

1 **Pathogenic Budding Yeasts Isolated outside of Clinical Settings**

2 Dana A. Opulente^{1,2}, Quinn K. Langdon¹, Kelly V. Buh¹, Max A. B. Haase^{1,2}, Kayla Sylvester^{1,2},
3 Ryan V. Moriarty^{1,2}, Martin Jarzyna¹, Samantha L. Considine¹, Rachel M. Schneider^{1,2}, Chris Todd
4 Hittinger^{1,2}

5 ¹Laboratory of Genetics, Genome Center of Wisconsin, Wisconsin Energy Institute, J. F. Crow
6 Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53706

7 ²DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI
8 53706

9 **Abstract**

10 Budding yeasts are distributed across a wide range of habitats, including as human
11 commensals. However, under some conditions, these commensals can cause superficial,
12 invasive, and even lethal infections. Despite their importance to human health, little is known
13 about the ecology of these opportunistic pathogens, aside from their associations with
14 mammals and clinical environments. During a survey of approximately 1000 non-clinical
15 samples across the United States of America, we isolated 54 strains of budding yeast species
16 considered opportunistic pathogens, including *Candida albicans* and *Candida (Nakaseomyces)*
17 *glabrata*. We found that, as a group, pathogenic yeasts were positively associated with fruits
18 and soil environments, while the species *Pichia kudriavzevii* (syn. *Candida krusei* syn.
19 *Issatchenka orientalis*) had a significant association with plants. These results suggest that
20 pathogenic yeast ecology is more complex and diverse than is currently appreciated and raises
21 the possibility that these additional environments could be a point of contact for human
22 infections.

23

24 **Importance**

25 We isolated several opportunistic pathogenic species of yeasts from the subphylum
26 Saccharomycotina from multiple non-clinical environments across the United States of America.
27 Among those strains isolated, over 50% represent the most common opportunistic pathogens.
28 These species, *C. albicans*, *Candida tropicalis*, *Candida parapsilosis*, and *C. glabrata*, have been
29 rarely isolated from non-clinical settings and have been usually interpreted as contamination.
30 Our extensive isolations from natural settings challenge this assumption, suggesting that
31 opportunistic pathogens can persist in alternative niches and that their ecology may be more
32 complicated than is currently assumed. Non-clinical environments could be a short-term habitat
33 as these yeasts are passed between their predominant hosts, endothermic animals.

34

35 **Observation**

36 Budding yeasts of the subphylum Saccharomycotina are distributed across a wide range
37 of habitats (1–3), including as commensals in the human microbiota (1, 4). However, under rare

38 circumstances, yeasts can cause candidiasis, which is an infection caused by yeasts often
39 assigned to the genus *Candida* and considered opportunistic pathogens (5). While there are
40 rare reports of several species being the agents of candidiasis, including *Saccharomyces*
41 *cerevisiae* (6), the species *Candida albicans*, *Candida (Nakaseomyces) glabrata*, *Candida*
42 *parapsilosis*, and *Candida tropicalis* are responsible for approximately 95% of infections (5, 7,
43 8). Other non-hybrid yeast species recognized as opportunistic pathogens include *Pichia*
44 *kudriavzevii* (syn. *Candida krusei* syn. *Issatchenka orientalis*), *Candida dublinensis*, *Candida*
45 *orthopsisilosis*, *Meyerozyma (Candida) guilliermondii*, and *Clavispora (Candida) lusitaniae* (1). *P.*
46 *kudriavzevii* is the fifth leading cause of yeast infections, is resistant to fluconazole, and has
47 reduced susceptibility to other antifungal treatments (9). Infections by the other species are
48 rare, but each has caused multiple infections in humans (5, 10).

49 While most are currently classified in the genus *Candida*, these pathogenic species
50 belong to several phylogenetically distinct clades (5). Despite this diversity, one commonality is
51 that little is known about their ecology; it is unclear whether their primary ecological niche is
52 endothermic animals and clinical settings, or whether they are adapted to additional
53 environments. While disease-causing species have been recovered from a variety of habitats,
54 such as food and clothing, these isolates are generally interpreted as contamination, rather
55 than being sourced from a yeast habitat (1, 11–13).

