
! 1!

 

Systematic discovery of endogenous human 

ribonucleoprotein complexes  
 

 

Anna L. Mallam1,2,3,§,*, Wisath Sae-Lee1,2,3, Jeffrey M. Schaub1,2,3, Fan Tu1,2,3, Anna 
Battenhouse1,2,3, Yu Jin Jang1, Jonghwan Kim1, John B. Wallingford1,2,3, Ilya J. Finkelstein1,2,3, 
Edward M. Marcotte1,2,3,§, Kevin Drew1,2,3,§,*,† 

 

1 Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA 
2 Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX 78712, USA 
3 Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA 
§ Correspondence: amallam@utexas.edu (A.L.M.), marcotte@icmb.utexas.edu (E.M.M.), kdrew@utexas.edu (K.D.) 
 
* These authors contributed equally to this work 

† Lead contact 

 

 

 

 

 

 

 

Short title: A resource of human ribonucleoprotein complexes 

 

Summary: An exploration of human protein complexes in the presence and absence of RNA 

reveals endogenous ribonucleoprotein complexes 

  



! 2!

Abstract 

 

RNA-binding proteins (RBPs) play essential roles in biology and are frequently associated with 

human disease.  While recent studies have systematically identified individual RBPs, their higher 

order assembly into Ribonucleoprotein (RNP) complexes has not been systematically 

investigated.  Here, we describe a proteomics method for systematic identification of RNP 

complexes in human cells.  We identify 1,428 protein complexes that associate with RNA, 

indicating that over 20% of known human protein complexes contain RNA.  To explore the role 

of RNA in the assembly of each complex, we identify complexes that dissociate, change 

composition, or form stable protein-only complexes in the absence of RNA. Importantly, these 

data also provide specific novel insights into the function of well-studied protein complexes not 

previously known to associate with RNA, including replication factor C (RFC) and cytokinetic 

centralspindlin complex. Finally, we use our method to systematically identify cell-type specific 

RNA-associated proteins in mouse embryonic stem cells. We distribute these data as a resource, 

rna.MAP (rna.proteincomplexes.org) which provides a comprehensive dataset for the study of 

RNA-associated protein complexes. Our system thus provides a novel methodology for further 

explorations across human tissues and disease states, as well as throughout all domains of life. 

 

 

 

Keywords: ribonucleoprotein complex, RNP, RNA binding protein, RBP, proteomics, DIF-

FRAC, protein complexes, biochemical fractionation, mass spectrometry, interactome 

  



! 3!

Introduction 

 

RNA-binding proteins (RBPs) play essential roles in diverse biological processes, and in most 

cases act within higher-order multi-protein complexes called Ribonucleoprotein (RNP) 

complexes (Castello et al., 2013; Gerstberger et al., 2014; Hentze et al., 2018).  Understanding 

RNPs is of particular importance due to their indispensable role in many essential cellular 

functions, such as mRNA splicing (spliceosome) (Wahl et al., 2009), translation (ribosome) 

(Ramakrishnan, 2002), silencing (RISC) (Kawamata and Tomari, 2010), and degradation 

(exosome) (Houseley et al., 2006). Moreover, RNPs also play more specific roles in, for 

example, mRNA transport and localization in developing embryos and mature neurons (Holt and 

Bullock, 2009; Sahoo et al., 2018) and assembly phase separated organelles (Mittag and Parker, 

2018). Further, RNPs are strongly implicated in human diseases including amyotrophic lateral 

sclerosis (ALS) (Scotter et al., 2015), spinocerebellar ataxia (Yue et al., 2001), and autism 

(Voineagu et al., 2011).  Accordingly, substantial recent effort has been focused on systematic 

identification of RNA-associated proteins (Baltz et al., 2012; Bao et al., 2018; Brannan et al., 

2016; Castello et al., 2012, 2016; He et al., 2016; Huang et al., 2018; Queiroz et al., 2019; 

Treiber et al., 2017; Trendel et al., 2019).   

 Strikingly, however, we still lack any systematic characterization of the assembly of 

individual RNA-associated proteins into the higher order RNP complexes in which so many 

function, leaving a crucial gap in our knowledge. A worldwide effort is currently underway to 

systematically identify multi-protein complexes using high throughput mass spectrometry 

techniques (Hein et al., 2015; Huttlin et al., 2015), but none of these techniques identify an RNA 

component within the complexes. We therefore set out to develop a method for systematic 

identification of RNA-associated higher-order multi-protein complexes that requires no genetic 

manipulation (i.e. tag-free) and would be easily adaptable to diverse cell types. 

Here, we present ‘differential fractionation for interaction analysis’ (DIF-FRAC), which 

measures the sensitivity of protein complexes to a given treatment (ex. RNase A) using native 

size-exclusion chromatography followed by mass spectrometry. DIF-FRAC is based on a high 

throughput co-fractionation mass spectrometry (CF-MS) approach that we developed and applied 

to a diverse set of tissues and cells types en route to generating human and metazoan protein 

complex maps (Drew et al., 2017; Havugimana et al., 2012; Wan et al., 2015). DIF-FRAC builds 
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upon CF-MS by comparing chromatographic separations of cellular lysate under control and 

RNA degrading conditions (Figure 1A). A statistical framework is then applied to discover RNP 

complexes by identifying concurrent shifts of known protein complex subunits upon RNA 

degradation (Figure 1A).  

 Analysis of DIF-FRAC data answers important questions as to the role of RNA plays in 

macromolecular complexes. Specifically, we identify RNP complexes that 1) dissociate, 2) form 

stable protein-only complexes, and 3) change composition in the absence of RNA suggesting 

specific roles for RNA in each of these cases. Because DIF-FRAC is independent of UV 

crosslinking, nucleotide incorporation, genetic manipulation or poly(A) RNA capture efficiency, 

it can therefore be used to investigate a wide variety of cell types, tissues and species. To 

demonstrate this versatility, we apply DIF-FRAC to mouse embryonic stem cells (mESCs), 

identifying 1,165 RNA-associated proteins, to show the method is highly adaptable and can be 

extended to discover RNP complexes in diverse samples. 

Finally, we created a system-wide resource of 1,428 RNP complexes, many of which are 

previously unreported as having an RNA component, representing 20% of known human protein 

complexes. We provide our resource, rna.MAP, to the community as a fully searchable web 

database at rna.proteincomplexes.org. 

 

Results and Discussion 

 

Differential fractionation (DIF-FRAC) identifies RNP complexes 

The DIF-FRAC strategy builds upon our previous strategy of Co-Fractionation Mass-

spectroscopy (CF-MS) for identifying protein complexes in cellular lysate (Havugimana et al., 

2012; Wan et al., 2015). CF-MS chromatographically separates protein complexes into fractions 

and uses a mass spectrometry pipeline to identify resident proteins in each fraction. The 

chromatographic elution profile of each protein is correlated to elution profiles from other 

proteins and similar profiles suggest physical interactions. Likewise, the DIF-FRAC strategy 

detects RNP complexes by identifying changes in the CF-MS elution profile of a protein 

complex’s subunits upon degradation of RNA (Figure 1).  

