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Abstract

Pathogenic mechanisms that underlie malignant follicular thyroid carcinoma
(FTC) development are poorly understood. To identify key genes and path-
ways driving malignant behaviour we employed a system biology-based inte-
grative analyses comparing FTC transcriptomes with a similar but benign le-
sion, follicular thyroid adenoma (FTA). We identified differentially expressed
genes (DEGs) in microarray gene expression datasets (n=>52) of FTCs and
FTA tissues. Pathway analyses of DEGs using gene ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) resources revealed sig-
nificant pathways, and pathway hub genes using protein-protein interactions
(PPI). We identified 598 DEGs (relative to FTAs) in FTCs and 12 significant
pathways with altered expression in FTC. 10 GO groups were significantly
connected with FTC-high expression DEGs and 80 with low-FTC expres-
sion. PPI analysis identified 12 potential hub genes based on degree and
betweenness centrality. Moreover, 10 transcription factors (TFs) were iden-
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tified that may underlie DEG expression as well as a number of microRNA
(miRNAs). Thus, we identified DEGs, pathways, TFs and miRNAs that re-
flect molecular mechanisms differing between FTC and benign FTA. These
may constitute biomarkers that distinguish these lesions and, given the sim-
ilarities and common origin of the lesions, they may also be indicators of
malignant progression potential.

Keywords: 'Thyroid cancer carcinoma, protein-protein interaction, reporter
transcription factors, reporter microRNAs, molecular pathways

1. Introduction

Thyroid cancers are the most common type of endocrine malignancy, al-
though they have a relatively low mortality rate compared to most other
common metastatic diseases. The United States had 56,460 new diagnoses
of thyroid cancer and 1,780 related deaths reported in 2012 [18]. Its incidence
is also rising globally at about 5% per year, although some of this increase
may be due to improved detection, and it notably affects those in the 20 to
34 year age range [1]. Thyroid cancers include several major types including
papillary thyroid carcinomas, medullary thyroid carcinoma, anaplastic thy-
roid carcinoma and follicular thyroid carcinomas (FTCs) [3]; FTC is one of
the more aggressive types, although it accounts for a minority (14%) of total
thyroid cancers [34].

The causes and cellular processes that give rise to FTC and control these
tumors behaviour are poorly understood; because of this, these cancers have
few effective treatment options [37]. There is, therefore, a great need to
understand the mechanisms that drive development and progression in FTC
to identify new approaches to detection, estimate risk of progression and
find new therapies. In addition, differential diagnosis of FTC is problematic
as it can be difficult to distinguish from follicular thyroid adenoma (FTA),
a benign and non-invasive lesion. For this reason, molecular markers that
distinguish FTC and FTA (and other types of thyroid lesions) are much
sought. Thus, Wojtas et al. conducted a gene expression comparison of FTC
and F'TA lesions which identified potential markers that can distinguish FTC
from FTA with a sensitivity and specificity of 78% and 80%, respectively.
[51]. We can also use this dataset to identify pathways with different levels of
activity in benign and aggressive thyroid tumours (here, FTA and FTC) that
may reflect important molecular mechanisms that underlie their behaviour.
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For such pathway studies our starting point is the differential expression
of genes (DEGs) between these lesions. We can then use analytic tools to
study these DEGs and discover pathways, and pathway hub genes that may
affect cell functions and thereby underlie their tumour morbidity, growth
and invasion [28, 14, 30]. The repertoire of candidate pathway factors can be
extended using approaches such as gene ontology analysis and protein-protein
interactions (PPI) studies.

To identify such DEGs, microarray gene expression profiling is widely
used [11] and several such studies have been performed for thyroid cancer
subtypes [40]. For example, Huang et al. [16] studied gene expression pro-
files of thyroid cancers, although not functional interactions between gene
products. To understand better the underlying molecular mechanisms and
identify critical biomolecules, integrative analysis within a gene network con-
text is needed [38, 29, 39]. These may lead to candidate FTC biomarkers (the
focus of Wojtas et al.) but our main interest is to obtain key or hub genes
distinguishing malignant FTC from benign FTA as these may be potential
therapeutic targets. Such a systems biology approach integrating network
statistical and topological analyses of experimental datasets can thus clarify
disease mechanisms [22]. Thus, we used such a systems approach (Figure
1) to identify FTC molecular signatures at the miRNA, mRNA, and protein
levels that differ from that of FTAs. Such a comparison should be more mean-
ingful than a comparison of FTC to normal thyroid tissue as the tumours
are similar, yet differ markedly in their potential for invasion metastasis.

2. MATERIALS AND METHODS

In this study, the multi-step analysis method we developed and applied
is shown in Fig. 1. We statistically analyzed gene expression datasets to
identify the DEGs and their regulatory patterns. We employed these DEGs
to identify enriched pathways, biological processes and annotation terms (i.e.,
Gene Ontology terms) by using functional enrichment methods. Then, to
identify reporter biomolecules, we integrated the intermediate analysis results
with biomolecular networks.

Dataset Employed and Statistical Methods Used

We obtained the gene expression data of FTC and FTA (GSE82208) for
our study from the NCBI Gene Expression Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/geo/)
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Figure 1: The multi-stage analysis methodologies employed in this study. Gene expres-
sion datasets related to FTC and FTA tissue were collected from the NCBI Gene Expres-
sion Omnibus (NCBI-GEO) database and statistically analyzed using GEO2R to identify
DEGs. Four types of functional enrichment analyses of DEGs were then performed to
identify significantly enriched pathways. Thus, we constructed protein-protein interaction
networks around DEGs topological analyses to identify putative pathways hub proteins,
identified possible micro-RNA (miRNA) and transcription factor (TF) interactors, and
used Gene Ontology annotation terms to provide pathways enrichment. TF and miRNA
studies employed JASPAR and miRTarbase databases, respectively. DEGs were integrated
with those networks and higher degree and betweenness centrality were used to designate
TFs and miRNAs as the reporter transcriptional regulatory elements. The target DEGs
of reporter miRNAs and TFs were subjected to pathway enrichment analyses.

