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ABSTRACT

Somatic copy number aterations (CNAS) are a hallmark of cancer. Although CNA
profiles have been established for most human tumor types, their precise role in
tumorigenesis as well as their clinical and therapeutic relevance remain largely unclear.
Thus, computational and statistical approaches are required to thoroughly define the
interplay between CNAs and tumor phenotypes. Here we developed CNApp, a user-
friendly web tool that offers sample- and cohort-level computational analyses, allowing
a comprehensive and integrative exploration of CNAs with clinical and molecular
variables. By using purity-corrected segmented data from multiple genomic platforms,
CNApp generates genome-wide profiles, computes CNA scores for broad, focal and
global CNA burdens, and uses machine learning-based predictions to classify samples.
We applied CNApp to a pan-cancer dataset of 10,635 genomes from TCGA showing
that CNA patterns classify cancer types according to their tissue-of-origin, and that
broad and focal CNA scores positively correlate in samples with low amounts of whole-
chromosome and chromosoma arm-level imbalances. Moreover, using the
hepatocellular carcinoma cohort from the TCGA repository, we demonstrate the
reliability of the tool in identifying recurrent CNAS, confirming previous results.
Finally, we establish machine learning-based models to predict colon cancer molecular
subtypes and microsatellite instability based on broad CNA scores and specific genomic
imbalances. In summary, CNApp facilitates data-driven research and provides a unique
framework for the first time to comprehensively assess CNAs and perform integrative
analyses that enable the identification of relevant clinical implications. CNApp is hosted
at http://cnapp.bsc.es.

KEYWORKS: Copy number alterations; Cancer genomics; CNA scores; Shiny app;
Pan-cancer; Colorectal cancer; Hepatocellular carcinoma
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INTRODUCTION

The presence of somatic copy number alterations (CNAS) is a ubiquitous feature in
cancer. In fact, the distribution of CNAs is sufficiently tissue-specific to distinguish
tumor entities (Ried et a., 2012; Taylor et a., 2018a), and allows identifying groups of
tumors responsive to particular therapies (Cairncross et al., 2013; Davoli, Uno, Wooten,
& Elledge, 2017). Moreover, high levels of CNAs, which result from aneuploidy and
chromosome instability, are generally associated with high-grade tumors and poor
prognosis (Sansregret, Vanhaesebroeck, & Swanton, 2018).

Two main subtypes of CNAs can be discerned: broad CNAs, which are defined as
whole-chromosome and chromosomal arm-level aterations, and focal CNAS, which are
aterations of limited size ranging from part of a chromosome-arm to few kilobases
(Krijgsman, Carvalho, Meijer, Steenbergen, & Ylstra, 2014; Zack et a., 2013).
Recently, it has been uncovered that while focal events mainly correlate with cell cycle
and proliferation markers, broad aberrations are mainly associated with immune evasion
markers, suggesting that tumor immune features might be determined by mechanisms
related to overal gene dosage imbalance rather than specific actionable genes
(Buccitelli et al., 2017; Davoli et a., 2017; Taylor et a., 2018b). Nevertheless, the
precise role of CNAs in tumor initiation and progression, as well as their clinical
relevance and therapeutic implications remain still poorly understood.

Interpretation and visualization of CNAs is time-consuming and very often requires
complex analyses with clinical and molecular information. Well-established CNA
algorithms, such as the gold-standard circular binary segmentation, define the genomic
boundaries of copy number gains and losses based on signal intensities or read depth
obtained from array comparative genomic hybridization and SNP-array or next-
generation sequencing data, respectively (Olshen, Venkatraman, Lucito, & Wigler,
2004). However, the tumor-derived genomic complexity may cause an under- or
overestimation of CNAs. This complexity is represented by tumor purity, tumor
aneuploidy, and intratumor heterogeneity, which imply high levels of subclona
alterations. Thus, recent segmentation methods improved the accuracy to identify copy
number segments in tumor samples either by considering the B allele frequency (BAF),
such as ExomeCNV (Sathirapongsasuti et al., 2011), Control-FREEC (Boeva et .,
2012) and SAAS-CNV (Zhang & Hao, 2015), or through adjusting by sample purity
and ploidy estimates, such as GAP (Popova et a., 2009), ASCAT (Van Loo et 4.,
2010) and ABSOLUTE (Carter et a., 2012). However, the state-of-the-art
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computational approach for CNA analysis in cancer is GISTIC2.0 (Mermd et .,
2011), which is a gene-centered probabilistic method that enables to define the
boundaries of recurrent putative driver CNAs in large cohorts (Beroukhim et al., 2010).
Nevertheless, despite ongoing progress on identifying CNAS, to our knowledge none of
the existing software packages is readily available for integrative analyses to unvell
their biological and clinical implications.

