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ABSTRACT 

Somatic copy number alterations (CNAs) are a hallmark of cancer. Although CNA 

profiles have been established for most human tumor types, their precise role in 

tumorigenesis as well as their clinical and therapeutic relevance remain largely unclear. 

Thus, computational and statistical approaches are required to thoroughly define the 

interplay between CNAs and tumor phenotypes. Here we developed CNApp, a user-

friendly web tool that offers sample- and cohort-level computational analyses, allowing 

a comprehensive and integrative exploration of CNAs with clinical and molecular 

variables. By using purity-corrected segmented data from multiple genomic platforms, 

CNApp generates genome-wide profiles, computes CNA scores for broad, focal and 

global CNA burdens, and uses machine learning-based predictions to classify samples. 

We applied CNApp to a pan-cancer dataset of 10,635 genomes from TCGA showing 

that CNA patterns classify cancer types according to their tissue-of-origin, and that 

broad and focal CNA scores positively correlate in samples with low amounts of whole-

chromosome and chromosomal arm-level imbalances. Moreover, using the 

hepatocellular carcinoma cohort from the TCGA repository, we demonstrate the 

reliability of the tool in identifying recurrent CNAs, confirming previous results. 

Finally, we establish machine learning-based models to predict colon cancer molecular 

subtypes and microsatellite instability based on broad CNA scores and specific genomic 

imbalances. In summary, CNApp facilitates data-driven research and provides a unique 

framework for the first time to comprehensively assess CNAs and perform integrative 

analyses that enable the identification of relevant clinical implications. CNApp is hosted 

at http://cnapp.bsc.es.  

 

KEYWORKS: Copy number alterations; Cancer genomics; CNA scores; Shiny app; 

Pan-cancer; Colorectal cancer; Hepatocellular carcinoma 
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INTRODUCTION 

The presence of somatic copy number alterations (CNAs) is a ubiquitous feature in 

cancer. In fact, the distribution of CNAs is sufficiently tissue-specific to distinguish 

tumor entities (Ried et al., 2012; Taylor et al., 2018a), and allows identifying groups of 

tumors responsive to particular therapies (Cairncross et al., 2013; Davoli, Uno, Wooten, 

& Elledge, 2017). Moreover, high levels of CNAs, which result from aneuploidy and 

chromosome instability, are generally associated with high-grade tumors and poor 

prognosis (Sansregret, Vanhaesebroeck, & Swanton, 2018). 

Two main subtypes of CNAs can be discerned: broad CNAs, which are defined as 

whole-chromosome and chromosomal arm-level alterations, and focal CNAs, which are 

alterations of limited size ranging from part of a chromosome-arm to few kilobases 

(Krijgsman, Carvalho, Meijer, Steenbergen, & Ylstra, 2014; Zack et al., 2013). 

Recently, it has been uncovered that while focal events mainly correlate with cell cycle 

and proliferation markers, broad aberrations are mainly associated with immune evasion 

markers, suggesting that tumor immune features might be determined by mechanisms 

related to overall gene dosage imbalance rather than specific actionable genes 

(Buccitelli et al., 2017; Davoli et al., 2017; Taylor et al., 2018b). Nevertheless, the 

precise role of CNAs in tumor initiation and progression, as well as their clinical 

relevance and therapeutic implications remain still poorly understood. 

Interpretation and visualization of CNAs is time-consuming and very often requires 

complex analyses with clinical and molecular information. Well-established CNA 

algorithms, such as the gold-standard circular binary segmentation, define the genomic 

boundaries of copy number gains and losses based on signal intensities or read depth 

obtained from array comparative genomic hybridization and SNP-array or next-

generation sequencing data, respectively (Olshen, Venkatraman, Lucito, & Wigler, 

2004). However, the tumor-derived genomic complexity may cause an under- or 

overestimation of CNAs. This complexity is represented by tumor purity, tumor 

aneuploidy, and intratumor heterogeneity, which imply high levels of subclonal 

alterations. Thus, recent segmentation methods improved the accuracy to identify copy 

number segments in tumor samples either by considering the B allele frequency (BAF), 

such as ExomeCNV (Sathirapongsasuti et al., 2011), Control-FREEC (Boeva et al., 

2012) and SAAS-CNV (Zhang & Hao, 2015), or through adjusting by sample purity 

and ploidy estimates, such as GAP (Popova et al., 2009), ASCAT (Van Loo et al., 

2010) and ABSOLUTE (Carter et al., 2012). However, the state-of-the-art 
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computational approach for CNA analysis in cancer is GISTIC2.0 (Mermel et al., 

2011), which is a gene-centered probabilistic method that enables to define the 

boundaries of recurrent putative driver CNAs in large cohorts (Beroukhim et al., 2010). 

Nevertheless, despite ongoing progress on identifying CNAs, to our knowledge none of 

the existing software packages is readily available for integrative analyses to unveil 

their biological and clinical implications. 

To address this issue, we developed CNApp, the first open-source application to 

quantify CNAs and integrate genomic profiles with molecular and clinical variables. 

