
As there have a good number of significantly commonly dysregulated genes of WFs and
NDGDs, it determines that WFs should have effects on NDGDs. Our two separate disease
relationships networks for up and down-regulated genes strongly indicated that WFs are
highly responsible for NDGDs as shown in Figure 2 and 3. The pathway-based analysis
is a modern technique to understand how different complex diseases are related to each
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Figure 4: Protein-Protein Interaction Network of the Significantly Commonly Dysregulated Genes of the
NDGDs with WFs.

other by underlying molecular or biological mechanisms. We identified pathways of the
commonly differentially expressed genes (i.e. Dysregulated genes in between WFs and each
NDGD) of each NDGD. These identified pathways agreed that WFs have a strong associ-
ation with NDGDs. Similarly, gene expression ontologies and protein-protein interactions
of common differentially expressed genes determine that WFs can carry several NDGDs on
unsafe welder’s health.

We have verified our result with the gold benchmark databases (dbGAP and OMIM)
and found that there are some shared genes between the WFS and NDGDs as shown in
figure 5. For cross checking the validity of our study, we collected genes and disease names
from OMIM Disease, OMIM Expanded and dbGap databases using differentially expressed
genes of WFs. We combined the diseases from three mentioned databases and selected only
neurodegenerative diseases (NDGDs) after various steps of statistical analysis. Interestingly,
we found our selected five NDGDs among the list of collected NDGDs from the mentioned
databases as shown in figure 5. Therefore, it proved that WFs may have a strong association
for the progression of PD, AD, LGD, ED and MSD neurodegenerative diseases [7, 13].

5. Conclusions

In this study, we have considered Gene Expression Omnibus (GEO) microarray data from
welding fumes (WFs), Parkinson’s disease (PD), Alzheimer’s disease (AD), Lou Gehrig’s dis-
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Figure 5: Disease network of Welding fumes (WFs) with several NDGDs. Red colored octagon-shaped
nodes represent different categories of NDGDs, Violet colored octagon-shaped nodes represent our selected
five NDGDs and round-shaped sky blue colored nodes represent differentially expressed genes for WFs. A
link is placed between a disorder and a disease gene if mutations in that gene lead to the specific disorder.

ease (LGD), Epilepsy disease (ED), Multiple Sclerosis disease (MSD) and control datasets to
analyze and investigate the genetic effects of WFs on neurodegenerative diseases (NDGDs).
We analyzed dysregulated genes, disease relationship networks, dysregulated pathways, gene
expression ontologies and protein-protein interactions of WFs and NDGDs. Our findings
showed that WFs have a strong association with NDGDs. This kind of study will be useful
for making genomic evidence based recommendations about the accurate disease prediction,
identification and therapeutic treatments. This study also will be useful for making society
aware of the dangerous effect of welding on the human body.
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