
A population of bang-bang switches of defective interfering particles makes within-host
dynamics of dengue virus controllable

Tarunendu Mapder1,2*, Sam Clifford3, John Aaskov4, Kevin Burrage1,2,5*

1 School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
2 Australian Research Council Centre of Excellence for Mathematical and Statistical Frontiers, Queensland University of
Technology, Brisbane, Queensland, Australia
3 Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK
4 Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
5 Visiting Professor, Department of Computer Science, University of Oxford, Oxford, UK

* tarunendu.mapder@qut.edu.au, kevin.burrage@qut.edu.au

Abstract

The titre of virus in a dengue patient and the duration of this viraemia has a profound effect on whether or not a mosquito
will become infected when it feeds on the patient and this, in turn is a key driver of the magnitude of a dengue outbreak. As
mosquitoes require 100-1000 times more virus to become infected than a patient, the transmission of dengue virus from a
patient to a mosquito is a vulnerability that may be able to be targeted to improve disease control. The intrinsic variability in
the within-host dynamics of viraemias is explored for a population of patients using the method of population of models
(POMs). A dataset from 207 patients is used to calibrate 20,000 models for the infection kinetics for each of the four dengue
virus serotypes. The effect of adding defective dengue virus interfering particles to patients as a therapeutic is evaluated using
the calibrated POMs in a bang-bang optimal control setting.

Author summary

Dengue virions with deletions or defects in their genomes can be recovered from dengue patients. These defective viruses can 1

only replicate with the assistance of fully functional viruses and they reduce the yield of the fully functional viruses. They are 2

known as defective interfering (DI) particles. By administering additional, defined, DI particles to patients it may be possible 3

to reduce the titre and duration of their viraemia. This, in turn may reduce the severity of the disease and the likelihood that 4

dengue virus will be passed from the patient to a mosquito vector. This study estimates the number of DI particles that 5

would need to be administered, and over what period, to have a significant effect on patient viraemia and subsequent dengue 6

fever severity. 7

Introduction 8

Dengue is caused by four serotypes (1-4) of a virus of the same name [1]. The viruses are transmitted between human hosts 9

by Aedes mosquitoes, most commonly Aedes aegypti. Almost everyone living between the Tropics of Cancer and Capricorn 10

are at risk of infection and an estimated 300 million infections occur each year [2, 3]. Disease symptoms range from a mild 11

febrile illness to haemorrhagic fever and hypovolemic shock which, if untreated, is fatal in about 30% of cases [4]. Mosquito 12

control programs have had little measurable effect on the number of reported cases of dengue [5], there is no vaccine and no 13

disease specific therapy. Patients are treated by managing the symptoms with which they present. 14

Infection with one dengue virus (DENV) serotype probably results in life long immunity to re-infection with that DENV 15

serotype but a second infection, with a different serotype, carries a significant risk of developing severe disease [6]. However, 16

the onset of the severe symptoms in secondary infections usually occurs as the viraemia is waning and the secondary immune 17

response is underway [7, 8]. There is a broad correlation between the magnitude of the viraemia in a dengue patient and the 18
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severity of the associated symptoms [9]. Any process that reduces the initial viraemia in dengue patients might reduce disease 19

severity and also the risk that a mosquito feeding on the patient would become infected and pass the virus to a new host. 20

Populations of DENV include virions with genomes with defects ranging from single nucleotide changes [10] to deletion of 21

more than 90 per cent of the genome [11]. Some of these are transmitted in nature for a year or more [10]. DENV virions 22

containing genomes with extensive deletions interfere with the replication of wild type viruses. This phenomenon has been 23

observed with a large number of viruses, mostly with RNA genomes [12,13]. Furthermore, it has been possible to demonstrate 24

that virions with defective genomes reduce the yield of virus from cells infected with wild type DENV and are known, 25

therefore, as defective interfering (DI) particles [14–16]. 26

There is an extensive literature on the activity of DI particles across a wide range of RNA viruses but interest waned in 27

the 1990s [13,17]. With the advent of tools to better define DI genomes and to produce artificial ones, there has been a 28

renewed interest in their therapeutic potential and the possibility that they could be used to block transmission of agents such 29

as DENV. However current mathematical models of dengue [18–20] cannot capture all the aspects of virus transmission and 30

no model incorporates defective interfering (DI) particles. A few intracellular, intra-host and population models are available 31

on different infectious diseases such as influenza, scabies, and optimal design for disease control [21–23]. This study uses data 32

from 207 dengue patients in a real clinical setting [8] in order to estimate the therapeutic potential of DENV DI particles. 33