We applied DIF-FRAC to human HEK 293T cell lysate using size-exclusion 

chromatography (SEC) to separate the cellular proteins in a control and an RNase A-treated 
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sample into 50 fractions (Figure 1A). Upon RNase A treatment, we observed a loss in the bulk 

chromatography absorbance signal in the high-molecular-weight regions and an increase in 

absorbance in lower molecular weight regions, consistent with higher-molecular-weight species 

(>1000 kDa) becoming lower-molecular-weight species in the absence of RNA (Figure 1B). The 

distribution of cellular RNA in these fractions measured using RNA-seq confirmed that we are 

accessing a diverse RNA landscape of mRNAs, small RNAs, and lncRNAs (Figure S1). As a 

negative control, we applied the same DIF-FRAC strategy to human erythrocytes, which we 

reasoned should have fewer RNPs since they have substantially lower amounts of RNA due to 

the loss of their nucleus and ribosomes upon maturation (Keerthivasan et al., 2011). 

Accordingly, the absorbance chromatography signal of erythrocyte lysate showed only a 

negligible difference in a DIF-FRAC experiment (Figure 1C). Together, these data establish that 

DIF-FRAC is capable of identifying bulk changes to the RNA-bound proteome. 

 We next used mass spectrometry to identify and quantify the resident proteins in each 

fraction for both the control and RNase A treated chromatographic separations, resulting in 8,946 

protein identifications. Using these abundance measurements, we compared elution profiles (i.e. 

abundance change across chromatographically-separated molecular weights) between the control 

and RNase A treated experiments for each protein. A shift in a protein’s elution profile between 

experiments is indicative of a protein-RNA interaction. For example, the known RNA helicase 

DDX21 shows a substantial shift in its elution profile upon RNase A treatment (Figure 1D), 

consistent with DDX21’s known association with RNA (Calo et al., 2015). Alternatively, 

proteins such as the glucose synthesis enzyme, PGM1, show no shift, consistent with it not 

binding RNA (Figure 1E).  

We can further examine these elution profile differences in the context of physically-

associated proteins to identify RNP complexes. For example, subunits of the spliceosome, a 

known RNP complex, show elution profiles that coelute in the control but shift markedly upon 

RNA degradation (Figure 1F). In contrast, the elution profiles of subunits of the non-RNA-

associated hexameric MCM complex (Mr ~550 kDa) (Figure 1G), as well as the 8-subunit COP9 

signalosome (Mr ~500 kDa) (Figure S2A), are unchanged by RNase A treatment, consistent with 

the complexes not interacting with RNA. Thus, DIF-FRAC produces a robust signal that can be 

used to differentiate between non-RNA-associated complexes and RNP complexes.  
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Systematic identification of RNP complexes 

In order to systematically identify RNP complexes in a DIF-FRAC experiment, we first 

developed a computational framework to identify statistically significant changes in individual 

proteins’ elution behavior to identify RNA-associated proteins. We observed a variety of 

changes in elution behavior of known RNA-associated proteins upon RNase A treatment 

including decrease in molecular weight (e.g. NCL), increase in molecular weight (e.g. SUGP1), 

decrease in observed abundance (e.g. RPL18A), and increase in observed abundance (e.g. 

MACF1) (Figure 1H). To capture this range of behaviors in a simple metric, we developed the 

"DIF-FRAC score," which evaluates the degree to which two chromatographic separations differ 

(Figure 1I). Briefly, the DIF-FRAC score is a normalized Manhattan-distance between a 

protein’s control and RNase A treated elution profiles (see Methods). To identify significant 

changes, we calculated P-values by comparing each protein’s DIF-FRAC score to an abundance-

controlled background distribution of DIF-FRAC scores from non-RNA-associated proteins 

(Figure S3A, see Methods for full description). We evaluated the score’s performance on a 

curated set of known RNA-associated proteins and see strong correspondence between precision 

and high-ranking proteins (Figure 1J, Figure S3B). DIF-FRAC identifies 1012 proteins with 

significant elution profile differences in HEK 293T cells with a false discovery rate (FDR) cutoff 

of 5% (Table S1). To validate our metric, our set of statistically significant hits was compared to 

RNA-associated proteins identified from 11 other studies using alternative methods including 

RNA interactome capture (RIC) (Baltz et al., 2012; Castello et al., 2012), organic phase 

separation (Queiroz et al., 2019; Trendel et al., 2019), and others (Hentze et al., 2018).  These 

results indicate that the DIF-FRAC score is highly accurate for identifying individual RNA-

associated proteins (Figure S4A-K).  

To expand on previous systematic studies of RNA-associated proteins, we exploited the 

unique features of DIF-FRAC to identify which RNA-associated proteins are assembled into 

higher order RNP complexes. Specifically, we searched for protein complexes whose subunits 

co-elute in the control experiment in addition to being sensitive to RNase A treatment (e.g. see 

Figure 1F). We detected 115 RNP complexes that fit these criteria, which we term ‘RNP Select’ 

(Figure 2 and Table S2)). The RNP Select set consists of 464 unique proteins, and importantly, it 

recapitulates many known RNP complexes. The set includes canonical RNPs such as the 40S 

ribosome (Figure S5) and the spliceosomal tri-snRNP complex, a major component of the 
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catalytically active spliceosome that contains an intricate network of snRNA binding interactions 

(Agafonov et al., 2016) (Figure 2B).  The set also includes RNPs with more specific functions 

such as the IGF2BP1 complex, which stabilizes c-myc RNA and prevents translation-coupled 

decay (Weidensdorfer et al., 2009) (Figure 2B). Because these data demonstrated the veracity of 

the DIF-FRAC strategy, we next searched our dataset for additional insights into RNP biology. 

First, the RNP Select set provided new details about known RNPs. For example, stress 

granules are large membrane-less organelles that sequester mRNAs and prevent translation (Lin 

et al., 2015; Mittag and Parker, 2018; Spector and Lamond, 2011), and contain RNA-associated 

proteins including CAPRIN1, G3BP2, USP10 and NUFIP2 each localize to stress granules 

(Bardoni et al., 2003; Matsuki et al., 2013; Solomon et al., 2007). Interestingly, our previous map 

of human protein complexes (Drew et al., 2017) suggests that the known complex of G3BP, 

CAPRIN, and USP10 (Kedersha et al., 2016) also physically interacts with NUFIP2, leading us 

to suggest the name CapGUN (i.e. CAPRIN1, G3BP2, USP10, NUFIP2). Importantly, DIF-

FRAC revealed that CapGUN subunits co-elute and associate with RNA (Figure 2B). 

More importantly, RNP Select also contains several complexes not previously known to 

associate with RNA. For example, the spinal muscular atrophy associated activating signal 

cointegrator (ASC) complex (Knierim et al., 2016) (Figure 2B) is a transcriptional coactivator of 

nuclear receptors and has a role in transactivation of serum response factor (SRF), activating 

protein 1 (AP-1), and nuclear factor kappaB (NF-kappaB) (Jung et al., 2002). Upon RNase A 

treatment, we observed a substantial shift in elution from a high molecular weight to a lower 

molecular weight for all subunits of the ASC complex strongly suggesting that the complex 

associates with RNA (Figure 2). Interestingly, one ASC component, ASCC1, has a predicted 

RNA binding motif near its C terminus and has been shown to localize to nuclear speckles (Soll 

et al., 2018), which like stress granules are membraneless organelles enriched for RNPs. Our 

results, in coherence with previous studies point to a role for the ASC complex associating with 

RNA in RNP granules. Other notable examples of previously uncharacterized RNP complexes 

include the conserved oligomeric Golgi (COG) complex which is involved in intra-Golgi 

trafficking, and the SPATA5-SPATA5L1 complex, an uncharacterized complex linked to 

epilepsy, hearing loss, and mental retardation syndrome (Tanaka et al., 2015) (Figure 2B) among 

others (Table 1).  
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Finally, to ascertain the total number of annotated protein complexes that likely function 

with an RNA component, we evaluated DIF-FRAC evidence for RNA-associated proteins in 

addition to the 11 other studies (described above) and identify 1,428 complexes that contain a 

majority of RNA-associated proteins (see Methods). This analysis suggests that greater than 20% 

of known protein complexes associate with RNA (Table 1 and Table S2). We provide the 

complete set of RNP complexes as a fully searchable web database, rna.MAP, at 

http://rna.proteincomplexes.org. This represents a detailed resource of human RNP complexes, 

providing myriad testable hypotheses to guide further explorations of RNP biology. 