[4, 51]. This dataset contained analyses of RNA from frozen tumour tis-
sue specimens from 27 FTC and 25 FTA lesions using Affymetrix human
genome U133 (Plus 2.0) arrays. The lesions were diagnosed histologically,
many with a second diagnosis to confirm, when paraffin embedded material
was available [51]. Gene expression analysis using microarrays is a widely
used method to develop and refine the molecular determinants of human dis-
orders. We used data using these technologies to analyze the gene expression
profiles of FTC and FTA. To identify the DEGs between FTC samples and
FTA, t-test method was used by using the Limma package [47]. To iden-
tify the up-regulated genes, we used the condition of p — value < .05 and
logFC > 2 (FC, fold change) and for identifying the down-regulated genes,
p —value < .05 and logF'C' < —2 were used. All identified up-regulation
genes and down-regulation genes were considered as DEGs. We applied the
topological and neighborhood based benchmark methods to find gene-gene
associations. A gene-gene network was constructed by using the gene-gene
associations, where the nodes in the network represent gene [53, 29]. This
network can also be characterized as a bipartite graph. These topological
and neighborhood based benchmark methods were adopted from our previ-
ous studies [30].

The common neighbours are the based on the Jaccard Coefficient method,


https://doi.org/10.1101/480632
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/480632; this version posted September 18, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

where the edge prediction score for the node pair is as [31]:

N(GiNG,) (1)
N(G; UG,)

where G is the set of nodes and E is the set of all edges. We used R software

packages "comoR” [28] and "POGO” [30] to cross check the genes-diseases
assoclations.

E(i,j) =

Functional Enrichment of Gene Sets

We performed gene ontology and pathway analysis on identified up-regulation
genes and down-regulation genes using DAVID bioinformatics resources (https://david-
d.nciferf.gov/) (version v6.8) [46] to get further insight into the molecular
pathways that differ between FTC and FTA. In these analyses, GO and
KEGG pathway databases were used as annotation sources. Enrichment
results showing an adjusted p — value < 0.05 were considered significant.

Construction and Analysis of Protein-Protein Interaction (PPI) Sub-networks

The PPI network was first constructed with the DEGs and analyzed using
STRING [48] a web-based visualization software resource. The constructed
PPI network was represented as an undirected graph, where nodes represent
the proteins and the edges represent the interactions between the proteins.
To construct the PPI network from the STRING database (http://string-
db.org) [48], we used database data, data mined from PubMed abstract text,
Co-expression, gene fusion and Neighborhood as active interaction sources
and a combined score that is greater than 0.4 was set as the level of signifi-
cance. The PPI network was then visualized and analyzed using Cytoscape
(v3.5.1) [45, 32]. Then, topological analysis was applied to identify highly
connected proteins (i.e., hub proteins) through the Cyto-Hubba plugin [7]
where betweenness centrality and higher degree were employed. After then,
the top three modules (i.e., the three most highly interconnected protein
clusters) in the PPI subnetwork were identified using the MCODE plug-in
[7]. Finally, these modules were further analyzed and characterized using
enrichment analyses by NetworkAnalyst [52, 13]. The KEGG pathway en-
richment analysis of the PPI networks involved DEGs were performed by
NetworkAnalyst [52, 13].

Identifying TFs and miRNAs that Influence Expression of Candidate Genes
To identify TFs and miRNAs that affect transcript levels around which
significant changes occur at the transcriptional level, we obtained experimen-
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tally verified TF-target genes from the JASPAR database [20] and miRNA-
target gene interactions from TarBase [43] and miRTarBase [15] by using
NetworkAnalyst tools [52] where betweenness centrality and higher degree
filters were used. Currently, there were many techniques to measure the
topological properties. We used the Degree Centrality (DC) and Between-
ness Centrality (BC) to find out networks topological properties. We can
define the DC of a node v in a network as the total number of nodes which
are directly connected to node v in that network. The definition can also be

written as follows: 0
DC = v 2
)= 30 @)

jeGq

Whereas, n represents total number of nodes in the network and avj rep-
resents that node v and node j are directly connected. In the case of Be-
tweenness Centrality (BC), the total number of times of node v appearing
in the shortest path between other nodes are quantified. It is also defined as

follows: o
BC = g
W=y = ®
i#jAuey Y
Where o;; = total number of shortest paths from node i to node j, and o3,
= total number of paths through node v.

3. Results
3.1. Results of DEG analyses

Transcriptomic signatures: Differentially expressed genes

FTA and FTC tissue gene expression patterns were analysed using oligonu-
cleotide microarrays from the NCBI GEO (http://www.ncbi.nlm.nih.gov/geo/query /acc.cgi?acc=G
[51]. Gene expression profiling was performed in 27 malignant FTCs and 25
FTAs. 598 genes were differentially expressed (p < 0.05,> 1.0 log2 fold
change) relative to FTAs, of which 465 genes were significantly lower ex-
pression and 133 genes were higher expression levels in FTC lesions (see
Additional file 1:Table S1).