We propose a model inspired by the Clapham et. al. [19] and Frank [24] models. This model considers the antibody 34

response in viral neutralization and the natural generation of DI particles. We build an ensemble, population, of models, in 35

which each element in the population is a mathematical model with exactly the same framework, but where each model has a 36

different set of parameter values for the same set of parameters. All of these values are calibrated in some appropriate way 37

against multiple data [25]. In particular, we calibrate the data for plasma viral load and antibody response for 207 patients in 38

our population of models (POMs). Most of the patients have high viraemia amplitudes during the illness. However, the 39

antibody data has been collected on two random days within their febrile periods and that cannot explain the exact dynamics 40

of the antibody, even asymptotically. With our POMs, we try to explore the range of variability in different cell-virus 41

interactions and the immune responses. The POMs study is well-known in cardiac electrophysiology models [26,27] but for 42

infectious diseases, it is the first article to be reported for a large set of patient data. We develop a population of controls 43

(POCs) to the population of symptomatic patients to attenuate the within-host viraemia level and reduce the days of febrile 44

period. Specifically, bang-bang control is used to determine the minimum dose of DI particles which must be delivered to 45

minimise the height and duration of the viraemia. 46

We propose that we can account for the inherent variability in the dengue infected patient data and find a modeling 47

paradigm based on population of models and optimal control that allows us to quantify the effectiveness of DI particles in 48

controlling the viraemia. 49

Materials and methods 50

Within-host viraemia dynamics 51

To explain the novelty of the present model, we must say that the competitive dynamics of the DI particles with virus is 52

exhibited in the presence of the antibody response. While the model of Clapham et al. [19] included the role of antibody 53

response in controlling the levels of viraemia, the model assumed that only standard virus is replicated within the host body. 54

Defective interfering particles may also be responsible for the reduction in the production of standard virus [11,14]. The 55
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Fig 1. Schematic diagram of the within-host infection dynamics: CU denotes uninfected cells while D and V are
the defective and infective virus particles, respectively. CD, CV , CV D, and CV ∗ are the infected cells by D, V , both D and V ,
and infected by V only and matured, respectively.

dynamics of the present model is given by in the following set of ordinary differential equations 56

dCU
dt

= rCU (1 − N

K
) − k(V +D)CU + αCD (1)

dCD
dt

= k(CUD − CDV ) − αCD (2)

dCV
dt

= k(CUV − CVD) − (π1 + µ)CV (3)

dCV ∗

dt
= π1CV − δCV ∗ (4)

dCV D
dt

= k(CVD + CDV ) + µCV − δCV D (5)

dV

dt
= βπ2CV ∗ − (ρ+ εZ)V (6)

dD

dt
= γφCV D − (ρ+ εZ)D (7)

dZ

dt
= η1Z(

V

η2 + V
+

D

η2 +D
) (8)

N = CU + CD + CV + CV ∗ + CV D. (9)

This new model describes the dynamics of standard virus (V) and DI particles (D) within the host. We consider the 57

antibody response (Z) by the infected cells in virus neutralization. The present model is built with very specific aspects of 58

dengue based on the models [17,19,24]. The uninfected target cells (CU ) become infected and consequently produce four 59

types of infected cells: infected by DI only (CD), virus only (CV ), virus-infected and late enough for further infection (CV ∗), 60

and infected by both (CV D) (Fig 1). As the model of antibody dependent cell cytotoxicity (ADCC) is not as likely as virus 61

opsonization, we do not consider ADCC in the present model. The assumptions that underpin our new model are described 62

here. Bursting and cell lysis do not occur during the release of dengue virus particles. The infected cells are categorized in 63

two classes according to their stages of infection: early and late. The early infected cells (CD and CV ) are available for 64

super-infection, but the late cells (CV ∗ and CV D) are not. The immune response is strong in case of secondary infection 65

leading to antibody-dependent enhancement (ADE) of the viraemia while it is very weak in case of primary infection. We 66

consider the immune response in a simplified way such that the response is prominent only in the presence of significant 67

antibody level, preferably in case of secondary infection. Both the defective and standard virus particles in this model are 68

equally efficient in the competition of infection or replication. 69

Most of the model parameters must be estimated from the reported base values as the model is quite different from 70

previous models, although the range of their values from the aforesaid papers [19,24] are informative in creating the 71

population of models. The initial conditions of CU , CD, CV , CV ∗, CV D and D are considered constant at the start of 72

infection. Only the initial viral load (V0) and antibody levels (Z0) for each patient have been sampled in the population of 73

models. The patient specific parameters (α, δ, η1, η2, π1, π2, φ) are sampled using Latin Hypercube sampling (LHS) within the 74
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Table 1. Kinetic rate parameters used in the model.