To address this issue, we developed CNApp, the first open-source application to
guantify CNAs and integrate genomic profiles with molecular and clinical variables.
CNApp is a web-based tool that provides the user with high-quality interactive plots
and statistical correlations between CNAs and annotated variables in a fast and easy-to-
explore interface. In particular, CNApp uses purity-corrected genomic segmented data
from multiple genomic platforms to redefine CNA profiles, to compute CNA scores
based on the number, length and amplitude of broad and focal genomic dterations, to
assess differentially atered genomic regions, and to perform machine learning-based
predictions to classify tumor samples. To exemplify the applicability and performance
of CNApp, we used publicly available segmented data from The Cancer Genome Atlas
(TCGA) to (i) measure the burden of global, broad, and focal CNAs as well as generate
CNA profiles in a pan-cancer dataset spanning 33 cancer types, (ii) identify cohort-
based recurrent CNAs in hepatocellular carcinoma and compare them with previously
reported data, and (iii) assess predicting models for colon cancer molecular subtypes
and microsatellite instability status based on CNA scores and specific genomic
imbalances. CNApp is hosted at http://cnapp.bsc.es and the source code is freely
available at GitHub (https://github.com/ait5/CNApp).

RESULTS

Implementation

CNApp comprises three main sections: 1- Re-Seg & Score: re-segmentation, CNA
scores computation, variable association and survival analysis, 2- Region profile:
genome-wide CNA profiling, CNA frequencies, correlation profiles and descriptive
regions, and 3- Classifier model: machine learning classification model predictions
(Figure 1). Each of these sections and their key functions are described below. The
input file consists of a data frame with copy number segments provided by any

segmentation algorithm. Mandatory fields and column headers are sample name (D),
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chromosome (chr), start (loc.start) and end (loc.end) genomic positions, and the log2
ratio of the copy number amplitude (seg.mean) for each segment. Section 1 incorporates
the correction for tumor purity (i.e., fraction of tumor cells in the sample) to measure
the actual magnitude of CNAs. Thus, when available, the input file will also include
sample purity estimations (purity) and BAF values (BAF), which correct the accuracy of
CNA calls and provide copy number neutral loss-of-heterozygosity (CN-LOH) events.
Annotation of variables can be included in the input file (tagged in every segment from

each sample) or by uploading an additional file indicating new variables per sample.

Section 1. Re-Seg & Score: re-segmentation, CNA scores computation, variable
association and survival analysis

First, CNApp applies a re-segmentation approach to adjust for amplitude divergence
due to technical variability and correct for estimated tumor purity (Supplementary
Methods). Default re-segmentation settings include minimum segment length (100
Kbp), minimum amplitude (seg.mean) deviation from segment to zero (0.16), maximum
distance between segments (1 Mbp), maximum amplitude (seg.mean) deviation between
segments (0.16), and maximum BAF deviation between segments (0.1). These
parameters can be customized by the user to better adjust the re-segmentation for each
particular dataset. Re-segmented data are then used to calculate the broad (BCS), foca
(FCS) and globa (GCS) CNA scores, which provide three different quantifications of
CNA levels for each sample. To compute these scores, CNApp classifies and weights
CNAs based on their length and amplitude. For each sample, BCS is computed by
considering broad (chromosome and arm-level) segment weights according to the
amplitude value. Likewise, calculation of FCS takes into account weighted focal CNAS
corrected by the amplitude and length of the segment. Finaly, GCS is computed by
considering the sum of normalized BCS and FCS, providing an overall assessment of
the CNA burden.

To assess the reliability of CNA scores, we compared each score with the
corresponding fraction of altered genome using a TCGA pan-cancer set of 10,635
samples. Both BCS (ranging from O to 44) and FCS (values ranging from 5 to 2,466)
highly correlated with the fraction of altered genome by broad and focal copy number
changes, respectively (Spearman's rank correlation for BCS = 0.957 and for FCS =
0.938) (Supplementary Figure S1A and B). As expected, GCS (values ranged from -
1.93 to 12.60) highly correlated with the fraction of atered genome affected by both
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broad and focal CNAs (Spearman’s rank correlation for GCS = 0.963 (Supplementary
Figure S1C). Parametric and non-parametric statistical tests are used to establish
associations between CNA scores and annotated variables from the input file.
Additionally, Kaplan-Meier survival curves are computed using either CNA scores or
additional variables.

Section 2. Region profile: genome-wide CNA profiling

This section transforms segmented data (either re-segmented data from section 1 or
original segments uploaded by the user) into genomic region profiles to allow sample-
to-sample comparisons. Different genomic windows can be selected to compute the
genomic profiles (i.e., chromosome arms, half-arms, cytobands, sub-cytobands or 40-1
Mbp windows). All segments, or either only broad or only focal can be selected for this
analysis. Length-relative means are computed for each window by considering
amplitude values from those segments included in each specific window. Default
cutoffs for low-level copy number gains and losses (i.e., |0.2]) are used to infer CNA
frequencies. Genomic profiles are presented in genome-wide heatmaps to visualize
general copy number patterns. Up to six annotation tracks can be added and plotted
simultaneously allowing visual comparison and correlation between CNA profiles and
different variables, including the CNA scores obtained in section 1. CNA frequency
summaries by genomic region and by sample are represented as stacked bar plots.
Correlation values and hierarchical clusters are optional.

