

1 **Biomass segregation between biofilm and flocs improves the control of**
2 **nitrite-oxidizing bacteria in mainstream partial nitritation and**
3 **anammox processes**

4

5

6 Michele Laureni^{1,2,a,b,*}, David G. Weissbrodt^{3,4}, Kris Villez¹, Orlane Robin¹, Nadieh de Jonge⁴, Alex
7 Rosenthal⁵, George Wells⁵, Jeppe Lund Nielsen⁴, Eberhard Morgenroth^{1,2}, Adriano Joss¹

8 ¹ Eawag: Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600
9 Dübendorf, Switzerland

10 ² Institute of Environmental Engineering, ETH Zürich, Stefano-Francini-Platz 5, CH-8093 Zürich,
11 Switzerland

12 ³ Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, NL- 2629 HZ
13 Delft, The Netherlands

14 ⁴ Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, DK-9220
15 Aalborg, Denmark

16 ⁵ Northwestern University, Department of Civil and Environmental Engineering, Evanston, IL, USA

17

18 *Corresponding author: Michele Laureni (m.laureni@tudelft.nl, mil@bio.aau.dk)

19

20 ^a Present address: Department of Biotechnology, Delft University of Technology, Van der Maasweg
21 9, NL- 2629 HZ Delft, The Netherlands

22 ^b Present address: Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej
23 7H, DK-9220 Aalborg, Denmark

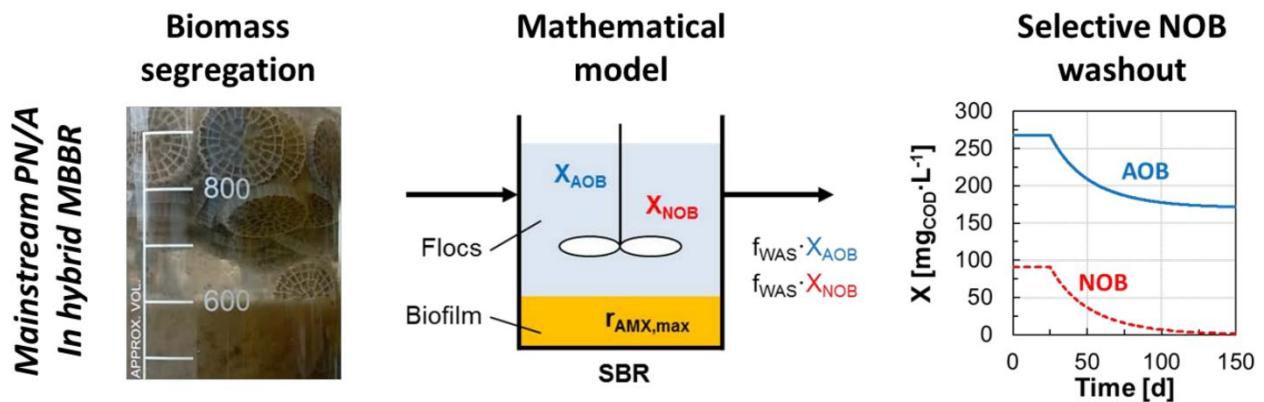
24 **Abstract**

25 The control of nitrite-oxidizing bacteria (NOB) challenges the implementation of partial nitritation and
26 anammox (PN/A) processes under mainstream conditions. The aim of the present study was to
27 understand how operating conditions impact microbial competition and the control of NOB in hybrid
28 PN/A systems, where biofilm and flocs coexist. A hybrid PN/A moving-bed biofilm reactor (MBBR;
29 also referred to as integrated fixed film activated sludge or IFAS) was operated at 15 °C on aerobically
30 pre-treated municipal wastewater (23 mgNH₄-N·L⁻¹). Ammonium-oxidizing bacteria (AOB) and NOB
31 were enriched primarily in the flocs, and anammox bacteria (AMX) in the biofilm. After decreasing
32 the dissolved oxygen concentration (DO) from 1.2 to 0.17 mgO₂·L⁻¹ - with all other operating
33 conditions unchanged - washout of NOB from the flocs was observed. The activity of the minor NOB
34 fraction remaining in the biofilm was suppressed at low DO. As a result, low effluent NO₃⁻
35 concentrations (0.5 mgN·L⁻¹) were consistently achieved at aerobic nitrogen removal rates (80 mgN·L⁻¹
36 ·d⁻¹) comparable to those of conventional treatment plants. A simple dynamic mathematical model,
37 assuming perfect biomass segregation with AOB and NOB in the flocs and AMX in the biofilm, was
38 able to qualitatively reproduce the selective washout of NOB from the flocs in response to the decrease
39 in DO-setpoint. Similarly, numerical simulations indicated that flocs removal is an effective
40 operational strategy to achieve the selective washout of NOB. The direct competition for NO₂⁻ between
41 NOB and AMX - the latter retained in the biofilm and acting as a “NO₂-sink” - was identified by the
42 model as key mechanism leading to a difference in the actual growth rates of AOB and NOB (*i.e.*,
43 $\mu_{NOB} < \mu_{AOB}$ in flocs) and allowing for the selective NOB washout. Experimental results and model
44 predictions demonstrate the increased operational flexibility, in terms of variables that can be easily
45 controlled by operators, offered by hybrid systems as compared to solely biofilm systems for the
46 control of NOB in mainstream PN/A applications.

47 **Keywords:** Mainstream anammox; partial nitritation/anammox; hybrid system; IFAS; biomass
48 segregation; NOB washout; mathematical modelling; nitrite sink

49 **Highlights**

50 • Hybrid PN/A systems provide increased operational flexibility for NOB control


51 • AOB and NOB enrich primarily in the flocs, and AMX in the biofilm (“NO₂-sink”)

52 • AMX use NO₂⁻ allowing to differentiate AOB and NOB growth rates

53 • A decrease in DO or an increase in floc removal leads to selective NOB washout from flocs

54 • The activity of the minor NOB fraction in the biofilm is suppressed at limiting DO

55 **Graphical Abstract**

56

57 **1 Introduction**

58 Partial nitritation and anammox (PN/A) is a resource-efficient alternative process for the removal of
59 nitrogen from municipal wastewater (MWW) and holds promise to bring wastewater treatment plants
60 (WWTP) close to neutral or even positive energy balances (Siegrist *et al.*, 2008, van Loosdrecht and
61 Brdjanovic 2014). PN/A technologies are implemented for the treatment of warm and concentrated
62 streams such as digester supernatant (“sidestream PN/A”; Lackner *et al.*, (2014)). Research targeting
63 the direct application of PN/A to more dilute MWW, or “mainstream PN/A”, is progressing at a fast
64 pace (De Clippeleir *et al.*, 2013, Gilbert *et al.*, 2015a, Laureni *et al.*, 2016, Lotti *et al.*, 2015). The
65 challenges associated with mainstream PN/A relate to the highly variable, dilute and cold
66 characteristics of MWW. Moreover, mainstream PN/A must guarantee volumetric N-removal rates
67 comparable to conventional WWTP (*i.e.*, $100 \text{ mg}_{\text{N}} \cdot \text{L}^{-1} \cdot \text{d}^{-1}$; Metcalf & Eddy *et al.*, (2013)) and reliably
68 discharge effluent to stringent water quality standards (*e.g.*, below $2 \text{ mg}_{\text{NH4-N}} \cdot \text{L}^{-1}$ in Switzerland; WPO
69 (1998)).

70 Successful PN/A relies on the concerted activity of aerobic (AOB) and anaerobic ammonium-oxidizing
71 (AMX) bacteria (Speth *et al.*, 2016). Optimized microbial community engineering strategies are
72 required to favour the growth of AOB and retain the slower-growing AMX, while out-competing the
73 undesired nitrite-oxidizing bacteria (NOB). Several operational strategies implemented in sidestream
74 applications are not feasible under mainstream conditions. At mesophilic temperatures ($> 20^\circ\text{C}$), AOB
75 display higher maximum growth rates than NOB, which allows selective NOB washout at a
76 sufficiently low solids retention time. Conversely, at mainstream temperatures between $10\text{--}20^\circ\text{C}$ (in
77 temperate regions), the differences in growth rates are minimal (Hellinga *et al.*, 1998). In addition,
78 nitrogen concentrations in the main line are too low for NOB to be inhibited by free ammonia (NH_3)
79 or free nitrous acid (HNO_2) (Anthonisen *et al.*, 1976, Jubany *et al.*, 2009). As a result, NOB control
80 and washout cannot be based on maximum growth rates alone, as is efficiently achieved in sidestream
81 suspended biomass systems (Hellinga *et al.*, 1998, Joss *et al.*, 2011).

82 The use of biofilms, either grown on carrier material or in the form of granular bio-aggregates, has
83 proven effective to achieve stable and resilient PN/A under mainstream conditions at laboratory scale
84 (Gilbert *et al.*, 2015a, Laureni *et al.*, 2016, Lotti *et al.*, 2015). Biofilms allow for the long solids
85 retention times (SRT) needed to retain AMX, while substrate gradients promote the suppression of
86 NOB activity (Brockmann and Morgenroth 2010, Gilbert *et al.*, 2015a, Laureni *et al.*, 2016, Lotti *et*
87 *al.*, 2014, Pérez *et al.*, 2014). NOB control in biofilm systems is mainly driven by the competition for
88 oxygen with AOB, with the latter usually featuring higher substrate affinities (Brockmann and
89 Morgenroth 2010, Corbala-Robles *et al.*, 2016, Pérez *et al.*, 2014). PN/A operation under oxygen-
90 limited NH_4^+ oxidation can favour nitritation while limiting the aerobic growth of NOB (Brockmann
91 and Morgenroth 2010, Isanta *et al.*, 2015, Pérez *et al.*, 2014). However, operation under oxygen
92 limitation inherently limits the AOB activity as well, and thus the overall process rate (Laureni *et al.*,
93 2015, Perez *et al.*, 2014). Moreover, despite the generally accepted higher affinity of AOB for oxygen
94 (Rittmann and McCarty 2001), NOB are known to adapt to low dissolved oxygen concentrations (DO)
95 (Liu and Wang 2013), and several studies have recently reported higher oxygen affinities for NOB
96 than AOB (Malovanyy *et al.*, 2015, Regmi *et al.*, 2014, Sliekers *et al.*, 2005). Lastly, although their
97 activity can be suppressed, NOB can persist in the biofilm and become active when favourable
98 conditions are re-established, making their long-term suppression in solely biofilm systems
99 challenging (Fux *et al.*, 2004, Gilbert *et al.*, 2015a, Isanta *et al.*, 2015, Laureni *et al.*, 2016, Lotti *et al.*,
100 2014).

101 Hybrid systems, where biofilms and flocs coexist (also referred to as integrated fixed film activated
102 sludge or IFAS), are currently receiving increased attention for their potential advantages for PN/A
103 applications. Experimental evidence (Laureni *et al.*, 2016, Leix *et al.*, 2016, Malovanyy *et al.*, 2015,
104 Park *et al.*, 2014, Shi *et al.*, 2016, Veuillet *et al.*, 2014, Vlaeminck *et al.*, 2010, Wells *et al.*, 2017,
105 Winkler *et al.*, 2011) and numerical results (Hubaux *et al.*, 2015, Volcke *et al.*, 2012) indicate that the
106 faster-growing aerobic guilds tend to enrich in the floc fraction, with direct access to dissolved
107 substrates. In turn, AMX have been shown to enrich in the biofilm, where anoxic conditions are

108 achieved. As a result, differential control of the retention times of the bacterial guilds associated with
109 the two biomass fractions is in principle possible (Wett *et al.*, 2015). Moreover, as flocs are less
110 diffusion-limited than biofilms, significantly higher aerobic volumetric conversion rates can be
111 achieved even at low DO (Veuillet *et al.*, 2014). Nonetheless, published data on hybrid systems
112 operated for PN/A remain limited and seemingly contradictory. Hybrid systems at high flocs
113 concentrations above $1 \text{ gTSS}\cdot\text{L}^{-1}$ have been applied at full scale to treat digester supernatant at
114 mesophilic temperatures with negligible NOB activity (Veuillet *et al.*, 2014). Conversely, increased
115 NOB activity has been reported in hybrid systems with a fraction of flocs as small as $< 10\%$ of total
116 solids (Hubaux *et al.*, 2015, Laureni *et al.*, 2016). The implications of biomass segregation and
117 operational conditions for microbial competition in hybrid systems are as yet largely unknown.

118 The aim of this work was to understand the dominant mechanisms controlling the interaction between
119 biofilm and flocs, the influence of operating conditions, and their implications for NOB control in
120 hybrid PN/A systems. The effect of the DO on NOB was assessed experimentally in an IFAS system
121 operated on real MWW at 15°C . In parallel, a simplified dynamic mathematical model of the hybrid
122 system was developed to provide a mechanistic interpretation of the experimental results, and to
123 understand how the composition of the flocs and the NOB concentration respond to changes in DO,
124 flocs removal, and AMX activity in the biofilm. The sensitivity of the simulation outcome to model
125 parameters was assessed. Relevant scenarios for engineering practice are also discussed.