Parameters Units Descriptions Source
Natural human host parameters

K cells per ml Cellular carrying capacity of proliferation [24]
r per day Intrinsic rate of host cell proliferation [24]

Serotype-specific parameters
β - Number of V released per CV ∗ cells after packaging [24]
ε per day Antibody mediated virus neutralization [19]
γ - Number of D released per CV D cells after packaging [24]
k per day Rate of infection per virus [19]
µ per day Mutation rate of V to D within host cells, turning CV cells into CV D cells [24]
ρ per day Natural clearance rate of V and D [19]

Patient-specific parameters
α per day Rate of loss of DI particles within host cells, turning CD cells into CU cells [24]
δ per day Death rate of infected cells [19]
η1 per day Proliferation rate of triggered immune response per infected cells by V or D [19]
η2 - Threshold parameter of the triggered immune cells proliferation [19]
π1 per day Rate of maturation of CV cells into CV ∗ cells [24]
π2 per day Rate at which each CV ∗ cells produces V [24]
φ per day Rate at which each CV D cells produces D [24]
V0 per ml viraemia level on the day of infection -
Z0 per ml Level of immune response on the day of infection -

physiological range. LHS is a way of sampling high dimensional parameter spaces so that the number of samples does not scale 75

with the dimension [28]. The way this is done is to discretise a d dimensional parameter space with some mesh and then place 76

a cross in a box such that there is only ever one cross in each d− 1 dimensional subspace. A cross means that box is sampled 77

at random for the d parameter values. The remaining parameters have been classified into two classes: natural human host 78

parameters (r and K), which are constant in the complete POMs, and serotype-specific parameters (β, ε, γ, k, µ, ρ), which 79

stay constant for a POMs of a particular serotype. We tabulate the description of the rate parameters in Table 1. 80

Population of models 81

Variability inherently occurs in many biological and physiological measurements and we cannot avoid them. Every patient, for 82

example, may have very different responses to an infection or a treatment and we need to account for this variability. 83

Sometimes we aggregate the data and fit the model to the mean trajectory or choose a subset of the data as being 84

representative or the hypothetically best sets of data and extrapolate those features to the large population. This can reduce 85

the errors in measurement, but is unable to capture the intrinsic variability in the system. Hence, analysing models in a 86

population from a set of measured data and exploring the hidden features intrinsic to the system is more effective for 87

predicting physiological phenomena when there is inherent variability. 88

We use the Data2Dynamics package in Matlab for parameter estimation [29]. We generate multiple candidate models with 89

parameters sampled by Latin Hypercube Sampling. We are at liberty to choose different criteria for our calibration. In 90

original articles we calibrated to the range of the data [27], but this is somewhat crude. More recently, we proposed 91

calibration based on matching the distributions in the data available [25]. This means that appropriate outputs from the 92

POM matches the data in a distribution setting. In the present article we are following the earlier method as the amount of 93

sampling is very large in the current system. In the first step of calibration, we try to calibrate to the median and other 94

quartiles of the data but we can not fully capture the range of the data sets at the same time. For the whole data-set 95

viraemia and antibody response, we estimate all the parameters and fixed the natural human host parameters (r and K) as 96

constant and the remaining parameters are estimated again for the four different serotypes. The Latin Hypercube sampling is 97

performed for each of the serotypes simultaneously with the serotype-specific parameters (β, ε, γ, k, µ, ρ) constant. From these 98

population of models, we select only those models that cover the regions and range for all the biomarker results on each day 99

of illness. We generate a very large initial POMs (20000) for each serotype and the calibrated POMs has been constructed by 100
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only those models that can capture the range. 101

Optimal bang-bang control 102

There are two ways of implementing the control. One is continuous and differentiable. The other one is continuous but occurs 103

as a step function and is known as bang-bang control, in which the control is either on or off. In practical settings bang-bang 104

control is more appropriate for intervention and that is what we use here. 105

We follow the algorithmic steps for bang-bang control for a nonlinear system of ODEs as follows 106

(1) Describe the system with the control variable as 107

dx

dt
= A(x, t)x + B(x, t)u + C. (10)