3.2. Pathway and functional correlation analysis

Combining large scale, state of the art transcriptome and proteome analy-
sis, we performed a regulatory analysis to gain further insight into the molec-
ular pathways associated with the FTC and predicted links to pathways that
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differ relative to the benign FTAs. DEGs and pathways were analysed using
KEGG pathway database (http : //www.genome.jp/kegg/pathway.html)
and functional annotation tool DAVID v 6.8 (http://niaid.abce.nciferf.gov)
to identify overrepresented pathway groups and it was observed that 4 path-
ways were associated with DEGs with higher expression in FTC compared
to FTA, namely the "One carbon pool by folate” pathway, p53 signaling
pathway, Cell cycle and Progesterone-mediated oocyte maturation signaling
pathway. Fold enrichment, adjusted p-values and genes associated with these
pathways are presented in Table 1(a) A.

Table 1: (a) Part A shows pathways associated with the genes showing higher expression in
FTC than FTA. This set showed an enrichment of four KEGG pathways, annotated using
DAVID. Part B shows pathways associated with genes showing lower expression levels
in FTC. This set showed in an enrichment of eight KEGG pathways using DAVID. Fold
enrichment, adjusted p-values and genes associated with these pathways are indicated. (b)
Summary of reporter biomolecules (including putative hub genes, TFs, and miRNAs) in
that differ between FTC and FTA.

Symbol Description Feature

UBAS52 DNA topoisomerase 2-alpha Hub protein

A JUN c-Jun in combination with c-Fos Hub protein

. Fold Rajusted p EGFR The epidermal growth factor receptor Hub protein

LESR) L CEEMGDEELY Enrichment  value CDK1 Cyclin Dependent Kinase 1 Hub protein

One carbon pool by y FOS proto-oncogene Hub protein

15200670 folate MTHFD2 TYMS, SHUT2 ALOHILL * S2E0e CDKN3 Cyclin Dependent Kinase Inhibitor 3 Hub protein

hsa04115 "53;',""::"“9 CDK1, CCNB2, RRM2, PMAIP1, IGFBP3 9 2.03E-03 EZH2 Enhancer of zeste homolog 2 Hub protein

S TYMS Thymidylate Synthetase Hub protein

hsa04110 Cell cycle CDK1, MAD2L1, CCNB2, BUBL, BUB1B 5 177602 PBK "SDZ bind o kiness Fiub protein

DINCing xinase
Progesterone- i -

hsa04914  mediated oocyte CDK1, MAD2L1, CCNB2, BUB1 6 331E-02 R e CliGiiy Byproreiin

maturation UBE2C Ubiquitin Conjugating Enzyme E2 C Hub protein

B. CCNB2 G2/Mitotic-Specific Cyclin-B2 Hub protein
Fold Adjusted p- FOXC1 Forkhead Box C1 Reporter Transcription Factor
KeeelD (T e e bathey) Enrichment  value GATA2 GATA Binding Protein 2 Reporter Transcription Factor
hsa04978 Mineral absorption MT+M: MT2A, CYBRDL, MTE, MT1H, MT1X, 6 3.44E-04 YY1 YY1 Transcription Factor Reporter Transcription Factor
- MT1G, MT1F FOXL1 Forkhead Box L1 Reporter Transcription Factor
hsa04918 T"y;"y'r‘:l:“::"s“’"e Shert, TG*&?;%Z%:%@ TR GER, 4 9.55E-04 NFIC Nuclear Factor | C Reporter Transcription Factor
FGFR2, BCR, EPA’S] PG‘F RXRB, GNAIL, E2F1 E2F Transcription Factor 1 Reporter Transcription Factor
hsa05200  Path RUNX1TL, FZD1, CDH1, CDK6, KIT, CTNNAL, ) 545503 TFAP2A Activating enhancer binding Protein 2 alpha | Reporter Transcription Factor

sal alhways In cancer - yimp2, CXCL12, TCF7LL, AGTRL, FOS, 8 SRF. Serum Response Factor Reporter Transcription

HSP9OBL, JUN, PAXS, SOS2, LAMB1 HINFP Histone H4 transcription factor Reporter Transcription Factor

Estrogen signaling HSPALL, FOS, HSP90B1, GNAIL, JUN, SOS2,

hsa04915 HSPALA, HSPALB, MMP2 3 8.41E-03 CREB1 Cyclic AMPg;sg;n(s[:/:si:ier;eor:}r;gglrng protein 1, Reporter Transcription Factor
REB transcription factor
hsa00600 ?v?eh::t?;‘llspr‘: SPTLC1, SGMSZ.ASSPAT:SB_ GALC, PLPP3, 4 1172.02 heamir 3355 micr°§’,:“2 ;:g :g_)or m miCrDS ﬁ
hsa-mir-26b-5p icrof eporter micro

nsaoaze0  avongudance MR S L2 AT 9 122802 hsa-mir-124-3p MicroRNA 124 ?$ er microRNA
Protein processing  HSPALL, HSP90B1, ERO1B, UBE4B, PDIAG, hsa-mir-16-5p MicroRNA 16 Reporter microRNA
hsa04141 in endoplasmic HSPA1A, HSPA1B, HSPAS, CALR, MAN1C1, 2 2.68E-02 hsa-mir-192-5p MicroRNA 192 ?EEOY[EY microRNA
reticulum SEC62 hsa-mir-1-3p MicroRNA 11 Reporter microRNA
hsa04510  Focaladhesion ' OA% SAYZ CAVL CONDZ FYN, OF. JUN. 2 3.95E-02 hsa-mir-17-5p MicroRNA 17 Reporter microRNA
. . — hsa-mir-92a-3p MicroRNA 92a Reporter microRNA
hsa-mir-215-5p MicroRNA 215 Reporter microRNA
(a) hsa-mir-20a-5p MicroRNA 20a Reporter microRNA