 

Classification of RNP Complexes  

 RNA performs a variety of roles in macromolecular complexes. For example, it can bind 

as a substrate, function as an integral structural component, or act as a regulator of a complex’s 

composition. Mirroring these roles, DIF-FRAC data reveals that upon RNA degradation, the 

proteins in RNP complexes can remain in an intact complex (Figure 3A), become destabilized 

(Figure 3B), or adopt different higher order configurations (Figure 3C). We therefore categorize 

RNP complexes into three groups.   

 The first category, which we term "apo-stable," defines protein complexes that remain 

stable after RNase A treatment. These include the exosome, RNase P, and the multi"synthetase 

complex (Figure 3A). Elution profiles of apo-stable complexes show that in the absence of RNA, 

subunits still co-elute, but do so as a lower-molecular weight complex. Available atomic 

structures of the exosome with and without RNA support the concept that RNA is peripheral to 

the stability of the complex (Gerlach et al., 2018; Weick et al., 2018).  

 The second category, which we designate as "structural", refers to complexes for which 

RNA is essential for the RNP complex structure and/or subunit solubility. These include, for 

example, the 60S and 40S ribosomal subcomplexes (Figure 3B and Figure S5). Upon 

degradation of RNA, the observed abundance of ribosomal protein subunits markedly decreases; 

suggesting the ribosome breaks apart and subunits become insoluble. This result is consistent 

with solved structures of the ribosome (Anger et al., 2013), demonstrating the centrality of 

rRNAs to the overall complex architecture (Figure 3B). Interesting exceptions to this behavior 

are the DIF-FRAC elution profiles for RPLP0, RPLP1 and RPLP2. These proteins co-elute in the 

RNase A treated sample, suggesting RNA does not mediate their interaction. Strikingly, 



! 9!

however, this observation is consistent with the atomic structure of the human ribosome, which 

suggests that interactions between RPLP0, RPLP1 and RPLP2 are entirely protein-mediated 

(Figure 3B). This example demonstrates how DIF-FRAC data can not only identify RNA-protein 

mediated interactions, but can also provide structural information about RNP subcomplexes.  

The third category, ‘compositional’ complexes, refers to those in which RNA promotes 

different stable combinations of protein-complex subunits, perhaps in a regulatory role (Figure 

3C).  For example, the WCRF (Williams syndrome transcription factor-related chromatin 

remodeling factor) complex, NuRD (Nucleosome Remodeling Deacetylase) complex and 

Cohesin complex are reported to assemble into a chromatin-remodeling supercomplex (CORUM 

ID: 282). We observed the WCRF and NuRD complexes co-eluting in the control experiment, 

forming a 12-subunit complex that shifts its elution upon RNA degradation. Interestingly, we 

also observed the supercomplex (WCRF, NuRD and Cohesin) eluting as a ~17-subunit complex 

in the RNA degradation condition. This composition change provides an explanation for why 

several NuRD-containing complexes are observed experimentally (Hakimi et al., 2002; Xue et 

al., 1998); our data suggest that these may represent both RNP complexes and non-RNA-

associated complexes.  

We also identified an uncharacterized compositional RNP complex containing the cell 

growth regulators DRG1 and ZC3H15 (DRFP1) (Ishikawa et al., 2005) that are implicated in 

lung cancer (Lu et al., 2016). ZC3H15 stabilizes DRG1 and prevents degradation possibly by 

preventing poly-ubiquitination (Ishikawa et al., 2005). Our result suggests that RNA is also 

involved in ZC3H15’s role in stabilizing DRG1, as we observed a shift to a non-RNA-associated 

complex containing DRG1-ZC3H15 and LRRC41 in the absence of RNA (Figure 3C). LRRC41 

is a probable substrate recognition component of E3 ubiquitin ligase complex (Kamura et al., 

2004).  

A further example of a compositional RNP complex is the transcription factor (TF)IIIC-

TOP1-SUB1 complex, which is involved in RNA polymerase III pre-initiation complex (PIC) 

assembly (Male et al., 2015). DIF-FRAC shows this 7-subunit complex changes composition to 

the five-subunit TFIIIC upon RNA degradation (Figure 3C), offering further insights into the 

mechanism of TFIIIC-dependent PIC formation.  

Finally, we identified the chromatin remodeling BRG/hBRM associated factors (BAF; 

the mammalian SWI/SNF complex; SWI/SNF-A) and polybromo-associated BAF (PBAF; 
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SWI/SNF-B) complexes as compositional RNP complexes, which is significant because these 

are some of the most frequently mutated protein complexes in cancer (Hodges et al., 2016; Tang 

et al., 2017) (Figure S6). BAF and PBAF complexes share a set of common core subunits, but 

also each have signature subunits that are related to their respective functions. Elution profiles 

show these core subunits co-elute with PBAF-only subunits in the control, but co-elute with 

BAF-only subunits upon RNA degradation (Figure S6). These data suggest BAF exists as a non-

RNA-associated complex while PBAF functions as an RNP complex, consistent with its known 

role in transcription and supporting a previously described RNA-binding model where lncRNAs 

interact with SWI/SNF complexes in cancer (Tang et al., 2017). Together, these examples 

demonstrate the power of DIF-FRAC to describe the various physical relationships between 

RNA and macromolecular protein complexes. 

 

Characterization of individual RNA-associated proteins 

 Although our efforts focused primarily on higher order RNP complexes, it is important to 

note that DIF-FRAC is also a powerful complement to existing methods for characterizing 

individual RNA-associated proteins. Indeed, DIF-FRAC identified 196 human RNA-associated 

proteins not previously identified in the many previous studies discussed in the Introduction, 

above (Table S3, Figure S4L). These DIF-FRAC identified RNA-associated proteins were 

strongly enriched in RNA binding domains annotated by Interpro (Finn et al., 2017) (Figure 

S4M).  As we described above, inspection of elution profiles for the individual proteins revealed 

at least four distinct DIF-FRAC signals (Figure 1H, Figure 4). These manifest as elution-profile 

shifts with RNase A treatment that show: (1) an apparent decrease in molecular weight of the 

RNA-associated protein consistent with the degradation of an RNA component (Figure 4A); (2) 

a decrease in observed abundance, suggesting the RNA-associated protein becomes insoluble or 

is degraded (Figure 4B); (3) an apparent increase in molecular weight, suggesting the RNA-

associated protein forms a higher-order species or aggregate (Figure 4C); or (4) an increase in 

observed abundance, indicative of the RNA-associated protein becoming more soluble (Figure 

4D).  