Importantly, assessing differentially altered regions between sample groups might
contribute to discover genomic regions associated with annotated variables and thus
unveil the biologica significance of specific CNAs. To do so, CNApp interrogates
descriptive regions associated with any sample-specific annotation variable provided in
the input file. Default statistical significance is set to p-value lower than 0.1. However,
p-value thresholds can be defined by the user and adjusted p-value is optional. A
heatmap plot alows the visualization and interpretation of which genomic regions are
differentially altered between sample groups. By selecting aregion of interest, box plots
and stacked bar plots are generated comparing seg.mean values and alteration counts in
Student’ s t-test and Fisher’s test tabs, respectively. Additionally, genes comprised in the
selected genomic region are indicated.

3. Classifier model: Machine learning classification model predictions
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This section allows the user to generate machine learning-based classifier models by
choosing a variable to define sample groups and one or multiple classifier variables. To
do so, CNApp incorporates the randomForest R package (Liaw & Wiener, 2002). The
model construction is performed 50-times and bootstrap set is changed in each iteration.
By default, annotation variables from the input file are loaded and can be used either by
defining sample groups or as a classifier. If Re-Seg & Score and/or Region profile
sections have been previously completed, the user can upload data from these sections
(i.e., CNA scores and genomic regions). Predictions for the model performance are
generated and the global accuracy is computed along with sensitivity and specificity by
group. Classifier models can be useful to point out candidate clinical or molecular
variables to classify sample subgroups. A summary of the data distribution and plots for
real and model-predicted groups are visualized. A table with prediction rates throughout
the 50-times iteration model and real tags by sample is displayed and can be
downloaded.

Characterization of cancer types based on CNA scores

First, we evaluated the capacity of CNApp to analyze and classify cancer types
according to CNA scores, and assessed whether CNApp was able to reproduce specific
CNA patterns across different cancer types. To do so, by using CNApp default
parameters we obtained re-segmented data, CNA scores and cancer-specific CNA
profiles for 10,635 tumor samples spanning 33 cancer types from the TCGA pan-cancer
dataset. The distribution of BCS, FCS and GCS confirmed the existence of distinct
CNA burdens across cancer types (Figure 2A). While cancer types such as acute
myeloid leukemia (LAML), thyroid carcinoma (THCA) or thymoma (THY M) showed
low levels of broad and focal events (GCS median values of -1.67 for LAML, -1.68 for
THCA, and -1.52 for THY M), uterine carcinosarcoma (UCS), ovarian cancer (OV) and
lung squamous cell carcinoma (LUSC) displayed high levels of both types of genomic
imbalances (GCS median values of 2.55, 2.44, and 0.97 for UCS, OV, and LUSC,
respectively). Some cancer types displayed a preference for either broad or focal CNAs.
For example, kidney chromophobe (KICH) tumors showed the highest levels of broad
events (median BCS value of 27), while focal CNAs in this cancer type were very low
(median FCS value of 49). In contrast, breast cancer (BRCA) samples displayed high
FCS values (median FCS value of 150), while BCS values were only intermediate
(median BCS value of 7). Overall correlations between CNA scores were assessed by
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computing Spearman’s rank test, obtaining values of 0.59 between BCS and FCS, 0.90
between BCS and GCS, and 0.85 between FCS and GCS. In addition, we further
assessed the correlation between BCS and FCS for each individual BCS value. While
tumors with low BCS displayed a positive correlation between broad and focal
dterations, tumors did not maintain such correlation in higher BCS vaues
(Supplementary Figure S2A and B). This correlation between BCS and FCS is
maintained across the 33 cancer types (Supplementary Figure S2C).

Subsequent analysis aimed at generating genome-wide patterns for each cancer type
based on chromosome-arm genomic windows and the overall corresponding
frequencies. In agreement with previous studies (Beroukhim et a., 2010), cancer type-
specific patterns of genomic gains and losses determined the tissue-of-origin (Figure
2B). Additionally, we found that chromosome arms altered in more than 25% across all
samples were 1q, 7p, 79, 89 and 20q for copy number gains, and 8p and 17p for copy
number losses. Conversely, chromosome arms affected by CNAs in less than 10% of all
cancer types included chromosome arms 2qg and 19p (Figure 2C). By using a subset of
20 out of the 33 cancer types for which tumor type information was available, we asked
CNApp to compute the average arm-region for each cancer type to assess if they
clustered according to their CNA profiles (Supplementary Figure S3A). Our analysis
showed that correlation values resulting from Pearson’s test hierarchically clustered
according to the tissue-of-origin from the tumor. Gastrointestinal (colon, rectum,
stomach and pancredtic), gynecological (ovarian and uterine) and squamous (cervical,
head and neck, and lung) cancers clustered together based on specific CNA profiles for
each group (Figure 2D). Intriguingly, correlation profiles using 5 Mb windows and only
considering focal alterations showed a very similar degree of clustering based on the

tissue of origin (Supplementary Figure S3B and C).

