

1 **Cross-reactivity reduced dengue virus serotype 2 vaccine does not**
2 **confer cross-protection against other serotypes of dengue viruses**

3

4 **Jedhan Ucat Galula¹, Chung-Yu Yang¹, Brent S. Davis², Gwong-Jen J. Chang^{2*}, Day-**
5 **Yu Chao^{1*}**

6

7 ¹Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine,
8 National Chung Hsing University, Taichung, Taiwan

9 ²Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, US
10 Department of Health and Human Services, Fort Collins, Colorado, USA

11

12 ***Correspondence:**

13 Day-Yu Chao

14 Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine,
15 National Chung Hsing University, 145 Xingda Rd., Taichung 402, Taiwan

16 Tel: 886-4-22840694

17 E-mail: dychao@nchu.edu.tw

18

19 or

20

21 Gwong-Jen J. Chang

22 Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Public
23 Health Service, US Department of Health and Human Services, 3156 Rampart Rd., Fort
24 Collins, CO 80521, USA

25 Tel: 970-221-6497

26 E-mail: gxc7@cdc.gov

27

28 **Keywords:** Dengue virus, DENV-2 vaccine, epitope modification, cross-reactivity reduced,
29 neutralizing antibodies, prime-boost immunization

30

31 **Word count:** Abstract 191 words; Main text 2,652 words

32

33

34 **Abstract**

35 The four serotypes of dengue virus (DENV) cause the most important rapidly
36 emerging arthropod-borne disease globally. The humoral immune response to DENV
37 infection is predominantly directed against the immunodominant cross-reactive weakly
38 neutralizing epitopes located in the highly conserved fusion peptide of ectodomain II of
39 envelope (E) protein (EDII_{FP}). Antibodies recognizing EDII_{FP} have been shown to associate
40 with immune enhancement in an *ex vivo* animal model. In this study, we explored how prime-
41 boost strategies influence the immunogenicity of a cross-reactivity reduced (CRR) DENV-2
42 vaccine with substitutions in EDII_{FP} residues (DENV-2 RD) and found that mice in various
43 DENV-2 RD prime-boost immunizations had significantly reduced levels of EDII_{FP}
44 antibodies. In addition, heterologous DENV-2 RD DNA-VLP prime-boost immunization
45 induced higher and broader levels of total IgG and neutralizing antibodies (NtAbs) although
46 IgG titers to DENV-2 and 3 were statistically significant. Consistently, mice from DENV-2
47 RD DNA-VLP prime-boost immunization were fully protected from homologous DENV-2
48 lethal challenge and partially protected (60% survival rate) from heterologous lethal DENV-3
49 challenge. Our results conclude that the CRR DENV-2 RD vaccine requires a multivalent
50 format to effectively elicit a balanced and protective immunity across all four DENV
51 serotypes.

52

53

54

55 **Importance**

56 The low vaccine efficacy of the live-attenuated chimeric yellow fever virus-DENV
57 tetravalent dengue vaccine (CYD-TDV) is unexpected and there is an urgent need to develop
58 a next generation of dengue vaccine. Antibodies against the fusion peptide in envelope
59 protein (E) ectodomain II (EDII_{FP}) can potentially induce a severe disease via antibody-
60 dependent enhancement (ADE) of infection. This study evaluated different formats of an
61 EDII_{FP}-modified DENV-2 vaccine (DENV-2 RD) in its capability of inducing a reduced
62 EDII_{FP} antibodies, and sculpting the immune response towards an increased DENV complex-
63 reactive neutralizing antibodies (CR NtAb). The results from this study confirmed the poor
64 correlate of neutralizing assay with protection as suggested by the results of CYD-TDV
65 clinical trials. There is a urgent need to develop a biological correlate with protection while
66 evaluating the efficacy of the next generation dengue vaccine.

67

68 **Introduction**

69 The four serotypes of dengue virus (DENV-1 to -4) are the most important causes of
70 the rapidly emerging arthropod-borne disease in tropical and subtropical countries [1, 2],
71 where an estimated 390 million dengue cases occur annually [3]. Infection with one serotype
72 provides long-term homotypic protective immunity, while heterotypic protection is short-
73 lived. Therefore, a tetravalent vaccine is necessary for a balanced immunity against all four
74 DENV serotypes [4]. The most advanced dengue vaccine is the live-attenuated chimeric
75 yellow fever virus-DENV tetravalent dengue vaccine (CYD-TDV) that expresses the
76 premembrane (prM) and envelope (E) structural protein genes of each of the four DENV
77 serotypes [5]. Even though pooled data from phase III clinical trials showed that CYD-TDV
78 had lower efficacy against DENV-1 and -2 [6-8], it has been licensed in some countries under
79 the condition of limited use for individuals aging 9 to 45 years old. A next-generation dengue
80 vaccine with higher efficacy is urgently needed for use in a population of wider age group.
81 Other candidates are in development including purified inactivated virus, subunit and DNA
82 vaccines [9].

83 DNA vaccines afford advantages over the other vaccine platforms including ease and
84 safety of production, elimination of replication interference [10], stimulation of CD8⁺ and
85 CD4⁺ T cell responses similar to live-attenuated vaccines [11], and the possibility to
86 formulate vaccines against multiple pathogens in a single vaccination. However, DNA
87 vaccines elicit low neutralizing antibodies than protein-based vaccines due to unsatisfactory
88 uptake by host cells and inadequate antigen expression. This was overcome by heterologous
89 prime-boost immunizations, with combined use of DNA and other vaccine formats, which
90 effectively induce a more robust and durable immune response against a number of medically
91 important viruses including HIV [12], influenza [13, 14], HCV [15], and flaviviruses [16-22].

92 DENV infection elicits a poor quality of immune response that is highly skewed in the
93 production of immunodominant antibodies against cross-reactive poorly neutralizing epitopes
94 in E protein ectodomain II fusion peptide (EDII_{FP}) [23, 24]. These EDII_{FP} antibodies can
95 induce a severe disease resembling dengue hemorrhagic fever as demonstrated in AG129
96 mice via antibody-dependent enhancement (ADE) of infection [25-27]. Previously our group
97 have constructed a DENV-2 wild-type (DENV-2 WT) plasmid containing the prM and E
98 structural protein genes, which can be secreted outside of the transfected cells and forms
99 virus-like particle (VLP) [28, 29]. The DENV-2 WT plasmid is also demonstrably
100 immunogenic and protective in immunized mice when administered as DNA or VLP [28-30].
101 To circumvent the potential for a severe form of DENV-associated disease after infection by

102 vaccine-induced EDII_{FP} antibodies through ADE, our group further engineered a cross-
103 reactivity reduced (CRR) DENV-2 DNA vaccines with substitutions in the EDII_{FP} epitopes
104 [24, 31]. These CRR DNA vaccines not only induced a significantly reduced levels of EDII_{FP}
105 antibodies, which consequently reduced the enhancement of DENV infection *in vitro* and *in*
106 *vivo*, but also sculpted the immune response towards an increased level of DENV complex-
107 reactive neutralizing antibodies (CR NtAb) [32].

108 In this follow-up study, we evaluated if employing different prime-boost
109 immunizations using the CRR EDII_{FP}-modified DENV-2 vaccine (DENV-2 RD) can further
110 broaden the CR NtAb responses and protect from infection by heterologous DENV serotypes.
111

112

113 **Materials and Methods**

114

115 **Plasmid DNA and virus-like particle (VLP) production**

116

117 Plasmids expressing DENV-2 strain 16681 prM and E structural protein genes,
118 pVD2-WT (wild-type) and pVD2-RD (CRR, with substitutions in EDII_{FP} (G106R/L107D)
119 were previously characterized in detail [24, 28, 29, 31]. Plasmids expressing DENV-1 and -3
120 (strains Panama), and -4 (strain Honduras) prM and E structural protein genes were
121 previously characterized in detail [33]. Plasmids were produced in *E. coli* XL1-Blue cells
122 (Stratagene, USA) and purified using Endofree Plasmid Maxi Kit (Qiagen, USA) according
123 to the manufacturer's instructions. VLPs were produced in COS-1 cells as previously
124 described [34]. DENV-2 WT and RD VLPs were purified by 20% sucrose cushion and rate-
125 zonal centrifugation on 5-25% sucrose gradients [35]. Protein concentration was determined
126 by Bradford Assay (BioRad).