56 Understanding the ecology of pathogenic yeasts is critical to human health for multiple
57 reasons. First, mortality from infections by these yeasts remains high, and candidiasis is the
58 fourth most common hospital-associated bloodstream infection (4, 14, 15). Second, *Candida*
59 *auris* recently emerged as a multi-drug resistant opportunistic pathogen, with additional strains

60 exhibiting resistance to many anti-fungal drugs (14, 16). Finally, it is unclear whether there
61 might be environmental reservoirs that could act as contact points for their primary hosts, or
62 whether the niches of pathogenic yeasts are indeed exclusively endothermic animals and
63 clinical environments (17).

64 We extensively sampled non-clinical substrates across the United States of America to
65 enrich for and isolate yeasts. In total, we collected approximately 1000 samples and have
66 isolated about 5000 strains of yeasts. Across our sampling regime, we isolated 54 strains of
67 species that are considered opportunistic pathogens (Figure 1, Table S1). Recently and
68 independently, three strains of *C. albicans* were isolated from oak bark in New Forest in the
69 United Kingdom (13). Collectively, these results suggest that pathogenic yeast ecology is more
70 complex and diverse than is currently appreciated and raises the possibility that these
71 additional environments could be a point of contact for infections.

72 The strains we isolated came from 40 different samples; in 14 cases, multiple strains of a
73 single species were isolated from a single sample, often from different isolation temperatures
74 (Table S1). Once those were collapsed, we had 40 unique strains, 55% of which were from the
75 four species that cause 95% of candidiasis infections (Figure 2). The species isolated most was
76 *P. kudriavzevii*, making up 25% ($n = 10$) of our isolates of opportunistic pathogenic species that
77 were isolated from non-clinical settings several times across a wide range of environments,
78 including fermentations, soil, and fruits (1, 18). Its prevalence in our environmental isolations is
79 consistent with previous studies.

80 While *P. kudriavzevii* and *M. guilliermondii* have been isolated from non-
81 clinical/ectothermic environments (19, 20), the other species we isolated have only been rarely

82 isolated from non-clinical settings. It is unknown whether these species are actively growing in
83 these environments, but these non-clinical environments could potentially act as a secondary
84 niche for these species. Furthermore, these environments could be an additional source of
85 contact between these species and their primary hosts, potentially as the organism passes
86 between hosts. To determine whether pathogenic yeasts were associated with particular non-
87 clinical environments, we classified our samples in two ways. We used a more general
88 description of whether it was isolated from plants, soil, or fungi; and then, when the specific
89 information was available, a more specific description of the substrate (e.g. fruits, leaves, sand)
90 was given. This method was used to determine whether specific parts of a substrate were more
91 important for pathogenic yeasts than others.

92 Samples varied significantly in terms of the number of species isolated from an
93 environment (Table S1). Across all species with multiple isolation events, species were not
94 limited to a single substrate. For example, *C. albicans* was isolated from fruits, soil, and plant
95 matter. *P. kudriavzevii* was significantly associated with isolation from plants ($p_{adj} = 0.0185$)
96 (Figure 2A, Table S4). We detected no other significant associations among substrates at the
97 general descriptive level for the other species in our data.

98 Due to the smaller sample sizes at the specific descriptive levels for our substrates, we
99 did not test for associations between them and species. However, at this level, our
100 opportunistic pathogen isolates collectively exhibited significant associations with fruits ($p_{adj.} =$
101 0.021) and soil ($p_{adj.} < 0.001$) (Figure 2B, Table S5). The association between fruits and our
102 isolates was most likely driven by our *P. kudriavzevii* isolates, which were, in our more general
103 analysis, positively associated with plants. This association could be the result of animals acting

104 as a vector to transport these opportunistic pathogenic species to fruits they regularly visit. The
105 association with soil was mostly driven by *C. tropicalis*, but other species also contributed; 39%
106 (n = 7) of our soil isolates were *C. tropicalis*. Our results, combined with the independent
107 isolation of three strains of *C. albicans* from oaks in the United Kingdom (13), suggest that these
108 alternative niches could potentially act as a secondary contact site between these pathogenic
109 yeasts and their human hosts.

110 **Methods of sample collection, yeast isolation, quality control, and statistical analyses:**

111 Yeasts were collected throughout the United States from multiple substrates by members of
112 the Hittinger Lab, as well as citizen scientists (Table S1). Statistical analyses did not detect bias
113 in pathogenic isolates coming from any individual collector ($\chi^2 = 0.072$, p-value = 1, Table S2) or
114 among individuals isolating yeasts from samples ($\chi^2 = 1.63$, p-value = 1, Table S3). All samples
115 were collected using sterile bags and did not come into contact with the humans collecting
116 them. Samples were processed by different members of the lab using published yeast
117 enrichment and isolation protocols (21). Negative controls were included to ensure no
118 contamination occurred. After enrichment, yeast species were identified by ITS sequencing, as
119 previously described (21).