 Analysis of all identified RNA-associated proteins shows 796 (79%) decrease in 

molecular weight, while 216 (21%) RNA-associated proteins increase in size (Figure S7). Aside 

from RNA acting as an interaction partner to RNA-associated proteins, RNA has been shown to 



! 11!

regulate the oligomerization state of proteins both positively (Bleichert and Baserga, 2010; 

Huthoff et al., 2009; Xie et al., 2018) and negatively (Yoshida et al., 2004). Our data suggests 

that while the majority of RNA-associated proteins form higher-order assemblies with RNA, the 

oligomerization of 21% is potentially inhibited by RNA. Alternatively, RNA has also been 

shown to alter the solubility state of proteins (Maharana et al., 2018). We observe an increase in 

observed abundance for 535 (53%) proteins upon RNase A treatment, a decrease in abundance 

for 470 (47%) proteins, and no change in observed abundance for only 7 proteins. This suggests 

RNA impacts the solubility for most RNA-associated proteins and may function to tune protein 

availability in the cell. 

Looking specifically at individual proteins provided insights that could impact our 

understanding of human disease. For example, we found that BANF1, a chromatin organizer, 

appears insoluble under our experimental conditions without RNA (Figure 4B). Interestingly, the 

BANF1 mutation Ala12-Thr12 causes Hutchinson-Gilford progeria syndrome, a severe and 

debilitating aging disease, by a reduction in protein levels (Puente et al., 2011). Our data suggest 

the hypothesis that this reduction is caused by disruption of the RNA-BANF1 interaction, 

leading to insolubility and degradation. Furthermore, RNA has also been shown to solubilize 

proteins linked to pathological aggregates (Maharana et al., 2018). Our data identifies a number 

of CREC family members (CALU, RCN1, RCN2, and SDF4; Figure 4C and Table S1) as RNA-

associated proteins that increase in molecular weight upon RNA degradation. The CREC family 

is a group of multiple EF-hand, low-affinity calcium-binding proteins with links to amyloidosis 

(Vorum et al., 2000). DIF-FRAC demonstrates a dependence of RNA on the oligomerization 

state of CALU, which could play a role in the formation of amyloid deposits similar to that 

observed for prion-like RNA-associated proteins (Maharana et al., 2018). Based on these 

examples and the many disease links to DIF-FRAC identified RNP complexes (Table 1), we 

anticipate our data will generate testable RNA-related hypotheses about disease-related states. 

 

Directed validation of Replication factor C (RFC) as an RNP Complex 

 An important aspect of DIF-FRAC is that while it provides a systematic survey, the 

experimental basis for each data point can be directly assessed in the elution profiles.  

Nonetheless, the ultimate demonstration of the utility of any large-scale dataset is its ability to 

make predictions that can be validated by orthogonal experiments. Among the most surprising 
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findings in our data was that the extensively-characterized replication factor C (RFC) complex 

(Yao and O’Donnell, 2012) exists as a stable RNP complex (Figure 2A). During replication and 

DNA damage repair, the RFC complex is responsible for loading PCNA, a DNA polymerase 

processing factor, onto DNA. Strikingly, DIF-FRAC identified two previously observed variants 

of the RFC complex, RFC1-5 and RFC2-5 (Figure 5A), and more importantly demonstrated that 

RFC1-5 appears to be the dominant variant and is also the RNA-associated form (Figure 5C). 

Consistent with the RFC complex interacting with RNA, the homologous clamp loader in E.coli, 

γ complex, is known to load the DNA clamp onto RNA-primed template DNA (Yao and 

O’Donnell, 2012) and eukaryotic RFC has also been shown to be capable of loading PCNA onto 

synthetic RNA-primed DNA (Yuzhakov et al., 1999). In light of this finding, we tested whether 

purified RFC complex from S. cerevisiae could directly bind different species of nucleic acids. 

We observed that RFC not only binds dsDNA and DNA-RNA hybrids, but also binds dsRNA 

with surprisingly tight binding constants in the nanomolar range (Figure 5D and Figure S8). 

These data show RFC binds dsRNA and point to an uncharacterized role for RNA in the function 

of RFC. The result also further validates the use of DIF-FRAC to identify uncharacterized RNP 

complexes.  

 

Evaluating RNPs in multiple proteomes 

Finally, because DIF-FRAC does not rely on any specialized reagents, the strategy can be 

applied to any cell type that can be readily isolated.  Because of the long-standing interest in the 

role of RNPs in embryonic development (e.g. for targeted localization of maternal RNAs 

(Escobar-Aguirre et al., 2017); processing of non-coding RNA to direct differentiation and stem 

cell potency (Dinger et al., 2008; Guttman et al., 2011; Yan et al., 2013)), we applied DIF-FRAC 

to mouse embryonic stem cells (mESCs).  We identified 1,165 significant RNA-associated 

proteins in mESCs (Figure 6A, Table S1), including 466 that are novel, representing a 35% 

increase in the number of annotated mouse RNA-associated proteins (Figure 6B). This mESC 

dataset provides three advances: 

 First, the data can provide additional evidence to support assignment of novel RNPs.  For 

example, many of the RNA-associated proteins identified in mESCs reflected equivalent RNA-

associated proteins in human cells (Figure 6C), including the RFC complex, which specifically 

behaves as a compositional RNP complex in both species (Figure 5B).   



! 13!

Second, this approach allowed the identification of cell-type specific RNA-associated 

proteins. Indeed, we identified several mESC-specific RNA-associated proteins and these 

included several that have been previously implicated in stem cell function.  For example, we 

identified the known pluripotency factor Sox2 (Figure 6D) and the Polycomb Repressor complex 

2 subunit Jarid2 (Figure 6E), as RNA-associated proteins, consistent with previous reports 

(Cifuentes-Rojas et al., 2014; Fang et al., 2011; Kaneko et al., 2014).  

Finally, the additional dataset allows us to cast a wider net in our search for novel RNPs.  

For example, among the RNA-associated proteins identified in mESCs were members of the 

centralspindlin complex, a heterotetramer consisting of Racgap1 and Kif23 and involved in 

cytokinesis (White and Glotzer, 2012; Yüce et al., 2005).  Previously unknown to contain an 

RNA component, we identify Racgap1, Kif23 and the centralspindlin interaction partner Ect2 as 

significantly sensitive to RNase A treatment in mESCs (Figure 6F). In agreement with this 

mESC result, we observed a similar trend for this complex in human cells, showing conservation 

across species (Figure 6G). Our results suggest a physical interaction between the centralspindlin 

complex and RNA, thus informing a previous study that report Kif23 (ZEN-4 in C.elegans) as a 

positive regulator of RNP granule formation (Wood et al., 2016), as well as the localization of 

several RNA species to the midbody during cytokinesis (Clemson et al., 1996; Lécuyer et al., 

2007; Zheng et al., 2010). 

 Together, these data demonstrate that the adaptability of DIF-FRAC to diverse systems 

will allow identification of conserved RNA-associated proteins and RNP complexes in diverse 

tissues and disease states across all domains of life. 

 

Conclusion 

Here, we report the design, development, and application of a robust fractionation-based strategy 

to determine RNP complexes on a proteome-wide scale. We successfully used DIF-FRAC to 

identify 115 stable RNP complexes throughout the human interactome, and applied it to multiple 

tissue types and species. Combining this with previous data, we generate a resource of the RNA-

bound human proteome and demonstrate that upwards of 20% of protein complexes contain an 

RNA component, highlighting the prevalence of RNP complexes in the cellular milieu. Together 

our results provide a valuable tool for researchers to investigate the role of RNPs in protein 

function and disease. 
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 The DIF-FRAC methodology offers important advances over previous techniques that 

examine RNA-protein interactions. Specifically, interactions are probed proteome-wide in a 

native, whole lysate sample using a strategy that is not reliant on labeling or cross-linking 

efficiency. We show DIF-FRAC can be applied effectively to multiple cell types and organisms, 

and has the potential to provide information on protein-RNA interactions in disease states. 