(b)

It was also observed that 8 significantly over-represented pathways in-
cluding Mineral absorption, Thyroid hormone synthesis, Pathways in cancer,
Estrogen signaling, Sphingolipid metabolism, Protein processing in endoplas-
mic reticulum, Axon guidance and Focal adhesion pathways (Table 1(a) B)
were identified. These are associated with the DEGs expressed at lower lev-
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els in FTC lesions compared to FTA. We then performed GO analysis using
DAVID to obtain further insight into the molecular roles and biological func-
tion of DEGs identified in this study. From this analysis, 9 GO groups were
associated with DEGs that were more highly expressed in FTC (see Table
2(a)). Reflecting their greater number, the genes with lower expression in
FTC compared to FTA were associated with 80 GO groups; the 10 most sig-
nificant GO groups are presented in Table 2(b). Fold enrichment, adjusted
p-values and genes associated with these ontologies are also indicated.

Table 2: (a) Gene ontologies associated with genes with higher expression in FTC. (b)
Gene ontologies associated with genes with lower expression in FTC compared to FTA. The
10 most significant biological functional ontologies are indicated and are those associated
with these significant genes. Fold enrichment, adjusted p-values and genes associated with
these ontologies are presented in these tables.

Fold
Genesinthe  Fold Enric- | Adjusted GoTerm |pathway Genes in the pathway lenrionm| Adiusted
S Aty pathway hment p-value ent | Prvalue
lco:0006636 Unsaturated fatty acid biosynthetic  gLovi, sco, 5 1.886-03 60:0045926 negative regulation of growth O MTHM MT2A MTIE MTIH MILG MTIG, gy 3707
i process ELOVL7 i !
G0:0071294  cellular response to zinc ion MTIM, MT2A, MTIE, MTIH, MT1X, MTIG, MTIF 16  3.7€-06
0:0007094 mitotic spindle assembly checkpoint MAD2L1, BUB1, 33 3.39€-03
BUB1B GO:0006590  thyroid hormone generation  DIO2, CPQ, FOXE1, TPO, DIOI, IYD 21 4S6E06
TNFRSF12A, MAP1B, FGFR2, EMCN, CAV1, NRP1, ACVRL1, EPASI, PGF,
[60:0045773 positive regulation of axon extension N1 24 6.83€-03 G0:0001525  anglogenesis MMP2, KDR, PKNOX1, CTGF, ID1, JUN, MAPK14, 3 189605
TEK, ECSCR, RHOB, CALCRL
0:0044772 mitotic cell cycle phase transition 67 2.92€-02 G0:000193g  POSitive regulation of endothelial - CAV2, NRP1, ACVRLY, PGF, F3, JUN, TEK, ITGB3, 6 297605
CDK1, CKS2 cell proliferation €XCL12, KOR
i FGFR2, GLIS3, TSHZ3, ZMYND11, CAV1, TFCP2L1,
lc0:0046602 "°0uation of mitotic centrosome 67 292602 regativeregulaton of ZNF366, PROMIL6, CALR, CBX7, CITED2, MINA,
separation KIF11, NEK2 T mgnwipmi e TCF4, BHLHE41, NFIL3, NR2F, TXNIP, EGR1, 2 316605
Ls " cerebellar granule cell precursor polymerase Il promoter NR4A2, TLE1, FOSB, SNAI2, FOXP2, CD36, BTG2,
0:0021930 proliferation . 45 4.35E-02 D1, SALLL, FOXE1, LRP8, ID3, PRDM1, SMARCA2,
ATFS, RORA KLF4, NFIA, RERE, PEG3
y " . CAV1, EPHX2, GIAL, TLE1, CDKS, KIT, CALR, CITED2,
[60:0035999  tetrahydrofolate interconversion TS, SHVIT2 a5 4.35€-02 60:0010628 ::;A::;L:‘gu\a(mn of gene ANKZ, GO, CTGF. o0, MAPKLA, CYPasBL NTRKS. 3 433605
. RGCC, PROM1, NFIL3, KLF4
loo:0ossazs '2’(‘]%:5":'" ey Sy ieh sy IR 45 4.356-02 BAGALT1, FBN1, OLEML2A, CDHL, ITGB3, KDR,
P ELOVL4, ELOVL7 G0:0030198  extracellular matrix organization CSGALNACT1, SMOC2, ITGA9, TNFRSF118, COL9A3, 4 5.55€-05
ERO1B, FBLNS, JAM2, LAMBI, CYR61
[G0:0046777 protein autophosphorylation EGFR, NEK2, STK26, 5 4.78€-02
MELK 60:0043434  response to peptide hormone 10> SNAL CTOF TEI ANXAL GIAL, CxcLL, 8 631605
G0:0071276 ~ cellular response to cadmium ion  MT1E, MT1H, MT1X, MT1G, MT1F 13 536604

(a) (b)

3.8. Proteomic signatures: Hub target proteins from PPI analysis

A PPI network was constructed using the DEGs identified in this study
(Fig. 2A) using the STRING package. Topological analyses using STRING
as well as further analysis by Cytoscape’s Cyto-Hubba plugin identified the
most significant hub proteins, which were identified as gene products of
TOP2A, JUN, EGFR, CDK1, FOS, CDKN3, EZH2, TYMS, PBK, CDHI,
UBE2C and CCNB2. The simplified PPI network for most significant hub
genes were constructed by using Cyto-Hubba plugin and are shown in fig.
2B.
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Figure 2: A. The protein-protein interaction network constructed using the DEGs identi-
fied in the FTC/FTA comparison. B. The protein-protein interaction(PPI) network iden-
tified in FTC/FTA dataset DEGs showing the most significant hub genes on the periphery
(red)

3.4. Enrichment Analysis of the Modules found in PPI of DEG.
The PPI network was analyzed by using MCODE plug-in in Cytoscape
(version 3.5.1), and top three modules were selected (Fig. 3). The enrichment

DLGAPS.