120 We removed strains from our analyses that were isolated from areas that are highly
121 trafficked by humans, such as samples that were isolated from compost piles. We collapsed
122 multiple strains isolated from the same sample (including when isolated at different
123 temperatures) to one representative strain since the strains may be closely related. We
124 determined positive associations using modified methods previously described (3). All analyses

125 were done in the statistical language R (v. 3.3.0). All graphs were made using the R package
126 *ggplot2* (v. 2.2.1).

127 **Acknowledgments**

128 We thank the following citizen scientists or lab members for collecting samples or
129 generating preliminary results: Aaron G. Barton, Amanda Beth Hulfachor, Russell L. Wrobel,
130 Leslie Shown, The Zasadil Family, EmilyClare P. Baker, Drew T. Doering, Angela Sheddan, Sarah
131 Wright, Bill Saucier, Bill Vagt, Annette Opulente, and Sophie Smead. This material is based upon
132 work supported by the National Science Foundation under Grant Nos. DEB-1253634 (to CTH),
133 DEB-1442148 (to CTH), and DGE-1256259 (Graduate Research Fellowship to QKL); funded in
134 part by Lakeshore Nature Preserve Student Engagement Grants (to MJ and RMS); and funded in
135 part by the DOE Great Lakes Bioenergy Research Center (DOE Office of Science BER DE-
136 SC0018409 to Timothy J. Donohue). QKL was also supported by the Predoctoral Training
137 Program in Genetics, funded by the National Institutes of Health (5T32GM007133). CTH is a
138 Pew Scholar in the Biomedical Sciences and Vilas Faculty Early Career Investigator, supported
139 by the Pew Charitable Trusts and Vilas Trust Estate, respectively.

140

141 **Figures**

142

143 **Figure 1:** Opportunistic pathogenic species of yeasts in the subphylum Saccharomycotina are
144 found throughout the United States of America on a variety of non-clinical substrates. A) Map
145 displaying where opportunistic pathogens were isolated. The colors represent the species
146 isolated, and the shapes of the points represent the substrate from which they were isolated.
147 B) Bar graph of unique strains of each species.

148

149 **Figure 2:** Pathogenic yeast species are associated with non-clinical/non-endothermic
150 environments. A) *P. kudriavzevii* was a significantly associated with plants ($p_{adj.} = 0.018$). Bar
151 graphs representing the strength (difference between observed and expected counts) of
152 associations between pathogenic species and isolation substrates. B) Opportunistic pathogens
153 were associated with soil ($p_{adj.} < 0.001$) and fruits ($p_{adj.} = 0.021$). Bar graph representing the
154 strength of association between pathogenic yeasts and specific isolation environments.

155

156 **Supplementary Table:**

157

158 **Table S1:** All opportunistic pathogens isolated across the United States of America, including
159 the GPS location, substrate, isolation temperature, sample ID, and the ITS and/or D1/D2
160 sequence used to confirm species identification.

161

162 **Table S2:** Number of samples collected by individuals whose samples contained an
163 opportunistic pathogenic species. The “RG2 prop” column represents the proportion of
164 opportunistic pathogens obtained from samples collected by that individuals normalized by the
165 total samples collected by the individual.

166

167 **Table S3:** Number of samples isolated by individuals who isolated an opportunistic pathogenic
168 species. The “RG2 prop” column represents the proportion of opportunistic pathogens isolated
169 by that individuals normalized by the total number of isolates obtained by the individual.

170

171 **Table S4:** Associations among species and general isolation substrates. The expected value is
172 the average value from the randomized data (n = 1000).

173

174 **Table S5:** Associations among pathogenic yeasts and specific isolation substrates. The expected
175 value is the average value from the randomized data (n = 1000).