Furthermore, DIF-FRAC is a broadly applicable framework that can be extended to examine 

other large-scale proteomic changes in a system of interest. 

We also introduce three classifications of RNP complexes (apo-stable, structural, and 

compositional) that provide a useful framework to organize the roles of RNAs in 

macromolecular complexes. Additionally, DIF-FRAC provides information on the biochemical 

characteristics (i.e. molecular weight, solubility) of RNP complexes in the presence and absence 

of RNA that offer clues to disease pathophysiology. We anticipate this technique to be a 

powerful tool to uncover the molecular mechanisms of RNA related diseases. Overall, the DIF-

FRAC method described and demonstrated here charters new territories in the cellular landscape 

of RNA-protein interactions. We have utilized DIF-FRAC to provide the first system-wide 

resource of human RNPs, providing a broadly applicable tool for studying cellular interactions 

and responses in multiple cell types and states. 
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Figure Legends: 

Figure 1: Differential fractionation (DIF-FRAC) identifies RNP complexes. (A) The DIF-

FRAC workflow requires two equivalent cell culture lysates for a control and an RNase A 

treated sample. Lysate is separated into fractions by size exclusion chromatography (SEC), and 

proteins in each fraction are identified by mass spectrometry to determine individual protein 

elution profiles proteome-wide for each condition. An elution shift of a protein upon RNase A 

treatment is indicative of an RNA-protein association. Elution shifts are cross-referenced with 

known protein complexes to identify RNP complexes. (B) Separations of HEK293T lysate under 

control (black) and RNase A treated (red) conditions monitored by bulk SEC chromatography 

absorbance profiles at A280 show loss of high molecular weight signal upon treatment. (C) 

Negative control separations of erythrocyte lysate under control (black) and RNase A treated 

(red) conditions monitored by bulk SEC chromatography absorbance profiles at A280 show no 

change in absorbance signal. (D) RNA binding protein elution profile for positive control 

nucleolar RNA helicase 2 (DDX21) (Abundance = count of unique peptide spectral matches). 

The elution profile shows sensitivity to RNase A treatment. (E) Elution profile for negative 

control phosphoglucomutase (PGM1) is not sensitive to RNase A treatment. (F) Elution profiles 

for subunits of the spliceosome RNP complex (i.e. positive control) show co-elution of complex 

in control and a shift in elution upon RNase A treatment. (G) Elution profile for the non-RNA-

associated MCM complex (i.e. negative control) shows no detectable elution shift. (H) Example 

traces of four known RNA-associated proteins exhibiting different behaviors of elution profile 

changes upon RNase A treatment. NCL shows a loss in molecular weight while SUGP1 shows 

an increase in molecular weight. RPL18A shows a decrease in observed abundance while 

MACF1 shows an increase in observed abundance. In (B)-(H) dashed lines correspond to the 

elution volumes of molecular weight standards thyroglobulin (Mr = 669 kDa), apoferritin (Mr = 

443 kDa), albumin (Mr = 66 kDa), and carbonic anhydrase (Mr = 29 kDa). Molecular weight 

labels on subsequent plots are removed for clarity. (I) A DIF-FRAC score is calculated for each 

protein from the absolute value of the difference of the elution profiles between control and 

RNase A treated samples, and then summed. A P-value is then calculated from a background 

distribution of DIF-FRAC scores. See also Figure S3A. (J) DIF-FRAC P-value calculated on 

HEK 293T data shows strong ability to discriminate known RNA-associated proteins from other 

proteins. See also Figure S3B.  
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Figure 2: DIF-FRAC reveals a map of stable RNP complexes. (A) 115 RNP complexes 

identified by the DIF-FRAC method termed ‘RNP Select’. Green nodes represent proteins 

annotated as ‘ribonucleoprotein complex’ and yellow nodes are unannotated proteins. RNP 

Select complexes are defined as complexes whose protein subunits co-elute in the control DIF-

FRAC sample (> 0.75 average correlation coefficient) and > 50% of subunits have a DIF-FRAC 

P-value > 0.5. DIF-FRAC identified many known RNP complexes such as the ribosome, 

mitochondrial ribosome and snRNP as well as novel RNP complexes such as RFC, COG, ASC 

and SPATA5. (B) Individual RNP complexes with elution profiles including (i) snRNP, (ii) 

IGF2BP1, (iii) CapGUN, (iv) COG, (v) ASC, and (vi) SPATA5. Abundance represents count of 

unique peptide spectral matches for each protein. 

 

Figure 3: DIF-FRAC identifies 3 classes of RNP complexes. (A) ‘Apo-stable’ RNP 

complexes: elution profiles of the exosome (top, CORUM 7443), RNase P (middle, CORUM 

123), and the multi-synthetase complex (bottom, CORUM 3040) show each complex is a stable 

complex that binds RNA and the complex remains intact in the absence of RNA. Blue shading 

represents RNA bound complex. Blue shading represents RNA bound form and red shading 

represents RNA unbound complex. (B) ‘Structural’ RNP complexes: elution profiles of the 60S 

ribosomal subunit (CORUM 308) show the complex destabilizes upon RNA degradation and 

subunits no longer co-elute upon RNase A treatment. DIF-FRAC elution data show the 

ribosomal subunits RPLP0, RPLP1 and RPLP2 (orange) remain as a subcomplex upon RNA 

degradation, consistent with their position in the solved ribosome structure whose interactions 

are not mediated by RNA (bottom, PDB 4V6X, protein in blue, RNA in red, ribosomal stalk in 

orange). (C) ‘Compositional’ RNP complexes: (Top) Elution profiles of WCRF-Cohesin-NuRD 

(CORUM 282) and NuRD-WCRF suggest that RNA association promotes different forms of the 

complex. (Middle) Elution profiles of Drg1-ZC3H15-LRRC41 complex (hu.MAP 2767) which 

forms only in the absence of RNA. (Bottom) Elution profiles of the TFIIIC containing-TOP1-

SUB1 complex (CORUM 1106) loses two subunits, TOP1 and SUB1, upon RNA degradation. 

Green shading represents RNA unbound complex. In (A)-(C) vertical dashed lines correspond 

molecular weight standards described in Figure 1.  
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Figure 4: DIF-FRAC identifies four distinct signals for RNA-associated proteins. Examples 

of elution profiles for disease related proteins that (A) decrease in size, MAP1A, (B) decrease in 

observed abundance (less soluble), BANF1, (C) increase in size, RCN1, and (D) increase in 

observed abundance (more soluble), HMMR, upon RNA degradation. 

 

Figure 5: Replication factor C is an RNP Complex. Elution profiles in both human (A) and 

mouse (B) demonstrates RFC1-5 forms an RNP complex (blue/yellow highlight). A smaller 

subcomplex of RFC2-5 (green highlight) becomes the dominant form upon RNA degradation. 

(C) A cartoon to show the RNA-dependence of annotated complexes RFC1-5 (blue) and RFC2-5 

(green) as determined by DIF-FRAC. RNA is shown in grey. (D) Electromorphic mobility shift 

assays (EMSA) of various concentrations of purified S. cerevisiae RFC mixed with 1 nM 32P-

labeled oligonucleotides. Representative gels show RFC binds dsDNA, DNA/RNA hybrid and 

dsRNA substrates. RFC-nucleic acid complexes were separated on 10% native gels. Binding 

constants are in the nanomolar range (Figure S8). 