RNF144B

FBX09

FBXO32

C SHIRF1

Figure 3: Top three modules in the protein-protein interaction network of the DEGs in
TC. The nodes indicate the DEGs and the edges indicate the interactions between two
genes.

analysis of the top three modules was analyzed by using DAVID. Module 1
represented a set of biological process significantly enriched for ATP bind-
ing, Cell division, Cell proliferation; associated enriched cellular components
were Kinetochore, Condensed chromosome kinetochore (both of which relate
to cell division) and Nucleoplasm and Cytoplasm which are very general cat-
egories. Molecular functions significantly enriched in module 1 included chro-
matin binding and protein kinase activity (Table 3 (a)). Module 2 showed
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significantly enriched biological process positive regulation of Protein phos-
phorylation and Protein autophosphorylation; these significantly enriched
cellular components included membrane raft, endosome, apical plasma mem-
brane and focal adhesion. Molecular functions of module 2 were enriched in

Protein tyrosine kinase activity, Enzyme binding, Protein binding and Inte-
grin binding (Table 3(b)).

Table 3: (a) The enrichment analysis of the subnetwork module-1 (b) The enrichment
analysis of the subnetworks module-2 and module-3

. CDK, KIFIL, CCNB2, NEK2, BUBL, CENPF, BUBIB,
ATP binding LOOE-13. \pced, ANLN, PEK, CEPSS, ASPM
. COK1, KIF11, MAD2L1, CCNB2, NEK2, CKS2, BUBL,
Cell division 128610 cenpr BUBLE, NDCRO, UBEZC
Sister chromatid cohesion 6.92E-07 MAD2L1, BUB1, CENPF, BUB1B, NDCB80, CENPK
” T CDK1, TYMS, DLGAPS, CKS2, BUBL, CENPF, BUB18B,
] Cell proliferation L76E-06 \lre
S | mitotic spindle assembly checkpoint 4.64E-06 MAD2L1, BUB1, CENPF, BUB1B
2 [chromosome segregation 4.68E-06 KIF11, NEK2, CENPF, NDC80, TOP2A
£ | mitotic sister chromatid segregation 9.32E-06 MAD2L1, NEK2, NUSAP1, NDC80
2 G2/M transition of mitotic cell cycle 7.46E-05 CDK1, CCNB2, NEK2, MELK, HMMR
3 F— .
negat_lvg regulallqn of uhlgumn protein ligase 2.20E-04 CDK1, MAD2L1, BUB1B, UBE2C
activity involved in mitotic cell cycle
positive regulation of ubiquitin-protein ligase
activity involved in regulation of mitotic cell 2.69E-04 CDK1, MAD2L1, BUB1B, UBE2C
cycle transition
Kinetochore 1.39E-07 MAD2L1, NEK2, BUBL, CENPF, BUB18, NDC80
Condensed chromosome kinetochore 1.99E-07 MAD2L1, NEK2, BUB1, BUB1B, NDCB0, CENPK
CDK1, DTL, EZH2, KIAAQL01, CENPF, ANLN, UBEZC,
Nucleoplasm 1.74E-05 CENPK, TYMS, CCNB2, FANCI, RRM2, BUB1, TOP2A,
o UBE2T
5 CDK1, DTL, NEK2, DLGAPS, EZH2, KIAA0101,
3 € NUSAP1, CENPF, NDCBO, PBK, CDKN3, CENPK,
s g |Nucleus 3:38E-05 Ty\Ms, CCNB2, MAD2LL, RRM2, TOP2A, UBEZT,
g ASPM, MELK
£ [Midbody 4.30E-05 CDK1, NEK2, CENPF, CEPS5, ASPM
S COKLKIFLL DTL NEKC. DLGAPS 242 KIAADIOL,
£ |Cytoplasm 9.43E-05 NUSAP1, CENPF, UBE2C, CDKN3, TYMS, FANCI,
Z RRM2, BUB1, BUB1B, TOP2A, UBE2T, ASPM
© | centrosome 4.30E-04 CDK1, CCNBY, DTL, NEK2, CENPF, CEPSS
CDK1, KIFL1, NEK2, CENPF, NDC80, UBE2C, CENPK,
Cytosol 5.65E-04 HMMR, TYMS, CCNB2, MAD2L1, RRM2, BUBL
BUBIB
Spindle pole 6.11E-04 KIF11, MAD2L1, NEK2, CENPF
Spindle microtubule 0.0020693CDK1, KIF11, NUSAP1
Chromatin binding 3.63E-05 CDK1, EZH2, CKS2, KIAA0101, CENPF, TOP2A, UBE2T]|
§ | Protein kinase activity 2.78E-04 CDK1, NEK2, BUBL, BUB1B, PBK, MELK
2 |protein serine/threonine kinase activity 3.44E-04 CDK1,NEK2, BUBL, BUB1B, PBK, MELK
s
2 . CDK1, KIF1L, NEK2, BUB1, BUB1B, PBK, UBE2C,
5 ATP binding 4.78E-04 10p, UBERT, MELK
3 CDK1, DTL, NEK2, DLGAPS, EZH2, KIAA0101,
8 PR NUSAP1, CENPF, NDCB0, PBK, CEPS5, UBE2C, CENPK,
g |Protein binding 940B-04" o, HMMR, MAD2L1, CCNB2, FANCI, RRME,
BUBL, CKS2, BUB1B, TOP2A, MELK
Ubiquitin conjugating enzyme activity 4.70E-2 UBE2C, UBE2T