176

177 **References**

- 178 1. Kurtzman C, Fell JW, Boekhout T. 2011. *The yeasts: A taxonomic study*. Elsevier.
- 179 2. Buzzini P, Lachance M-A, Yurkov A. 2017. Yeasts in natural ecosystems: diversity. Springer.
- 180
- 181 3. Opulente DA, Rollinson EJ, Bernick-Roehr C, Hulfachor AB, Rokas A, Kurtzman CP, Hittinger CT. 2018. Factors driving metabolic diversity in the budding yeast subphylum. *BMC Biol* 16:26.
- 182
- 183
- 184 4. Gabaldón T, Fairhead C. 2018. Genomes shed light on the secret life of *Candida glabrata*: not so asexual, not so commensal. *Curr Genet* 1–6.
- 185
- 186 5. Gabaldón T, Naranjo-Ortíz MA, Marcet-Houben M. 2016. Evolutionary genomics of yeast pathogens in the Saccharomycotina. *FEMS Yeast Res* 16:fow064.
- 187
- 188 6. Strope PK, Skelly DA, Kozmin SG, Mahadevan G, Stone EA, Magwene PM, Dietrich FS, McCusker JH. 2015. The 100-genomes strains, an *S. cerevisiae* resource that illuminates its natural phenotypic and genotypic variation and emergence as an opportunistic pathogen. *Genome Res* 25:762–774.
- 189
- 190
- 191
- 192 7. Pfaller MA, Diekema DJ. 2007. Epidemiology of Invasive Candidiasis: a Persistent Public Health Problem. *Clin Microbiol Rev* 20:133–163.
- 193
- 194 8. Diekema D, Arbefeville S, Boyken L, Kroeger J, Pfaller M. 2012. The changing epidemiology of healthcare-associated candidemia over three decades. *Diagn Microbiol Infect Dis* 73:45–48.
- 195
- 196
- 197 9. Pelletier R, Alarie I, Lagacé R, Walsh TJ. 2005. Emergence of disseminated candidiasis caused by *Candida krusei* during treatment with caspofungin: case report and review of literature. *Med Mycol* 43:559–564.
- 198
- 199
- 200 10. Pfaller MA, Diekema DJ, Gibbs DL, Newell VA, Ellis D, Tullio V, Rodloff A, Fu W, Ling TA, Group GAS. 2010. Results from the ARTEMIS DISK Global Antifungal Surveillance Study, 1997 to 2007: a 10.5-year analysis of susceptibilities of *Candida* species to fluconazole and voriconazole as determined by CLSI standardized disk diffusion. *J Clin Microbiol* 48:1366–1377.
- 201
- 202
- 203
- 204
- 205 11. Van Uden N, Faia MDEM, Assis-Lopes L. 1956. Isolation of *Candida albicans* from vegetable sources. *Microbiology* 15:151–153.
- 206
- 207 12. Di Menna ME. 1958. *Candida albicans* from grass leaves. *Nature* 181:1287.
- 208
- 209 13. Bensasson D, Dicks J, Ludwig JM, Bond CJ, Elliston A, Roberts IN, James SA. 2018. Diverse lineages of *Candida albicans* live on old oaks. *bioRxiv*. doi: <https://doi.org/10.1101/341032>
- 210
- 211 14. Revie NM, Iyer KR, Robbins N, Cowen LE. 2018. Antifungal drug resistance: evolution, mechanisms and impact. *Curr Opin Microbiol* 45:70–76.
- 212