127

128 **Mice**

129 Groups of 5 three-week-old ICR mice were immunized intramuscularly with 100 µg
130 (50 µg in each thigh) of DENV-2 WT or RD DNA, or 4 µg of WT or RD VLP at 0 and 4
131 weeks, and bled retro-orbitally at 0, 4 and 12 weeks post-vaccination. The detailed grouping
132 of mice for immunization is shown in **Supplemental Table 1**. The protective efficacy of
133 DENV-2 RD vaccine was evaluated through passive transfer of maternal antibodies as
134 previously described [28, 29]. Groups of two-day old ICR pups were obtained from
135 immunized females mated with non-immunized males 3 weeks after boosting. Pups from

136 females administered with TNE buffer served as challenge controls. DENV-2-specific NtAbs
137 were confirmed prior to mating. Individual pups from each group were challenged
138 intracranially with 10^6 FFU equivalent to 141, 61, 11 and 1000-fold of 50% lethal doses
139 (LD_{50}) of DENV-1 Hawaii, DENV-2 16681, DENV-3 H87 and DENV-4 Honduras strains,
140 respectively. Pups were monitored daily up to 21 days.

141

142 **ELISA**

143 DENV-specific total IgG endpoint titers and EDII_{FP} epitope-specific IgG percentages
144 were determined following the previously described Ag-capture ELISA [24, 29, 31]. All VLP
145 antigens were standardized at a concentration producing an optical density at 450 nm (OD₄₅₀)
146 of 1.0. EDII_{FP} epitope-specific percentages were calculated as $100 \times [1 - (RD\ VLP\ antigen\ endpoint/WT\ VLP\ antigen\ endpoint)]$. The IgG1 and IgG2a isotype profiles of DENV-2-
147 specific IgG in immune sera (diluted 1:500) were determined following the above Ag-capture
148 ELISA protocol using the SBA Clonotyping System-HRP kit HRP-conjugated goat anti-
149 mouse IgG1 and IgG2a (Southern Biotech, AL, USA). IgG avidities were also determined
150 following the same Ag-capture ELISA with 6 M urea wash-step for 5 min at room
151 temperature after incubation of pooled sera (diluted 1:100) with the antigen. The percent
152 avidities were calculated as $100 \times [(A_{450}\ VLP\ with\ urea) - A_{450}\ NC\ with\ urea]/(A_{450}\ VLP\ without\ urea - A_{450}\ NC\ without\ urea)]$ [36].

155

156 **Virus neutralization**

157 Focus reduction micro-neutralization test (FR μ NT) was performed as previously
158 described [24, 29, 31]. The DENV strains used were DENV-1 Hawaii, DENV-2 16681,
159 DENV-3 H87, and DENV-4 Honduras.

160

161 **Statistical analysis**

162 One-way ANOVA followed by Tukey's post-test was used for multiple comparisons.
163 Data are means \pm SD of two independent experiments.

164

165

166 **Results**

167

168 **DENV-2 WT vaccine prime-boost immunizations elicit DENV-specific antibodies**

169 To test if different prime-boost strategies using DNA or VLP would improve the
170 immunogenicity of DENV-2 WT vaccine, ICR mice were immunized with combinations of
171 DNA and VLP vaccines. All prime-boost strategies induced DENV-specific IgG titers
172 ranging from 2.5×10^2 to 3.7×10^5 (**Fig. 1A-D**). The IgG mean titer against the homologous
173 DENV-2 (**Fig. 1A, Supplemental Table 1**) was significantly higher with WT VLP-VLP (1.9
174 $\times 10^5$; $p=0.0172$) than WT DNA-DNA (2.3×10^4). The titers induced by WT DNA-VLP or
175 WT VLP-DNA were also slightly higher (8.3×10^4 and 7.1×10^4 , respectively) than WT
176 DNA-DNA without statistical significance. All prime-boost strategies induced IgG cross-
177 reactive to heterologous DENV-1, -3 and -4. Again, WT DNA-DNA induced the lowest IgG
178 titer against DENV-1 (**Fig. 1B**). Only WT VLP-DNA induced a significantly higher DENV-1
179 cross-reactive IgG mean titer (6.5×10^4 ; $p=0.0451$) than WT DNA-DNA (1.3×10^4), but not
180 compared to WT VLP-VLP and WT DNA-VLP (1.8×10^4 and 1.9×10^4 , respectively)
181 (**Supplemental Table 1**). No significant differences were observed in DENV-3 (**Fig. 1C**) and
182 DENV-4 (**Fig. 1D**) cross-reactive IgG titers.

183 All prime-boost strategies induced DENV-specific NtAb titers ranging from 10 to 1.3
184 $\times 10^3$ (**Fig. 1E-H**). Consistent with the total IgG results, WT VLP-VLP induced the highest
185 NtAb titer to homologous DENV-2 (7.7×10^2 ; **Fig. 1E, Supplemental Table 1**), although
186 only significantly higher than WT VLP-DNA (1.2×10^2 ; $p=0.0169$). Likewise, all prime-
187 boost strategies induced antibodies with comparable cross-neutralizing activities against the
188 heterologous DENV-1, -3 and -4 (**Fig. 1F-H**). These results demonstrate that heterologous
189 WT DNA-VLP immunization induced a similar antibody response both in magnitude and
190 neutralizing activity as homologous WT DNA-DNA and VLP-VLP immunizations against
191 the homologous DENV-2 and the other heterologous DENV serotypes.

192

193 **CRR DENV-2 RD vaccine prime-boost immunizations elicit serotype-dependent CR 194 NtAbs**

195 We previously demonstrated that introducing targeted amino acid substitutions in
196 EDII_{FP} of DENV-2 RD VLP had significantly ablated the reactivity of flavivirus group-
197 reactive monoclonal antibodies such as 4G2 and 6B6C-1 [24], and immunization in mice
198 with DENV-2 RD DNA circumvented the production of immunodominant weakly
199 neutralizing and enhancing antibodies recognizing WT EDII_{FP} epitopes [31]. We then
200 evaluated if DENV-2 RD antigens also dampen the immunodominance of the EDII_{FP} in the
201 context of prime-boost immunizations. Consistent to the previous studies [24, 31], RD
202 vaccines induced a significantly reduced proportions (means of 1%-6%) of IgG targeting the

203 WT EDII_{FP} epitopes than the larger proportions (means of 32%-52%) induced by WT
204 vaccines (**Fig. 2, Supplemental Table 1**). Comparably, WT-RD and RD-WT vaccine
205 combinations also induced reduced WT EDII_{FP} IgG (means of 1%-18% and 1-28%,
206 respectively) (**Fig. 2, Supplemental Table 1**).

207 Next, we examined if different prime-boost strategies using DENV-2 RD vaccine can
208 sculpt the immune response towards CR NtAbs as previously described [32] by comparing
209 the immunogenicity against homologous and heterologous antigens. RD DNA-VLP induced
210 consistently higher DENV-specific IgG titers to all four DENV serotypes (**Fig. 3A-D**). The
211 IgG mean titer against the homologous DENV-2 (**Fig. 3A, Supplemental Table 1**) was
212 significantly higher with RD DNA-VLP (4.9×10^5) than RD VLP-VLP (3.7×10^4 ; $p=0.0072$)
213 and RD VLP-DNA (6.0×10^4 ; $p=0.0201$), but not compared to RD DNA-DNA (6.6×10^4).
214 Consistently, the NtAb mean titer against the homologous DENV-2 was significantly higher
215 with RD DNA-VLP (5.2×10^2 ; **Fig. 3E, Supplemental Table 1**) than RD VLP-DNA ($7.3 \times$
216 10^1 ; $p=0.0171$) and RD DNA-DNA (3.2×10^1 ; $p=0.0125$), but not compared to RD VLP-
217 VLP (3.2×10^2).