(2) Construct the payoff functional in terms of running cost (L) and terminal cost (φ) functional as 108

min
uε[0,ub]

J = φ(x(Tf ), Tf ) +

∫ Tf

T0

L(x,u, t)dt (11)

where u is the control variable, or vector of control variables, with bounds 0 ≤ u ≤ ub. 109

(3) Construct the Hamiltonian 110

H = λT (A(x, t)x + B(x, t)u + C) + L(x,u, t) (12)

i.e., H = λT (A1(x, t)x + B1(x, t)u + C1). (13)

Here the lambda are the elements of the vector of Lagrange multipliers. 111

(4) From the Pontryagin’s minimum principal [30] the switching function is 112

∂H

∂u
= λTB1(x, t) (14)

that determines the bang time (τ), when the control u(t) is on or off. The particular time points (τ ’s) are known as the 113

switching time points. 114

(5) The optimal bang-bang control (u∗(t)) flips between the bounds, [0,ub] at the switching points as 115

u∗(t) = −sign(λTB1(x, t))ub. (15)

In the present study we use one control variable (u(t)), the administration of excess DI particles to the model to reduce the 116

viral infection as well as quick clearance of the virus from the host. For the present POMs of four dengue serotypes, the range 117

of the viraemia growth is large (approximately 103 to 1011). For that reason it is difficult to decide on upper bounds of the 118

control (ub) for these POMs. We determine the ub from the individual uncontrolled viraemia profile for each model considered 119

to be controlled. 120

Control strategy for dengue fever 121

As the objective to control dengue for the model within host, we construct an objective function in terms of the running cost 122

functional only. The reason is that all the infection and virus naturally get cleared at the final time point and terminal cost is 123

insignificant in such cases. 124

min
uε[0,ub]

J(.) =

∫ Tf

T0

(
1

2
aV 2(t) +

1

2
bC2

V (t) + cu(t))dt (16)

where T0 and Tf are the initial and final time, and a, b and c are constants to be determined from the optimal control 125

problem. In the course of control, we prefer to apply a bang-bang type control rather than a continuous control. Here, the 126

administration dose rate (u(t)) of DI particles is the control variable. The medical nomenclature of the purified DI particles is 127

therapeutic interfering particles or TIPs. In order to make the vaccination program cost-effective and reduce the time course 128

of the vaccination process this information is included in the structure of the pay off function during the optimization. As the 129

plasma viraemia (V ) and the cellular infection of all kinds (CV , CV ∗) show a rapid growth in the first 2-4 days of the febrile 130
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period and are cleared within 10-12 days, we seek to minimize the peak of the viraemia (V ) and virus infected cells (CV ) that 131

in consequence may help reduce all the infections. The DI particles within the host (D) compete with the virus for the 132

uninfected cells (CU ) and that is an advantage to introduce a large number of DI particles to inhibit the viral infection. The 133

system of ODEs can be rewritten after introducing the control variable, u(t) as 134

dCU
dt

= rCU (1 − N

K
) − k(V +D)CU + αCD (17)

dCD
dt

= k(CUD − CDV ) − αCD (18)

dCV
dt

= k(CUV − CVD) − (π1 + µ)CV (19)

dCV ∗

dt
= π1CV − δCV ∗ (20)

dCV D
dt

= k(CVD + CDV ) + µCV − δCV D (21)

dV

dt
= βπ2CV ∗ − (ρ+ εZ)V (22)

dD

dt
= u+ γφCV D − (ρ+ εZ)D (23)

dZ

dt
= η1Z(

V

(η2 + V )
+

D

(η2 +D)
) (24)

N = CU + CD + CV + CV ∗ + CV D. (25)

We assign bang-bang controls to the models from the POMs discussed above and obtain a population of controls (POCs) 135

defined by the vectors of the amplitude of the bang of DI administration dose (u(t)) and on-off time duration (τ) of the 136

bang-bang switches for the four serotypes. 137

Results 138

Population of models 139

From the experimental data, we have a set of 207 adult dengue patients with more than 3 days of fever [8]. Among them 38% 140

and 40% of cases are DENV-1 and DENV-2 infections and a very low number of cases from DENV-3 (12%) and DENV-4 141