I dentification of recurrent CNAs in hepatocellular carcinoma

Next, we attempted to test the ability of CNApp to identify recurrent broad and focal
CNAs in a large cohort, and to assess the impact of the customizable parameters to
describe CNA profiles. For that reason, we chose to perform CNA analysis of 370
samples from TCGA corresponding to the Liver Hepatocellular Carcinoma (LIHC)
cohort. The pattern of recurrent broad and focal CNAs identified by GISTIC2.0 in the
TCGA study (Ally et a., 2017) was similar to earlier reports, confirming the suitability
of this cohort and the consistent identification of a CNA profile for hepatocellular
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carcinoma (HCC) (Chiang et a., 2008; Guichard et al., 2012; Schulze et a., 2015;
Totoki et al., 2014; Wang et al., 2013).

By applying the default parameters of CNApp to the LIHC dataset and selecting
chromosome arms as genomic regions to assess broad events, we consistently found
copy number gains at 1q (56%) and 8q (46%), and copy number losses at 8p (62%) and
17p (47%) as the most frequent alterations (Figure 3A). These frequencies were slightly
lower as compared to those identified by GISTIC2.0 (Supplementary Table Sl).
Similarly, GISTIC2.0 detected significant gains with rates between 25-40% on eight
additional chromosome-arms, including 5p, 5q, 6p, 20p, 20q, 7p, 7q, and 17q, which
were identified by CNApp in 20-30% of the samples. Likewise, GISTIC2.0 detected
significant broad deletions a a frequency between 20-40% on 18 additional
chromosome-arms, of which 4q, 6q, 9p, 13q, 16p, and 16q losses were observed at
>20% by CNApp, and the rest of them displayed rates between 10-20%. In this case,
discrepancies in CNA frequencies were expected considering the lower copy number
amplitude thresholds used by GISTIC2.0 in comparison with the CNApp default cutoffs
(I0.1] vs |0.2|, corresponding to ~2.14/1.8 copies vs 2.3/1.7 copies, respectively). Indeed,
previous reports analyzing CNAs in other HCC cohorts and using greater copy number
thresholds, showed frequencies of alterations smilar to those estimated by CNApp
(Chiang et al., 2008; Guichard et a., 2012; Schulze et al., 2015; Wang et a., 2013).

To assess the impact of customizing the amplitude thresholds of CNApp, we next re-
run the software dropping the minimum copy number values to |0.1]. As expected, the
overall number of broad alterations increased, reaching frequency values similar or even
higher than those reported by GISTIC2.0 (Figure 3B and Supplementary Table S1). Of
note, such drop from [0.2] to [0.1| might facilitate the identification of subclonal genomic
imbalances, which are very frequent in tumor samples (McGranahan & Swanton, 2017),
and it will aso be of utility to compensate for low tumor purities, if these are
unavailable. Furthermore, we assessed whether the identification of broad events was
affected by two additiona parameters: (i) the relative length to classify a segment as
arm-level alteration, and (ii) the re-segmentation provided by CNApp. As expected,
increasing the percentage of chromosome arm required to classify a CNA segment as
arm-level (from > 50% to > 70%) or skipping the re-segmentation step led to an
underestimation of some broad events, whereas decreasing the percentage of
chromosome arm (from >50% to >40%) resulted in the opposite (Supplementary Figure
SAA-C and Supplementary Table S1).
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As far as focal CNAs are concerned, CNApp and GISTIC2.0 use different strategies
to quantify their recurrence. Therefore, the comparison between the two methods was
evaluated in a more indirect manner. GISTIC2.0 generates minimal common regions
(also known as ‘peaks’) that are likely to be altered at high frequencies in the cohort,
which are scored using a Q-value and may present a wide variety of genomic lengths
(Mermel et a., 2011). Instead, CNApp allows dividing the genome in windows of
different sizes, calculating average copy number amplitudes for al segments included
within each window. We reasoned that considering the length of GISTIC2.0 reported
‘peaks’, CNApp might also be capable of identifying recurrent focal altered regions by
dividing the genome in smaller windows. To test our hypothesis, we asked CNApp to
calculate the frequency of focal gains and losses by dividing the genome by sub-
cytobands. As a result, CNApp consistently localized the most frequently altered sub-
cytobands, including gains at 1g21.3 (25%), 8924.21 (17%, MYC), 5p15.33 (13%,
TERT), 11q13.3 (12%, CCNDVYFGF19) and 6p21.1 (11%, VEGFA), and losses at
13q14.2 (20%, RB1), 1p36.11 (18%, ARID1A), 4G35.1 (17%, IRF2) and 9p21.3 (14%,
CDKN2A), which are in agreement with previous studies in HCC (Figure 3C and
Supplementary Table S2) (Chiang et al., 2008; Guichard et a., 2012; Schulze et a.,
2015; Wang et al., 2013). Compared to GISTIC2.0, CNApp reported 14 of the 27
significant amplifications and 14 of the 34 significant deletions at rates >10%, and the
remaining alterations displaying rates between 4-10% (Supplementary Table S3) (Wang
et a., 2013). Most importantly, regions with the highest frequency detected by CNApp
showed a good match with lowest GISTIC2.0 Q-residual values, indicating that the
most significant ‘peaks’ identified by GISTIC2.0 were actually included in the most
recurrently altered sub-cytobands reported by CNApp.