CNApp is a web-based tool that provides the user with high-quality interactive plots 

and statistical correlations between CNAs and annotated variables in a fast and easy-to-

explore interface. In particular, CNApp uses purity-corrected genomic segmented data 

from multiple genomic platforms to redefine CNA profiles, to compute CNA scores 

based on the number, length and amplitude of broad and focal genomic alterations, to 

assess differentially altered genomic regions, and to perform machine learning-based 

predictions to classify tumor samples. To exemplify the applicability and performance 

of CNApp, we used publicly available segmented data from The Cancer Genome Atlas 

(TCGA) to (i) measure the burden of global, broad, and focal CNAs as well as generate 

CNA profiles in a pan-cancer dataset spanning 33 cancer types, (ii) identify cohort-

based recurrent CNAs in hepatocellular carcinoma and compare them with previously 

reported data, and (iii) assess predicting models for colon cancer molecular subtypes 

and microsatellite instability status based on CNA scores and specific genomic 

imbalances. CNApp is hosted at http://cnapp.bsc.es and the source code is freely 

available at GitHub (https://github.com/ait5/CNApp). 

 

RESULTS 

 

Implementation 

CNApp comprises three main sections: 1- Re-Seg & Score: re-segmentation, CNA 

scores computation, variable association and survival analysis, 2- Region profile: 

genome-wide CNA profiling, CNA frequencies, correlation profiles and descriptive 

regions, and 3- Classifier model: machine learning classification model predictions 

(Figure 1). Each of these sections and their key functions are described below. The 

input file consists of a data frame with copy number segments provided by any 

segmentation algorithm. Mandatory fields and column headers are sample name (ID), 
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chromosome (chr), start (loc.start) and end (loc.end) genomic positions, and the log2 

ratio of the copy number amplitude (seg.mean) for each segment. Section 1 incorporates 

the correction for tumor purity (i.e., fraction of tumor cells in the sample) to measure 

the actual magnitude of CNAs. Thus, when available, the input file will also include 

sample purity estimations (purity) and BAF values (BAF), which correct the accuracy of 

CNA calls and provide copy number neutral loss-of-heterozygosity (CN-LOH) events. 

Annotation of variables can be included in the input file (tagged in every segment from 

each sample) or by uploading an additional file indicating new variables per sample. 

 

Section 1. Re-Seg & Score: re-segmentation, CNA scores computation, variable 

association and survival analysis 

First, CNApp applies a re-segmentation approach to adjust for amplitude divergence 

due to technical variability and correct for estimated tumor purity (Supplementary 

Methods). Default re-segmentation settings include minimum segment length (100 

Kbp), minimum amplitude (seg.mean) deviation from segment to zero (0.16), maximum 

distance between segments (1 Mbp), maximum amplitude (seg.mean) deviation between 

segments (0.16), and maximum BAF deviation between segments (0.1). These 

parameters can be customized by the user to better adjust the re-segmentation for each 

particular dataset. Re-segmented data are then used to calculate the broad (BCS), focal 

(FCS) and global (GCS) CNA scores, which provide three different quantifications of 

CNA levels for each sample. To compute these scores, CNApp classifies and weights 

CNAs based on their length and amplitude. For each sample, BCS is computed by 

considering broad (chromosome and arm-level) segment weights according to the 

amplitude value. Likewise, calculation of FCS takes into account weighted focal CNAs 

corrected by the amplitude and length of the segment. Finally, GCS is computed by 

considering the sum of normalized BCS and FCS, providing an overall assessment of 

the CNA burden. 

To assess the reliability of CNA scores, we compared each score with the 

corresponding fraction of altered genome using a TCGA pan-cancer set of 10,635 

samples. Both BCS (ranging from 0 to 44) and FCS (values ranging from 5 to 2,466) 

highly correlated with the fraction of altered genome by broad and focal copy number 

changes, respectively (Spearman's rank correlation for BCS = 0.957 and for FCS = 

0.938) (Supplementary Figure S1A and B). As expected, GCS (values ranged from -

1.93 to 12.60) highly correlated with the fraction of altered genome affected by both 
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broad and focal CNAs (Spearman’s rank correlation for GCS = 0.963 (Supplementary 

Figure S1C). Parametric and non-parametric statistical tests are used to establish 

associations between CNA scores and annotated variables from the input file. 

Additionally, Kaplan-Meier survival curves are computed using either CNA scores or 

additional variables. 

 

Section 2. Region profile: genome-wide CNA profiling 

This section transforms segmented data (either re-segmented data from section 1 or 

original segments uploaded by the user) into genomic region profiles to allow sample-

to-sample comparisons. Different genomic windows can be selected to compute the 

genomic profiles (i.e., chromosome arms, half-arms, cytobands, sub-cytobands or 40-1 

Mbp windows). All segments, or either only broad or only focal can be selected for this 

analysis. Length-relative means are computed for each window by considering 

amplitude values from those segments included in each specific window. Default 

cutoffs for low-level copy number gains and losses (i.e., |0.2|) are used to infer CNA 

frequencies. Genomic profiles are presented in genome-wide heatmaps to visualize 

general copy number patterns. Up to six annotation tracks can be added and plotted 

simultaneously allowing visual comparison and correlation between CNA profiles and 

different variables, including the CNA scores obtained in section 1. CNA frequency 

summaries by genomic region and by sample are represented as stacked bar plots. 

Correlation values and hierarchical clusters are optional.  