218 We further examined if prime-boost strategies using different forms of DENV-2 RD
219 antigens would broaden the immune response to heterologous DENV serotypes by re-
220 directing the immune response from the immunodominant EDII_{FP} site to DENV complex
221 epitopes. Comparable DENV-1 and -4 (**Fig. 3B and D**) cross-reactive IgG titers were also
222 induced, but a significantly higher DENV-3 cross-reactive IgG mean titer induced by RD
223 DNA-VLP (2.3×10^4 ; $p=0.0023$; **Fig. 3C, Supplemental Table 1**) than RD VLP-DNA (1.9×10^3) was observed. On the contrary, the CR NtAb responses are serotype-dependent. A
224 significantly higher DENV-1 CR NtAb mean titer was elicited by RD VLP-VLP (3.4×10^2 ;
225 $p=0.0053$; **Fig. 3F, Supplemental Table 1**) than RD VLP-DNA (2.3×10^1). RD DNA-VLP
226 elicited comparably higher CR NtAb mean titer against DENV-3 (1.8×10^2 ; **Fig. 3G,**
227 **Supplemental Table 1**). The CR NtAb mean titers to DENV-4 are equivalently low for all
228 prime-boost strategies ($<3.0 \times 10^1$; **Fig. 3H, Supplemental Table 1**).
229

230
231 **CRR DENV-2 RD vaccine only protects against homologous DENV-2 infection**
232 Next, we assessed if the CR NtAbs induced by different prime-boost immunizations
233 of RD antigens can provide protection against lethal challenge of heterologous DENV
234 serotypes. The lack of an ideal animal model to evaluate protective efficacy of a vaccine
235 against the four DENV serotypes is one of the major hindrance in dengue vaccine

236 development. Even though interferon $\alpha/\beta/\gamma$ receptor-deficient (AG129) mouse has been used
237 in several studies for flavivirus vaccine evaluation [37-41], the challenge viruses for four
238 serotypes of DENV were not available at the time when we started this study. We instead
239 evaluated the efficacy of DENV-2 RD vaccine in lethally challenged suckling mice through
240 passive protection by transferred maternal antibodies from immunized female mice as
241 previously developed [28-30]. Utilizing suckling mouse model for evaluating vaccine
242 efficacy allows us to evaluate the protection from dengue virus challenge only comes from
243 maternal antibodies generated by vaccinated female mice and passively transferred to their
244 babies. Pups from RD DNA-VLP, RD DNA-DNA, RD VLP-VLP, and RD VLP-DNA
245 immunized mothers had 100%, 94%, 88%, and 83% protection, respectively, from
246 homologous DENV-2 infection (**Fig. 4A**). However, no protection was observed after
247 heterologous DENV-1, -3 and -4 infections (**Fig. 4B-D**), except for the pups from RD DNA-
248 VLP immunized mother having 60% partial protection from DENV-3 challenge.

249

250 **CRR DENV-2 RD prime-boost immunizations elicit antibodies with varying isotypes
251 and avidities**

252 To determine if the absence of protection to heterologous DENV serotypes despite the
253 induction of CR NtAb response by DENV-2 RD immunizations could be due to the
254 functional quality of antibodies, we further measured the isotypes and avidities of IgG in sera
255 from mice used in the immunogenicity experiment. RD DNA-DNA, DNA-VLP, and VLP-
256 DNA induced largely IgG2a antibodies indicating a predominantly Th1 response, whereas
257 RD VLP-VLP induced largely IgG1 antibodies indicating a predominantly Th2 response
258 (**Fig. 5**). In addition, the elicited sera showed varying IgG avidities (**Supplemental Table 2**).
259 RD DNA-VLP induced IgG with the highest avidity to the homologous DENV-2 followed by
260 VLP-VLP, DNA-DNA, and VLP-DNA (51%, 50%, 33%, and 18% respectively). No
261 avidities to DENV-1 and -3 were observed. Avidity to DENV-4 were also absent in sera
262 elicited by RD VLP-VLP and VLP-DNA. However, RD DNA-DNA and DNA-VLP sera had
263 minimal avidity to DENV-4 (21% and 3%, respectively) (**Supplemental Table 1**) yet had a
264 very poor CR NtAb mean titers ($<2.0 \times 10^1$; **Fig. 3H**).

265

266

267 **Discussion**

268 In this study, we extended our approach of dampening the immunodominance of
269 potentially pathogenic EDII_{FP} epitopes by evaluating whether various prime-boost strategies
270 using the DENV-2 RD vaccine can further broaden the CR NtAb response. Results
271 demonstrate that heterologous RD DNA-VLP immunization can induce significantly higher
272 levels of NtAbs to homologous DENV-2 serotype comparable to the homologous RD VLP-
273 VLP immunization. This could be attributed to the efficient boosting capability of protein
274 [19, 42-44], which is readily available for antigen presentation during immunization as
275 opposed to the low-level expression of the immunogenic protein in response to DNA
276 immunization. Moreover, RD VLP-VLP and DNA-VLP immunizations were able to induce
277 an increase in DENV-1 and/or -3 CR NtAbs.

278 NtAbs has been considered to play a critical role in protection against DENV
279 infection. Therefore, we also evaluated the antibody-mediated cross-protection elicited by
280 DENV-2 RD vaccine through passive transfer of maternal antibodies. Interestingly, we
281 detected CR NtAbs *in vitro* but it did not predict *in vivo* cross-protection. We observed that
282 DENV-2 RD vaccine regardless of the prime-boost strategies is highly protective against
283 homologous DENV-2 infection; however, it does not confer cross-protection against the
284 heterologous serotypes. The elicited CR NtAbs evidently did not provide cross-neutralizing
285 protection against the other DENV serotypes, which could be partly due to the amount of the
286 elicited CR NtAbs and/or IgG avidities [45, 46]. As reports suggested, high antibody avidities
287 correlate to better protection after vaccination [47, 48]. Indeed, the sera elicited from DENV-
288 2 RD immunizations have avidities and high neutralization towards the homologous DENV-2
289 but not to the heterologous DENV-1 and -3. The absence of cross-protection against DENV-4
290 could be due to the suboptimal levels of DENV-4 CR NtAbs and/or the absence of avidities.
291 In summary, our study confirms the poor correlate of neutralization titers with the protection
292 from four serotypes of DENV infection as suggested by the results of CYD-TDV clinical
293 trials [49, 50].

294 Overall, this study underscores the need for a multivalent formulation of our CRR
295 DENV vaccines to fully harness its potential benefits with reduced ADE risk for dengue
296 vaccine safety and broaden its protective efficacy. Importantly, the strategy of a heterologous
297 DNA priming and VLP boosting highlights an effective platform of eliciting a better quality
298 of immune response to DENV.

299

300

301 **Ethics Statement**

302 This study complied with the guidelines for care and use of laboratory animals of the
303 National Laboratory Animal Center, Taiwan. All animal experiments were approved by the
304 Institutional Animal Care and Use Committee (IACUC) at the US Centers for Disease
305 Control and Prevention (CDC), Division of Vector-borne Diseases (DVBD) and National
306 Chung Hsing University (Approval Number: 101-58). All efforts were made to minimize
307 suffering of mice.

308

309

310 **Author Contributions**

311 JUG performed the experiments, data analyses, and wrote the paper. CYY performed
312 the experiments and data analyses. BSD performed the experiments. GJC and DYC
313 conceived the experiments, analyzed the data, and reviewed and edited the paper.

314

315

316 **Conflict of Interest**

317 All authors declared no conflict of interest.

318

319

320 **Acknowledgments**

321 This study was funded by grants 101-2321-B-005-018-MY2, 103-2321-B-005-014,
322 and 104-2321-B-005-006- from the Ministry of Science and Technology, Taiwan.