126 **2 Materials and methods**

127 **2.1 Long-term reactor operation at different DO**

128 A 12 L hybrid MBBR was operated as a sequencing batch reactor (SBR) for PN/A on aerobically pre-
129 treated MWW (see next section). The reactor was filled at a volumetric ratio of 33% with K5 biofilm
130 carriers (AnoxKaldnesTM, Sweden; protected surface of 800 m²·m⁻³). The biomass was previously
131 acclimatised to the influent for over one year (Laureni *et al.*, 2016). The reactor was run for 565 days
132 at 15.5 ± 1.0°C. Each SBR cycle consisted of six steps: feeding (5 L of pre-treated MWW, 5 min),
133 anoxic mixing (10 min; 200 rpm), aeration and mixing (variable duration terminated at a residual NH₄⁺
134 concentration of 2 mg_{NH4-N}·L⁻¹), anoxic mixing (60 min), settling (60 min), and effluent discharge
135 (terminated at 7 L fill level; 2 min). The DO was varied between micro-aerobic conditions (*Phases I*,
136 *III*, V: 0.17 ± 0.04 mg_{O2}·L⁻¹; (Gilbert *et al.*, 2015b)), and aerobic conditions (*Phases II*, *IV*: 1.2 ± 0.2
137 mg_{O2}·L⁻¹ and 1.6 ± 0.1 mg_{O2}·L⁻¹; (Regmi *et al.*, 2014)) (Figure 2). The total cycle duration varied
138 between 3.5 ± 0.5 and 5.3 ± 0.3 h for operation at high and low DO, respectively.

139 The reactor was equipped with an optical oxygen sensor (Oxymax COS61D), ion-selective electrodes
140 for NH₄⁺ and NO₃⁻ concentrations, and pH and temperature sensors (ISEmax CAS40D), all from
141 Endress+Hauser (Switzerland). The pH was not controlled and remained stable at 7.4 ± 0.2 throughout
142 the experimental period. Operational data are presented in Figure S1.

143 **2.2 Municipal wastewater (MWW)**

144 The municipal wastewater was taken from the sewer of Dübendorf (Switzerland). After primary
145 treatment (screen, sand removal and primary clarifier), MWW was pre-treated in an aerated 12 L SBR
146 operated for high-rate organic carbon (as COD) removal at an SRT of 1 d. The pre-treated MWW
147 featured the following characteristics: 54 ± 13 mg_{CODsol}·L⁻¹, 23 ± 6 mg_{NH4-N}·L⁻¹, and < 0.3 mg_N·L⁻¹ of
148 NO₂⁻ and NO₃⁻. Prior to feeding to the PN/A reactor, the pre-treated MWW was stored in a temperature-
149 controlled (< 20°C) external buffer tank of 50 L to equalize the hydraulic loads.

150 **2.3 Control of total suspended solids (TSS) and calculation of their dynamic SRT**

151 In addition to the settling step in the SBR cycle, from day 70 onwards the reactor effluent was filtered
152 through a 10 L filter-bag (50-µm-mesh; 3M™ NB Series, Nylon Monofilament) placed in a 50 L
153 barrel. The content of the net was centrifuged for 5 min at 2000 × g, and the solids were reintroduced
154 into the reactor on a daily basis. The TSS in the reactor and all activities were measured one cycle after
155 biomass reintroduction.

156 The dynamic total SRT was calculated considering only the observed sludge loss in the effluent and
157 by sampling (modified from Takács *et al.*, (2008)):

158
$$SRT_{t+\Delta t} = SRT_t \cdot \left(1 - \frac{X_{effluent} \cdot V_{effluent} + X_{reactor} \cdot V_{sample}}{X_{reactor} \cdot V_{reactor}}\right) + \Delta t \quad (1)$$

159 where $X_{effluent}$ is the average TSS concentration in the sock-net effluent ($gTSS \cdot L^{-1}$), $V_{effluent}$ is the total
160 effluent volume discharged during the time interval, V_{sample} is the volume taken out for biomass
161 sampling, $X_{reactor}$ is the TSS concentration in the reactor ($gTSS \cdot L^{-1}$), $V_{reactor}$ is the volume of the bulk
162 liquid phase in the reactor (12 L), and Δt is the time interval between subsequent measurements (d).

163 The aerobic SRT is calculated from the total SRT as follows:

164
$$SRT_{aerobic} = SRT \cdot \frac{t_{aerobic}}{t_{total}} \quad (2)$$

165 where $t_{aerobic}/t_{total}$ is the actual fraction of aerobic time over the total batch time (Figure S1). The
166 development of TSS, SRT and $SRT_{aerobic}$ over time is presented in Figure S2, together with the
167 volumetric particle size distribution of the flocs measured on days 451 and 465 via laser light scattering
168 (Mastersizer 2000, Malvern, UK).

169 **2.4 Maximum activities of AOB, NOB and AMX, and their segregation between biofilm and
170 flocs**

171 The maximum anammox activity ($r_{AMX,max}$) is defined as the volumetric rate of nitrogen removal (sum
172 of NH_4^+ and NO_2^-) in the absence of DO and under non-limiting concentrations of NH_4^+ and NO_2^- .

173 $r_{AMX,max}$ was measured *in-situ* once or twice a week. The maximum activities of AOB and NOB
174 ($r_{AOB,max}$ and $r_{NOB,max}$) are defined respectively as the volumetric rates of NH_4^+ oxidation and NO_3^-
175 production. $r_{AOB,max}$ and $r_{NOB,max}$ were measured via *ex-situ* batch tests (1 L) run under fully aerobic
176 conditions ($> 5 \text{ mgO}_2 \text{ L}^{-1}$) and non-limiting concentrations of NH_4^+ and NO_2^- . The liquid fraction was
177 sampled during mixing and a proportional number of random carriers were chosen manually. Mixing
178 was provided with a magnetic stirrer (200 rpm) and the temperature was maintained at $15 \pm 1^\circ\text{C}$. After
179 manually removing all carriers, $r_{AOB,max}$ and $r_{NOB,max}$ of the flocs were measured. The $r_{AMX,max}$ value of
180 the suspension was checked *ex-situ* five times throughout the experimental period and was confirmed
181 to be negligible. NH_4^+ and NO_2^- were supplied as NH_4Cl and NaNO_2 ($20\text{-}30 \text{ mgN L}^{-1}$), and volumetric
182 consumption rates were calculated by linear regression of laboratory measurements of 3-4 grab
183 samples from the bulk liquid phase.

184 **2.5 Activities of AOB, NOB, and AMX during regular operation (aerobic step)**

185 The volumetric activities of the three main autotrophic guilds during regular operation ($r_{AOB,cycle}$,
186 $r_{NOB,cycle}$ and $r_{AMX,cycle}$ expressed as $\text{mg}_{\text{NH}_4\text{-N}} \text{ L}^{-1} \text{ d}^{-1}$, $\text{mg}_{\text{NO}_3\text{-N}} \text{ L}^{-1} \text{ d}^{-1}$, and $\text{mg}_{(\text{NH}_4+\text{NO}_2)\text{-N}} \text{ L}^{-1} \text{ d}^{-1}$
187 respectively) were estimated according to Laureni *et al.*, (2016). In short, during the aerated step of an
188 SBR cycle, the consumption of NH_4^+ , accumulation of NO_2^- and production of NO_3^- were followed by
189 laboratory measurements of 3-4 grab samples from the bulk liquid phase. The activities were estimated
190 based on the stoichiometric and kinetic matrix presented in Table 1, with parameters from Table 2.
191 Heterotrophic denitrification during aeration was assumed to be negligible (Laureni *et al.*, 2016).

192 **2.6 Nitrogen removal over the entire SBR cycle and during the aerobic step**

193 Over the entire SBR cycle, the volumetric N-removal rate ($\text{mgN L}^{-1} \text{ d}^{-1}$) was calculated by dividing the
194 difference between the sum of the dissolved nitrogen species (NH_4^+ , NO_2^- and NO_3^-) in the influent
195 and effluent by the hydraulic retention time (HRT, d). The relative removals (%) of NH_4^+ and total

196 nitrogen are defined as the difference between their influent and effluent concentrations divided by the
197 influent concentrations. The influent and effluent were sampled once per week (Figure S3).

198 During aeration, the aerobic volumetric N-removal rate ($\text{mgN}\cdot\text{L}^{-1}\cdot\text{d}^{-1}$) was calculated as the difference
199 between the NH_4^+ consumption rate and the rates of NO_2^- and NO_3^- production. The aerobic N-removal
200 efficiency (%) was estimated by dividing the N-removal rate during aeration by the NH_4^+ depletion
201 rate.

202 **2.7 Growth rate of AOB, NOB, and AMX**

203 The maximum growth rates of AOB ($\mu_{\text{AOB},\text{max}}$) and NOB ($\mu_{\text{NOB},\text{max}}$) were estimated during *Phase II*,
204 when substrate limitations were minor, based on the measured exponential increase in their maximum
205 activity in the flocs ($r_{i,\text{max}}$, Figure 2b), or in their activity during operation ($r_{i,\text{cycle}}$, Figure 2c). Most of
206 the activity increase occurred in suspension, where diffusion limitation was assumed to be of minor
207 importance. The suspended solids mass balance (X_i , with $i=\text{AOB, NOB}$) is expressed as:

$$208 \frac{dX_i}{dt} = \left(\mu_{i,\text{max}} - b_i - \frac{1}{\text{SRT}} \right) \cdot X_i = \mu_{i,\text{obs}} \cdot X_i \quad (3)$$

209 where $\mu_{i,\text{max}}$ and $\mu_{i,\text{obs}}$ are the maximum and observed growth rates, respectively, of the guild i (d^{-1}), b_i
210 is the decay rate of the guild i (d^{-1} ; set to 0.05 $\mu_{i,\text{max}}$), and SRT is the solids retention time (d). The
211 value of $\mu_{i,\text{obs}}$ was obtained from the exponential interpolation of the measured increase in activities
212 (r_i , $\text{mgN}\cdot\text{L}^{-1}\cdot\text{d}^{-1}$):

$$213 r_{i,t} = r_{i,t-\Delta t} \cdot \exp(\mu_{i,\text{obs}} \cdot \Delta t) \quad (4).$$

214 From Eq. 3 and 4, and considering that growth occurs only during the aerobic time, the maximum
215 growth rate can be estimated as follows:

$$216 \mu_{i,\text{max}} = \left(\mu_{i,\text{obs}} + b_i \right) \cdot \frac{t_{\text{total}}}{t_{\text{aerobic}}} + \frac{1}{\text{SRT}_{\text{aerobic}}} \quad (5)$$

217 where $t_{\text{aerobic}}/t_{\text{total}}$ is the average fraction of aerobic time over the total batch time, and $\text{SRT}_{\text{aerobic}}$ the
218 average aerobic SRT during the considered period. The SRT was not considered in the estimation of

219 the maximum growth rate of AMX ($\mu_{AMX,max}$), as their growth occurred almost exclusively on the
220 biofilm.

221 **2.8 Amplicon sequencing analyses of the bacterial community compositions in biofilm and**
222 **flocs**

223 The amplicon sequencing method is presented in the Supporting Information, Section S1 (Lauren *et*
224 *al.*, 2016).

225 **2.9 Analytical methods**

226 The concentration of NH_4^+ was analysed using a flow injection analyser (FIAstar 5000, Foss,
227 Denmark). The concentrations of NO_2^- and NO_3^- were analysed by ion chromatography (Compact IC
228 761, Metrohm, Switzerland). The COD was measured photometrically with test kits (Hach Lange,
229 Germany). The samples were filtered using 0.45 μm filters (Macherey-Nagel, Germany) prior to
230 analysis. The concentration of total and volatile suspended solids (VSS, TSS) in the mixed liquors was
231 determined according to standard methods (APHA 2005). The total solids (TS) on biofilm carriers
232 were estimated as described previously (Lauren *et al.*, 2016).

233 **3 Mathematical model of the hybrid system**

234 **3.1 Model description**

235 A dynamic model of the hybrid MBBR operated in SBR mode was developed and implemented in
236 MATLAB (version R2015b, MathWorks Inc.). The MATLAB scripts are available as open-source
237 code in the Supporting Information. The aim of the model was to understand how the composition of
238 the flocs and the NOB concentration respond to changes in DO, fraction of flocs removed per SBR
239 cycle (fwAS), and maximum volumetric AMX activity ($r_{AMX,max}$). To this end, perfect biomass
240 segregation was assumed, with AOB and NOB in the flocs and AMX in the biofilm (Figure 1).

241 Five soluble compounds were considered: ammonium (NH_4^+), nitrite (NO_2^-), nitrate (NO_3^-), di-
242 nitrogen gas (N_2), and DO.