As previously suggested, recurrent focal alterations often occur at lower frequencies
than broad events (Beroukhim et al., 2010). In our analysis, excluding the low-level
aterations and evaluating only the moderate and high-amplitude events (>3 and <1
copies), amplifications reached maximum rates of 11%, whereas high-level losses only
reached ~2% (Figure 3D and Supplementary Table S2). Top recurrent focal gains
involved sub-cytobands 1g21.3 (11%), 8g24.21 (11%, MYC), 11q13.3 (7%,
CCNDYVFGF19), and 5p15.33 (5%, TERT). Recurrent losses estimated at ~2% of the
samples included 13q14.2 (RB1), 9p21.3 (CDKN2A), 4g35.1 (IRF2), and 8p23.1.
Although slight discrepancies between frequencies might be explained by minimal
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variability in the copy number threshold, CNApp results are in high consistence with
previous reports (Chiang et al., 2008; Guichard et al., 2012; Schulze et al., 2015).

Classification of colon cancer according to CNA scores and genomic regions

A proposed taxonomy of colorectal cancer (CRC) includes four consensus molecular
subtypes (CMS), mainly based on differences in gene expression signatures (Guinney et
a., 2015). Briefly, CMS1 includes the mgority of hypermutated tumors showing
microsatellite instability (MSI), high CpG island methylator phenotype (CIMP), and
low levels of CNAs;, CMS2 and CM$4 typically comprise microsatellite stable (MSS)
tumors with high levels of CNAs; and finally, mixed MS| status and low levels of
CNAs and CIMP are associated with CMS3 tumors. A representative cohort of 309
colon cancers from the TCGA Colon Adenocarcinoma (COAD) cohort (Cancer &
Atlas, 2012) with known CMS classification (CMS1, N = 64; CMS2 N = 112; CMS3 N
=51; CMSA N = 82) and MSI status (MSI, N = 72; MSS, N = 225) was analyzed by
using CNApp. In agreement with Guinney and colleagues, survival curves generated by
CNApp indicated that CMS1 patients after relapse showed the worst survival rates as
compared to CMS2 patients (Supplementary Figure S5A) (Guinney et al., 2015). Next,
we asked CNApp to perform the re-segmentation step using the default copy number
thresholds and excluding segments smaller than 500 Kbp to avoid technical background
noise. Then, broad CNAs were considered to generate genomic region profiles using
chromosome-arm windows. As expected, the CNA frequency plot displayed the most
commonly altered genomic regions in sporadic CRC (Supplementary Figure S5B)
(Camps et al., 2008; Cancer & Atlas, 2012; Meijer et al., 1998; Nakao et a., 2004; Ried
et a., 1996). Most frequently altered chromosome arms included gains of 7p, 7q, 8q,
13q, 20p, and 20q, and losses of 8p, 17p, 18p, and 18q, occurring in more than 30% of
the samples (Figure 4A). On the other hand, focal CNA patterns were obtained by
generating genomic profiles by sub-cytobands. Of note, five out of six losses and five
out of 18 gains were aso identified by GISTIC2.0 in the COAD TCGA cohort (Cancer
& Atlas, 2012).

Subsequently, we performed integrative analysis of genomic imbalances, CMS
groups, and CNA scores. By using CNApp, we assessed whether CNA scores were able
to classify colon cancer samples according to their CMS. While BCS established
significant differences between CMS paired comparisons (P < 0.0001, Student’s t-test),
FCS poorly discerned CMS1 from 3 and CM S2 from 4 (Figure 4B and Supplementary
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Figure S5C). Thus, we reasoned that broad CNAs rather than focal were able to better
discriminate between different CMS groups. In fact, the distribution of CMS groups
based on BCS resembled the distribution of somatic CNA counts defined by GISTIC2.0
(Guinney et a., 2015).

Next, we integrated the BCS and the CM S groups with the microsatellite status. Our
results showed an average BCS of 1.51+2.11 and 10.25+5.92 for MSl (N = 72) and
MSS (N = 225) tumors, respectively. By using the Classifier model, we assessed the
discriminative power of BCS to separate MSI and M SS samples. Our results indicated
that a BCS equal to 4 predicted the MSI status with a global accuracy of 82.2%, as seen
by the intersection value between BCS distribution MSI- and MSS-predicted samples
(Supplementary Figure S5D). Applying this cutoff, 186 out of 225 (83%) of MSS
tumors showed BCS values greater than 4 (Figure 4C). In contrast, 39 (17%) MSS
tumors showed a BCS of 4 or lower, corresponding to three CMS1, six CMS2, 18
CMS3 and 12 CM $4 tumors, further demonstrating the existence of M SS tumors with a
very low CNA burden. On the other hand, seven MSl tumors showed BCS higher than
4. Among them, five samples displayed genomic imbalances typically associated with
the CRC canonical pathway, including a focal amplification of MYC, unveiling tumors
with co-occurrence of MSI and extensive genomic alterations (Trautmann et al., 2006).
Our dataset comprised nine out of 51 CM S3 tumors with MSl. Intriguingly, two of them
showed focal deletions on chromosome 2 involving MSH2 and MSH6, suggesting the
inactivation of these mismatch repair genes through a focal genomic imbalance. In fact,
46% of CMS3 MSS tumors showed BCS below 4, in agreement with the finding that
CMS3 tumors display low levels of somatic CNAS.