 

Figure 6: DIF-FRAC identifies RNP complexes across cell types and species. (A) DIF-FRAC 

identifies 1,165 RNA-associated proteins in mESC (mouse embryonic stem cells), and 1,012 

RNA-associated proteins in HEK 293T cells. (B) Venn diagram of considerable overlap between 

previously published large-scale RNA-protein interaction studies, literature annotated RNA-

associated proteins, and DIF-FRAC identified RNA-associated proteins in mESC. (C) RNA-

associated human-mouse orthologues are identified reproducibly in DIF-FRAC experiments. 

Elution profiles for known pluripotency factors, Sox2 (D) and Jarid2 (E) show association with 

RNA in mESC cells. Elution profiles of the centralspindlin complex for (F) mESC and (G) HEK 

293T demonstrate centralspindlin is an RNP complex in both species. Yellow and blue shading 

represent RNA bound complex in mESC and HEK 293T respectively.  

 

Figure S1: DIF-FRAC accesses a diverse RNA landscape. Box plots show the RNA 

abundance of mRNA, lncRNA, small RNA, other ncRNA, and pseudogenes in control fractions 

16-23 of HEK 293T cell lysate (TPM = Transcripts Per Million). Boxes indicate median (inner 

joint), first quartile (left) and third quartile (right). Lines indicate 1.5 interquartile range. Dots 

indicate outliers. 
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Figure S2: Non-RNA-associated complexes are insensitive to RNase A treatment. DIF-

FRAC elution profiles show subunits of the negative control non-RNA-associated COP9 

signalosome complex (Mr ~500 kDa (Oron et al., 2002)) in control (black) and RNase A treated 

(red) for (A) HEK293T lysate, and (B) mESC do not shift upon RNase A treatment. Abundance 

represents count of unique peptide spectral matches. Vertical dotted lines represent protein 

standards described in Figure 1. 

 

Figure S3: DIF-FRAC Score accurately discriminates between RNA-associated proteins 

and non-binders.  

(A) Workflow to calculate abundance corrected P-values for each protein’s DIF-FRAC score. 

Proteins are ranked according to abundance and a window of +/- 100 proteins is used to calculate 

a DIF-FRAC score distribution. A two-component Gaussian mixture model is then used to 

identify the non-RNA binding component in the distribution. Finally, the DIF-FRAC score of the 

protein of interest is compared to the non-RNA binding distribution component to test the null 

hypothesis and a P-value is calculated. (B) Precision recall analysis shows the DIF-FRAC Score 

recalls a substantial number of known RNA-associated proteins in HEK 293T cells. (C) High 

DIF-FRAC P-values have high precision in recovering known RNA-associated proteins in 

mouse embryonic stem cells. (D) Precision recall analysis shows the DIF-FRAC Score recalls a 

substantial number of known RNA-associated proteins in mESC.  

 

Figure S4: DIF-FRAC RNA-associated proteins show substantial overlap with other high-

throughput studies. (A-K) Venn diagrams show overlap of DIF-FRAC RNA-associated 

proteins from HEK 293T cells (blue) with 11 high-throughput RNA association studies (green) 

(Bao et al., 2018; Hentze et al., 2018; Huang et al., 2018; Queiroz et al., 2019; Trendel et al., 

2019). (L) Venn diagram shows overlap of DIF-FRAC RNA-associated proteins from HEK 

293T cells (blue), annotated RNA Binding proteins (red), and combined set of high throughput 

RNA association studies (green). (M) Enrichment of RNA binding structural motifs in DIF-

FRAC-identified RNA-associated proteins from HEK 293T cells. 
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Figure S5: DIF-FRAC classifies the 40S ribosomal subunit as a structural RNP. Elution 

profiles of the 40S ribosomal subunits demonstrate it is destabilized upon RNA degradation 

(‘structural’ RNP complex). 

 

Figure S6: DIF-FRAC classifies human BAF and PBAF complexes as compositional RNPs. 

Elution profiles of annotated human PBAF (blue shading) and BAF (green shading) complexes 

demonstrate core subunits common to both complexes coelute in both control and RNase A 

treated samples, but at different molecular weights. PBAF-only subunits (light grey) coelute with 

core subunits only in the control sample, while BAF-only subunits (dark grey) coelute with the 

core subunits as a lower molecular weight complex only when RNA is degraded. Together, these 

elution profiles suggest that PBAF is an RNP complex, but the BAF complex does not associate 

with RNA.  

 

Figure S7: Analysis of DIF-FRAC shift types of RNA-associated proteins. Upon RNase A 

treatment we observe different types of changes to protein elution profiles (see Figure 1H and 

Figure 4). Each point in the graph represents one RNA-associated protein. Molecular weight 

shift is the weighted average difference between control and RNase A treated profiles, where a 

negative value (left side of graph) represents lower molecular weight elution upon treatment and 

positive value (right side of graph) represents gain in molecular weight (see Methods for 

calculation). Abundance change is the normalized change in observed abundance upon RNase A 

treatment. A positive value (top of graph) represents gain in solubility and a negative value 

(bottom of graph) represents loss in solubility. Examples from Figure 4 are annotated. 

 

Figure S8: Affinity of nucleic acid for the S. cerevisiae RFC complex. Binding curves from 

electromorphic mobility shift assays (EMSA) of various concentrations of purified S. cerevisiae 

RFC mixed with 1 nM 32P-labeled oligonucleotides. Data was fit to a hyperbolic equation (solid 

line). The calculated kD + 95% CI is 1.9 ± 0.5 nM for dsDNA (black), 7.5 ± 4.9 nM for 

DNA/RNA hybrid (red), and 25 ± 11 nM for dsRNA (blue). Error bars denote standard 

deviation. 
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Materials and Methods 

Experimental Design 

Human cell culture and extract preparation 

HEK293T cells (ATCC CRL3216) cultured in DMEM (Gibco) supplemented with 10 % (v/v) 

FBS (Life Technologies) were continually split over 7 days to give four 10-cm dishes of 

adherent cells. For the control fractionation sample, two 10-cm dishes of cells were harvested at 

80-100 % confluence without trypsin by washing in ice cold phosphate buffered saline (PBS) pH 

7.2 (0.75 mL; Gibco) and placed on ice. Cells (approximately 0.1 g wet weight) were lysed on 

ice (5 min) by resuspension in Pierce IP Lysis Buffer (0.8 mL; 25 mM Tris-HCl pH 7.4, 150 mM 

NaCl, 1 mM EDTA, 1% NP-40 and 5% glycerol; Thermo Fisher) containing 1x protease 

inhibitor cocktail III (Calbiochem). The resulting lysate was clarified (17,000g, 10 min, 4°C) and 

left at room temperature (30 min). The sample was filtered (Ultrafree-MC filter unit (Millipore); 

12,000g, 2 min, 4°C) to remove insoluble aggregates. RNase A treated samples were prepared on 

the same day in an identical manner, except RNase A (8 µL, 80 µg, Thermo Fisher, catalogue 

#EN0531) was added after lysate clarification and the sample left at room temperature (30 min) 

before filtration. 