243 The AOB, NOB, and AMX processes were modelled according to the stoichiometric and kinetic matrix
244 in Table 1. Unless explicitly stated, parameter values were taken from the literature (Table 2). X_{AOB}
245 and X_{NOB} were assumed to grow in the flocs, and their abundance and activity to be influenced by
246 growth and washout. For the sake of simplicity, the model excluded decay processes. Free ammonia
247 and free nitrous acid inhibitions were considered negligible under mainstream concentrations and pH.

248 AMX were considered to grow in a deep biofilm (Morgenroth 2008). The primary goal of the
249 modelling was to understand the role of the biofilm as “ NO_2 -sink”: the biofilm was consequently
250 modelled as zero-dimensional, and spatial gradients were neglected. In order to discuss the potential
251 effects of diffusion, additional simulations were run with 10-fold increased values for NO_2^- and NH_4^+
252 affinity constants of AMX. Moreover, as the activity of deep biofilms is transport-limited rather than
253 biomass-limited, the maximum AMX process rate ($\rho_{AMX,max} = \mu_{AMX,max} \cdot X_{AMX}$, $mgCOD \cdot L^{-1} \cdot d^{-1}$; Table 1)
254 was assumed to be constant during each simulation. This was implemented by considering the
255 concentration of AMX (X_{AMX}) and the process rate as constants. The oxygen inhibition of AMX was
256 not explicitly modelled: deep biofilms are in fact oxygen-limited, and the modelled AMX activity is
257 to be considered the activity resulting from the anoxic biofilm layers. For consistency with the

258 experimental part, the simulation results are presented as a function of $r_{AMX,max}$ ($mg_{(NH4+NO2)-N} \cdot L^{-1} \cdot d^{-1}$)
259 as obtained by the product of $\rho_{AMX,max}$ and the sum of the stoichiometric coefficients for NH_4^+ and
260 NO_2^- (Table 1).

261 **3.2 Simulation strategy and scenario analysis**

262 The influent was assumed to contain $20 mg_{NH4-N} \cdot L^{-1}$ and be devoid of NO_2^- , NO_3^- , and COD. Filling,
263 settling, and decanting steps were assumed to be instantaneous. Only the aerated phase was simulated
264 dynamically. As in the operation of the experimental reactor, settling was initiated each time the NH_4^+
265 concentration equalled $2 mg_N \cdot L^{-1}$; this resulted in variable cycle durations depending on biomass
266 activity. Simulations were performed for a temperature of $15 ^\circ C$ at which maximum growth rates were
267 estimated in the reactor. The DO was assumed constant, and the volumetric exchange of MWW was
268 50 % per cycle. The initial concentration of NH_4^+ at the start of each cycle was the result of mixing
269 (half of its value at the end of the previous cycle plus half of the influent concentration, *i.e.*, 11
270 $mg_N \cdot L^{-1}$). The NO_2^- and NO_3^- concentrations at the start of each simulated cycle were always equal to
271 half of their values at the end of the previous cycle. A fixed fraction of flocs (f_{WAS}) was removed at
272 the end of each cycle. f_{WAS} was defined as the mass removed from the reactor divided by mass of solids
273 present in the reactor, $(X_{removed} \cdot V_{removed}) / (X_{reactor} \cdot V_{reactor})$. Simulations were run until a pseudo
274 steady-state was reached, *i.e.*, constant effluent N and flocs concentration. Pseudo steady-state were
275 shown to be independent from the initial X_{AOB} and X_{NOB} . The sensitivity of the model outputs was
276 assessed with respect to the ratio between the O_2 affinity constants of NOB and AOB ($K_{O2,NOB} / K_{O2,AOB}$)
277 and the ratio between the NO_2^- affinity constants of NOB and AMX ($K_{NO2,NOB} / K_{NO2,AMX}$) (Table S1,
278 Figures S9).

279 A combination of different $\rho_{AMX,max}$ ($0 - 24 mg_{COD} \cdot L^{-1} \cdot d^{-1}$; corresponding to $r_{AMX,max}$ $0-300 mg_{(NH4+NO2)-N} \cdot L^{-1} \cdot d^{-1}$), and f_{WAS} ($0.4 - 1.7 \%$) were simulated for two DO (0.15 and $1.5 mg_{O2} \cdot L^{-1}$). These modelled
280 parameter values were explicitly chosen to fall in the range of the experimental values. To assess the
281 impact of the individual control parameters, four specific scenarios are discussed (Table 3).

283 **3.3 Interdependence between f_{WAS}, HRT, and SRT**

284 For an SBR where the reaction phase of the cycle is always extended until the target effluent NH₄⁺
285 concentration is reached (2 mg_N·L⁻¹), the HRT, the f_{WAS}, and ultimately the SRT are interdependent.
286 At pseudo steady-state, the AOB removed at the end of each cycle must equal the growth of AOB
287 during that cycle:

288
$$f_{WAS} \cdot X_{AOB}(T) \cdot V_{reactor} = \int_{\tau=0}^T \mu_{AOB}(\tau) \cdot X_{AOB}(\tau) \cdot V_{reactor} \cdot d\tau \quad (6)$$

289 where X_{AOB}(T) is the concentration of AOB at the end of a cycle (mg_{COD}·L⁻¹), T is the length of the
290 cycle (d), V_{reactor} is the working volume of the reactor (L), $\mu_{AOB}(\tau)$ is the actual growth rate of AOB at
291 time τ during the cycle (d⁻¹), and X_{AOB}(τ) is the AOB concentration at time τ (mg_{COD}·L⁻¹). Under the
292 simplifying assumption that over a cycle $\mu_{AOB} \approx \text{const.}$ and $X_{AOB} \approx \text{const.}$, Eq. 6 can be simplified to

293
$$f_{WAS} \approx \mu_{AOB} \cdot T \quad (7).$$

294 From Eq. 7 it can be seen that the HRT and the cycle time are directly linked: for a given actual growth
295 rate of AOB, increasing f_{WAS} increases T, and thus the HRT. As a result, HRT and f_{WAS} cannot be
296 controlled independently. The value of f_{WAS} also impacts the pseudo steady-state X_{AOB} and X_{NOB}, and
297 lower biomass concentrations result from higher f_{WAS}. Furthermore, this has direct implications on the
298 SRT of the flocs, defined as the average biomass present in the reactor divided by the biomass removed
299 per cycle. Under the simplifying assumption that X \approx const. over a cycle, it follows that

300
$$SRT \approx \frac{X \cdot V_{reactor}}{(f_{WAS} \cdot X \cdot V_{reactor})/T} \approx \frac{T}{f_{WAS}} \approx \frac{1}{\mu_{AOB}} \quad (8)$$

301 From Eq. 8, after substituting Eq. 7, it can be seen that the SRT is not an independent parameter either,
302 but is directly determined by the actual growth rate of the AOB for the given environmental conditions.

303 **4 Results and Discussion**

304 **4.1 Long term operation of the hybrid MBBR, and the impact of DO on NOB control**

305 **4.1.1 Maximum volumetric activities ($r_{i,max}$) segregation between biofilm and flocs**

306 A 12-L hybrid MBBR was operated for mainstream PN/A at 15 °C on aerobically pre-treated MWW,
307 and the impact of the DO on microbial competition and NOB control was investigated. The total and
308 flocs-associated maximum volumetric activities ($r_{i,max}$) of the three main guilds were measured as
309 proxy for their abundance (Figures 2a, b).

310 Over more than one year the reactor was stably operated as PN/A (*i.e.* prior to *Phase I* in Fig. 2;
311 (Laureni *et al.*, 2016)). During *Phase II*, as a result of the simultaneous increase in DO from 0.17 to
312 1.2 mgO₂·L⁻¹ and the improved flocs retention, $r_{AOB,max}$ and $r_{NOB,max}$ increased exponentially (Figure
313 2b). The observed increase was mainly associated with the flocs (dotted line in Figure 2b). Over the
314 same period, the total suspended solids increased from 0.2 to 1 gTSS·L⁻¹ (Figure S2). The estimated
315 maximum growth rate of AOB ($\mu_{AOB,max}$) and NOB ($\mu_{NOB,max}$) were 0.30 and 0.34 d⁻¹, respectively.
316 For AMX, a $\mu_{AMX,max}$ of 0.017 d⁻¹ was estimated.

317 The increase in $r_{AOB,max}$ and $r_{NOB,max}$ stopped when the DO was decreased to its initial value of 0.17
318 mgO₂·L⁻¹ (day 115, *Phase III*) while keeping all other operational conditions unchanged. After an
319 apparent delay of over six weeks, $r_{NOB,max}$ started to decrease while the established $r_{AOB,max}$ was
320 maintained in the system (Figure 2b). The loss in $r_{NOB,max}$ was primarily associated with the flocs.

321 During *Phase IV*, $r_{AOB,max}$ and $r_{NOB,max}$ increased exponentially, in particular when the DO was
322 increased to 1.6 mgO₂·L⁻¹ (day 460). Unfortunately, the increase stopped on day 475, when a dramatic
323 drop in all $r_{i,max}$ was observed in correlation with a multiple-day heavy rain event. This also coincided
324 with a 15% loss of TSS in the system, although this alone cannot explain the activity loss. Importantly,
325 all $r_{i,max}$ naturally recovered in less than two months (*Phase V*, Figure 2). All operational conditions
326 are presented in Figure S1.

327 **4.1.2 Volumetric activities during regular operation ($r_{i,cycle}$)**

328 The actual volumetric activities ($r_{i,cycle}$) of the three main guilds were measured during the aerobic step
329 of an SBR cycle to assess the impact of the imposed operational condition on microbial competition.
330 Actual activities are presented in Figure 2c, and the observed yields of NH_4^+ converted to NO_2^- and
331 NO_3^- are displayed in Figure 2d.

332 During periods of high DO (*Phase II* and *IV*), the volumetric activities during regular operation ($r_{i,cycle}$)
333 were comparable to the maximum activities ($r_{i,max}$), indicating that substrate limitations were minor
334 under these conditions (Figures 2a, c). The $\mu_{AOB,max}$ (0.273 d^{-1}) and $\mu_{NOB,max}$ (0.286 d^{-1}), estimated
335 during *Phase II*, were in good agreement with those obtained from the increase in $r_{i,max}$.

336 Decreasing the DO on day 115 (*Phase III*) resulted in an immediate decrease of $r_{AOB,cycle}$ and $r_{NOB,cycle}$,
337 as both guilds become DO limited (Figure 2c). After a delay of about two months, $r_{NOB,cycle}$ started to
338 decrease progressively in accordance with the behaviour of $r_{NOB,max}$. The decrease in $r_{NOB,cycle}$
339 coincided with the increase of $r_{AMX,cycle}$, indicating a progressive shift in the competition for NO_2^- .
340 From day 285 onwards, very little NOB activity was detected as supported by the low NO_3^- production.
341 The slight NO_2^- accumulation indicated an excess of $r_{AOB,cycle}$ over the available $r_{AMX,cycle}$ (Figure 2d).

342 The increase in DO on day 375 (*Phase IV*) led to a sharp increase in $r_{AOB,cycle}$ and lead, due to the
343 excess AOB maintained in the system, to a pronounced accumulation of NO_2^- to about 60% of the
344 consumed NH_4^+ (Figure 2d). The $r_{NOB,cycle}$ also increased immediately, due to the NOB persisting in
345 the biofilm, and NO_3^- started to accumulate. The exponential increase of $r_{AOB,cycle}$ and $r_{NOB,cycle}$ stopped
346 on day 475 in conjunction with the heavy rain event (Figure 2c, empty arrow).

347 **4.1.3 Bacterial community composition of biofilm and flocs**

348 The relative read abundances of AOB, NOB, and AMX in the biofilm and flocs are presented in Figure
349 3. The dynamics of all individual OTUs detected within the three guilds are shown in Figure S4. In
350 good agreement with the observed $r_{AMX,max}$, AMX were almost exclusively present in the biofilm with
351 relative abundances of up to 15% of the total reads (< 0.1% in suspension). Interestingly, four different

352 OTUs were detected for AMX in the biofilm and displayed different dynamics, suggesting possible
353 fine-scale differentiation in the “*Ca. Brocadia*” lineage. Fluorescence *in situ* hybridization (FISH)
354 micrographs of biofilm cryosections are shown in Figure S7.

355 Significantly lower relative read abundances were observed for AOB and NOB throughout the entire
356 operation (Figures 3b, c). During *Phase III*, the TSS increased from 1 to over 2.5 gTSS·L⁻¹ (Figure S2).
357 The relative abundance of AOB (genus *Nitrosomonas*) progressively increased from approximately
358 0.5 to over 2.5% in the flocs, whereas the relative abundance of NOB (genus *Nitospira*) decreased
359 progressively from 0.4 to below 0.1%. Thus, the observed loss of NOB activity (Figure 2) coincided
360 with the actual washout of NOB from the flocs. The relative read abundances of both AOB and NOB
361 guilds during *Phase IV* increased markedly on the biofilm, supporting the observed increases in
362 $r_{AOB,max}$ and $r_{NOB,max}$ (Figure 2). Two different OTUs were identified for AOB with distinct trends in
363 biofilm and flocs.