323

324

325 **References**

326

327 [1] Guzman MG, Halstead SB, Artsob H, Buchy P, Farrar J, Gubler DJ, et al. Dengue: a
328 continuing global threat. *Nat Rev Microbiol* (2010):8:S7-16. doi:10.1038/nrmicro2460
329 [2] Halstead SB. Dengue. *Lancet* (2007):370:1644-52. doi:10.1016/S0140-
330 6736(07)61687-0
331 [3] Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, et al. The
332 global distribution and burden of dengue. *Nature* (2013):496:504-7. doi:10.1038/nature12060
333 [4] Flipse J, Smit JM. The Complexity of a Dengue Vaccine: A Review of the Human
334 Antibody Response. *PLoS Negl Trop Dis* (2015):9:e0003749.
335 doi:10.1371/journal.pntd.0003749
336 [5] Guy B, Saville M, Lang J. Development of Sanofi Pasteur tetravalent dengue vaccine.
337 *Hum Vaccin* (2010):6. doi:10.4161.hv.6.9.12739
338 [6] Capeding MR, Tran NH, Hadinegoro SR, Ismail HI, Chotpitayasanondh T, Chua MN,
339 et al. Clinical efficacy and safety of a novel tetravalent dengue vaccine in healthy children in

340 Asia: a phase 3, randomised, observer-masked, placebo-controlled trial. *Lancet*
341 (2014):384:1358-65. doi:10.1016/S0140-6736(14)61060-6

342 [7] Villar L, Dayan GH, Arredondo-Garcia JL, Rivera DM, Cunha R, Deseda C, et al.
343 Efficacy of a Tetravalent Dengue Vaccine in Children in Latin America. *New Engl J Med*
344 (2015):372:113-23. doi:10.1056/NEJMoa1411037

345 [8] Hadinegoro SR, Arredondo-Garcia JL, Capeding MR, Deseda C, Chotpitayasanondh
346 T, Dietze R, et al. Efficacy and Long-Term Safety of a Dengue Vaccine in Regions of
347 Endemic Disease. *N Engl J Med* (2015):373:1195-206. doi:10.1056/NEJMoa1506223

348 [9] Vannice KS, Durbin A, Hombach J. Status of vaccine research and development of
349 vaccines for dengue. *Vaccine* (2016):34:2934-8. doi:10.1016/j.vaccine.2015.12.073

350 [10] Guy B, Barban V, Mantel N, Aguirre M, Gulia S, Pontvianne J, et al. Evaluation of
351 interferences between dengue vaccine serotypes in a monkey model. *Am J Trop Med Hyg*
352 (2009):80:302-11.

353 [11] Burgers WA, Chege GK, Muller TL, van Harmelen JH, Khoury G, Shephard EG, et
354 al. Broad, high-magnitude and multifunctional CD4+ and CD8+ T-cell responses elicited by a
355 DNA and modified vaccinia Ankara vaccine containing human immunodeficiency virus type
356 1 subtype C genes in baboons. *J Gen Virol* (2009):90:468-80. doi:10.1099/vir.0.004614-0

357 [12] Walker LM, Burton DR. Rational antibody-based HIV-1 vaccine design: current
358 approaches and future directions. *Curr Opin Immunol* (2010):22:358-66.
359 doi:10.1016/j.co.2010.02.012

360 [13] Ding H, Tsai C, Gutierrez RA, Zhou F, Buchy P, Deubel V, et al. Superior
361 neutralizing antibody response and protection in mice vaccinated with heterologous DNA
362 prime and virus like particle boost against HPAI H5N1 virus. *PLoS One* (2011):6:e16563.
363 doi:10.1371/journal.pone.0016563

364 [14] Wei CJ, Boyington JC, McTamney PM, Kong WP, Pearce MB, Xu L, et al. Induction of broadly neutralizing H1N1 influenza antibodies by vaccination. *Science*
365 (2010):329:1060-4. doi:10.1126/science.1192517

366 [15] Rollier C, Verschoor EJ, Paranhos-Baccala G, Drexhage JA, Verstrepen BE, Berland
367 JL, et al. Modulation of vaccine-induced immune responses to hepatitis C virus in rhesus
368 macaques by altering priming before adenovirus boosting. *J Infect Dis* (2005):192:920-9.
369 doi:10.1086/432517

370 [16] Aleshin SE, Timofeev AV, Khoretonenko MV, Zakharova LG, Pashvykina GV,
371 Stephenson JR, et al. Combined prime-boost vaccination against tick-borne encephalitis
372 (TBE) using a recombinant vaccinia virus and a bacterial plasmid both expressing TBE virus
373 non-structural NS1 protein. *BMC Microbiol* (2005):5:45. doi:10.1186/1471-2180-5-45

374 [17] De Filette M, Soehle S, Ulbert S, Richner J, Diamond MS, Sinigaglia A, et al.
375 Vaccination of mice using the West Nile virus E-protein in a DNA prime-protein boost
376 strategy stimulates cell-mediated immunity and protects mice against a lethal challenge. *PLoS*
377 *One* (2014):9:e87837. doi:10.1371/journal.pone.0087837

378 [18] Li P, Cao RB, Zheng QS, Liu JJ, Li Y, Wang EX, et al. Enhancement of humoral
379 and cellular immunity in mice against Japanese encephalitis virus using a DNA prime-protein
380 boost vaccine strategy. *Vet J* (2010):183:210-6. doi:10.1016/j.tvjl.2008.09.019

381 [19] Konishi E, Terazawa A, Imoto J. Simultaneous immunization with DNA and protein
382 vaccines against Japanese encephalitis or dengue synergistically increases their own abilities
383 to induce neutralizing antibody in mice. *Vaccine* (2003):21:1826-32.

384 [20] Simmons M, Burgess T, Lynch J, Putnak R. Protection against dengue virus by non-
385 replicating and live attenuated vaccines used together in a prime boost vaccination strategy.
386 *Virology* (2010):396:280-8. doi:10.1016/j.virol.2009.10.023

387 [21] Chen L, Ewing D, Subramanian H, Block K, Rayner J, Alterson KD, et al. A
388 heterologous DNA prime-Venezuelan equine encephalitis virus replicon particle boost
389

390 dengue vaccine regimen affords complete protection from virus challenge in cynomolgus
391 macaques. *J Virol* (2007):81:11634-9. doi:10.1128/JVI.00996-07

392 [22] George JA, Eo SK. Distinct Humoral and Cellular Immunity Induced by Alternating
393 Prime-boost Vaccination Using Plasmid DNA and Live Viral Vector Vaccines Expressing
394 the E Protein of Dengue Virus Type 2. *Immune Netw* (2011):11:268-80.
395 doi:10.4110/in.2011.11.5.268

396 [23] Lai CY, Tsai WY, Lin SR, Kao CL, Hu HP, King CC, et al. Antibodies to envelope
397 glycoprotein of dengue virus during the natural course of infection are predominantly cross-
398 reactive and recognize epitopes containing highly conserved residues at the fusion loop of
399 domain II. *J Virol* (2008):82:6631-43. doi:10.1128/JVI.00316-08

400 [24] Crill WD, Hughes HR, Delorey MJ, Chang GJ. Humoral immune responses of
401 dengue fever patients using epitope-specific serotype-2 virus-like particle antigens. *PLoS One*
402 (2009):4:e4991. doi:10.1371/journal.pone.0004991

403 [25] Balsitis SJ, Williams KL, Lachica R, Flores D, Kyle JL, Mehlhop E, et al. Lethal
404 antibody enhancement of dengue disease in mice is prevented by Fc modification. *PLoS Pathog*
405 (2010):6:e1000790. doi:10.1371/journal.ppat.1000790

406 [26] Beltramello M, Williams KL, Simmons CP, Macagno A, Simonelli L, Quyen NT, et
407 al. The human immune response to Dengue virus is dominated by highly cross-reactive
408 antibodies endowed with neutralizing and enhancing activity. *Cell Host Microbe*
409 (2010):8:271-83. doi:10.1016/j.chom.2010.08.007

410 [27] Zellweger RM, Prestwood TR, Shresta S. Enhanced infection of liver sinusoidal
411 endothelial cells in a mouse model of antibody-induced severe dengue disease. *Cell Host Microbe*
412 (2010):7:128-39. doi:10.1016/j.chom.2010.01.004

413 [28] Chang GJ, Hunt AR, Holmes DA, Springfield T, Chiueh TS, Roehrig JT, et al.
414 Enhancing biosynthesis and secretion of premembrane and envelope proteins by the chimeric
415 plasmid of dengue virus type 2 and Japanese encephalitis virus. *Virology* (2003):306:170-80.