Importantly, assessing differentially altered regions between sample groups might 

contribute to discover genomic regions associated with annotated variables and thus 

unveil the biological significance of specific CNAs. To do so, CNApp interrogates 

descriptive regions associated with any sample-specific annotation variable provided in 

the input file. Default statistical significance is set to p-value lower than 0.1. However, 

p-value thresholds can be defined by the user and adjusted p-value is optional. A 

heatmap plot allows the visualization and interpretation of which genomic regions are 

differentially altered between sample groups. By selecting a region of interest, box plots 

and stacked bar plots are generated comparing seg.mean values and alteration counts in 

Student’s t-test and Fisher’s test tabs, respectively. Additionally, genes comprised in the 

selected genomic region are indicated.  

 

3. Classifier model: Machine learning classification model predictions 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 16, 2019. ; https://doi.org/10.1101/479667doi: bioRxiv preprint 

https://doi.org/10.1101/479667
http://creativecommons.org/licenses/by-nc-nd/4.0/


 7

This section allows the user to generate machine learning-based classifier models by 

choosing a variable to define sample groups and one or multiple classifier variables. To 

do so, CNApp incorporates the randomForest R package (Liaw & Wiener, 2002). The 

model construction is performed 50-times and bootstrap set is changed in each iteration. 

By default, annotation variables from the input file are loaded and can be used either by 

defining sample groups or as a classifier. If Re-Seg & Score and/or Region profile 

sections have been previously completed, the user can upload data from these sections 

(i.e., CNA scores and genomic regions). Predictions for the model performance are 

generated and the global accuracy is computed along with sensitivity and specificity by 

group. Classifier models can be useful to point out candidate clinical or molecular 

variables to classify sample subgroups. A summary of the data distribution and plots for 

real and model-predicted groups are visualized. A table with prediction rates throughout 

the 50-times iteration model and real tags by sample is displayed and can be 

downloaded. 

 

Characterization of cancer types based on CNA scores 

First, we evaluated the capacity of CNApp to analyze and classify cancer types 

according to CNA scores, and assessed whether CNApp was able to reproduce specific 

CNA patterns across different cancer types. To do so, by using CNApp default 

parameters we obtained re-segmented data, CNA scores and cancer-specific CNA 

profiles for 10,635 tumor samples spanning 33 cancer types from the TCGA pan-cancer 

dataset. The distribution of BCS, FCS and GCS confirmed the existence of distinct 

CNA burdens across cancer types (Figure 2A). While cancer types such as acute 

myeloid leukemia (LAML), thyroid carcinoma (THCA) or thymoma (THYM) showed 

low levels of broad and focal events (GCS median values of -1.67 for LAML, -1.68 for 

THCA, and -1.52 for THYM), uterine carcinosarcoma (UCS), ovarian cancer (OV) and 

lung squamous cell carcinoma (LUSC) displayed high levels of both types of genomic 

imbalances (GCS median values of 2.55, 2.44, and 0.97 for UCS, OV, and LUSC, 

respectively). Some cancer types displayed a preference for either broad or focal CNAs. 

For example, kidney chromophobe (KICH) tumors showed the highest levels of broad 

events (median BCS value of 27), while focal CNAs in this cancer type were very low 

(median FCS value of 49). In contrast, breast cancer (BRCA) samples displayed high 

FCS values (median FCS value of 150), while BCS values were only intermediate 

(median BCS value of 7). Overall correlations between CNA scores were assessed by 
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computing Spearman’s rank test, obtaining values of 0.59 between BCS and FCS, 0.90 

between BCS and GCS, and 0.85 between FCS and GCS. In addition, we further 

assessed the correlation between BCS and FCS for each individual BCS value. While 

tumors with low BCS displayed a positive correlation between broad and focal 

alterations, tumors did not maintain such correlation in higher BCS values 

(Supplementary Figure S2A and B). This correlation between BCS and FCS is 

maintained across the 33 cancer types (Supplementary Figure S2C). 

Subsequent analysis aimed at generating genome-wide patterns for each cancer type 

based on chromosome-arm genomic windows and the overall corresponding 

frequencies. In agreement with previous studies (Beroukhim et al., 2010), cancer type-

specific patterns of genomic gains and losses determined the tissue-of-origin (Figure 

2B). Additionally, we found that chromosome arms altered in more than 25% across all 

samples were 1q, 7p, 7q, 8q and 20q for copy number gains, and 8p and 17p for copy 

number losses. Conversely, chromosome arms affected by CNAs in less than 10% of all 

cancer types included chromosome arms 2q and 19p (Figure 2C). By using a subset of 

20 out of the 33 cancer types for which tumor type information was available, we asked 

CNApp to compute the average arm-region for each cancer type to assess if they 

clustered according to their CNA profiles (Supplementary Figure S3A). Our analysis 

showed that correlation values resulting from Pearson’s test hierarchically clustered 

according to the tissue-of-origin from the tumor. Gastrointestinal (colon, rectum, 

stomach and pancreatic), gynecological (ovarian and uterine) and squamous (cervical, 

head and neck, and lung) cancers clustered together based on specific CNA profiles for 

each group (Figure 2D). Intriguingly, correlation profiles using 5 Mb windows and only 

considering focal alterations showed a very similar degree of clustering based on the 

tissue of origin (Supplementary Figure S3B and C). 