364 The ratio of the relative read abundances of AOB and NOB is shown in Figure 3d. AOB were
365 selectively enriched over NOB in the flocs during the period at low DO (*Phase III*); the AOB/NOB
366 ratio increased from 5 to over 20. No major changes in the AOB/NOB ratio were observed in the
367 biofilm.

368 **4.1.4 NOB control at low DO: wash-out from the flocs and activity suppression in the biofilm**

369 AOB and NOB grew in the flocs and biofilm. The enrichment of both guilds in the flocs, less diffusion-
370 limited, is in good agreement with previous experimental and modelling reports on PN/A (Hubaux *et*
371 *al.*, 2015, Park *et al.*, 2014, Veuillet *et al.*, 2014, Vlaeminck *et al.*, 2010, Volcke *et al.*, 2012, Winkler
372 *et al.*, 2011). Also, AOB and NOB displayed comparable maximum specific growth rates as expected
373 at mainstream temperatures (Hellinga *et al.*, 1998). In principle, these conditions would hinder the
374 possibility to differentiate the actual growth rates of the two guilds and selectively wash out NOB as
375 efficiently achieved in sidestream suspended biomass systems (Hellinga *et al.*, 1998, Joss *et al.*, 2011).
376 Nevertheless, prolonged operation at low DO (0.17 mgO₂·L⁻¹) did result in the selective wash out of

377 NOB from the flocs (Figure 2). This is explained by a distinctive characteristic of hybrid systems,
378 namely the competition for NO_2^- between the NOB in the flocs and the AMX enriched in the biofilm
379 acting as a “ NO_2^- -sink”. The proposed mechanisms for the selective NOB washout are extensively
380 discussed in the modelling section.

381 The accumulation and persistence of an NOB fraction in biofilms has also been widely reported, and
382 makes the suppression of NO_2^- oxidation challenging in solely biofilm PN/A systems (Fux *et al.*, 2004,
383 Gilbert *et al.*, 2015a, Isanta *et al.*, 2015, Lotti *et al.*, 2014, Park *et al.*, 2014, Poot *et al.*, 2016, Veuillet
384 *et al.*, 2014). Here, the actual nitratation activity of the NOB ($r_{\text{NOB,cycle}}$) in the biofilm was consistently
385 controlled by the DO, and was completely suppressed at $0.17 \text{ mgO}_2 \cdot \text{L}^{-1}$ (*Phase III* and *V*) presumably
386 due to diffusion limitations. To assess whether $r_{\text{NOB,cycle}}$ was suppressed only by DO limitation or also
387 by NO_2^- limitation, $r_{i,\text{cycle}}$ were measured under non-limiting NO_2^- concentrations. No increase in
388 $r_{\text{NOB,cycle}}$ was observed, confirming that DO rather than NO_2^- was the limiting substrate for NOB in the
389 biofilm (Figure 2c, vertical black arrows in *Phase V*). As a result of the selective enrichment of AOB
390 in the flocs, high NO_2^- fluxes to the biofilm for AMX can be guaranteed at sufficiently low DO to
391 suppress NOB activity in the biofilm.

392 4.1.5 *Effluent quality*

393 Overall, the wash-out of NOB from the flocs and the suppression of their activity in the biofilm at low
394 DO, resulted in N-removals over $88 \pm 4\%$ and a residual concentration of total N below $3 \text{ mgN} \cdot \text{L}^{-1}$ (1.9
395 $\pm 0.5 \text{ mgNH}_4\text{-N} \cdot \text{L}^{-1}$, $0.3 \pm 0.2 \text{ mgNO}_2\text{-N} \cdot \text{L}^{-1}$, and $0.5 \pm 0.3 \text{ mgNO}_3\text{-N} \cdot \text{L}^{-1}$). This is the highest effluent quality
396 reported so far for mainstream PN/A systems (De Clippeleir *et al.*, 2013, Gilbert *et al.*, 2015a, Laureni
397 *et al.*, 2016, Lotti *et al.*, 2014). Moreover, the aerobic N-removal rates achieved ($79 \pm 16 \text{ mgN} \cdot \text{L}^{-1} \cdot \text{d}^{-1}$),
398 at an HRT of $11 \pm 2 \text{ h}$, were comparable to those of conventional WWTP (Metcalf & Eddy *et al.*,
399 2013). The dynamics of influent and effluent concentrations are presented in Figure S3.

400 **4.2 Mathematical modelling of the hybrid MBBR**

401 A simple dynamic model was developed to understand how the NOB concentration in the flocs (X_{NOB}),
402 respond to changes in DO, fraction of flocs removed per SBR cycle (f_{WAS}), and maximum volumetric
403 AMX activity in the biofilm ($r_{AMX,max}$). To assess the impact of the individual control parameters four
404 different scenarios were simulated (Table 3). The dynamics of X_{AOB} and X_{NOB} , and effluent N
405 concentrations are presented in Figure 4, and one cycle at pseudo steady-state is shown for each
406 scenario in Figure S5. The interdependences between the parameters and the impacts of substrate
407 affinities are also discussed.

408 **4.2.1 Scenario 1 (baseline): high AOB and NOB enrichment in the flocs**

409 A low initial concentration of $1 \text{ mgCOD}\cdot\text{L}^{-1}$ was set for X_{AOB} and X_{NOB} . Prolonged operation at $1.5 \text{ mgO}_2\cdot\text{L}^{-1}$
410 resulted in the enrichment of both AOB and NOB in the flocs (Figure 4a), similar to
411 experimental observations during reactor operation (*Phase II*, Figure 2). The pseudo steady-state X_{AOB}
412 and X_{NOB} obtained in *Scenario 1* were assumed as initial concentrations for the other scenarios.

413 **4.2.2 Scenario 2: the DO controls the selective washout of NOB from the flocs**

414 The DO has a direct impact on the growth rate of both AOB and NOB (see process rates in Table 1).
415 AOB and NOB are also equally exposed to washout, *e.g.* by removing a fraction of flocs at the end of
416 each SBR cycle (f_{WAS}). However, only the NOB growth rate is impacted by the competition for NO_2^-
417 with the “ NO_2 -sink” represented by the AMX in the biofilm. This direct competition for NO_2^- between
418 NOB and AMX leads to a difference in the actual growth rates of AOB and NOB (*i.e.*, $\mu_{NOB} < \mu_{AOB}$)
419 providing the basis for the selective NOB washout (*i.e.*, $\mu_{NOB} < \text{SRT}^{-1} < \mu_{AOB}$).

420 The impact of a DO decrease to $0.15 \text{ mgO}_2\cdot\text{L}^{-1}$ was assessed in *Scenario 2* to reflect the experimental
421 strategy (*Phase III*, Figure 2). Under the imposed DO-limiting condition, and at the fixed f_{WAS} , only
422 AOB could be maintained in the system while NOB were successfully washed out. High N-removals
423 are achieved (84%; Figures 4b, f). At the same time, due to the decreased AOB activity the HRT
424 increases from 1.6 to 5.9 h (*i.e.* longer cycles are required to achieve the set effluent NH_4^+

425 concentration). In terms of effluent concentrations, the reduction of the DO limits the aerobic activity
426 (as was the case in the reactor, Figure 2c) and results in the immediate reduction of NO_3^- (Figure 4f).
427 The numerical results provide a mechanistic interpretation for the experimental observations: the sole
428 reduction of the DO was sufficient to reduce the actual NOB growth rate below the minimum required
429 to prevent their washout. Moreover, the simulations support the possibility to use DO to achieve the
430 selective washout of NOB from the flocs.

431 **4.2.3 Scenario 3: increasing the fraction of flocs removed per cycle is an effective strategy to
432 achieve selective NOB washout**

433 Decreasing the DO might not always be a viable option at full scale, either because the operational DO
434 is already low or the size of the installed aerators and blowers is not suitable (Joss *et al.*, 2011).
435 Conversely, the selective removal of the flocs from a hybrid MBBR, or of fine particles from a granular
436 sludge system, may be a more feasible option, *e.g.*, via a separate settler (Veuillet *et al.*, 2014),
437 hydrocyclone (Wett *et al.*, 2015), or screen (Han *et al.*, 2016). Simulations were run to assess the
438 effectiveness of increasing the fraction of flocs removed at the end of each SBR cycle as a strategy to
439 achieve the selective washout of NOB.

440 Numerical results suggest that successful NOB washout can indeed be achieved by increasing f_{WAS}
441 while maintaining all other conditions unchanged. Under *Scenario 3*, only the f_{WAS} was increased to
442 1.7 % and, as a result, NOB were selectively washed out (Figure 4c). In this case, the actual NOB
443 growth rate (function of DO and NO_2^- concentrations, Table 1) is no longer sufficient to compensate
444 for the increased washout. Simultaneously, the significantly lower AOB concentrations maintained in
445 the system result in higher HRT and thus reduced N-loads that can be treated at the same effluent
446 quality (Eq. 7). Nevertheless, in comparison to lowering the DO, increasing f_{WAS} allows a faster NOB
447 washout. From a process control perspective, the proposed simulation examples highlight how in
448 principle NOB can be washed out by only controlling the removal of the flocs.

449 **4.2.4 Scenario 4: variations of AMX activity in the biofilm - the “NO₂-sink” - have a direct**
450 **impact on NOB concentration in the flocs**

451 The NOB in the flocs compete for NO₂⁻ with the AMX enriched in the biofilm - the “NO₂-sink” - here
452 represented by the maximum volumetric AMX activity (r_{AMX,max}). Increasing r_{AMX,max}, *i.e.* the rate of
453 NO₂⁻ consumption by AMX, reduces the bulk NO₂⁻ concentration and consequently the actual NOB
454 growth rate analogously to decreasing the DO.

455 The possibility of achieving complete and selective NOB washout from the flocs by increasing r_{AMX,max}
456 was shown numerically. Under *Scenario 4*, the increase in r_{AMX,max} resulted in a higher NO₂⁻
457 consumption, and thus a stronger competition with NOB, which are successfully washed out (Figure
458 4d). At the same time, simulations indicate that increasing r_{AMX,max} results in slightly lower AOB
459 concentrations, as AMX reduce the NH₄⁺ available for AOB growth, with however minor implications
460 in terms of HRT. As a result, a high N-removal is achieved while still maintaining a low HRT. The
461 dynamics in effluent N concentrations are similar to *Scenario 2*. An immediate decrease of the NO₃⁻
462 concentration, due to the reduced NO₂⁻ available for NOB, is followed by a further progressive
463 reduction as NOB are washed out (Figure 4h).

464 At full scale, the maximum AMX activity can in principle be increased, *e.g.* by bio-augmentation from
465 a sidestream PN/A process (Wett *et al.*, 2015). On the other hand, a partial or complete inhibition of
466 the AMX guild represents the opposite case where NOB may grow in the flocs due to the reduced
467 competition for NO₂⁻. Under such circumstances, increasing f_{WAS} and/or reducing the DO may be
468 suitable operational strategies to prevent NOB proliferation, as will be discussed in the next section.

469 **4.2.5 Interdependent impacts of DO, f_{WAS}, and r_{AMX,max}, on NOB, and the impact of substrates**
470 **diffusion in the biofilm**

471 To better understand the interdependence between the different control parameters, the pseudo steady-
472 state concentrations of X_{AOB}, X_{NOB} and effluent NO₃⁻ are shown in Figure 5 as a function of different
473 r_{AMX,max} and f_{WAS}. Two DO concentrations were simulated (0.15 and 1.5 mgO₂·L⁻¹), representative of

474 the low and high DO experimental periods. The pseudo steady-state of the four scenarios discussed in
475 the previous sections are highlighted.

476 X_{NOB} and the effluent NO_3^- concentration decrease with increasing $r_{AMX,max}$ (*i.e.* the competing
477 “ NO_2 -sink”). For any given DO and fwAS, there is a minimum $r_{AMX,max}$ required for full NOB washout
478 from the flocs (Figures 5b, e). X_{AOB} also decrease with increasing $r_{AMX,max}$. In fact, by consuming
479 NH_4^+ , AMX reduce its availability for AOB growth (Figures 5a, d). This effect disappears, and X_{AOB}
480 stabilizes, as soon as the NOB are fully washed out. As a matter of fact, when present in the system,
481 NOB consume NO_2^- and indirectly favour AOB by decreasing NH_4^+ depletion by AMX. As an
482 example, the case of partial AMX inhibition would be equivalent to moving horizontally to the left in
483 Figure 5: an increased X_{NOB} is to be expected unless *e.g.* DO is decreased or/and fwAS is increased.