 

Mouse embryonic stem cell culture 

Gelatin adapted mouse J1 ES cells (ATCC® SCRC-1010™) were cultured in Dulbecco’s 

Modified Eagle’s Medium (DMEM, Life Technologies) containing 18% fetal bovine serum 

(FBS, Gemini), 50 U/mL of penicillin/streptomycin with 2 mM L-glutamine (Life 

Technologies), 0.1 mM non-essential amino acid (Life Technologies), 1% nucleosides (Sigma-

Aldrich), 0.1 mM β-mercaptoethanol (Sigma-Aldrich), and 1,000 U/mL recombinant leukemia 

inhibitory factor (LIF, Chemicon). ES cells were plated on 15-cm dishes coated with 0.1% 

gelatin and incubated at 37°C and 5% CO2. Cells were passaged every 2 days. Lysis and RNase 

A treatment were done as described in the HEK 293T protocol.  

 

Erythrocyte cell preparation  

Leukocyte-reduced red blood cells (RBCs) were obtained from an anonymous donor and 

purchased from Gulf Coast Regional Blood Center (Houston, Texas). The RBCs used in this 

experiment were kept at 4°C for 54 days before lysis to ensure reticulocytes mature into RBCs. 
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Prior to cell lysis, RBCs were washed with ice cold PBS (pH 7.4, Gibco) for 3 times at 600 g for 

15 min at 4°C. RBCs were then lysed in hypotonic solution (5 mM Tris-HCl, pH 7.4) containing 

protease and phosphatase inhibitors (cOmplete, EDTA-free Protease Inhibitor Cocktail, Roche 

and PhosSTOP, Roche) with a ratio of 1 volume packed RBC: 5 volumes hypotonic solution. 

Hemolysate (soluble fraction of RBC lysate) was collected by centrifuging white ghosts 

(membrane fraction of RBC lysate) at 21,000 g for 40 mins at 4°C.  Hemolysate was collected 

and stored at -80°C until further use. On the day of experiment, hemolysate was thawed and 

treated with Hemoglobind (Biotech Support Group) in order to remove hemoglobin from 

hemolysate. A total of 4-5 mg of total proteins were split into control and RNase A treated 

samples. The RNase sample was treated with RNase A as described in the protocol of RNase A 

treatment of lysate from HEK293T cells. Both samples were filtered (Ultrafree-MC filter unit 

(Millipore); 12,000 g, 2 min, 4°C) to remove insoluble aggregates prior to fractionation.  

 

Biochemical fractionation using native size-exclusion chromatography 

All lysates were subject to size exclusion chromatography (SEC) using an Agilent 1100 HPLC 

system (Agilent Technologies, ON, Canada) with a multi-phase chromatography protocol as 

previously described (Havugimana et al., 2012). Soluble protein (1.25 mg, 250 µL) was applied 

to a BioSep-SEC-s4000 gel filtration column (Phenomenex) equilibrated in PBS, pH 7.2 (HEK 

293T and mESC lysate) or pH 7.4 (erythrocytes) at a flow rate of 0.5 mL min-1. Fractions were 

collected every 0.375 mL. The elution volume of molecular weight standards (thyroglobulin (Mr 

= 669 kDa); apoferritin (Mr = 443 kDa); albumin (Mr = 66 kDa); and carbonic anhydrase (Mr = 

29 kDa); Sigma) was additionally measured to calibrate the column (Figure 1B).  

 

Mass spectrometry 

Fractions were filter concentrated to 50 µL, denatured and reduced in 50 % 2,2,2-trifluoroethanol 

(TFE) and 5 mM tris(2-carboxyethyl)phosphine (TCEP) at 55 °C for 45 minutes, and alkylated 

in the dark with iodoacetamide (55 mM, 30 min, RT). Samples were diluted to 5 % TFE in 50 

mM Tris-HCl, pH 8.0, 2 mM CaCl2, and digested with trypsin (1:50; proteomics grade; 5 h; 

37 °C). Digestion was quenched (1 % formic acid), and the sample volume reduced to ~100 µL 

by speed vacuum centrifugation. The sample was washed on a HyperSep C18 SpinTip (Thermo 
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Fisher), eluted, reduced to near dryness by speed vacuum centrifugation, and resuspended in 5 % 

acetonitrile/ 0.1 % formic acid for analysis by LC-MS/MS. 

Peptides were separated on a 75 µM x 25 cm Acclaim PepMap100 C-18 column 

(Thermo) using a 3-45 % acetonitrile gradient over 60 min and analyzed online by 

nanoelectrospray-ionization tandem mass spectrometry on an Orbitrap Fusion or Orbitrap Fusion 

Lumos Tribrid (Thermo Scientific). Data-dependent acquisition was activated, with parent ion 

(MS1) scans collected at high resolution (120,000). Ions with charge 1 were selected for 

collision-induced dissociation fragmentation spectrum acquisition (MS2) in the ion trap, using a 

Top Speed acquisition time of 3-s. Dynamic exclusion was activated, with a 60-s exclusion time 

for ions selected more than once. MS from HEK 293T cells was acquired in the UT Austin 

Proteomics Facility.  

 

Construction and sequencing of RNA-seq libraries of DIF-FRAC samples 

Fractions from a biological replicate SEC separation corresponding to higher molecular weight 

species (approximately >1.5 MDa; fractions 16-23 in Figure 1B) were analyzed by total RNA 

sequencing. Total RNA was isolated from each fraction (0.375 mL) by addition of Trizol 

(1.125 mL; Thermo Fisher) and the sample (1.4 mL) was transferred to a Phasemaker tube 

(Thermo Fisher). Total RNA was extracted following the protocol supplied by the manufacturer 

and further cleaned up using a RNeasy MinElute Cleanup Kit (Qiagen). RNA integrity number 

(RIN) was measured using an Agilent Bioanalyzer and samples were ribo-depleted using a using 

a RiboZero Gold (Human/Mouse/Rat) kit (Illumina) to remove rRNAs. RNA libraries were 

prepared for sequencing according to vendor protocols using NEBNext R Small RNA Library 

Prep Set for Illumina R (Multiplex Compatible), Cat #E7330L, according to the protocol 

described by Podnar et al. (Podnar et al., 2014). RNA was fragmented using elevated 

temperature in carefully controlled buffer conditions to yield average fragment sizes of 200 

nucleotides. These fragments were directionally ligated to 5′ and 3′ adaptors so that sequence 

orientation is preserved throughout sequencing. Reverse transcription and PCR were performed 

to complete the DNA sequencing libraries, which were sequenced using an Illumina NextSeq 

500 instrument (75-nt single reads) at the Genomic Sequencing and Analysis Facility at the 

University of Texas at Austin.  
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S. cerevisiae RFC purification: 

RFC was purified as previously described (Finkelstein et al., 2003; Kim et al., 2017). Briefly, 

full-length S. cerevisiae RFC was expressed in BL21(DE3) ArcticExpress (Agilent) E. coli co-

transformed with pLant2b-RFC-AE (pIF117) and pET11-RFC-BCD (pIF116). RFC was 

subsequently purified by SP and Q (GE Healthcare) ion exchange chromatography. Protein 

concentration was determined by comparison to a BSA titration curve using Coomassie-stained 

SDS-PAGE. 

 

Electrophoretic Mobility Shift Assay (EMSA): 

Oligonucleotide constructs were based on an earlier description (Kobayashi et al., 2006). Each of 

the four-nucleic acid substrates were radiolabeled with [γ-32P]-ATP using T4 Polynucleotide 

Kinase (NEB). Free nucleotide was removed using G-25 MicroSpin columns (GE Healthcare). 