 

Identification of recurrent CNAs in hepatocellular carcinoma 

Next, we attempted to test the ability of CNApp to identify recurrent broad and focal 

CNAs in a large cohort, and to assess the impact of the customizable parameters to 

describe CNA profiles. For that reason, we chose to perform CNA analysis of 370 

samples from TCGA corresponding to the Liver Hepatocellular Carcinoma (LIHC) 

cohort. The pattern of recurrent broad and focal CNAs identified by GISTIC2.0 in the 

TCGA study (Ally et al., 2017) was similar to earlier reports, confirming the suitability 

of this cohort and the consistent identification of a CNA profile for hepatocellular 
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carcinoma (HCC) (Chiang et al., 2008; Guichard et al., 2012; Schulze et al., 2015; 

Totoki et al., 2014; Wang et al., 2013). 

By applying the default parameters of CNApp to the LIHC dataset and selecting 

chromosome arms as genomic regions to assess broad events, we consistently found 

copy number gains at 1q (56%) and 8q (46%), and copy number losses at 8p (62%) and 

17p (47%) as the most frequent alterations (Figure 3A). These frequencies were slightly 

lower as compared to those identified by GISTIC2.0 (Supplementary Table S1). 

Similarly, GISTIC2.0 detected significant gains with rates between 25-40% on eight 

additional chromosome-arms, including 5p, 5q, 6p, 20p, 20q, 7p, 7q, and 17q, which 

were identified by CNApp in 20-30% of the samples. Likewise, GISTIC2.0 detected 

significant broad deletions at a frequency between 20-40% on 18 additional 

chromosome-arms, of which 4q, 6q, 9p, 13q, 16p, and 16q losses were observed at 

≥20% by CNApp, and the rest of them displayed rates between 10-20%. In this case, 

discrepancies in CNA frequencies were expected considering the lower copy number 

amplitude thresholds used by GISTIC2.0 in comparison with the CNApp default cutoffs 

(|0.1| vs |0.2|, corresponding to ~2.14/1.8 copies vs 2.3/1.7 copies, respectively). Indeed, 

previous reports analyzing CNAs in other HCC cohorts and using greater copy number 

thresholds, showed frequencies of alterations similar to those estimated by CNApp 

(Chiang et al., 2008; Guichard et al., 2012; Schulze et al., 2015; Wang et al., 2013).  

To assess the impact of customizing the amplitude thresholds of CNApp, we next re-

run the software dropping the minimum copy number values to |0.1|. As expected, the 

overall number of broad alterations increased, reaching frequency values similar or even 

higher than those reported by GISTIC2.0 (Figure 3B and Supplementary Table S1). Of 

note, such drop from |0.2| to |0.1| might facilitate the identification of subclonal genomic 

imbalances, which are very frequent in tumor samples (McGranahan & Swanton, 2017), 

and it will also be of utility to compensate for low tumor purities, if these are 

unavailable. Furthermore, we assessed whether the identification of broad events was 

affected by two additional parameters: (i) the relative length to classify a segment as 

arm-level alteration, and (ii) the re-segmentation provided by CNApp. As expected, 

increasing the percentage of chromosome arm required to classify a CNA segment as 

arm-level (from ≥ 50% to ≥ 70%) or skipping the re-segmentation step led to an 

underestimation of some broad events, whereas decreasing the percentage of 

chromosome arm (from ≥50% to ≥40%) resulted in the opposite (Supplementary Figure 

S4A-C and Supplementary Table S1). 
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As far as focal CNAs are concerned, CNApp and GISTIC2.0 use different strategies 

to quantify their recurrence. Therefore, the comparison between the two methods was 

evaluated in a more indirect manner. GISTIC2.0 generates minimal common regions 

(also known as ‘peaks’) that are likely to be altered at high frequencies in the cohort, 

which are scored using a Q-value and may present a wide variety of genomic lengths 

(Mermel et al., 2011). Instead, CNApp allows dividing the genome in windows of 

different sizes, calculating average copy number amplitudes for all segments included 

within each window. We reasoned that considering the length of GISTIC2.0 reported 

‘peaks’, CNApp might also be capable of identifying recurrent focal altered regions by 

dividing the genome in smaller windows. To test our hypothesis, we asked CNApp to 

calculate the frequency of focal gains and losses by dividing the genome by sub-

cytobands. As a result, CNApp consistently localized the most frequently altered sub-

cytobands, including gains at 1q21.3 (25%), 8q24.21 (17%, MYC), 5p15.33 (13%, 

TERT), 11q13.3 (12%, CCND1/FGF19) and 6p21.1 (11%, VEGFA), and losses at 

13q14.2 (20%, RB1), 1p36.11 (18%, ARID1A), 4q35.1 (17%, IRF2) and 9p21.3 (14%, 

CDKN2A), which are in agreement with previous studies in HCC (Figure 3C and 

Supplementary Table S2) (Chiang et al., 2008; Guichard et al., 2012; Schulze et al., 

2015; Wang et al., 2013). Compared to GISTIC2.0, CNApp reported 14 of the 27 

significant amplifications and 14 of the 34 significant deletions at rates >10%, and the 

remaining alterations displaying rates between 4-10% (Supplementary Table S3) (Wang 

et al., 2013). Most importantly, regions with the highest frequency detected by CNApp 

showed a good match with lowest GISTIC2.0 Q-residual values, indicating that the 

most significant ‘peaks’ identified by GISTIC2.0 were actually included in the most 

recurrently altered sub-cytobands reported by CNApp. 