416 [29] Galula JU, Shen WF, Chuang ST, Chang GJ, Chao DY. Virus-like particle secretion
417 and genotype-dependent immunogenicity of dengue virus serotype 2 DNA vaccine. *J Virol*
418 (2014):88:10813-30. doi:10.1128/JVI.00810-14

419 [30] Shen WF, Galula JU, Liu JH, Liao MY, Huang CH, Wang YC, et al. Epitope
420 resurfacing on dengue virus-like particle vaccine preparation to induce broad neutralizing
421 antibody. *eLife* (2018):7. doi:10.7554/eLife.38970

422 [31] Hughes HR, Crill WD, Chang GJ. Manipulation of immunodominant dengue virus E
423 protein epitopes reduces potential antibody-dependent enhancement. *Virol J* (2012):9:115.
424 doi:10.1186/1743-422X-9-115

425 [32] Crill WD, Hughes HR, Trainor NB, Davis BS, Whitney MT, Chang GJ. Sculpting
426 humoral immunity through dengue vaccination to enhance protective immunity. *Front Immunol*
427 (2012):3:334. doi:10.3389/fimmu.2012.00334

428 [33] Purdy DE, Chang GJ. Secretion of noninfectious dengue virus-like particles and
429 identification of amino acids in the stem region involved in intracellular retention of envelope
430 protein. *Virology* (2005):333:239-50. doi:10.1016/j.virol.2004.12.036

431 [34] Chang GJ, Hunt AR, Davis B. A single intramuscular injection of recombinant
432 plasmid DNA induces protective immunity and prevents Japanese encephalitis in mice. *J Virol*
433 (2000):74:4244-52.

434 [35] Hunt AR, Cropp CB, Chang GJ. A recombinant particulate antigen of Japanese
435 encephalitis virus produced in stably-transformed cells is an effective noninfectious antigen
436 and subunit immunogen. *J Virol Methods* (2001):97:133-49.

437 [36] Wu H, Shen W, Chang GJ, Chuang S, Kao C, Chao D. Evaluation of the kinetic
438 change of the immunogenicity of dngue-2 DNA vccine in mce aministered by dfferent

439 administration routes. *World Journal of Vaccines* (2012):2:67-72.
440 doi:10.4236/wjv.2012.22009

441 [37] Milligan GN, Sarathy VV, White MM, Greenberg MB, Campbell GA, Pyles RB, et
442 al. A lethal model of disseminated dengue virus type 1 infection in AG129 mice. *J Gen Virol*
443 (2017):98:2507-19. doi:10.1099/jgv.0.000923

444 [38] Tan GK, Ng JK, Trasti SL, Schul W, Yip G, Alonso S. A non mouse-adapted dengue
445 virus strain as a new model of severe dengue infection in AG129 mice. *PLoS Negl Trop Dis*
446 (2010):4:e672. doi:10.1371/journal.pntd.0000672

447 [39] Sarathy VV, White M, Li L, Gorder SR, Pyles RB, Campbell GA, et al. A lethal
448 murine infection model for dengue virus 3 in AG129 mice deficient in type I and II interferon
449 receptors leads to systemic disease. *J Virol* (2015):89:1254-66. doi:10.1128/JVI.01320-14

450 [40] Milligan GN, Sarathy VV, Infante E, Li L, Campbell GA, Beatty PR, et al. A
451 Dengue Virus Type 4 Model of Disseminated Lethal Infection in AG129 Mice. *PLoS One*
452 (2015):10:e0125476. doi:10.1371/journal.pone.0125476

453 [41] Sarathy VV, Infante E, Li L, Campbell GA, Wang T, Paessler S, et al.
454 Characterization of lethal dengue virus type 4 (DENV-4) TVP-376 infection in mice lacking
455 both IFN-alpha/beta and IFN-gamma receptors (AG129) and comparison with the DENV-2
456 AG129 mouse model. *J Gen Virol* (2015):96:3035-48. doi:10.1099/jgv.0.000246

457 [42] Sin JI, Bagarazzi M, Pachuk C, Weiner DB. DNA priming-protein boosting
458 enhances both antigen-specific antibody and Th1-type cellular immune responses in a murine
459 herpes simplex virus-2 gD vaccine model. *DNA Cell Biol* (1999):18:771-9.
460 doi:10.1089/104454999314917

461 [43] Sedegah M, Jones TR, Kaur M, Hedstrom R, Hobart P, Tine JA, et al. Boosting with
462 recombinant vaccinia increases immunogenicity and protective efficacy of malaria DNA
463 vaccine. *Proc Natl Acad Sci U S A* (1998):95:7648-53.

464 [44] Barnett SW, Rajasekar S, Legg H, Doe B, Fuller DH, Haynes JR, et al. Vaccination
465 with HIV-1 gp120 DNA induces immune responses that are boosted by a recombinant gp120
466 protein subunit. *Vaccine* (1997):15:869-73.

467 [45] Puschnik A, Lau L, Cromwell EA, Balmaseda A, Zompi S, Harris E. Correlation
468 between dengue-specific neutralizing antibodies and serum avidity in primary and secondary
469 dengue virus 3 natural infections in humans. *PLoS Negl Trop Dis* (2013):7:e2274.
470 doi:10.1371/journal.pntd.0002274

471 [46] Bachmann MF, Kalinke U, Althage A, Freer G, Burkhardt C, Roost H, et al. The role
472 of antibody concentration and avidity in antiviral protection. *Science* (1997):276:2024-7.

473 [47] Zhao J, Lai L, Amara RR, Montefiori DC, Villinger F, Chennareddi L, et al.
474 Preclinical studies of human immunodeficiency virus/AIDS vaccines: inverse correlation
475 between avidity of anti-Env antibodies and peak postchallenge viremia. *J Virol*
476 (2009):83:4102-11. doi:10.1128/JVI.02173-08

477 [48] Vaine M, Wang S, Hackett A, Arthos J, Lu S. Antibody responses elicited through
478 homologous or heterologous prime-boost DNA and protein vaccinations differ in functional
479 activity and avidity. *Vaccine* (2010):28:2999-3007. doi:10.1016/j.vaccine.2010.02.006

480 [49] Yang Y, Meng Y, Halloran ME, Longini IM, Jr. Dependency of Vaccine Efficacy on
481 Preexposure and Age: A Closer Look at a Tetravalent Dengue Vaccine. *Clin Infect Dis*
482 (2018):66:178-84. doi:10.1093/cid/cix766

483 [50] Moodie Z, Juraska M, Huang Y, Zhuang Y, Fong Y, Carpp LN, et al. Neutralizing
484 Antibody Correlates Analysis of Tetravalent Dengue Vaccine Efficacy Trials in Asia and
485 Latin America. *J Infect Dis* (2018):217:742-53. doi:10.1093/infdis/jix609

486

487

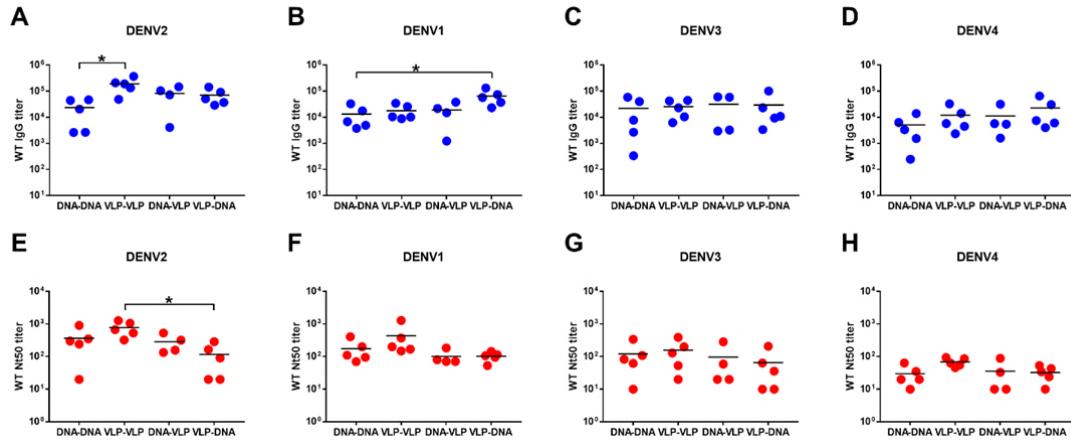
488

489

490

491

492


493

494

495

496 Figures and Legends

497

498

499 **Fig. 1. DENV-specific antibody responses induced by DENV-2 WT vaccine using various**
500 **prime-boost immunization strategies. ICR mice (n = 5) were immunized twice at 0 and 4**
501 **weeks with different combinations of the WT DNA (100 µg) or VLP (4 µg) antigens.**
502 **Immunization strategies separated by a dash represent priming with the first and boosting**
503 **with the second (i.e., DNA-DNA, VLP-VLP, DNA-VLP; and VLP-DNA). Total IgG (A-D)**
504 **and Nt₅₀ (E-F) endpoint titers against homologous (A, E) DENV-2 and heterologous (B, F)**
505 **DENV-1, (C, G) DENV-3, and (D, H) DENV-4 were determined by Ag-capture ELISA and**
506 **50% FR_μNT. Multiple comparisons between groups were carried out on log-transformed**
507 **data using one-way ANOVA with Tukey's post-test. Horizontal bars indicate mean values.**
508 **Data are means ± SD of two independent experiments. *, p<0.05.**