Oligonucleotides were subsequently heated to 75°C and slowly cooled to room temperature to 

allow proper annealing. 1 nM oligonucleotide and various concentrations of RFC (0 to 256 nM) 

were incubated for 15 minutes at room temperature in a buffer containing 25 mM Tris-HCl [pH 

7.5], 50 mM NaCl, 2 mM MgCl2, 2 mM DTT, and 0.1 mg/mL BSA. Reactions were quenched 

with 6x loading dye (10 mM Tris-HCl [pH 7.6], 60% glycerol, 60 mM EDTA, 0.15% [w/v] 

Orange G) and subsequently separated by native acrylamide gel electrophoresis. Gels were dried 

on Zeta-Probe Membrane (Bio-Rad) at 80°C for two hours. Bands were visualized by a Typhoon 

FLA 7000 phosphorimager (GE Healthcare). Binding was quantified using FIJI (Schindelin et 

al., 2012). Subsequent data were fit to a hyperbolic equation to determine the kD for 

oligonucleotide binding. 

 

Oligonucleotides used: 

Name Sequence 

dsDNA 5’ - CTC GAG GTC GTC ATC GAC CTC GAG ATC A – 3’ 

DNA/RNA 5’ - rCrUrC rGrArG rGrUrC rGTC ATC GAC CTC GAG ATC A – 3’ 

dsRNA 5’ - rCrUrC rGrArG rGrUrC rGrUrC rArUrC rGrArC rCrUrC rGrArG rArUrC rA – 3’ 

 

Calculated kD from fitting to hyperbolic equation (Bound = (v*[E])/(kD+[E])), where “[E]” is the 

concentration of the enzyme, and “v” and “kD” are solved by linear regression. 
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Bioinformatic analysis 

Protein identification  

Prior to protein identification, human and mouse proteomes were downloaded from UniProt 

website (Apweiler et al., 2004). Raw formatted mass spectrometry files were first converted to 

mzXML file format using MSConvert (http://proteowizard.sourceforge.net/tools.shtml) and 

then processed using MSGF+ (Kim et al., 2017), X! TANDEM (Craig and Beavis, 2004) and 

Comet (Lingner et al., 2011) peptide search engines with default settings. MSBlender (Kwon et 

al., 2011) was used for integration of peptide identifications and subsequent mapping to protein 

identifications. A false discovery rate of 1% was used for peptide identification. Protein elution 

profiles were assembled using unique peptide spectral matches for each protein across all 

fractions collected. 

 

DIF-FRAC score and P-value significance calculation 

In order to determine the significance of a protein’s sensitivity to RNase A treatment, we 

compare the protein’s control elution profile to its RNase A treated elution profile as 

schematized in Figures 2A and S3A. Specifically, we first calculate the L1-norm of the two 

elution profiles (equation 1). 

(1) 

Where N represents the total number of fractions collected and p represents an individual protein. 

X and Y represent abundance matrices of control and experiment (RNase A treated) respectively. 

We next normalize Dp by the total abundance seen for protein p in both the control and 
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similar abundance. Specifically, we create a distribution of D
norm from proteins in a window 

surrounding protein p and have not been annotated as RNA-associated proteins in the literature 

(equation 3). See Figure S3A for schematic.  

(3) 

where s is a window size of 100 and unannotated RNA-associated proteins are in order of 

abundance.  

We posit that the proteins in distribution, Wp,is a mixture of unannotated RNA-associated 

proteins as well as non-RNA-associated proteins. In order to evaluate significance of a protein’s 

Dnorm being greater than what is expected by non-RNA binders, we model the distribution Wp 

using a two component gaussian mixture model (GMM). To ensure an accurate model fit we 

evaluate our GMM fit using three criteria (equation 4). First, we calculate the Baysian 

Information Criterion (BIC) for both the two component GMM and a one component GMM and 

ensure the two component GMM has a lower BIC (equation 4a). Second, we ensure the 

component with the lowest mean µ (i.e. non-RNA-associated component) has the largest weight 

(equation 4b). Finally, we ensure the largest component weight is greater than a given weight 

threshold tweight (equation 4c). tweight can be estimated by the expected fraction of non-RNA 
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RNA-associated proteins identified in the high throughput sets to the DIF-FRAC method, Venn 

diagrams in Figure S4A-K report all proteins. 

To calculate Precision vs Neg Ln P-value plots (Figure 1I and Figure S3C), we first added a 

pseudocount (+1e-308) to DIF-FRAC P-values and then applied -1*ln(P-value) where ln is the 

natural log. Precision is defined as TP/AP, where TP (true positives) is defined as proteins 

annotated as either high throughput or low throughput RNA binding (see above) and a Neg Ln P-

value greater than a given value. AP (all predictions) is defined as any protein with a Neg Ln P-

value greater than a given value. To calculate Precision vs Recall plots (Figures S3B and S3D), 

precision is defined above and recall is defined as TP/AKP where TP is true positives and AKP 

(all known positives) is defined as proteins annotated as either high throughput or low 

throughput RNA binding.  

Classification of DIF-FRAC elution profiles 

To calculate the amount a protein shifts upon RNase A treatment, we calculate the average 

fraction a protein is observed weighted by the PSMs observed in each fraction. The difference 

between the weighted average of the treated and untreated elution profiles provides the total shift 

amount. A protein’s shift in elution from a high molecular weight to a low molecular weight 

results in a negative shift value whereas a shift from low molecular weight to high molecular 

weight corresponds to a positive value. 

To calculate the amount a protein’s abundance changes upon RNase A treatment, we 

calculate the difference of a protein’s total PSMs observed in the untreated and treated samples. 

We further normalize this value by dividing by the sum of the total PSMs from both samples. 

This results in a value between 1.0 and -1.0 where a positive value corresponds to an increase in 

abundance upon RNase A treatment and a negative value corresponds to a decrease in abundance 

upon RNase A treatment.  

 

Assembly of RNP complexes 

We define the global set of RNP complexes by first creating a combined non-redundant set of 

CORUM (Ruepp et al., 2010) and hu.MAP (Drew et al., 2017) complexes (Jaccard coefficient < 

1.0). For every complex in this global set we tested if > 50% of the protein subunits were 1) 

identified as an RNA-associated protein by DIF-FRAC (P-value > 0.05), 2) annotated by high 
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throughput methods or 3) annotated by low throughput methods (see above for description of 

annotations). RNP Select complexes are defined as complexes whose protein subunits co-elute in 

the DIF-FRAC control sample (> 0.75 average Pearson correlation coefficient among subunits) 

and > 50% of subunits have a DIF-FRAC P-value > 0.5. 

 

RNA-Seq Analysis 

After performing quality control on the sequencing fastq files using FastQC 

(www.bioinformatics.babraham.ac.uk/projects/fastqc/), 3' adapter contamination was removed 

using Cutadapt (v1.10) (Martin, 2011). Alignment of the 8 RNA fraction datasets was then 

performed with the Hisat2 transcriptome-aware aligner (v2.1.0) (Kim et al., 2015), against a 

Hisat2 reference index built using GRCh38/hg38 primary assembly genome fasta from Gencode 

(v27, Ensembl release 90) (Harrow et al., 2012) annotated with the corresponding v27 GTF 

(General Transfer Format) annotations. The Hisat suite Stringtie program (v1.3.3b) (Pertea et al., 

2016) was used to quantify gene-level expression from the alignment files. TPM (Transcripts Per 

Million), a sequencing-depth-normalized estimate of reads mapping to the gene, was used for 

further analysis.  

 

Data Deposition 

Proteomics data and RNA-seq data will be deposited in Pride and Gene Expression Omnibus 

respectively upon acceptance. 

 

Code Repository 

Source code is freely available on GitHub: https://github.com/marcottelab/diffrac 
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