As previously suggested, recurrent focal alterations often occur at lower frequencies 

than broad events (Beroukhim et al., 2010). In our analysis, excluding the low-level 

alterations and evaluating only the moderate and high-amplitude events (≥3 and ≤1 

copies), amplifications reached maximum rates of 11%, whereas high-level losses only 

reached ~2% (Figure 3D and Supplementary Table S2). Top recurrent focal gains 

involved sub-cytobands 1q21.3 (11%), 8q24.21 (11%, MYC), 11q13.3 (7%, 

CCND1/FGF19), and 5p15.33 (5%, TERT). Recurrent losses estimated at ~2% of the 

samples included 13q14.2 (RB1), 9p21.3 (CDKN2A), 4q35.1 (IRF2), and 8p23.1. 

Although slight discrepancies between frequencies might be explained by minimal 
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variability in the copy number threshold, CNApp results are in high consistence with 

previous reports (Chiang et al., 2008; Guichard et al., 2012; Schulze et al., 2015).  

 

Classification of colon cancer according to CNA scores and genomic regions 

A proposed taxonomy of colorectal cancer (CRC) includes four consensus molecular 

subtypes (CMS), mainly based on differences in gene expression signatures (Guinney et 

al., 2015). Briefly, CMS1 includes the majority of hypermutated tumors showing 

microsatellite instability (MSI), high CpG island methylator phenotype (CIMP), and 

low levels of CNAs; CMS2 and CMS4 typically comprise microsatellite stable (MSS) 

tumors with high levels of CNAs; and finally, mixed MSI status and low levels of 

CNAs and CIMP are associated with CMS3 tumors. A representative cohort of 309 

colon cancers from the TCGA Colon Adenocarcinoma (COAD) cohort (Cancer & 

Atlas, 2012) with known CMS classification (CMS1, N = 64; CMS2 N = 112; CMS3 N 

= 51; CMS4 N = 82) and MSI status (MSI, N = 72; MSS, N = 225) was analyzed by 

using CNApp. In agreement with Guinney and colleagues, survival curves generated by 

CNApp indicated that CMS1 patients after relapse showed the worst survival rates as 

compared to CMS2 patients (Supplementary Figure S5A) (Guinney et al., 2015). Next, 

we asked CNApp to perform the re-segmentation step using the default copy number 

thresholds and excluding segments smaller than 500 Kbp to avoid technical background 

noise. Then, broad CNAs were considered to generate genomic region profiles using 

chromosome-arm windows. As expected, the CNA frequency plot displayed the most 

commonly altered genomic regions in sporadic CRC (Supplementary Figure S5B) 

(Camps et al., 2008; Cancer & Atlas, 2012; Meijer et al., 1998; Nakao et al., 2004; Ried 

et al., 1996). Most frequently altered chromosome arms included gains of 7p, 7q, 8q, 

13q, 20p, and 20q, and losses of 8p, 17p, 18p, and 18q, occurring in more than 30% of 

the samples (Figure 4A). On the other hand, focal CNA patterns were obtained by 

generating genomic profiles by sub-cytobands. Of note, five out of six losses and five 

out of 18 gains were also identified by GISTIC2.0 in the COAD TCGA cohort (Cancer 

& Atlas, 2012). 

Subsequently, we performed integrative analysis of genomic imbalances, CMS 

groups, and CNA scores. By using CNApp, we assessed whether CNA scores were able 

to classify colon cancer samples according to their CMS. While BCS established 

significant differences between CMS paired comparisons (P ≤ 0.0001, Student’s t-test), 

FCS poorly discerned CMS1 from 3 and CMS2 from 4 (Figure 4B and Supplementary 
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Figure S5C). Thus, we reasoned that broad CNAs rather than focal were able to better 

discriminate between different CMS groups. In fact, the distribution of CMS groups 

based on BCS resembled the distribution of somatic CNA counts defined by GISTIC2.0 

(Guinney et al., 2015).  

Next, we integrated the BCS and the CMS groups with the microsatellite status. Our 

results showed an average BCS of 1.51±2.11 and 10.25±5.92 for MSI (N = 72) and 

MSS (N = 225) tumors, respectively. By using the Classifier model, we assessed the 

discriminative power of BCS to separate MSI and MSS samples. Our results indicated 

that a BCS equal to 4 predicted the MSI status with a global accuracy of 82.2%, as seen 

by the intersection value between BCS distribution MSI- and MSS-predicted samples 

(Supplementary Figure S5D). Applying this cutoff, 186 out of 225 (83%) of MSS 

tumors showed BCS values greater than 4 (Figure 4C). In contrast, 39 (17%) MSS 

tumors showed a BCS of 4 or lower, corresponding to three CMS1, six CMS2, 18 

CMS3 and 12 CMS4 tumors, further demonstrating the existence of MSS tumors with a 

very low CNA burden. On the other hand, seven MSI tumors showed BCS higher than 

4. Among them, five samples displayed genomic imbalances typically associated with 

the CRC canonical pathway, including a focal amplification of MYC, unveiling tumors 

with co-occurrence of MSI and extensive genomic alterations (Trautmann et al., 2006). 