509

510

511

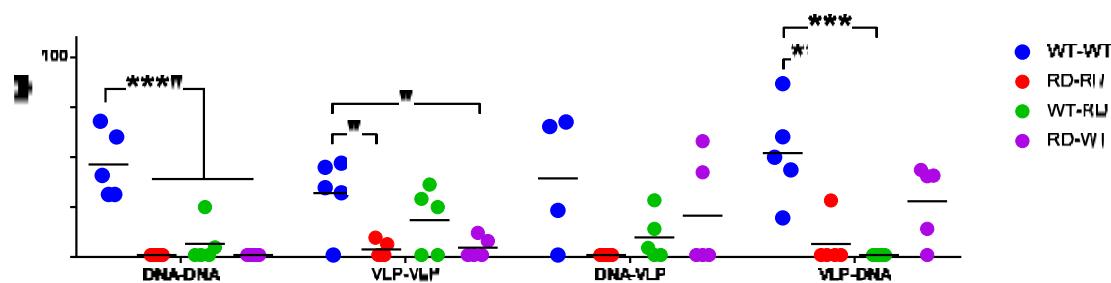
512

513

514

515

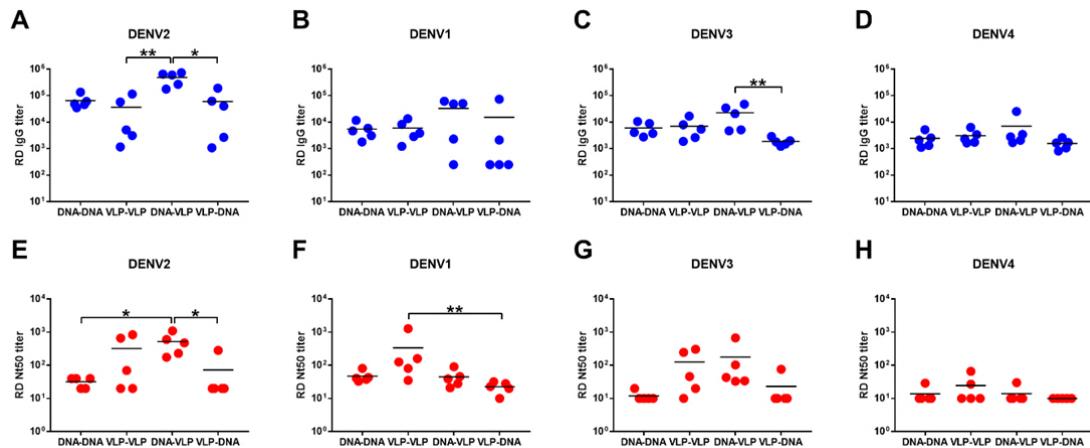
516


517

518

519

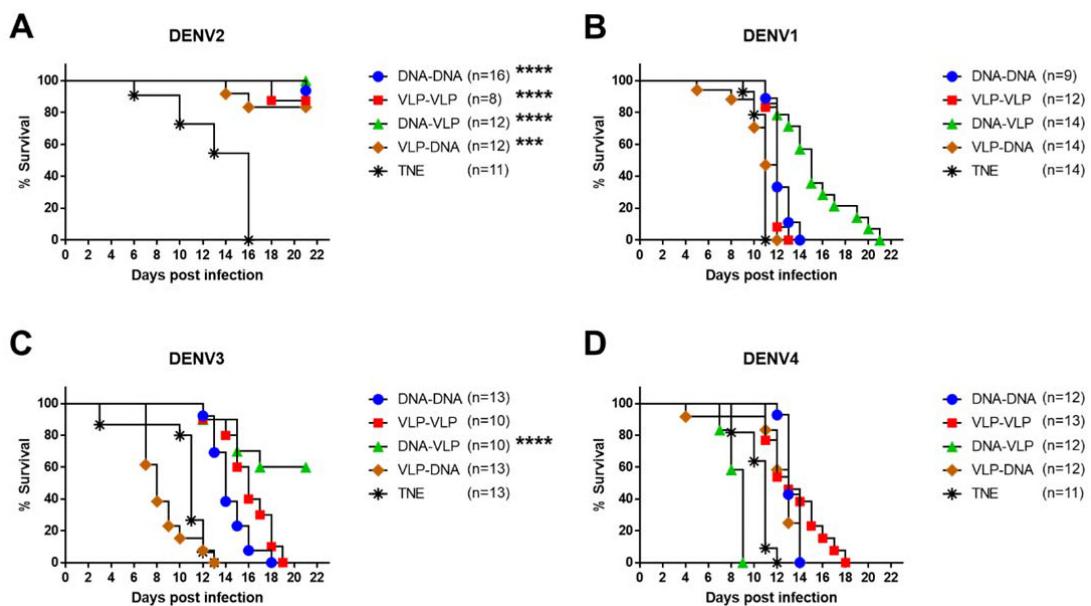
520


521

522

523 **Fig. 2.** Percent WT EDII_{FP} epitope-specific IgG elicited by various prime-boost
524 immunization strategies using different combinations of DNA and VLP antigens of the
525 DENV-2 WT and RD vaccines. Multiple comparisons between groups were carried out using
526 one-way ANOVA with Tukey's post-test. Horizontal bars indicate mean values. Data are
527 means \pm SD of two independent experiments. *, p<0.05; **p<0.01; ***p<0.001;
528 ****p<0.0001.

529



530

531 **Fig. 3.** DENV-specific antibody responses induced by CRR DENV-2 RD vaccine using
532 various prime-boost immunization strategies. ICR mice (n = 5) were immunized twice at 0

533 and 4 weeks with different combinations of the RD DNA (100 μ g) or VLP (4 μ g) vaccines.
534 Immunization strategies separated by a dash represent priming with the first and boosting
535 with the second (i.e., DNA-DNA, VLP-VLP, DNA-VLP; and VLP-DNA). Total IgG (A-D)
536 and Nt₅₀ (E-F) endpoint titers against homologous (A, E) DENV-2 and heterologous (B, F)
537 DENV-1, (C, G) DENV-3, and (D, H) DENV-4 were determined by Ag-capture ELISA and
538 50% FR μ NT. Multiple comparisons between groups were carried out on log-transformed
539 data using one-way ANOVA with Tukey's post-test. Horizontal bars indicate mean values.
540 Data are means \pm SD of two independent experiments. *, p<0.05; **p<0.01.

541

542

543 **Fig. 4.** Protective efficacy of CRR DENV-2 RD vaccine using various prime-boost
544 immunization strategies with different combinations of DNA and VLP antigens. Groups of
545 two-day old pups from ICR female mice (Nt₅₀ titer, >1:200) vaccinated with the designated
546 DNA-DNA, VLP-VLP, DNA-VLP, and VLP-DNA prime-boost immunization strategies or
547 TNE control were challenged intracranially with 10⁶ FFU of the homologous (A) DENV-2
548 (141-fold LD₅₀) and heterologous (B) DENV-1 (61-fold LD₅₀), (C) DENV-3 (11-fold LD₅₀),
549 and (D) DENV-4 (1000-fold LD₅₀). Survival of the mice was monitored for 21 days after
550 infection. The number (n) of pups in each group is indicated. Kaplan-Meier survival curves
551 were analyzed by the log-rank test. (E) ***, p<0.001; ****, p<0.0001.