484 Additional simulations with a conservative ten-times higher value for both NH_4^+ and NO_2^- affinity
485 constants of AMX were run to assess the effects of substrate diffusion through the biofilm on the
486 modelled pseudo steady-states. Only the case of fwAS equal to 0.5% was considered. As can be seen
487 from Figure 5, differences from the reference case (*i.e.* with unmodified affinity constants) are
488 negligible. It is therefore deemed justified to neglect diffusion effects for the purpose of this work.

489 Overall, when interpreting the numerical results, it is important to consider the simplifying
490 assumptions made in the modelling of the biofilm. AMX inhibition by oxygen was neglected, and the
491 $r_{AMX,max}$ was assumed to be the result of the active AMX in the anoxic layers of a deep biofilm. In
492 addition, no NOB growth in the biofilm was considered. In this respect, it is worth noting that the
493 nitrifying activity of NOB was shown experimentally to be completely suppressed at low DO.
494 Additional simulations with more complex models, including biomass stratification and inhibition
495 processes, are recommended here. Nevertheless, the simplified model allowed to identify the
496 fundamental role played by the AMX-enriched biofilm (“ NO_2 -sink”) in favouring the selective NOB
497 washout from the flocs.

498 **4.2.6 The possibility of successful NOB washout from the flocs is not impaired by the values of**
499 **the affinity constants**

500 In solely biofilm PN/A systems, the ratio of the oxygen affinity constants, $K_{O_2,NOB}/K_{O_2,AOB}$, and the
501 ratio of the NO_2^- affinity constants, $K_{NO_2,NOB}/K_{NO_2,AMX}$, are reported as the main parameters controlling
502 microbial competition (Brockmann and Morgenroth 2010, Hao *et al.*, 2002, Pérez *et al.*, 2014,
503 Picioreanu *et al.*, 2016). For example, Hao *et al.*, (2002) have reported that $K_{O_2,NOB}/K_{O_2,AOB} > 0.2$ and
504 $K_{NO_2,NOB}/K_{NO_2,AMX} > 3$ is a required condition for successful NOB suppression in a biofilm system
505 modelled at 30°C. In the present study, the sensitivity of the simulation results and the validity of the
506 previously drawn conclusions was tested with respect to the ratios $K_{O_2,NOB}/K_{O_2,AOB}$ and
507 $K_{NO_2,NOB}/K_{NO_2,AMX}$. To ease the interpretation of the sensitivity analysis, $K_{O_2,AOB}$ was maintained
508 constant ($0.6 \text{ mgO}_2 \cdot \text{L}^{-1}$), and the $K_{O_2,NOB}/K_{O_2,AOB}$ ratio was varied between 0.14 (Regmi *et al.*, 2014)
509 and 2.00 (Perez *et al.*, 2014) by changing $K_{O_2,NOB}$ (Table S1). Simulations were run for the two
510 reference DO of 0.15 and $1.5 \text{ mgO}_2 \cdot \text{L}^{-1}$, and a fixed fwAS of 0.5%. The pseudo steady-state X_{NOB} and
511 effluent NO_2^- concentrations are displayed as a function of $K_{O_2,NOB}/K_{O_2,AOB}$ in Figure 6. An overview
512 of X_{AOB} and X_{NOB} , and the effluent concentrations of the dissolved N species, is presented in Figure
513 S8.

514 At a low DO ($0.15 \text{ mgO}_2 \cdot \text{L}^{-1}$), the value of $K_{O_2,NOB}/K_{O_2,AOB}$ determines the mechanisms controlling
515 NOB washout. On the one hand, for values of $K_{O_2,NOB}/K_{O_2,AOB} < 1$, low NO_2^- concentrations are
516 modelled (*i.e.* rapidly consumed by NOB and AMX), and the competition with AMX for NO_2^- is the
517 dominant mechanism controlling NOB washout. Increasing $r_{AMX,max}$ results in lower NOB pseudo
518 steady-state concentrations (Figure 6a). Importantly, NOB are successfully washed out in the model
519 even in the extreme case of $K_{O_2,NOB}/K_{O_2,AOB} = 0.14$ (Regmi *et al.*, 2014), which would make their
520 control challenging in solely biofilm systems (Brockmann and Morgenroth 2010, Hao *et al.*, 2002,
521 Pérez *et al.*, 2014). On the other hand, for higher values ($K_{O_2,NOB}/K_{O_2,AOB} > 1$), DO limitation starts to
522 play an important role. Due to the reduced NOB growth rate, lower NOB concentrations can be
523 sustained in the system, and NO_2^- accumulates if the AMX activity is not sufficiently high (Figure 6b).

524 Interestingly, for large $K_{O_2,NOB}$ ($K_{O_2,NOB}/K_{O_2,AOB} = 2.00$), NOB are washed out from the system even
525 in the absence of AMX and despite high NO_2^- accumulation. In this case, the actual NOB growth rate
526 is not sufficient to maintain them in the system at the cycle length set by AOB and the imposed f_{WAS}
527 (Eq. 7). Importantly, if $r_{AMX,max}$ is sufficiently high (e.g. $> 65 \text{ mgN}\cdot\text{L}^{-1}\cdot\text{d}^{-1}$), the NOB washout does not
528 depend on $K_{O_2,NOB}/K_{O_2,AOB}$.

529 At a high DO ($1.5 \text{ mgO}_2\cdot\text{L}^{-1}$), NOB washout is less sensitive to the value of $K_{O_2,NOB}/K_{O_2,AOB}$, and the
530 competition for NO_2^- with AMX is the dominant mechanism controlling NOB washout (Figure 6c).
531 Nevertheless, in analogy to the low DO case, NO_2^- accumulation occurs for high values of
532 $K_{O_2,NOB}/K_{O_2,AOB}$. Taken together, these results provide a mechanistic hypothesis to explain the
533 seemingly contradictory experimental observations during *Phase IV* (Figure 2), when only limited
534 NOB enrichment was observed in the flocs despite high DO and pronounced NO_2^- accumulation. In
535 general, higher $r_{AMX,max}$ are required for NOB washout (e.g., $> 237 \text{ mgN}\cdot\text{L}^{-1}\cdot\text{d}^{-1}$) compared to the case
536 at low DO.

537 In terms of NO_2^- affinity constants, $K_{NO_2,NOB}$ was decreased from a usually assumed value 100 times
538 higher than $K_{NO_2,AMX}$ (Hao *et al.*, 2002, Pérez *et al.*, 2014) to a value of 0.1 $K_{NO_2,AMX}$ (Figure S9).
539 Decreasing $K_{NO_2,NOB}$ increases the competitive advantage of NOB over AMX and results in higher
540 X_{NOB} at pseudo steady-state for any given $r_{AMX,max}$. Nevertheless, within the broad range of values
541 tested, NOB washout can always be achieved provided that a sufficiently high $r_{AMX,max}$ is present
542 (Figure S9).

543 In summary, this work strongly support the increased operational flexibility offered by hybrid systems,
544 as compared to solely biofilm systems, for the control of NOB under mainstream conditions. In fact,
545 irrespective of the values chosen for the affinity constants, it is in principle always possible to control
546 the selective pressure on NOB via DO, f_{WAS} , and/or $r_{AMX,max}$, and achieve their complete washout.

547

548 **5 Conclusions**

549 This study aimed at understanding the mechanisms underlying microbial competition and the control
550 of NOB in hybrid PN/A reactors. To this end, a hybrid MBBR was operated under mainstream
551 conditions and a simple mathematical model of the system was developed. Experimentally, AMX were
552 shown to enrich in the biofilm while AOB and NOB grew preferentially in the flocs. AMX are retained
553 in the biofilm independent of floc removal and they act as a “NO₂-sink”. Conversely, AOB and NOB
554 are maintained in the flocs only if their actual growth rates are larger than the imposed washout (*i.e.*, if
555 $\mu > SRT^{-1}$).

556 • The key mechanisms for selectively washing out NOB from the system are maintaining a
557 sufficiently low SRT for the flocs and limiting NO₂⁻ bulk phase concentrations by means of the
558 AMX “NO₂-sink”. AOB growth rates are not affected by NO₂⁻ bulk phase concentrations
559 allowing reactor operation with selective washout of NOB while keeping AOB.

560 • Experimental results and numerical simulations showed that, for an imposed fraction of flocs
561 removed per SBR cycle or given SRT, NOB can be selectively washed out by decreasing the
562 DO-setpoint, *e.g.*, from 1.2 to 0.17 mgO₂·L⁻¹. In this case, while both AOB and NOB actual
563 growth rates decrease; due to the concurrent NO₂-limitation only NOB growth rate is reduced
564 below the washout threshold *i.e.*, $\mu_{NOB} < SRT^{-1} < \mu_{AOB}$.

565 • In analogy, for a given DO-setpoint, simulations indicated that selective NOB washout can be
566 achieved also by increasing the fraction of flocs removed: the actual NOB growth rate remains
567 unaffected but is no longer sufficient to compensate for the increased washout.

568 • Moreover, differently from pure biofilm systems where NOB suppression relies on a larger
569 oxygen affinity of AOB than NOB, modelling results suggest that it is in principle always
570 possible to selectively wash out NOB by controlling the DO-setpoint and/or the flocs removal
571 provided AMX act as “NO₂-sink” in the biofilm.

572 Ultimately, this study demonstrates the high operational flexibility, in terms of variables that can be
573 easily controlled by operators, offered by hybrid systems for the control of NOB in mainstream PN/A
574 applications.

575

576

577 **6 Acknowledgements**

578 This study was funded by the European Research Council ERC via the ATHENE project (grant
579 agreement 267897). ML was partially supported by a Marie Skłodowska-Curie Individual Fellowship
580 (MixAmox project; grant agreement 752992). We sincerely thank Kai Udert and Nicolas Derlon for
581 valuable discussions, Marco Kipf for his support in the laboratory, Brian Sinnet for the particle size
582 analysis, and Claudia Baenninger-Werffeli, Sylvia Richter, and Karin Rottermann for their assistance
583 with the physicochemical analyses of all the samples.

7 References

585 Anthonisen, A.C., Loehr, R.C., Prakasam, T.B. and Srinath, E.G. (1976) Inhibition of nitrification by
586 ammonia and nitrous acid. *Journal of the Water Pollution Control Federation* 48(5), 835-852.

587 APHA (2005) Standard methods for the examination of water and wastewater, Washington, D.C.

588 Brockmann, D. and Morgenroth, E. (2010) Evaluating operating conditions for outcompeting nitrite
589 oxidizers and maintaining partial nitrification in biofilm systems using biofilm modeling and Monte
590 Carlo filtering. *Water Research* 44(6), 1995-2009.

591 Corbala-Robles, L., Picioreanu, C., van Loosdrecht, M.C. and Perez, J. (2016) Analysing the effects
592 of the aeration pattern and residual ammonium concentration in a partial nitritation-anammox
593 process. *Environmental Technology* 37(6), 694-702.

594 De Clippeleir, H., Vlaeminck, S.E., De Wilde, F., Daeninck, K., Mosquera, M., Boeckx, P., Verstraete,
595 W. and Boon, N. (2013) One-stage partial nitritation/anammox at 15°C on pretreated sewage:
596 feasibility demonstration at lab-scale. *Applied Microbiology and Biotechnology* 97(23), 10199-
597 10210.

598 Fux, C., Huang, D., Monti, A. and Siegrist, H. (2004) Difficulties in maintaining long-term partial
599 nitritation of ammonium-rich sludge digester liquids in a moving-bed biofilm reactor (MBBR).
600 *Water Science and Technology* 49(11-12), 53-60.

601 Gilbert, E.M., Agrawal, S., Schwartz, T., Horn, H. and Lackner, S. (2015a) Comparing different
602 Reactor Configurations for Partial Nitritation/Anammox at low Temperatures. *Water Research*.

603 Gilbert, E.M., Agrawal, S., Schwartz, T., Horn, H. and Lackner, S. (2015b) Comparing different
604 reactor configurations for Partial Nitritation/Anammox at low temperatures. *Water Research* 81,
605 92-100.

606 Han, M., Vlaeminck, S.E., Al-Omari, A., Wett, B., Bott, C., Murthy, S. and De Clippeleir, H. (2016)
607 Uncoupling the solids retention times of flocs and granules in mainstream deammonification: A
608 screen as effective out-selection tool for nitrite oxidizing bacteria. *Bioresource Technology* 221,
609 195-204.

610 Hao, X., Heijnen, J.J. and van Loosdrecht, M.C.M. (2002) Sensitivity analysis of a biofilm model
611 describing a one-stage completely autotrophic nitrogen removal (CANON) process. *Biotechnology
612 and Bioengineering* 77(3), 266-277.

613 Hellinga, C., Schellen, A.A.J.C., Mulder, J.W., van Loosdrecht, M.C.M. and Heijnen, J.J. (1998) The
614 SHARON process: an innovative method for nitrogen removal from ammonium-rich waste water.
615 *Water Science and Technology* 37(9), 135-142.