(a)

[Module [Category [Term Pvalue [Genes
positive regulation of protein phosphorylation 6.67E-05EGFR, CCND2, TEK, KDR|
peptidyl-tyrosine phosphorylation 1.16E-04EGFR, BCR, TEK, KDR
protein autophosphorylation 1.64E-04EGFR, BCR, TEK, KDR
positive regulation of cell proliferation LesEroAEg;R'F%ClNDZ‘ IRsL,
positive regulation of ERK1 and ERK2 cascade ~ 1.73E-04EGFR, JUN, TEK, KDR
E;"r:ige'scsa' positive regulation of GTPase activity 3,47EVOAFRGSF1R' BCR, JUN, TEK,
Angiogenesis 3.52E-04JUN, TEK, KDR, FN1
positive regulation of fibroblast proliferation 5.48E-04EGFR, JUN, FN1
posl_uve r_egulanon of endothelial cell 8.94E-04UN, TEK, KDR
proliferation
((ansrr_\embrane receptor protein tyrosine kinase 1.72E-03EGFR, TEK, KDR
signaling pathway
protein tyrosine kinase activity 5.51E-05EGFR, BCR, TEK, KDR
4:} trar_nsfnembvane receptor protein tyrosine kinase 2.20E-04EGFR, TEK, KDR
2 activity
2 enzyme binding 8.24E-04EGFR, BCR, JUN, WWOX
= EGFR, BCR, CCND2, JUN,
protein binding 1.45E-03TEK, CDH1, TCF4, IRS1,
Molecular WWOX, KDR, FN1
Function | integrin binding 1.67E-03EGFR, KDR, FN1
Ras guanyl-nucleotide exchange factor activity 2.00E-03EGFR, TEK, IRSL
receptor signaling protein tyrosine kinase 5.91E-03EGFR, KDR
activity
identical protein binding 8.26E-03EGFR, JUN, TCF4, FN1
growth factor binding 1.59E-02TEK, KDR
chromatin binding 2.13E-02EGFR, JUN, TCF4
membrane raft 6.54E-03EGFR, TEK, KDR
endosome 7.76E-03EGFR, CDH1, KDR
Cellular | apical plasma membrane 1.27E-02EGFR, TEK, FN1
Component | focal adhesion 2.22E-02EGFR, TEK, CDH1
cell junction 3.00E-02BCR, CDH1, KDR
microvillus 3.39E-02 TEK, WWOX
Biotoaical | protein ubigitination 3260500 MO X0
1’ Cellular ubiquitin ligase complex 2.07E-04RNF144B, LMO7, FBXO9
E] Component | SCF ubiquitin ligase complex 1.09E-02FBX032, FBX09
2 I N — RNF144B, LMO7,
= r\éz:‘e;:,;;r ubiquitin-protein transferase activity 289055y 03> FBX09

zinc ion binding

2.62E-02SH3RF1, RNF144B, LMO7

(b)

Module 3 gene ontology annotation found significant enrichment for Pro-
tein ubiquitination, with significantly enriched cellular components being
ubiquitin ligase complex and SCF ubiquitin ligase complex, which have in-

volvement in proteosomal and autophagy functions.

Module 3 molecular

functions showed significant enrichment in ubiquitin-protein transferase ac-
tivity and zinc ion binding (Table 3 (b)). It was also notable that pathway
enrichment analyses found modules 1 and 2 were significantly enriched in
protein binding pathways, which was not seen in was obtained in module 3

(Table 3 (b)).
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3.5. Regulatory signatures: TFs and miRNAs affecting DEG transcript Lev-
els.

3.5.1. Transcriptional requlatory network construction and TF enrichment
analysis

The construction of reporter TFs and DEGs interaction network con-
structed by NetworkAnalyst revealed a number of potentially important TFs
selected by the topological analysis using dual metric approach involving de-
gree and betweenness (Fig. 4). The top 10 ranked TFs with the highest
degree and betweenness centrality included FOXC1, GATA2, YY1, FOXLI,
E2F1, NFIC, SRF, TFAP2A, HINFP, and CREB1. Pathway enrichment
analysis of the TFs that differ between FTC and FTA and DEGs mainly
identified as statistically significant a number of relevant pathways that
included Transcriptional misregulation in cancer, Acute myeloid leukemia,
Pathways in cancer, Thyroid cancer, Cell cycle, Dorso-ventral axis forma-
tion, Arrhythmogenic right ventricular cardiomyopathy (ARVC), Cocaine
addiction, Prostate cancer pathways (Table 4(b)).

o=

A

Figure 4: Construction of regulatory networks of TF-DEG interactions. Red nodes indicate
up-regulation and green node represents down-regulated DEGs.