Our dataset comprised nine out of 51 CMS3 tumors with MSI. Intriguingly, two of them 

showed focal deletions on chromosome 2 involving MSH2 and MSH6, suggesting the 

inactivation of these mismatch repair genes through a focal genomic imbalance. In fact, 

46% of CMS3 MSS tumors showed BCS below 4, in agreement with the finding that 

CMS3 tumors display low levels of somatic CNAs. 

Moreover, CNApp enabled the identification of possible sample misclassifications 

by integrating CMS annotation and BRAF-mutated sample status. As expected, CMS1 

cases were enriched for BRAF mutation, although two CMS4 samples also showed 

mutations in BRAF. One of these samples showed a BCS of 11, displaying canonical 

CNAs. In contrast, the other CMS4 BRAF-mutated sample showed MSI and a BCS of 

0, similar features as CMS1. Likewise, four BRAF-wt samples, classified within the 

CMS4 group, displayed MSI and a BCS of 0, thus being candidates to be labeled as 

CMS1 based on the levels of CNAs (Figure 4D). These disparities are of utmost 

importance since recent studies reported that high copy number alterations correlate 

with reduced response to immunotherapy (Davoli et al., 2017). Importantly, it has been 

suggested that MSI status might be predictive of positive immune checkpoint blockade 
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response in advanced CRC, probably due to the low levels of CNA usually presented by 

MSI tumors (Le et al., 2015). 

We then asked CNApp to compare differentially represented genomic regions 

between all CMS groups based on a Student's t-test or Fisher's test with adjusted p-

value. By applying a Student's t-test, we observed that CMS1 resembled CMS3, except 

for the gain of chromosome 7 and the loss of 18q, which were regions commonly 

altered in CMS3 samples with BCS above 4 (adjusted p-value ≤ 0.001, Student's t-test) 

(Supplementary Figure S5E). Even though only subtle CNA differences between CMS2 

and CMS4 were identified, the loss of 14q was significantly more detected in CMS2 

(42%) than in CMS4 (17.1%) (adjusted p-value ≤ 0.005, Student's t-test). The gain of 

12q was more frequently associated with CMS1 than CMS2 (adjusted p-value ≤ 0.005, 

Student's t-test), in agreement with previous studies reporting that the gain of 

chromosome 12 is associated with microsatellite unstable tumors (Supplementary 

Figure S5E) (Trautmann et al., 2006). Intriguingly, the gain of the chromosome arm 20q 

alone mimicked the distribution of somatic CNAs defined by GISTIC2.0 across 

consensus subtype samples (Figure 4E) (Guinney et al., 2015). 

Finally, applying machine learning-based prediction models to classify samples by 

the most discriminative descriptive regions across CMS groups (i.e., 13q, 17p, 18, and 

20q), CNApp reached 55% of accuracy to correctly predict CMS. In fact, the 

occurrence of these genomic alterations was able to differentiate CMS2 from CMS4 

with an accuracy of 70%, and CMS1 from CMS3 with a 72.3% accuracy. As expected, 

this set of genomic alterations distinguished CMS1 from CMS2 samples with an 

accuracy of 95%.  

 

DISCUSSION 

Here we present CNApp, a web-based computational tool that provides a unique 

framework to comprehensively analyze and integrate CNAs associated with molecular 

and clinical variables, assisting data-driven research in the biomedical context. 

Although CNApp has been developed using segmented genomic copy number data 

obtained from SNP-arrays, the software is also able to accommodate segmented data 

from any next-generation sequencing platform. 

CNApp transforms segmented data into genomic profiles, allowing sample-by-

sample comparison and the assessment of differentially altered genomic regions, which 

can then be selected by the user to assess classifier variables by computing machine 
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learning-based models. Importantly, besides identifying the impact of specific CNAs, 

CNApp provides the unique opportunity to establish associations between the burden of 

genomic alterations and any clinical or molecular variable. To do so, CNApp calculates 

CNA scores, a quantification of the broad (BCS), focal (FCS) and global (GCS) levels 

of genomic imbalances for each individual sample. The fact that high levels of 

aneuploidy may correlate with immune evasion markers in cancer exemplifies the 

potential association between CNA scores and clinical features (Buccitelli et al., 2017; 

Davoli et al., 2017; Taylor et al., 2018b). To note, CNA scores are calculated after an 

optional process of re-segmentation that enables to redefine CNA boundaries and to 

adjust sample-specific copy number thresholds by correcting for tumor purity estimates. 

In agreement with recently reported findings (Beroukhim et al., 2010; Hoadley et al., 

2018; Taylor et al., 2018b), CNApp was benchmarked by analyzing 10,635 samples 

spanning 33 cancer types from the TCGA pan-cancer dataset, and was able to cluster 

major tumor types according to CNA patterns. Moreover, the software successfully 

reproduced the well-characterized genomic profile of HCC and CRC, considering both 

broad and focal events, demonstrating the reliability of CNApp in identifying regions 

encompassing the most recurrent CNAs (Ally et al., 2017; Cancer & Atlas, 2012). 