552

553

554

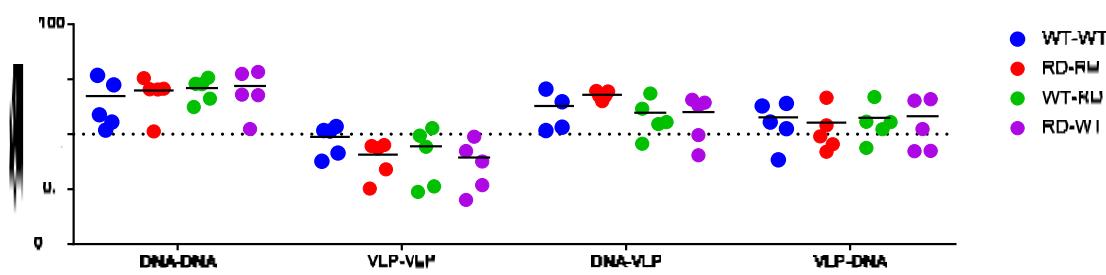
555

556

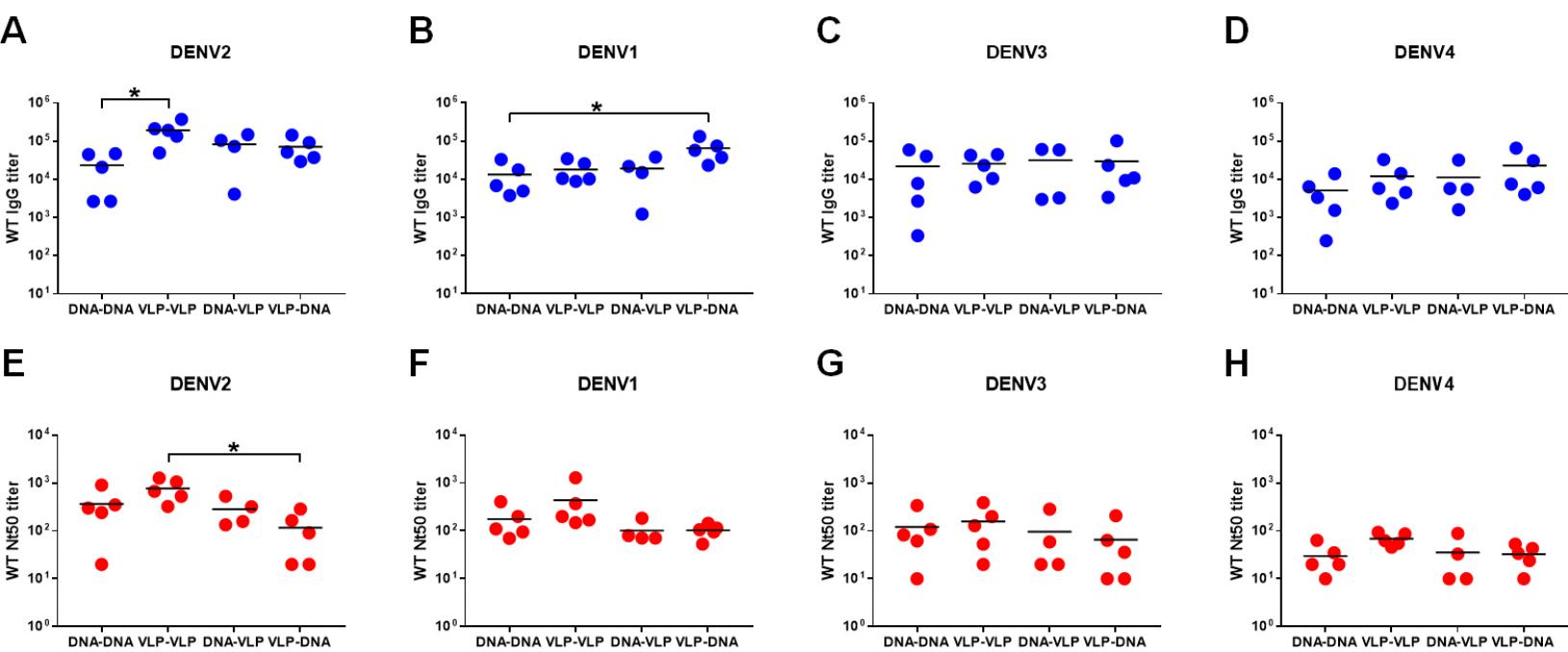
557

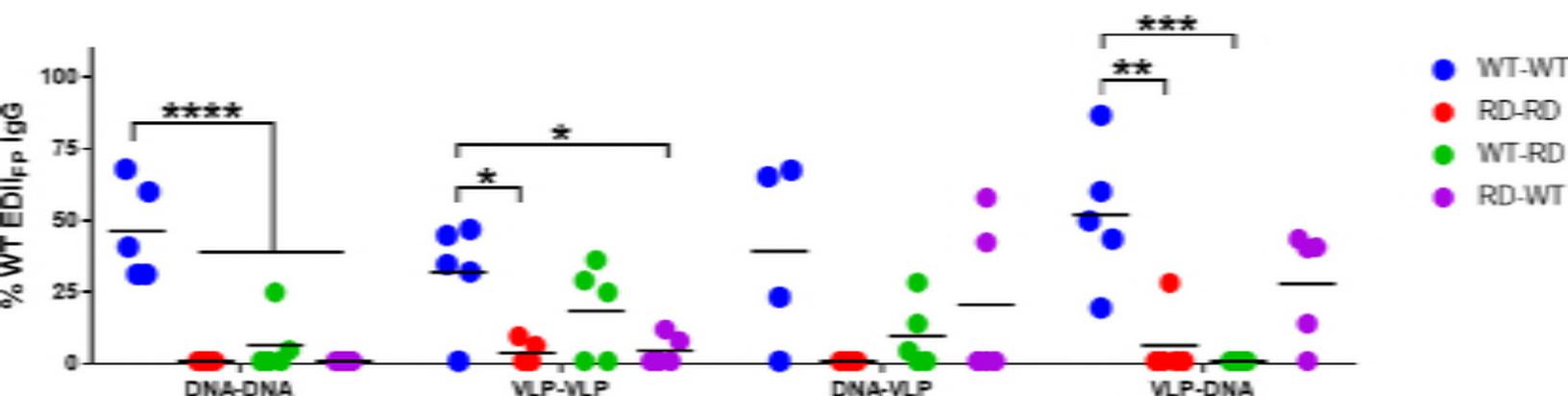
558

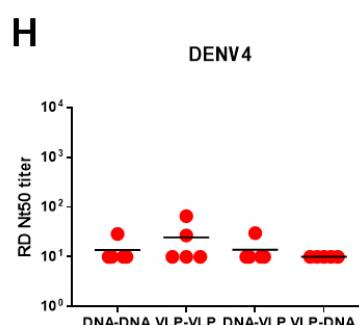
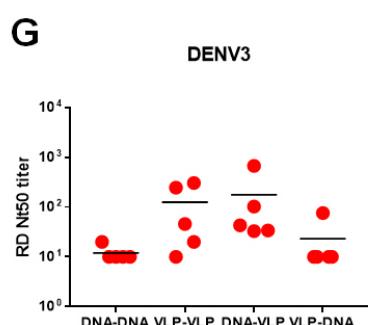
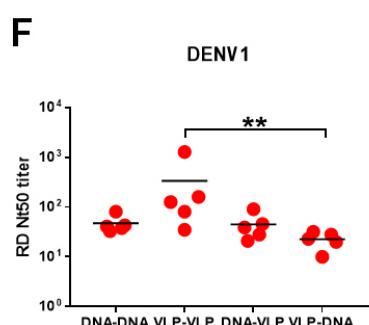
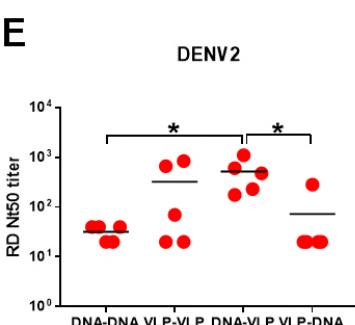
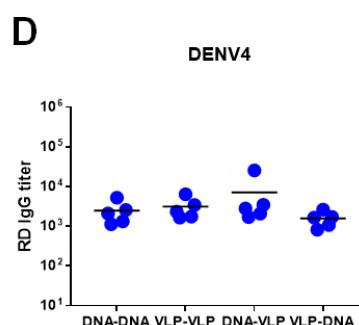
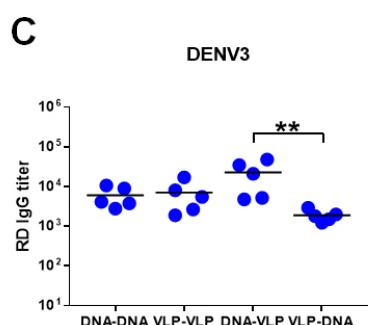
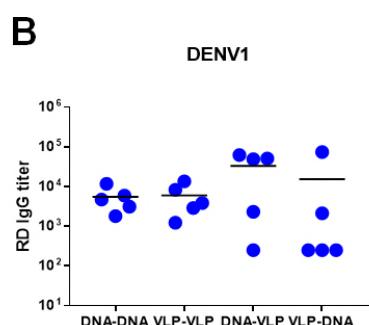
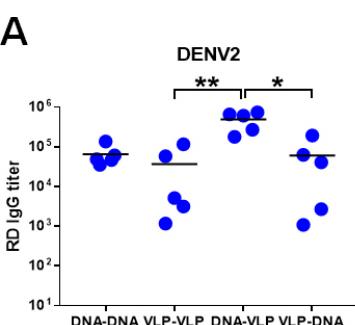
559


560

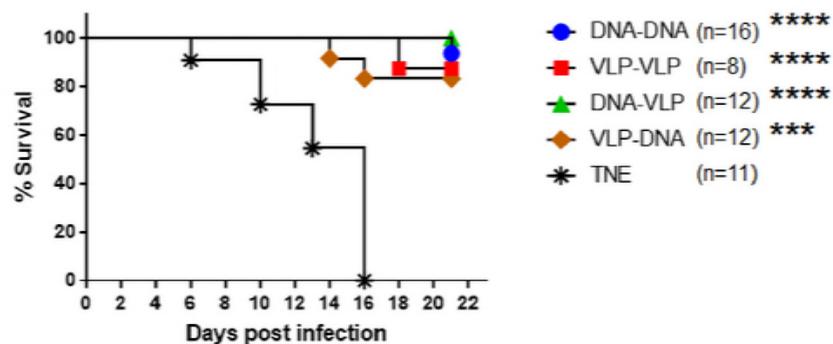
561

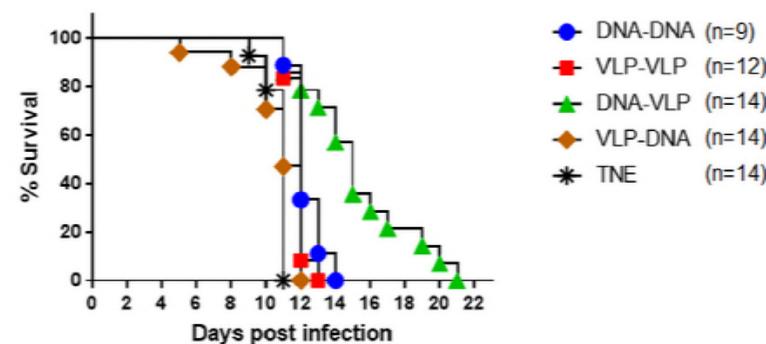

562


563

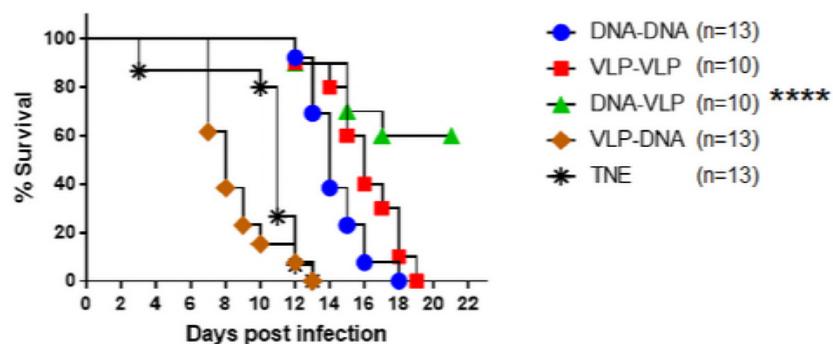