616 Hubaux, N., Wells, G. and Morgenroth, E. (2015) Impact of coexistence of flocs and biofilm on
617 performance of combined nitritation-anammox granular sludge reactors. *Water Research* 68, 127-
618 139.

619 Isanta, E., Reino, C., Carrera, J. and Perez, J. (2015) Stable partial nitritation for low-strength
620 wastewater at low temperature in an aerobic granular reactor. *Water Research* 80, 149-158.

621 Joss, A., Derlon, N., Cyprien, C., Burger, S., Szivák, I., Traber, J., Siegrist, H. and Morgenroth, E.
622 (2011) Combined nitritation-anammox: advances in understanding process stability.
623 *Environmental Science & Technology* 45(22), 9735-9742.

624 Jubany, I., Lafuente, J., Baeza, J.A. and Carrera, J. (2009) Total and stable washout of nitrite oxidizing
625 bacteria from a nitrifying continuous activated sludge system using automatic control based on
626 Oxygen Uptake Rate measurements. *Water Research* 43(11), 2761-2772.

627 Lackner, S., Gilbert, E.M., Vlaeminck, S.E., Joss, A., Horn, H. and van Loosdrecht, M.C.M. (2014)
628 Full-scale partial nitritation/anammox experiences - An application survey. *Water Research* 55,
629 292-303.

630 Laureni, M., Falås, P., Robin, O., Wick, A., Weissbrodt, D.G., Nielsen, J.L., Ternes, T.A., Morgenroth,
631 E. and Joss, A. (2016) Mainstream partial nitritation and anammox: long-term process stability and
632 effluent quality at low temperatures. *Water Research* 101, 628-639.

633 Laureni, M., Weissbrodt, D.G., Szivak, I., Robin, O., Nielsen, J.L., Morgenroth, E. and Joss, A. (2015)
634 Activity and growth of anammox biomass on aerobically pre-treated municipal wastewater. *Water*
635 *Research* 80, 325-336.

636 Leix, C., Drewes, J.E. and Koch, K. (2016) The role of residual quantities of suspended sludge on
637 nitrogen removal efficiency in a deammonifying moving bed biofilm reactor. *Bioresource*
638 *Technology* 219, 212-218.

639 Liu, G. and Wang, J. (2013) Long-term low DO enriches and shifts nitrifier community in activated
640 sludge. *Environmental Science & Technology* 47(10), 5109-5117.

641 Lotti, T., Kleerebezem, R., Hu, Z., Kartal, B., de Kreuk, M., van Erp Taalman Kip, C., Kruit, J.,
642 Hendrickx, T.L.G. and van Loosdrecht, M.C.M. (2015) Pilot-scale evaluation of anammox-based
643 mainstream nitrogen removal from municipal wastewater. *Environmental Technology* 36(9), 1167-
644 1177.

645 Lotti, T., Kleerebezem, R., Hu, Z., Kartal, B., Jetten, M.S.M. and van Loosdrecht, M.C.M. (2014)
646 Simultaneous partial nitritation and anammox at low temperature with granular sludge. *Water*
647 *Research* 66, 111-121.

648 Malovany, A., Trela, J. and Plaza, E. (2015) Mainstream wastewater treatment in integrated fixed
649 film activated sludge (IFAS) reactor by partial nitritation/anammox process. *Bioresource*
650 *Technology* 198, 478-487.

651 Metcalf & Eddy, I., Tchobanoglous, G., Stensel, H.D., Tsuchihashi, R. and Burton, F. (2013)
652 *Wastewater engineering: treatment and resource recovery*, McGraw-Hill Education.

653 Morgenroth, E. (2008) *Biological Wastewater Treatment - Principles, Modelling, and Design*. Henze,
654 M., van Loosdrecht, M.C.M., Ekama, G. and Brdjanovic, D. (eds), IWA Publishing, London.

655 Park, H., Sundar, S., Ma, Y. and Chandran, K. (2014) Differentiation in the microbial ecology and
656 activity of suspended and attached bacteria in a nitritation-anammox process. *Biotechnology and*
657 *Bioengineering* 112(2), 272-279.

658 Perez, J., Lotti, T., Kleerebezem, R., Picioreanu, C. and van Loosdrecht, M.C. (2014) Outcompeting
659 nitrite-oxidizing bacteria in single-stage nitrogen removal in sewage treatment plants: a model-
660 based study. *Water Research* 66, 208-218.

661 Pérez, J., Lotti, T., Kleerebezem, R., Picioreanu, C. and van Loosdrecht, M.C.M. (2014) Outcompeting
662 nitrite-oxidizing bacteria in single-stage nitrogen removal in sewage treatment plants: a model-
663 based study. *Water Research*.

664 Picioreanu, C., Pérez, J. and van Loosdrecht, M.C.M. (2016) Impact of cell cluster size on apparent
665 half-saturation coefficients for oxygen in nitrifying sludge and biofilms. *Water Research* 106, 371-
666 382.

667 Poot, V., Hoekstra, M., Geleijnse, M.A., van Loosdrecht, M.C. and Perez, J. (2016) Effects of the
668 residual ammonium concentration on NOB repression during partial nitritation with granular
669 sludge. *Water Research* 106, 518-530.

670 Regmi, P., Miller, M.W., Holgate, B., Bunce, R., Park, H., Chandran, K., Wett, B., Murthy, S. and
671 Bott, C.B. (2014) Control of aeration, aerobic SRT and COD input for mainstream
672 nitritation/denitritation. *Water Research* 57, 162-171.

673 Rittmann, B.E. and McCarty, P.L. (2001) *Environmental biotechnology: principles and applications*,
674 McGraw-Hill Education.

675 Shi, Y., Wells, G. and Morgenroth, E. (2016) Microbial activity balance in size fractionated suspended
676 growth biomass from full-scale sidestream combined nitritation-anammox reactors. *Bioresource*
677 *Technology* 218, 38-45.

678 Siegrist, H., Salzgeber, D., Eugster, J. and Joss, A. (2008) Anammox brings WWTP closer to energy
679 autarky due to increased biogas production and reduced aeration energy for N-removal. *Water*
680 *Science and Technology* 57(3), 383-388.

681 Slielkers, A.O., Haaijer, S.C., Stafsnes, M.H., Kuenen, J.G. and Jetten, M.S. (2005) Competition and
682 coexistence of aerobic ammonium- and nitrite-oxidizing bacteria at low oxygen concentrations.
683 *Applied Microbiology and Biotechnology* 68(6), 808-817.

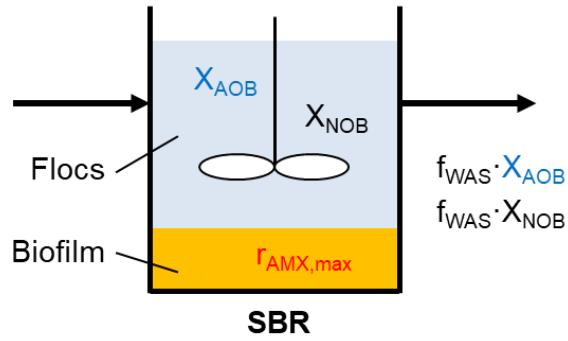
684 Speth, D.R., In 't Zandt, M.H., Guerrero-Cruz, S., Dutilh, B.E. and Jetten, M.S. (2016) Genome-based
685 microbial ecology of anammox granules in a full-scale wastewater treatment system. *Nature
686 Communications* 7, 11172.

687 Takács, I., Stricker, A.-E., Achleitner, S., Barrie, A., Rauch, W. and Murthy, S. (2008) Do You Know
688 Your Sludge Age? *Proceedings of the Water Environment Federation* 2008(13), 3639-3655.

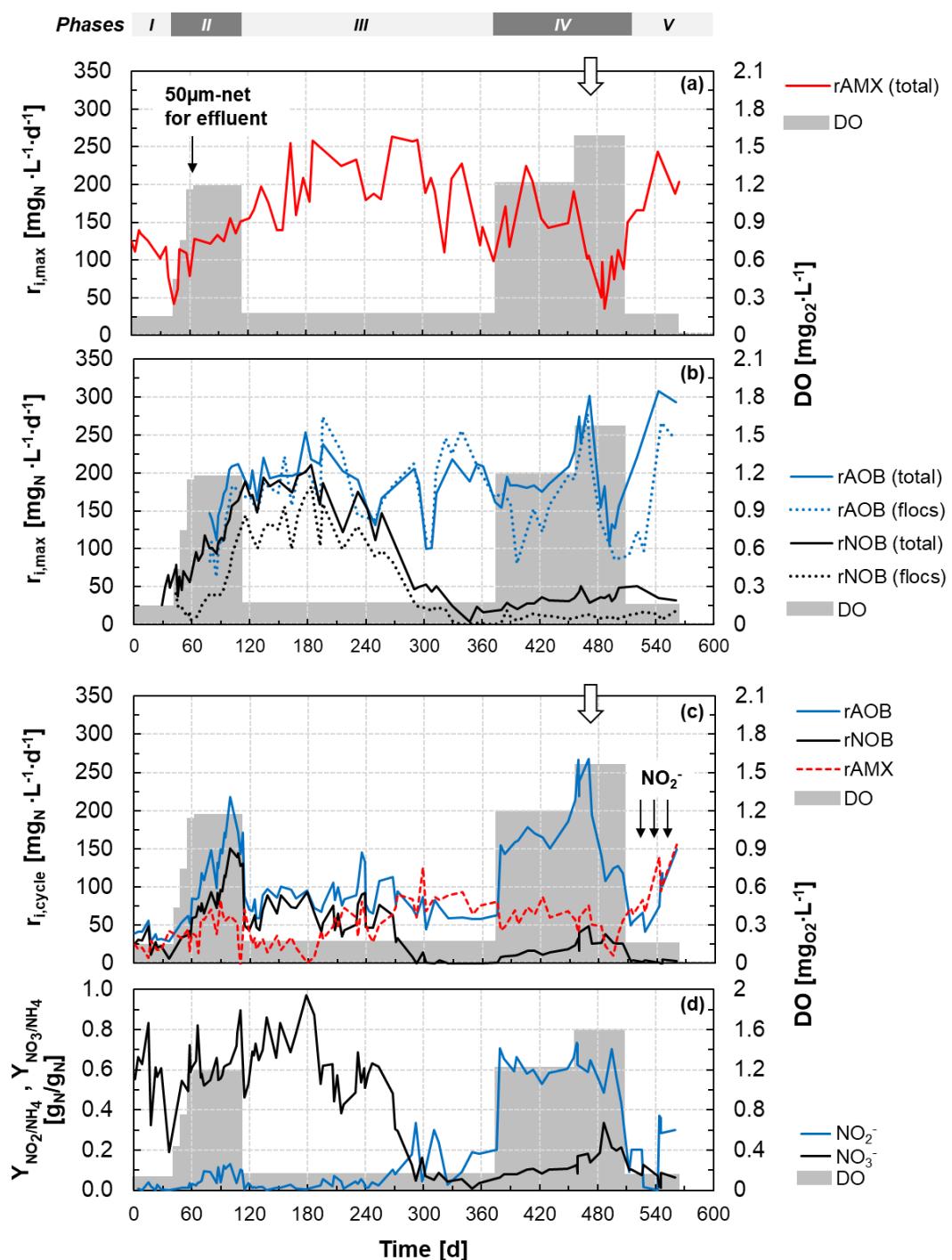
689 van Loosdrecht, M.C.M. and Brdjanovic, D. (2014) Water treatment. Anticipating the next century of
690 wastewater treatment. *Science* 344(6191), 1452-1453.

691 Veuillet, F., Lacroix, S., Bausseron, A., Gonidec, E., Ochoa, J., Christensson, M. and Lemaire, R.
692 (2014) Integrated fixed-film activated sludge ANITAMox process - a new perspective for advanced
693 nitrogen removal. *Water Science and Technology* 69(5), 915-922.