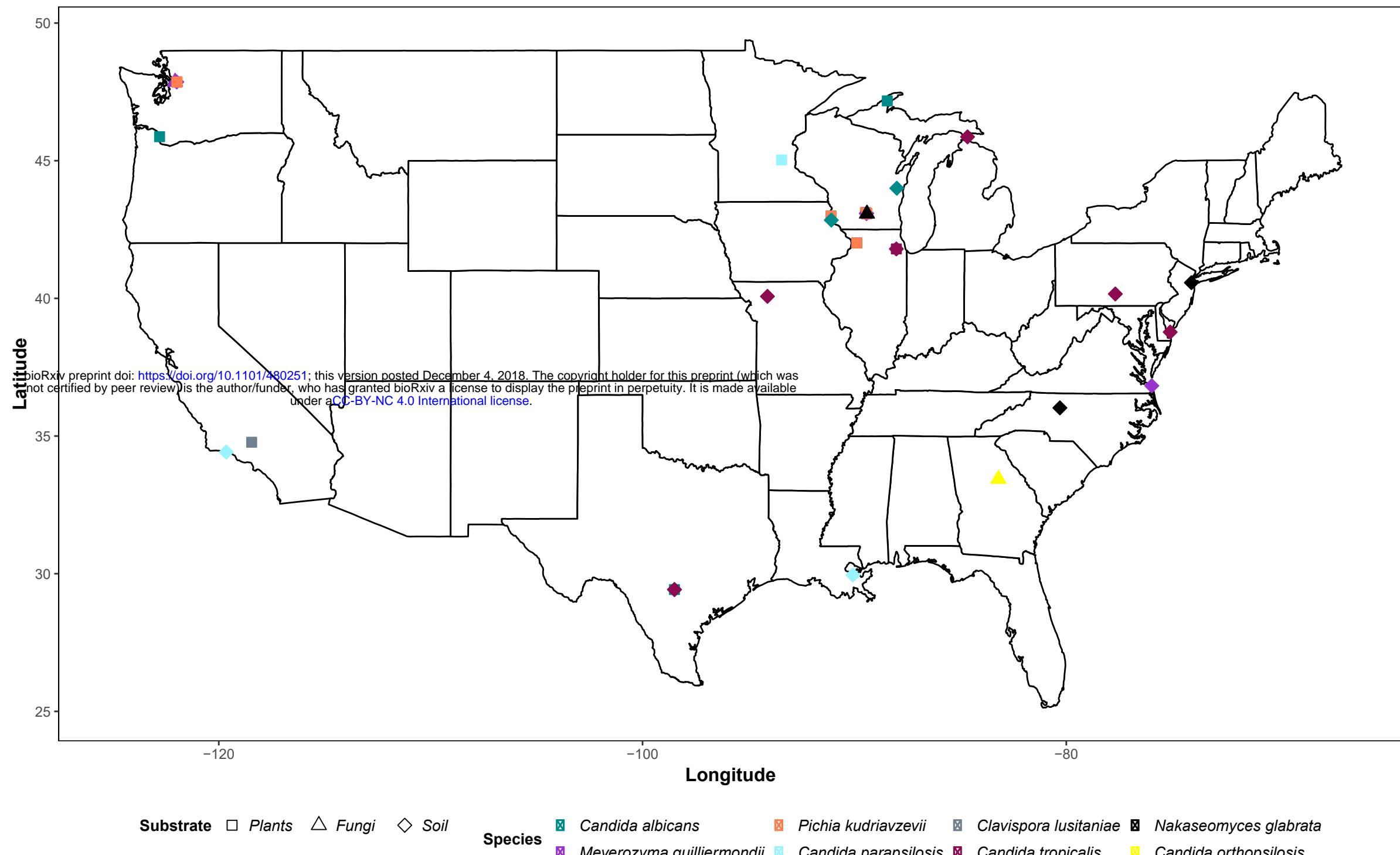
213 15. Morgan J, Meltzer MI, Plikaytis BD, Sofair AN, Huie-White S, Wilcox S, Harrison LH,
214 Seaberg EC, Hajjeh RA, Teutsch SM. 2005. Excess mortality, hospital stay, and cost due to
215 candidemia: a case-control study using data from population-based candidemia
216 surveillance. *Infect Control Hosp Epidemiol* 26:540–547.

217 16. Dolande M, García N, Capote AM, Panizo MM, Ferrara G, Alarcón V. 2017. *Candida auris*:
218 Antifungal Multi-Resistant Emerging Yeast. *Curr Fungal Infect Rep* 11:197–202.