Moreover, CNApp enabled the identification of possible sample misclassifications
by integrating CM S annotation and BRAF-mutated sample status. As expected, CMS1
cases were enriched for BRAF mutation, athough two CM$4 samples also showed
mutations in BRAF. One of these samples showed a BCS of 11, displaying canonical
CNAs. In contrast, the other CM $4 BRAF-mutated sample showed MSI and a BCS of
0, similar features as CMSL1. Likewise, four BRAF-wt samples, classified within the
CM$4 group, displayed MSI and a BCS of 0, thus being candidates to be labeled as
CMSL based on the levels of CNAs (Figure 4D). These disparities are of utmost
importance since recent studies reported that high copy number alterations correlate
with reduced response to immunotherapy (Davoli et al., 2017). Importantly, it has been
suggested that M S| status might be predictive of positive immune checkpoint blockade
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response in advanced CRC, probably due to the low levels of CNA usually presented by
MSI tumors (Le et al., 2015).

We then asked CNApp to compare differentially represented genomic regions
between all CMS groups based on a Student's t-test or Fisher's test with adjusted p-
value. By applying a Student's t-test, we observed that CM S1 resembled CM S3, except
for the gain of chromosome 7 and the loss of 18q, which were regions commonly
atered in CM S3 samples with BCS above 4 (adjusted p-value < 0.001, Student's t-test)
(Supplementary Figure S5E). Even though only subtle CNA differences between CMS2
and CM$4 were identified, the loss of 14q was significantly more detected in CMS2
(42%) than in CM$4 (17.1%) (adjusted p-value < 0.005, Student's t-test). The gain of
12q was more frequently associated with CM S1 than CM S2 (adjusted p-value < 0.005,
Student's t-test), in agreement with previous studies reporting that the gain of
chromosome 12 is associated with microsatellite unstable tumors (Supplementary
Figure S5E) (Trautmann et al., 2006). Intriguingly, the gain of the chromosome arm 20q
alone mimicked the distribution of somatic CNAs defined by GISTIC2.0 across
consensus subtype samples (Figure 4E) (Guinney et a., 2015).

Finally, applying machine learning-based prediction models to classify samples by
the most discriminative descriptive regions across CM S groups (i.e., 13q, 17p, 18, and
20q), CNApp reached 55% of accuracy to correctly predictc CMS. In fact, the
occurrence of these genomic alterations was able to differentiate CMS2 from CM 34
with an accuracy of 70%, and CM S1 from CM S3 with a 72.3% accuracy. As expected,
this set of genomic alterations distinguished CMS1 from CMS2 samples with an

accuracy of 95%.

DISCUSSION
Here we present CNApp, a web-based computational tool that provides a unique
framework to comprehensively analyze and integrate CNAs associated with molecular
and clinical variables, assisting data-driven research in the biomedical context.
Although CNApp has been developed using segmented genomic copy number data
obtained from SNP-arrays, the software is also able to accommodate segmented data
from any next-generation sequencing platform.

CNApp transforms segmented data into genomic profiles, allowing sample-by-
sample comparison and the assessment of differentially atered genomic regions, which

can then be selected by the user to assess classifier variables by computing machine
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learning-based models. Importantly, besides identifying the impact of specific CNAS,
CNApp provides the unique opportunity to establish associations between the burden of
genomic alterations and any clinical or molecular variable. To do so, CNApp calculates
CNA scores, a quantification of the broad (BCS), focal (FCS) and global (GCS) levels
of genomic imbalances for each individua sample. The fact that high levels of
aneuploidy may correlate with immune evasion markers in cancer exemplifies the
potential association between CNA scores and clinical features (Buccitelli et al., 2017,
Davoli et al., 2017; Taylor et al., 2018b). To note, CNA scores are calculated after an
optional process of re-segmentation that enables to redefine CNA boundaries and to
adjust sample-specific copy number thresholds by correcting for tumor purity estimates.

In agreement with recently reported findings (Beroukhim et al., 2010; Hoadley et a.,
2018; Taylor et a., 2018b), CNApp was benchmarked by analyzing 10,635 samples
spanning 33 cancer types from the TCGA pan-cancer dataset, and was able to cluster
major tumor types according to CNA patterns. Moreover, the software successfully
reproduced the well-characterized genomic profile of HCC and CRC, considering both
broad and focal events, demonstrating the reliability of CNApp in identifying regions
encompassing the most recurrent CNAs (Ally et al., 2017; Cancer & Atlas, 2012).