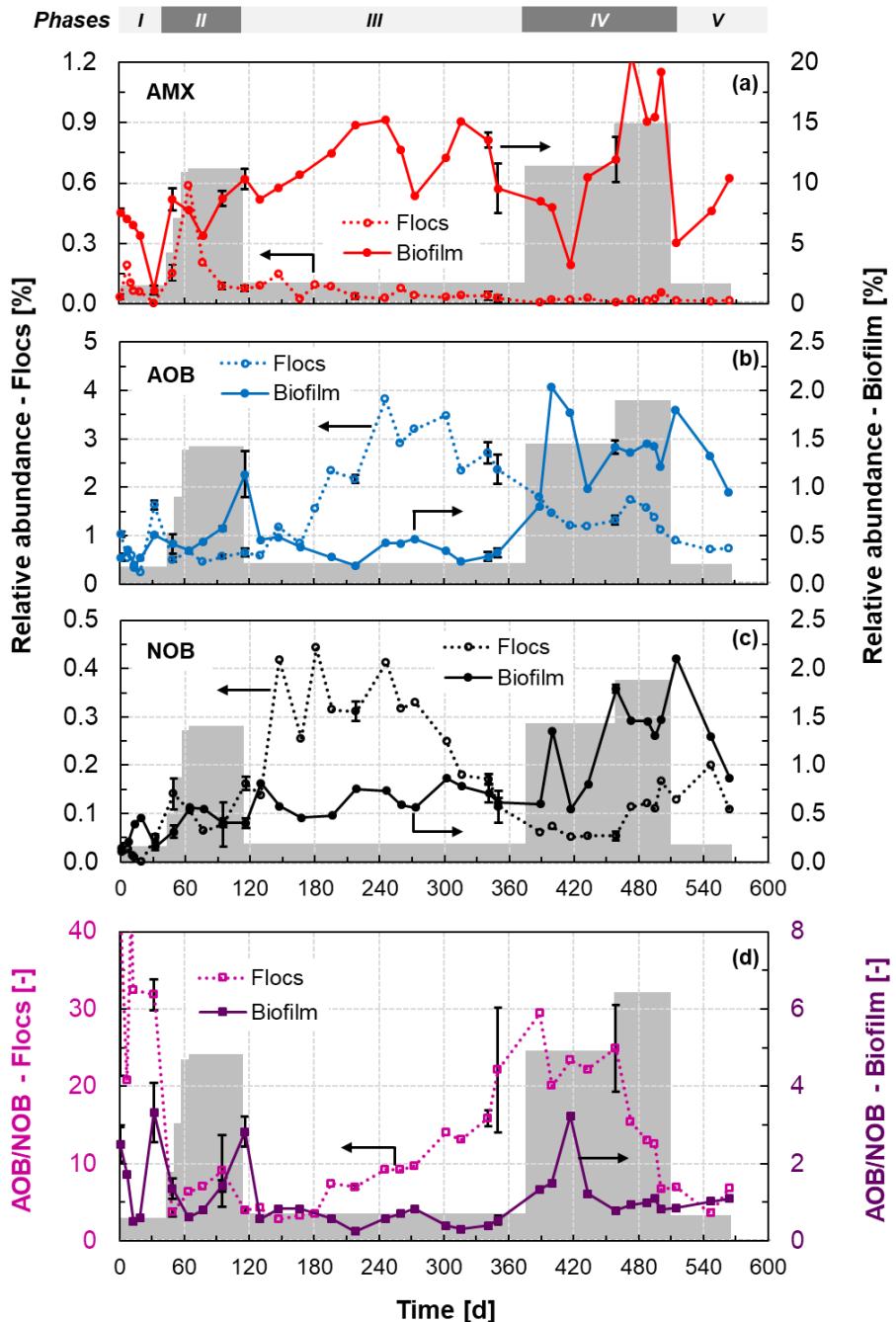
694 Vlaeminck, S.E., Terada, A., Smets, B.F., De Clippeleir, H., Schaubroeck, T., Bolca, S., Demeestere,
695 L., Mast, J., Boon, N., Carballa, M. and Verstraete, W. (2010) Aggregate size and architecture
696 determine microbial activity balance for one-stage partial nitritation and anammox. *Applied and
697 Environmental Microbiology* 76(3), 900-909.

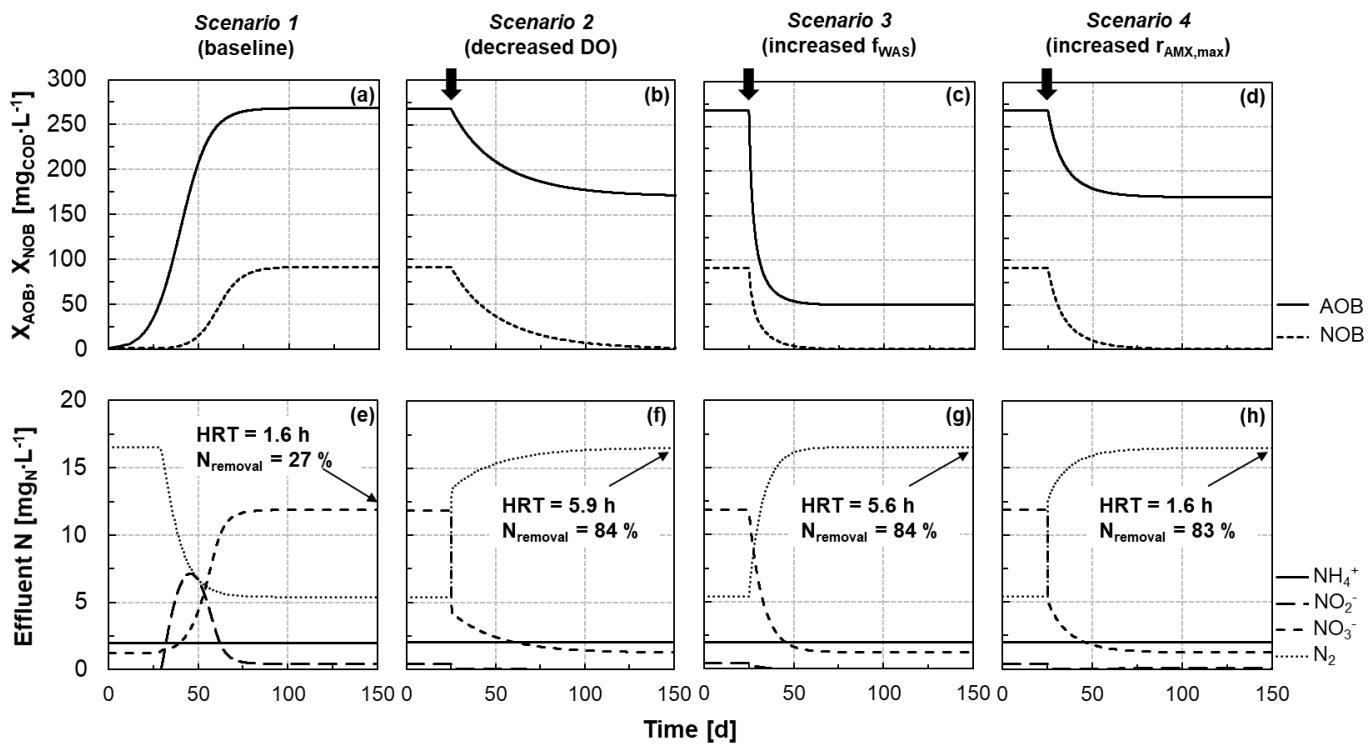

698 Volcke, E.I., Picioreanu, C., De Baets, B. and van Loosdrecht, M.C. (2012) The granule size
699 distribution in an anammox-based granular sludge reactor affects the conversion--implications for
700 modeling. *Biotechnology and Bioengineering* 109(7), 1629-1636.

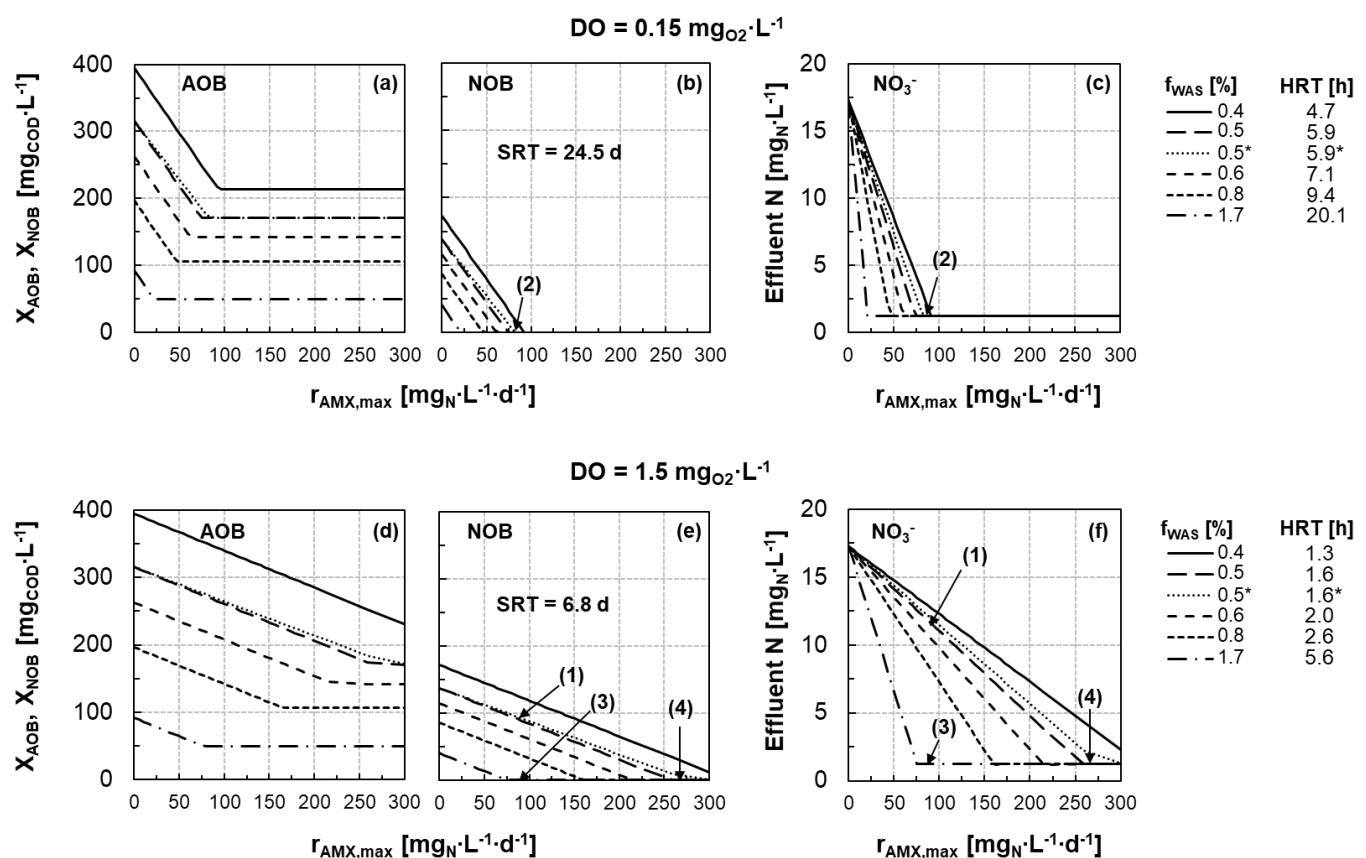
701 Wells, G.F., Shi, Y., Laureni, M., Rosenthal, A., Szivak, I., Weissbrodt, D.G., Joss, A., Buergmann,
702 H., Johnson, D.R. and Morgenroth, E. (2017) Comparing the Resistance, Resilience, and Stability
703 of Replicate Moving Bed Biofilm and Suspended Growth Combined Nitritation-Anammox
704 Reactors. *Environmental Science & Technology* 51(9), 5108-5117.


705 Wett, B., Podmirseg, S.M., Gómez-Brandón, M., Hell, M., Nyhuis, G., Bott, C. and Murthy, S. (2015)
706 Expanding DEMON Sidestream Deammonification Technology Towards Mainstream Application.
707 *Water Environment Research* 87(12), 2084-2089.

708 Winkler, M.K.H., Kleerebezem, R., Kuenen, J.G., Yang, J. and van Loosdrecht, M.C.M. (2011)
709 Segregation of Biomass in Cyclic Anaerobic/Aerobic Granular Sludge Allows the Enrichment of
710 Anaerobic Ammonium Oxidizing Bacteria at Low Temperatures. *Environmental Science &
711 Technology* 45(17), 7330-7337.


712 WPO (1998) Water Protection Ordinance of 28 October 1998 (814.201), UNECE, Geneva.
713


Figure 1: Location of the active biomass in the mathematical model of the hybrid system. The model assumes perfect biomass segregation, with AOB and NOB in the flocs and AMX in the biofilm. $r_{AMX,max}$ is the maximum volumetric anammox activity ($\text{mg}_{(\text{NH}_4+\text{NO}_2)-\text{N}} \cdot \text{L}^{-1} \cdot \text{d}^{-1}$). f_{WAS} represents the fraction of flocs removed at the end of each SBR cycle.