Finally, applying CNApp to the TCGA colon cancer sample set, for which MSI 

status and CMS classification was well annotated, we determined that a BCS value of 4 

discriminates MSI from MSS tumors with high accuracy, reinforcing the utmost 

significance of quantifying the CNA burdens. Most importantly, due to the inverse 

correlation between MSI and aneuploidy in CRC, our results suggest that this BCS 

value could be established as a cutoff to define the edge between low and high 

aneuploid tumors. In fact, while high aneuploid tumors show poor response to 

immunotherapy, it has been suggested that CMS1 microsatellite unstable tumors are 

likely to show a positive response to immune checkpoints inhibitors (Kalyan, Kircher, 

Shah, Mulcahy, & Benson, 2018; Le et al., 2015). However, BCS was not associated 

with overall survival in patients after relapse (data not shown). Moreover, specific 

genomic regions defined by CNApp contributed to classify the CMS groups, confirming 

the functional importance of specific genomic imbalances in the pathogenesis of this 

disease and providing insights into the classification of CRC based on CNA profiles. 

In summary, although our results ought to be further validated in independent 

cohorts, here we show that CNApp enables not only the fundamental analysis of CNA 

profiles, but also the functional understanding of CNAs in the context of clinical 
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outcome and their potential use as biomarkers, thus becoming an asset to the cancer 

genomics community. 

 

MATERIALS AND METHODS 

Data set availability 

Pan-cancer cohort and clinical annotation 

Affymetrix SNP6.0 array copy number segmented data (Level 3) from 10,635 samples 

spanning 33 cancer types from TCGA pan-cancer dataset were downloaded from 

Genomic Data Commons (National Cancer Institute, NIH) (Grossman et al., 2016). This 

dataset included the 370 Liver Cancer-Hepatocellular Carcinoma (LIHC) samples used 

for the analysis of recurrent CNAs and the subset of 309 samples from Colon 

Adenocarcinoma (COAD) for which the colorectal cancer consensus molecular subtype 

(CMS) was known (Guinney et al., 2015). 

Clinical annotation for the 309 COAD samples was retrieved by using TCGAbiolinks R 

package in order to extract survival information for each sample (Colaprico et al., 

2016). 

GISTIC data from TCGA: LIHC cohort 

GISTIC 2.0.22 (Ally et al., 2017) copy number results (Level 4) of the 370 LIHC 

samples, were downloaded from the Broad Institute GDAC Firehose. Parameters used 

for the analysis are detailed in the same GDAC repository. Specifically, parameters 

conditioning the definition of the CNAs and of interest for our comparison were 

publicly reported with the following values: amplification and deletion thresholds: 0.1; 

broad length cutoff: 0.7; joint segment size: 4. 

 

Software and tool availability 

CNApp can be accessed at http://cnapp.bsc.es. It was developed using Shiny R package 

(version 1.1.0), from R-Studio (Chang, Cheng, Allaire, Xie, & McPherson, 2018). The 

tool was applied and benchmarked while using R version 3.4.2 (2017-09-28) -- "Short 

Summer". List of packages, libraries and base coded are freely available at GitHub, and 

instructions for local installation are also specified. 

 

CNA scores computation 

Segments resulting from re-segmentation (or original segments from input file when re-

segmentation is skipped) are classified in chromosomal, arm-level and focal events by 
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considering the relative length of each segment to the whole-chromosome or 

chromosome arm. Using default parameters, segments are tagged as chromosomal when 

90% or more of the chromosome is affected; as arm-level when 50% or more of the 

chromosome arm is affected; and as focal when affecting less than 50% of the 

chromosome arm. Percentages for relative lengths are customizable. Broad 

(chromosomal and arm-level) and focal alterations are then weighted according to their 

amplitude values (seg.mean) and taking into account copy number amplitude ranges 

defined by CNA calling thresholds (Supplementary Methods). 

Broad CNA Score (BCS): for a total N of broad events in a sample (x), it equals to the 

summation of segments weights (A) in that corresponding sample and being i the 

corresponding segment: 

������ � � 	�

�

���

 

Focal CNA Score (FCS): same as in BCS, with an additional pondering value L 

included to the summation, which captures the relative size of the chromosome-arm 

coverage of each focal CNA (according to weights specified in 

Supplementary_Methods):  


����� � � 	� � ��
�

���

 

Global CNA Score (GCS): for a sample x, it is calculated as the summation of 

normalized BCS and FCS values, where meanBCS and meanFCS stand for mean values 

of BCS and FCS from total samples, respectively, and sdBCS and sdFCS stand for 

standard deviation values of BCS and FCS from total samples, respectively: 


��������� � ������ � ���
���
�����            
���
����� � 
����� � ���

��

��
��  

 

������ � 
��������� � 
���
����� 

 

Genomic region profiles computation  

Region profiling section allows genome segmentation analysis by user-selected 

windows (i.e. arms, half-arms, cytobands, sub-cytobands, and 40Mb till 1Mb). In order 

to do that, windows files were generated for each option and genome build (hg19 and 
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hg38). Cytobands file cytoBand.txt from UCSC page and for both genome builds was 

used as mold to compute regions (Casper et al., 2017). 