3.5.2. miRNA regulatory network construction and enrichment analysis of
miRNA

We constructed TC DEG-miRNA interactions networks using Network-
Analyst (Fig. 5). By topological analysis, the top 10 ranked miRNAs by
highest degree and betweenness centrality were selected which includes hsa-
mir-335-5p, hsa-mir-26b-5p, hsa-mir-124-3p, hsa-mir-16-5p, hsa-mir-192-5p,
hsa-mir-1-3p, hsa-mir-17-5p, hsa-mir-92a-3p, hsa-mir-215-5p, and hsa-mir-
20a-5p. The analysis indicates that these are miRNAs having the highest po-
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Figure 5: Construction of regulatory networks of DEGs-miRNAs interaction. Red nodes
indicate up-regulation and green node represents down-regulated DEGs.

tential to regulate levels of the DEG transcripts differently in FTC and FTA.
The pathway enrichment analysis of the miRNA associated DEGs networks
identified the pb3 signaling pathway, Dorso-ventral axis formation, Pertus-
sis, Adherens junction, Thyroid cancer, Pathways in cancer, Focal adhesion,
Sphingolipid metabolism, PPAR signaling pathway, and ECM-receptor in-
teraction signaling system statistically significant (Table 4(a))

Table 4: (a) Top 10 KEGG pathway in genes of micro-RNAs and differentially expressed
genes interaction networks (b) Top 10 KEGG pathway in genes of TFs and differentially
expressed genes interaction networks

Pathway Total Expected Hits P.Value Pathway Total Expected Hits P.Value

p53 signaling pathway 68 2.25 8 1.65E-03 Transcriptional misregulation in cancer 19 0.942 11 1.87E-10

Dorso-ventral axis formation 12 0.397 3 6.29E-03 Acute myeloid leukemia 57 283 16 7.48E-09

Pertussis 52 172 6 6.92€-03 Pathways in cancer 310 154 40  9.50E-09

Adherens junction 70 2.32 7 7.95E-03 Thyroid cancer 28 139 10 4.41E-07

. HTLV-I infection 199 9.86 26 3.86E-06

Thyroid cancer 28 0.927 4 1.27E-02 ceileyae 124 6.15 18 3.12E-05

(R T S X3 2502 Dorso-ventral axis formation 12 0595 5  171E-04
Focal adhesion 200 6.62 13 1.45E-02

Arrhythmogenic right ventricular

Sphingolipid metabolism 46 152 5 1.71E-02 Zardioiyopatiy (ARVC) 12 0595 5 171E-04
PPAR signaling pathway 64 212 6 1.84E-02

Cocaine addiction 43 213 9 1.99€-04

ECM-receptor interaction 84 2.78 7 2.05E-02 Prostate cancer 87 431 13 3.01E-04

(a) (b)
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4. Discussion:

To clarify the molecular mechanisms that underlie the pathological fea-
tures (especially malignancy potential) that distinguish malignant and be-
nign thyroid lesions we examined differential gene expression between FTC
from FTA. Such a comparison is likely to be more informative than mak-
ing such a comparison of malignant and normal tissues which will con-
tain many more differences related to neoplastic cell development. In ad-
dition, the lesions contain significant non-neoplastic cell components (such
as mesenchymally-derived and endothelial cells) that are also likely to differ
markedly from those of normal tissue.

The DEGs identified from the FTC/FTA comparison were used to iden-
tify possible regulatory patterns, key molecular pathways, and protein-protein
interactions among these pathway gene products. Such an analytical ap-
proach can be used to find molecular signatures that may serve either as
potential therapeutic targets or as biomarkers to differentially diagnose or
identify FTC. As did the original study by Wojtas et al. [51], we identified
significantly altered genes that may be candidate biomarkers that distinguish
FTC. However, another important use of such data (and our main focus here)
is to identify and characterize biological functions associated with these genes
that may give insights into the biology and behaviour of FTC lesions them-
selves.

Our study thus identified a number of important pathways that were
differentially expressed in FTC, some of which would be expected by the
malignant profile of FTC compared to FTA. For example, the p53 signaling
pathway plays an important role in cancer cell apoptosis and DNA repair
by causing cycle arrest in response to DNA damage [57] and previously im-
plicated in thyroid cancers [12]. Cell cycle progression is regulated and fa-
cilitated by cyclin-dependent kinases that are activated by cyclins such as
cyclin D1. Indeed, cyclin D1 levels can influence tumour progression, and
may have prognostic significance in FTC [50]. Related to this, it has also
been reported that the One-carbon metabolism pathway is actively involved
in cancer progression, probably due to its involvement in nucleotide synthesis
33].

We also found a number of significant GO groups are associated with the
DEGs as shown in table 2. PPI network reconstruction and the analysis of
reconstructed PPI network represent a powerful approach for understanding
disease mechanisms, so to construct a PPI network for the DEGs in our study
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we combined results of statistical analyses with the protein interactome net-
work. To identify potential hub proteins, topological analysis strategies were
employed. This identified 12 hub genes (Table 1(b)). These include a number
of genes commonly associated with cancers (including thyroid cancers), such
as EGRF, JUN, FOS, CDK1 and other cyclin pathway genes, E-cadherin
(CDH1) and E2F1. The hub protein EGFR is linked to growth in many
types of cancer as well as cardiovascular diseases, and has been previously
linked to thyroid cancers [42]. JUN and FOS are best characterised as sub-
units of the AP-1 transcript factor that has a crucial role in many types of
cell differentiation and inflammation processes [6]. GO databases also delin-
eated particular roles for JUN in Angiogenesis and regulation of Endothelial
cell proliferation, both of which have central roles in metastasis and invasion
(Table-2 (b)). CDKI1 is an important cell cycle regulator and is involved in
the breast, lung and ovary carcinomas [26]. CDK1 overexpression has been
documented in lung cancer, lymphoma and advanced melanoma while loss of
cytoplasmic CDK1 predicts poor patient survival and may confer chemother-
apeutic resistance in the latter [36]. Cyclin B1 (in the same family as CDK1)
overexpression and/or mislocalization has been described in several primary
cancers including thyroid carcinoma, colon, gastric, prostate, breast, and non
small-cell lung cancer [36]. It is also actively involved in mitotic cell cycle
phase transition (Table 2 (a)). CDKN3 encodes a cyclin inhibitor (regulating
cell cycle) and has been described as overexpressed in lung adenocarcinoma
(ADC), squamous cell carcinoma (SCC), hepatocellular carcinoma, cervical
cancer and epithelial ovarian cancer [56]. Over-expression of EZH2 is fre-
quently observed in many cancer types [54].