Figure 2: Time series of the maximum ($r_{i,\max}$) and actual ($r_{i,\text{cycle}}$) volumetric activities of AOB, NOB, and AMX in the hybrid MBBR. **(a)** Total maximum volumetric activities of AMX (the activity in the flocs was negligible throughout the experimental period). **(b)** Segregation of maximum volumetric activities of AOB and NOB: total biomass (biofilm and flocs) and floc fraction only. **(c)** Actual volumetric activities measured during the aerobic phase of an SBR cycle. Activities are expressed as follows: AOB, $\text{mg}_{\text{NH}_4\text{-N}} \cdot \text{L}^{-1} \cdot \text{d}^{-1}$; NOB, $\text{mg}_{\text{NO}_3\text{-N}} \cdot \text{L}^{-1} \cdot \text{d}^{-1}$; AMX, $\text{mg}_{(\text{NH}_4+\text{NO}_2)\text{-N}} \cdot \text{L}^{-1} \cdot \text{d}^{-1}$. **(d)** Yields of NO_2^- and NO_3^- accumulated relative to the NH_4^+ consumed during the aerobic phase. *Shaded area:* the average of the DO concentration measured during aeration over the representative periods. *Vertical black arrows:* in **(a)** time when floc retention was improved by filtering the effluent through a 50- μm -mesh sock-net; in **(c)** time when the volumetric activities during regular operation were measured under non-limiting nitrite concentrations. *Vertical empty arrows:* in **(a, c)** time of the prolonged rain event.

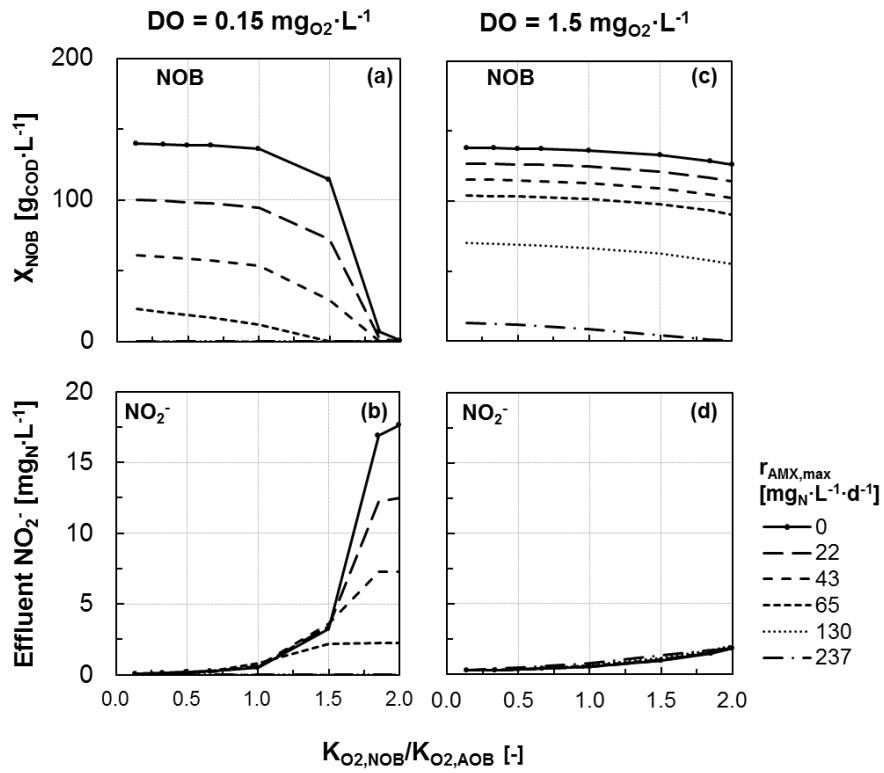

Figure 3: Time series of the relative abundances of AMX (a), AOB (b), and NOB (c) in the flocs (left y-axis) and biofilm (right y-axis) as estimated by 16S rRNA gene-based amplicon sequencing analysis. The displayed values represent the sum of the relative abundances of all OTUs detected for each guild. For the time series of the single OTUs, see Figure S4. (d) Time series of the ratio of the relative abundances of AOB and NOB in both the floc and biofilm fractions. *Shaded area:* average operational DO concentration over the representative periods (for values, see Figure 2). *Error bars:* standard deviation of biological triplicates.

Figure 4: Results from mathematical modelling of dynamics in concentrations of AOB (X_{AOB}), NOB (X_{NOB}), and effluent N towards the pseudo steady-state for the four scenarios detailed in Table 3. Pseudo steady-state in *Scenario 1* is used as initial conditions for *Scenarios 2, 3, and 4*. Profiles of nitrogen species and biomass evolution during an SBR cycle at pseudo steady-state for the four scenarios are presented in Figure S6. Vertical thick arrows: times when scenario-specific modification of operational conditions was implemented.

Figure 5: Concentrations of AOB (**a, d**) and NOB (**b, e**) in the flocs under pseudo steady-state conditions modelled as a function of the maximum volumetric AMX activity ($r_{\text{AMX},\text{max}} \text{ mg}_{(\text{NH}_4+\text{NO}_2)\text{-N}} \cdot \text{L}^{-1} \cdot \text{d}^{-1}$) for two reference DO, 0.15 and $1.5 \text{ mg}_{\text{O}_2} \cdot \text{L}^{-1}$. (**c, f**) Residual concentration of NO_3^- in the effluent at pseudo steady-state. NH_4^+ , NO_2^- and N_2 concentrations are presented in Figure S5. The different lines represent different f_{WAS} values, as shown in the legend to the right of the figures. The resulting HRT for each f_{WAS} is also reported in the legend. Simulations were run with reference parameters shown in Table 2. Only for the case marked with (*), the ammonium and nitrite affinity constants of AMX were increased by a factor of ten. *Black arrows and numbers in parentheses*: the four scenarios discussed in the text and presented in Figure 4.

Figure 6: Sensitivity analysis. Impact of different $K_{O2,NOB}/K_{O2,AOB}$ on simulated NOB concentrations at pseudo steady-state (a, c) and corresponding effluent NO_2^- concentrations (b, d) for the two reference DO (0.15 and 1.5 mg_{O2}·L⁻¹). $K_{O2,NOB}/K_{O2,AOB} = 0.67$ is the reference case (see Table 2). The values of the oxygen affinities for NOB and AOB and their ratio are presented in Table S1. In the simulations, an f_{WAS} of 0.5% was assumed. All concentrations of X_{AOB} and effluent N species at pseudo steady-state are presented in Figure S8. $r_{AMX,max}$ is expressed as mg_{(NH4+NO2)-N}·L⁻¹·d⁻¹.

Table 1: Stoichiometric and kinetic matrix describing the growth of aerobic ammonium-oxidizing bacteria (AOB) and aerobic nitrite-oxidizing bacteria (NOB), and anaerobic ammonium-oxidizing bacteria (anammox, AMX). The matrix was used to estimate the activity of the three guilds during regular SBR operation (r_{cycle}), and for the dynamic model of the hybrid system (Figure 1). In the dynamic model, the maximum anammox process rate ($\rho_{\text{AMX,max}} = \mu_{\text{AMX,max}} \cdot X_{\text{AMX}}$) was assumed constant during each simulation. To this end, the concentration of AMX (X_{AMX}) was considered as a constant and not as a state variable, and is therefore omitted from the matrix.

Processes	S_{O_2} $\text{g}_{\text{O}_2 \cdot \text{m}^{-3}}$	S_{NH_4} $\text{g}_{\text{N} \cdot \text{m}^{-3}}$	S_{NO_2} $\text{g}_{\text{N} \cdot \text{m}^{-3}}$	S_{N_2} $\text{g}_{\text{N} \cdot \text{m}^{-3}}$	X_{AOB} $\text{g}_{\text{COD} \cdot \text{m}^{-3}}$	X_{NOB} $\text{g}_{\text{COD} \cdot \text{m}^{-3}}$	Process rates (ρ) $\text{g}_{\text{COD} \cdot \text{m}^{-3} \cdot \text{d}^{-1}}$
AOB growth	$-\frac{(3.43 - Y_{\text{AOB}})}{Y_{\text{AOB}}}$	$-\frac{1}{Y_{\text{AOB}}} - i_{\text{N,AOB}}$	$\frac{1}{Y_{\text{AOB}}}$		1		$\mu_{\text{AOB,max}} \cdot X_{\text{AOB}} \cdot \frac{S_{\text{NH}_4}}{S_{\text{NH}_4} + K_{\text{AOB},\text{NH}_4}} \cdot \frac{S_{\text{O}_2}}{S_{\text{O}_2} + K_{\text{AOB},\text{O}_2}}$
NOB growth	$-\frac{(1.14 - Y_{\text{NOB}})}{Y_{\text{NOB}}}$	$-i_{\text{N,NOB}}$	$-\frac{1}{Y_{\text{NOB}}}$	$\frac{1}{Y_{\text{NOB}}}$		1	$\mu_{\text{NOB,max}} \cdot X_{\text{NOB}} \cdot \frac{S_{\text{NO}_2}}{S_{\text{NO}_2} + K_{\text{NOB},\text{NO}_2}} \cdot \frac{S_{\text{O}_2}}{S_{\text{O}_2} + K_{\text{NOB},\text{O}_2}}$
AMX growth	$-\frac{1}{Y_{\text{AMX}}} - i_{\text{N,AMX}}$	$-\frac{1}{Y_{\text{AMX}}} - i_{\text{N,AMX}}$	$\frac{1}{Y_{\text{AMX}}} - \frac{1}{1.14}$	$\frac{1}{1.14}$	$\frac{2}{Y_{\text{AMX}}}$		$\rho_{\text{AMX,max}} \cdot \frac{S_{\text{NH}_4}}{S_{\text{NH}_4} + K_{\text{AMX},\text{NH}_4}} \cdot \frac{S_{\text{NO}_2}}{S_{\text{NO}_2} + K_{\text{AMX},\text{NO}_2}}$
Composition Matrix							
gTOD	-1				-3.43	-4.57	-1.71
gN		1	1	1	$i_{\text{N,AOB}}$	$i_{\text{N,NOB}}$	1

Table 2: Kinetic and stoichiometric parameters.

Aerobic ammonium-oxidizing bacteria (AOB)				
$\mu_{AOB,max}$	d^{-1}	Maximum specific growth rate	0.30	<i>This study*</i>
Y_{AOB}	$g_{COD} \cdot g_N^{-1}$	Growth yield	0.18	(Jubany <i>et al.</i> , 2009)
$K_{NH4,AOB}$	$g_{NH4-N} \cdot m^{-3}$	Ammonium half-saturation constant	2.4	(Wiesmann, 1994)
$K_{O2,AOB}$	$g_{COD} \cdot m^{-3}$	Oxygen half-saturation constant	0.6	(Wiesmann, 1994)
$i_{N,AOB}$	$g_N \cdot g_{COD}^{-1}$	Nitrogen content in AOB	0.083	(Volcke <i>et al.</i> , 2010)
Aerobic nitrite-oxidizing bacteria (NOB)				
$\mu_{NOB,max}$	d^{-1}	Maximum specific growth rate	0.34	<i>This study*</i>
Y_{NOB}	$g_{COD} \cdot g_N^{-1}$	Growth yield	0.08	(Jubany <i>et al.</i> , 2009)
$K_{O2,NOB}$	$g_{COD} \cdot m^{-3}$	Oxygen half-saturation constant	0.4	(Blackburne <i>et al.</i> , 2007)
$K_{NO2,NOB}$	$g_{NO2-N} \cdot m^{-3}$	Nitrite half-saturation constant	0.5	(Wiesmann, 1994)
$i_{N,NOB}$	$g_N \cdot g_{COD}^{-1}$	Nitrogen content in NOB	0.083	(Volcke <i>et al.</i> , 2010)
Anaerobic ammonium-oxidizing bacteria (AMX)				
$\rho_{AMX,max}$	$mg_{COD} \cdot L^{-1} \cdot d^{-1}$	Maximum AMX process rate	0 - 24	Assumed**
Y_{AMX}	$g_{COD} \cdot g_N^{-1}$	Growth yield	0.17	(Strous <i>et al.</i> , 1998)
$K_{NH4,AMX}$	$g_{NH4-N} \cdot m^{-3}$	Ammonium half saturation constant	0.03	(Volcke <i>et al.</i> , 2010)
$K_{NO2,AMX}$	$g_{NO2-N} \cdot m^{-3}$	Nitrite half saturation constant	0.005	(Volcke <i>et al.</i> , 2010)
$i_{N,AMX}$	$g_N \cdot g_{COD}^{-1}$	Nitrogen content in AMX	0.058	(Volcke <i>et al.</i> , 2010)

*Estimated from the maximum activity increase at 15°C during *Phase II* (Figure 2a).

** Corresponding to $r_{AMX,max}$ in the range observed experimentally at 15°C, 0-300 $mg_{(NH4+NO2)-N} \cdot L^{-1} \cdot d^{-1}$

Table 3: Values of the control parameters for the four tested scenarios.

Scenario	DO [$\text{mgO}_2\cdot\text{L}^{-1}$]	f _{WAS} [%]	r _{AMX,max} [$\text{mgN}\cdot\text{L}^{-1}\cdot\text{d}^{-1}$]
1 (baseline)	1.5	0.5	86
2	0.15	0.5	86
3	1.5	1.7	86
4	1.5	0.5	270