Segmented samples are transformed into genome region profiles using genomic 

windows selected by user. Segments from each sample are consulted to assess whether 

or not overlap with the window region. Thus, window-means (W) are computed for each 

genomic window by collecting segments (t) overlapping with window-region (i). 

Segments with loc.start or loc.end position falling within the region are collected, as 

well as those segments embedding the entire region. At this point, the summation of 

each segment-mean (S) corrected by the relative window-length (L) affected by the 

segment length (l) is performed: 

���� � � �� � ��
����

�

���

 

 

Descriptive regions assessment 

Potential descriptive regions between groups defined by the annotated variables 

provided in the input file can be studied and P-values are presented to evaluate 

significance in differentially altered regions between those groups. The alterations can 

be considered as (1) numerical continuous (seg.mean values) and (2) categorical 

variables (gains, losses and non-altered). In the first case, to assess statistical 

significance between groups Student’s T-test is applied, whereas in the second situation 

the significance is assessed by applying the Fisher’s exact test. False discovery rate 

(FDR) adjustment is performed using the Benjamini-Hochberg (BH) procedure in both 

cases and corrected P-values (Adj.p-value) or non-corrected P-values (p-values) are 

displayed by user selection.  

 

Machine learning-based classifier models 

We used the randomForest R package (Liaw & Wiener, 2002) to compute machine 

learning classifier models. Variables to define sample groups must be selected, as well 

as at least one classifier variable. Model construction is performed 50-times and training 

set is changed by iteration. In order to compute model and select training set, multiple 

steps and conditions have to be accomplished: 

i. total N samples divided by G groups depicted by group-defining variable 

must be higher than n samples from the smaller group: 
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� � �
�   ;   � � 
 

 

ii. If condition above is not accomplished, then P is set to 75% of n: 

if  � " 
   then   � � 
 � 0.75 

 

iii. P term must be higher than one, and N must be equal or higher than 20: 

� � 1  or  � . 20 

 

iv. Classifier variables, when categorical, shall not have higher number of 

tags (Z) than groups defined (G) by group-defining variable: 

0 1 � 

 

v. Training set (T) is computed and merged for each group (g) from groups 

(G) defined by group variable, extracting P samples from g as follows: 

2 �3� � � samples from 3                                9 � � 2�
�

���

 

 

After model computation, contingency matrix with prediction and reference values by 

group is created to compute accuracy, specificity and sensitivity by group. 
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FIGURE LEGENDS 

Figure 1  CNApp workflow 

The diagram depicts the overall processes performed by CNApp and indicates the 

output for each section. 

Figure 2  Analysis of the TCGA pan-cancer dataset and clustering by tumor type 

CNApp outputs to characterize pan-cancer 10,635 samples including 33 TCGA cancer 

types. A. Broad, Focal and Global CNA scores (BCS, FCS and GCS, respectively) 

distribution across the 33 cancer types. B. Genome-wide chromosome arm CNA profile 

heatmap for 10,635 samples considering broad and focal events. Annotation tracks for 

FCS, BCS and GCS are presented. C. Arm regions frequencies as percentages relative 

to the TCGA pan-cancer dataset (red for gains and blue for losses). D. Heatmap plot 

showing 20 out of the 33 TCGA cancer type profile correlations, by Pearson's method, 

hierarchically clustered by tissue of origin. Gastrointestinal, gynecological and 

squamous cancers are clustering consistently in their respective groups. 

Figure 3  Identification of recurrent broad and focal CNAs 
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Calculation of broad and focal CNA frequencies using several parameters in CNApp in 

order to describe the genomic landscape of LIHC. A. CNApp frequencies for 

chromosome arm regions using default cutoffs, corresponding to 2.3/1.7 copies for 

gains and losses, respectively. B. CNApp frequencies for chromosome arm regions 

relaxing cutoffs to make them equivalent to those of GISTIC2.0. C. CNApp frequencies 

of focal events using default thresholds and sub-cytobands genomic regions. D. 

Frequencies of focal events from moderate- to high-amplitude levels using sub-

cytobands genomic regions. 

Figure 4  Genomic characterization of colon cancer according to the CMS 

classification 

A. Arm-region frequencies of 309 colon cancer samples using CNApp default 

thresholds for CNAs. B. BCS distribution by CMS sample groups. Wilcox test 

significance is shown as p-value ≤ 0.001 (***); p-value ≤ 0.01 (**); p-value ≤ 0.05 (*); 

p-value > 0.05 (ns). C. Number of gained and lost chromosome arms for each sample 

distributed according to the BCS values. Note that a cutoff at 4 is indicated with a black 

line. Annotation tracks for microsatellite instability (msi), BRAF mutated samples 

(braf_mut), CMS groups (cms_label), FCS and BCS are displayed. D. Genome-wide 

profiling by chromosome arms distributed according to the CMS group. Annotation 

tracks for microsatellite instability (msi), BRAF mutated samples (braf_mut), CMS 

groups (cms_label), FCS and BCS are displayed. Sample-to-sample correlation heatmap 

plot by Pearson’s method is shown below. E. Distribution of CNA values affecting 20q 

according to the CMS groups. Significance is shown as p-value ≤ 0.001 (***); p-value 

≤ 0.01 (**); p-value ≤ 0.05 (*); p-value > 0.05 (ns). 
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