564

565 **Fig. 5.** Comparison of IgG isotype profiles in mice immunized by various prime-boost
566 immunization strategies using different combinations of DNA and VLP antigens of the
567 DENV-2 WT and RD vaccines. The IgG isotype profiles were expressed as IgG2a/IgG1
568 ratios as indicator of Th1 (IgG2a/IgG1 ratio >1) and Th2 (IgG2a/IgG1 ratio <1) immune
569 responses. Horizontal bars indicate mean values. Data are means \pm SD of two independent
570 experiments.

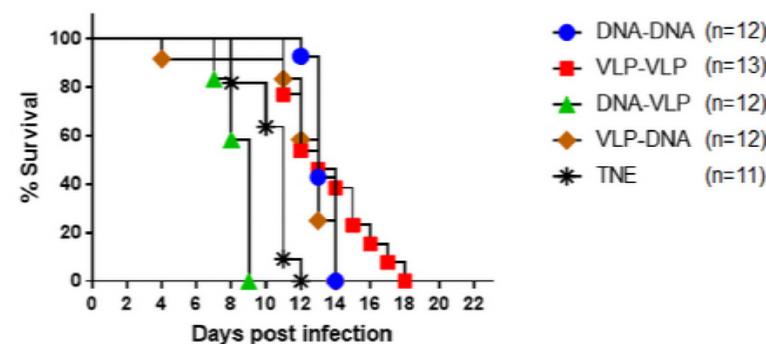


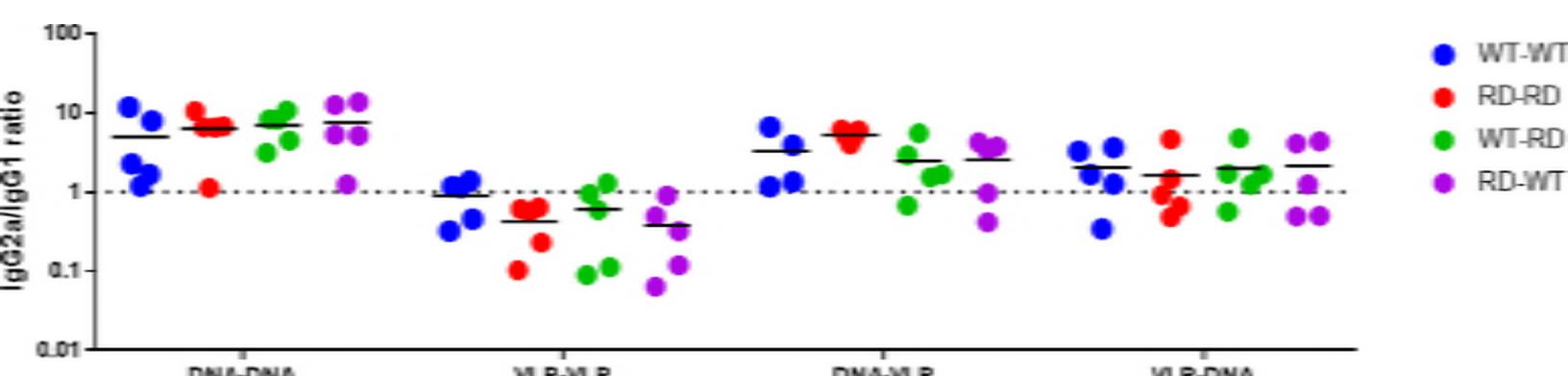

A

DENV2


B

DENV1


C


DENV3

D

DENV4