Finally, applying CNApp to the TCGA colon cancer sample set, for which MS|
status and CM S classification was well annotated, we determined that a BCS value of 4
discriminates MSI from MSS tumors with high accuracy, reinforcing the utmost
significance of quantifying the CNA burdens. Most importantly, due to the inverse
correlation between MSI and aneuploidy in CRC, our results suggest that this BCS
value could be established as a cutoff to define the edge between low and high
aneuploid tumors. In fact, while high aneuploid tumors show poor response to
immunotherapy, it has been suggested that CMS1 microsatellite unstable tumors are
likely to show a positive response to immune checkpoints inhibitors (Kalyan, Kircher,
Shah, Mulcahy, & Benson, 2018; Le et al., 2015). However, BCS was not associated
with overall survival in patients after relapse (data not shown). Moreover, specific
genomic regions defined by CNApp contributed to classify the CM S groups, confirming
the functional importance of specific genomic imbalances in the pathogenesis of this
disease and providing insights into the classification of CRC based on CNA profiles.

In summary, although our results ought to be further validated in independent
cohorts, here we show that CNApp enables not only the fundamental analysis of CNA

profiles, but also the functional understanding of CNAs in the context of clinica
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outcome and their potential use as biomarkers, thus becoming an asset to the cancer

genomics community.

MATERIALSAND METHODS
Data set availability
Pan-cancer cohort and clinical annotation

Affymetrix SNP6.0 array copy number segmented data (Level 3) from 10,635 samples
spanning 33 cancer types from TCGA pan-cancer dataset were downloaded from
Genomic Data Commons (National Cancer Institute, NIH) (Grossman et al., 2016). This
dataset included the 370 Liver Cancer-Hepatocellular Carcinoma (LIHC) samples used
for the analysis of recurrent CNAs and the subset of 309 samples from Colon
Adenocarcinoma (COAD) for which the colorectal cancer consensus molecular subtype
(CMS) was known (Guinney et al., 2015).

Clinical annotation for the 309 COAD samples was retrieved by using TCGAbiolinks R
package in order to extract survival information for each sample (Colaprico et a.,
2016).

GISTIC datafrom TCGA: LIHC cohort

GISTIC 2.0.22 (Ally et a., 2017) copy number results (Level 4) of the 370 LIHC
samples, were downloaded from the Broad Institute GDAC Firehose. Parameters used
for the analysis are detailed in the same GDAC repository. Specifically, parameters

conditioning the definition of the CNAs and of interest for our comparison were
publicly reported with the following values. amplification and deletion thresholds: 0.1;
broad length cutoff: 0.7; joint segment size: 4.

Software and tool availability

CNApp can be accessed at http://cnapp.bsc.es. It was developed using Shiny R package
(version 1.1.0), from R-Studio (Chang, Cheng, Allaire, Xie, & McPherson, 2018). The
tool was applied and benchmarked while using R version 3.4.2 (2017-09-28) -- "Short
Summer". List of packages, libraries and base coded are freely available at GitHub, and

instructions for local installation are also specified.

CNA scores computation
Segments resulting from re-segmentation (or original segments from input file when re-

segmentation is skipped) are classified in chromosomal, arm-level and focal events by
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considering the relative length of each segment to the whole-chromosome or
chromosome arm. Using default parameters, segments are tagged as chromosomal when
90% or more of the chromosome is affected; as arm-level when 50% or more of the
chromosome arm is affected; and as focal when affecting less than 50% of the
chromosome arm. Percentages for relative lengths are customizable. Broad
(chromosomal and arm-level) and focal alterations are then weighted according to their
amplitude values (seg.mean) and taking into account copy number amplitude ranges
defined by CNA calling thresholds (Supplementary M ethods).

Broad CNA Score (BCS): for atotal N of broad events in a sample (x), it equals to the
summation of segments weights (A) in that corresponding sample and being i the
corresponding segment:

N
BCS(x) = ZAi
i=1

Focal CNA Score (FCS): same as in BCS, with an additional pondering value L
included to the summation, which captures the relative size of the chromosome-arm
coverage of each foca CNA (according to weights specified in
Supplementary M ethods):

N
FCS(X) = ZAl . Li
i=1

Global CNA Score (GCS): for a sample X, it is calculated as the summation of
normalized BCS and FCS values, where meanBCS and meanFCS stand for mean values
of BCS and FCS from total samples, respectively, and sdBCS and sdFCS stand for
standard deviation values of BCS and FCS from total samples, respectively:

BCS(x) — meanBCS FCS(x) — meanFCS

normBCS(x) = ~dBCS normFCS(x) = <dFCS

GCS(x) = normBCS(x) + normFCS(x)

Genomic region profiles computation
Region profiling section allows genome segmentation analysis by user-selected
windows (i.e. arms, half-arms, cytobands, sub-cytobands, and 40Mb till IMb). In order

to do that, windows files were generated for each option and genome build (hg19 and
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hg38). Cytobands file cytoBand.txt from UCSC page and for both genome builds was
used as mold to compute regions (Casper et al., 2017).