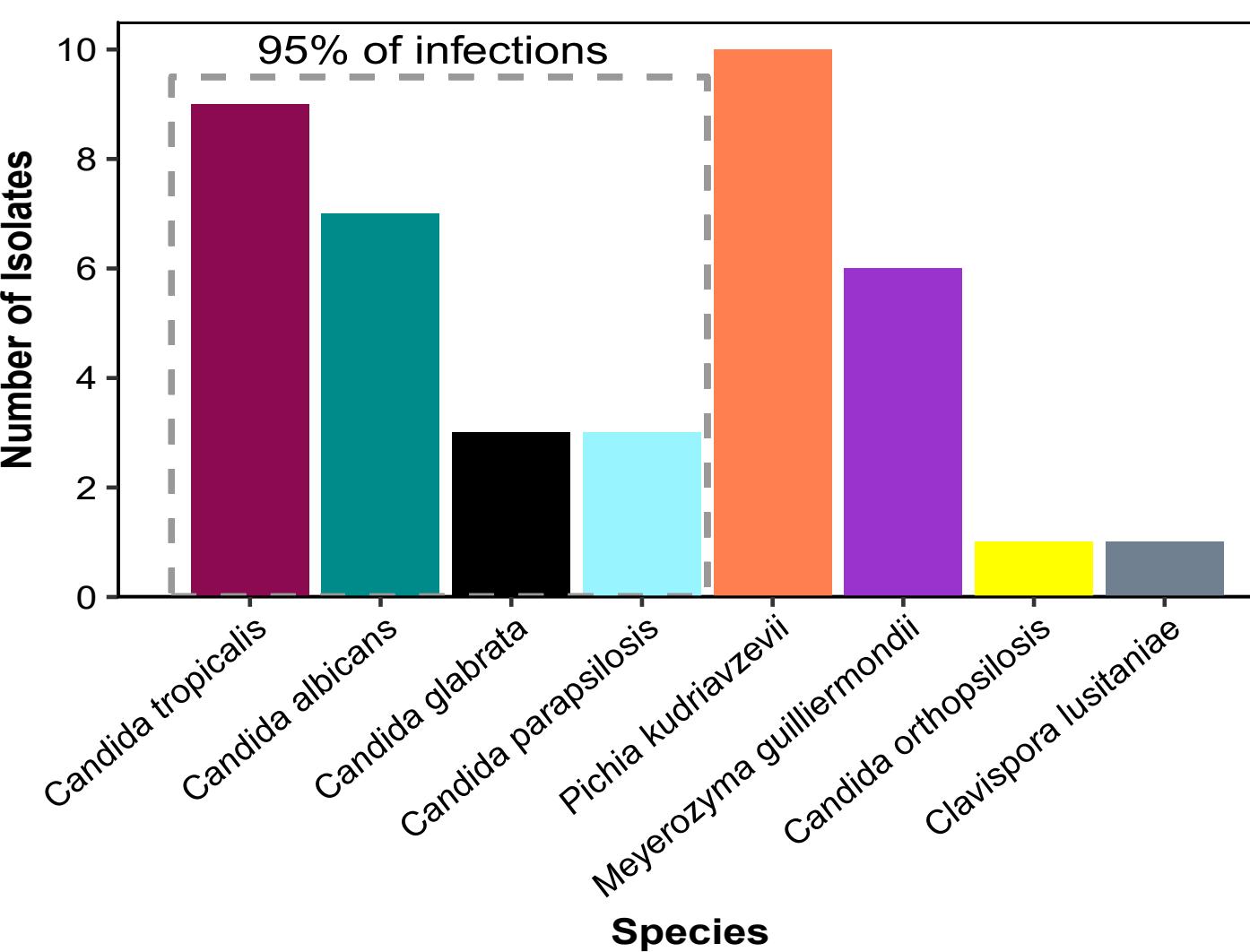
219 17. Daszak P, Cunningham AA, Hyatt AD. 2000. Emerging Infectious Diseases of Wildlife--
220 Threats to Biodiversity and Human Health. *Science* 287:443 LP-449.

221 18. Douglass AP, Offei B, Braun-Galleani S, Coughlan AY, Martos AAR, Ortiz-Merino RA, Byrne
222 KP, Wolfe KH. 2018. Population genomics shows no distinction between pathogenic
223 *Candida krusei* and environmental *Pichia kudriavzevii*: One species, four names. *PLOS*
224 *Pathog* 14:e1007138.