TYMS expression is also associated with the risk of development of epithe-
lial cancers and lymphoma cancer[19]. Besides, in Hereditary diffuse gastric
cancer (HDGC), the hub gene CDH1 mutations are connected with an in-
creased incidence of lobular carcinoma of the breast and, possibly, prostate
cancer and colorectal carcinoma [35]. This gene is also involved in extra-
cellular matrix organization (Table 2(b)). Hub gene CCNB2 is known to
be underexpressed in thyroid cell tumors [10]. We found that CDK1 and
CCNB2 hubs genes were actively associated with p53 signaling pathway,
Progesterone-mediated oocyte maturation and Cell cycle pathways. The hub
gene TYMS is also involved in One carbon pool by folate pathway, while
FOS, JUN and CDHI1 genes are involved in Pathways in cancer and JUN,
FOS genes in Estrogen signaling pathway. A number of other hub genes
have been described as associated with malignant thyroid cancers including
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EXH2, UBCH10,TFAP2A, TOP2A and SRF [27, 23, 8, 41, 21]. By consider-
ing the possible roles of these hub proteins in pathogenesis of FTC and other
related diseases new roles for these proteins may be identified. In addition
to the above hub genes, we also identified a number of factors not previously
noted as having a role in FTC or thyroid cancers, including UBA52, GATA2,
FOXL1 and NFIC.

As we know that the regulation of gene expression is controlled by TFs
and miRNAs at post-transcriptional and/or transcriptional levels, so changes
in these molecules may provide crucial information regarding dysregulation
of gene expression in FTC. Thus, we investigated TFs and their relationship
to DEGs in these tumours. One of the TFs, we identified was FOXC1 which
a previous study found that FOXC1 was strongly associated with thyroid
cancers [5]. Overexpression of YY1 in differentiated thyroid cancers has also
been noted [2]. The pathway analysis of these TFs showed statistical signif-
icance in FTC. From the DEGs a miRNA interaction network of miRNAs
(Table 1(b)) was also identified and analysed. Our pathway analysis of these
miRNA also showed statistically significant relationships with FTC. Notably,
the target DEGs of these miRNAs and TFs included the p53 signaling path-
way, PPAR signaling pathway, Dorso-ventral axis formation, Focal adhesion
(Table 4(a)) and Pathways in cancer, Transcriptional misregulation in cancer,
and Thyroid cancer, respectively. The miRNA species we identified that have
previously been shown to have a role in thyroid cancer included hsa-mir-335-
5p, hsa-124-3p, hsa-mir-17-5p and hsa-mir-20a-5p [9, 55, 25, 17]. However, 6
other miRNAs we identified have not previously been associated with thyroid
lesions. miRNA species have wide ranging effects on gene expression which
may be indirect, so further analysis for these are needed.

We analysed the dataset originally generated by Wojtas et al., who sought
markers distinguishing FTC and FTA and combined microarray methods and
literature meta-analysis to achieve this. The gene markers they identified
included TFF3 and CPQ (previously characterised FTC markers), PLVAP
and ACVRL1, all genes expressed in thyroid although ACVRI1 is an activin
receptor with wide expression. These latter genes were not identified by our
analytical approach, but it should be noted that our study used very different
analytic tools, focussing on identifying pathways and on finding evidence for
gene functions using PPI and other resources. Our analytical approach was
somewhat more similar to that of Wang et al. [49] who examined an older
thyroid cancer dataset (GSE27155) containing 10 FTA, 14 FTC, 4 normal
thyroid tissue samples plus other types of thyroid lesion. While we employed
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a number of additional analytical tools (some developed previously by us)
there were a number of significant genes and pathways we found in common
in the FTC/FTA analyses Wang et al. [49]. These notably include the AP-1
TF and its components (e.g., JUN and FOS), BCL2, factors relating to DNA
damage and cyclin-related factors that regulate cell cycle. We identified no
genes that Wang et al. identified in comparing FTC and normal tissues.
Recent studies by Shang et al. and by Liang and Sun [24] examined datasets
generated from papillary thyroid cancer lesions that were compared with and
normal tissues. DEGs identified in these studies were analysed by methods
related to our approach [44]. However, unlike the Wang et al. study cited
above, very few of the hub genes these studies identified were found in our
analysis; BCL2 was the main exception. This lack of concordance with the
FTC studies may well reflect the different tumour type (and lower malignancy
rates) represented by papillary thyroid cancer, and it might be useful to
compare all these datasets in detail to determine how these types of tumour
differ.

5. CONCLUSIONS

Our data-driven approach has uncovered a number of significant molec-
ular mechanisms that may underlie the difference between FTC and FTA.
In this study, using integrated bioinformatics analyses, we analyzed gene
expression profiles in FTC and FTA and used this information to identify
candidate hub proteins that could play significant roles in FTC development.
Our results indicate the directions for future experimental work needed to
clarify the roles of these cellular proteins. In sum, the study identified gene
networks that advance our understanding of the pathogenesis of FTC, and
indicates new avenues to develop therapies for FTC.
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