Segmented samples are transformed into genome region profiles using genomic
windows selected by user. Segments from each sample are consulted to assess whether
or not overlap with the window region. Thus, window-means (W) are computed for each
genomic window by collecting segments (t) overlapping with window-region (i).
Segments with loc.start or loc.end position falling within the region are collected, as
well as those segments embedding the entire region. At this point, the summation of
each segment-mean (S) corrected by the relative window-length (L) affected by the
segment length (1) is performed:

N
W(L)—;St-m

Descriptiveregions assessment

Potential descriptive regions between groups defined by the annotated variables
provided in the input file can be studied and P-values are presented to evaluate
significance in differentially altered regions between those groups. The aterations can
be considered as (1) numerical continuous (seg.mean values) and (2) categorical
variables (gains, losses and non-atered). In the first case, to assess statistical
significance between groups Student’s T-test is applied, whereas in the second situation
the significance is assessed by applying the Fisher's exact test. False discovery rate
(FDR) adjustment is performed using the Benjamini-Hochberg (BH) procedure in both
cases and corrected P-values (Adj.p-value) or non-corrected P-values (p-values) are

displayed by user selection.

Machine lear ning-based classifier models
We used the randomForest R package (Liaw & Wiener, 2002) to compute machine
learning classifier models. Variables to define sample groups must be selected, as well
as at least one classifier variable. Model construction is performed 50-times and training
set is changed by iteration. In order to compute model and select training set, multiple
steps and conditions have to be accomplished:

i. total N samples divided by G groups depicted by group-defining variable

must be higher than n samples from the smaller group:
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ii.  If condition above is not accomplished, then P is set to 75% of n:

if P<n then P=n-0.75

iii. P term must be higher than one, and N must be equal or higher than 20:

P>1or N=>20

iv. Classifier variables, when categorical, shall not have higher number of
tags (2) than groups defined (G) by group-defining variable:
Z<G

v. Training set (T) is computed and merged for each group (g) from groups
(G) defined by group variable, extracting P samples from g as follows:

g
t (g) = P samples from g T = Z t;

i=1

After model computation, contingency matrix with prediction and reference values by

group is created to compute accuracy, specificity and sensitivity by group.
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FIGURE LEGENDS

Figurel CNApp workflow

The diagram depicts the overall processes performed by CNApp and indicates the
output for each section.

Figure2 Analysis of the TCGA pan-cancer dataset and clustering by tumor type
CNApp outputs to characterize pan-cancer 10,635 samples including 33 TCGA cancer
types. A. Broad, Focal and Global CNA scores (BCS, FCS and GCS, respectively)
distribution across the 33 cancer types. B. Genome-wide chromosome arm CNA profile
heatmap for 10,635 samples considering broad and focal events. Annotation tracks for
FCS, BCS and GCS are presented. C. Arm regions frequencies as percentages relative
to the TCGA pan-cancer dataset (red for gains and blue for losses). D. Heatmap plot
showing 20 out of the 33 TCGA cancer type profile correlations, by Pearson's method,
hierarchically clustered by tissue of origin. Gastrointestinal, gynecologica and
sguamous cancers are clustering consistently in their respective groups.

Figure 3 Identification of recurrent broad and focal CNAs
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Calculation of broad and focal CNA frequencies using several parameters in CNApp in
order to describe the genomic landscape of LIHC. A. CNApp frequencies for
chromosome arm regions using default cutoffs, corresponding to 2.3/1.7 copies for
gains and losses, respectively. B. CNApp frequencies for chromosome arm regions
relaxing cutoffs to make them equivalent to those of GISTIC2.0. C. CNApp frequencies
of focal events using default thresholds and sub-cytobands genomic regions. D.
Frequencies of focal events from moderate- to high-amplitude levels using sub-
cytobands genomic regions.

Figure 4 Genomic characterization of colon cancer according to the CMS
classification

A. Arm-region frequencies of 309 colon cancer samples using CNApp default
thresholds for CNAs. B. BCS distribution by CMS sample groups. Wilcox test
significance is shown as p-value < 0.001 (***); p-value < 0.01 (**); p-value < 0.05 (*);
p-value > 0.05 (ns). C. Number of gained and lost chromosome arms for each sample
distributed according to the BCS values. Note that a cutoff at 4 isindicated with a black
line. Annotation tracks for microsatellite instability (msi), BRAF mutated samples
(braf_mut), CMS groups (cms _label), FCS and BCS are displayed. D. Genome-wide
profiling by chromosome arms distributed according to the CMS group. Annotation
tracks for microsatellite instability (msi), BRAF mutated samples (braf_mut), CMS
groups (cms_label), FCS and BCS are displayed. Sample-to-sample correlation heatmap
plot by Pearson’s method is shown below. E. Distribution of CNA values affecting 20q
according to the CM S groups. Significance is shown as p-value < 0.001 (***); p-value
<0.01 (**); p-value < 0.05 (*); p-value > 0.05 (ns).
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