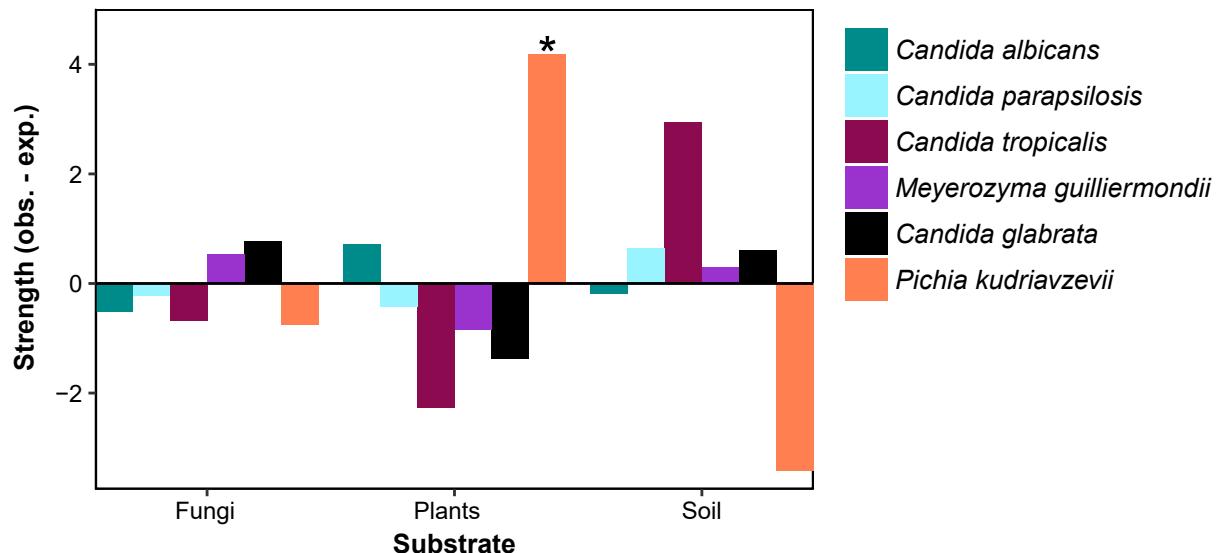
225 19. Brandão LR, Vaz ABM, Santo LCE, Pimenta RS, Morais PB, Libkind D, Rosa LH, Rosa CA.
226 2017. Diversity and biogeographical patterns of yeast communities in Antarctic,
227 Patagonian and tropical lakes. *Fungal Ecol* 28:33–43.

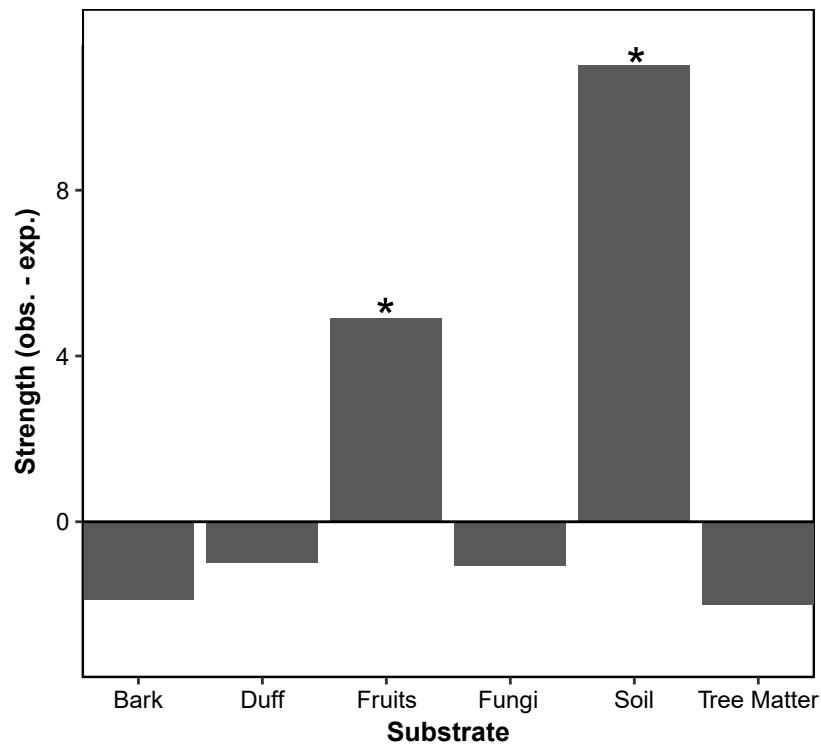

228 20. Moubasher AH, Abdel-Sater MA, Zeinab SM. 2018. Diversity of floricolous yeasts and
229 filamentous fungi of some ornamental and edible fruit plants in Assiut area, Egypt. *Curr*
230 *Res Environ Appl Mycol* 8:135–161.

231 21. Sylvester K, Wang Q-M, James B, Mendez R, Hulfachor AB, Hittinger CT. 2015.
232 Temperature and host preferences drive the diversification of *Saccharomyces* and other
233 yeasts: A survey and the discovery of eight new yeast species. *FEMS Yeast Res* 15:fov002.


234

235


A


B

A

B