(11%). Most of the patients enrolled into hospital on days 2, 3 and 4 of their illness with high viraemia load in their blood 142

samples. To build a model with an estimate of the day of infection using the day of illness is not appropriate. The days 143

between the infection and start of illness are known as the incubation period for the plasma viraemia. For a large population 144

of patients, it is difficult to frame the range of this time period in a dynamical model. To address this problem, we consider 145

that the start of illness is a day in between the day of infection and maximum plasma viral load. The fever starts with a 146

range of detectable viraemia load (V0) on the day the illness starts. Although DI particles are not observed directly in any 147

prior study of blood viraemia trajectories they are known to occur naturally in viral infection systems. We may predict that 148

from our POMs construction as they are generated naturally in viral infection systems. Fig 2 represents the calibrated POMs 149

(black lines) with the reported plasma viraemia (red dots) for each of the four DENV serotypes for 10 days of their febrile 150

periods. In the initial calibrated POMs, we found many viraemia models with large oscillations and abrupt growth in the 151

antibody models. Although they satisfy the criteria to be included in the final POMs, they are omitted from the analysis as 152

we cannot find any oscillatory behaviour in the reported viraemia data. 153

In Fig 2, we present the POMs constructed (in black) based on the available biomarker data (in red). The data for the 154

viraemia are regularly collected for every patients from day 2 to day 8 and that is reflected in the calibrated POMs nicely. 155

But the available data for the antibody response is not that consistent as they appear randomly on any two of the days of 156

illness. Calibration of the POMs for these data does not perform as effectively as for the viraemia population. To analyse the 157

POMs for the four serotypes comparatively, we see that the POMs for DENV-2 is the most tightly calibrated with the 158

biomarker data. The POMs for DENV-1 and DENV-4 are well calibrated in the dense region of the data and very few 159

outlying data points cannot be captured in the POMs while DENV-3 POMs captures the spread of the data at every day of 160
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Fig 2. Population of models: (a) viraemia (V) and (b) antibody response (Z) obtained from clinical data (red) and
calibrated models (black) included in the population for the four serotypes: DENV-1, DENV-2, DENV-3 and DENV-4. Both
the biomarker levels are plotted with respect to the patient febrile time period.

illness. In the case of DENV-2 and 3, the recurrence of tiny oscillations near the peaks of their rapid growths in the viraemia 161

are more prominent than in DENV-1 and DENV-4 although that does not affect the antibody response. The antibody 162

dynamics for the four serotypes are quite similar except in DENV-4. It is quite low in comparison to the other serotypes. 163

The spreads in different patient specific parameters for the four serotypes are shown in Fig 3. The rate of triggered 164

immune response proliferation (η1) has notable differences in the case of DENV-4 from the other three serotypes. The effect 165

of this narrow spread in η1 is reflected in the POMs for the DENV-4 antibody response in Fig 2B. The initial viraemia level 166

(V0) spreads in a narrow domain for DENV-4 compared with the others and it makes the viraemia POMs in Fig 2A narrow. 167

DENV-3, with its very narrow spread in V0, appears to be wide in the course of time. In all the cases, the low value of η2, the 168

threshold of immune response proliferation, is inversely related to high level of V0. 169

In Fig 4, we depict the antibody response with respect to corresponding viraemia levels on every day of illness for further 170

clarification of the calibration process. The black dots are the antibody-viraemia data points calculated from the accepted 171

POMs on each day of illness. We show that most of the POMs results stay within the ranges of the biomarker data on day 3, 172

4, 5, 6 and 7 for all the four serotypes. On days 2 and 8, due to very low number of data-points, the range detection is not a 173

reliable indicator of goodness of fit for the POMs.. 174

For each of the patient-specific parameters, which have been allowed to vary in the population, the partial correlation 175

coefficient (PCC) is calculated pairwise with the biomarkers calculated from the POMs. This correlation based approach can 176

explore the sensitivity of the model parameters in association with the parameter variability. The PCC identifies one-to-one 177

correlation between a particular parameter with the specific biomarker after removing the contributions of all the other 178

variables. Thus it magnifies the one-to-one correlation between the parameter-biomarker pair. In Fig 5, we present three 179

different heatmaps to quantitatively compare the PCC levels among the patient-specific parameters and the viraemia load, 180

antibody response and accumulated DI particles levels across the four serotypes. Interestingly, although the POMs for 181

viraemia load and antibody response show similar trends, the relation is not just straightforward if we look at the 182

contributions of the model parameters through their PCC values. 183

In row Fig 5A, the PCCs of viraemia with different parameters are plotted. δ shows a transition from highly positive to 184

highly negative correlation as long as the illness continues, while η1 goes in the opposite direction. However, η2 is not 185

following a similar trend across the serotypes. To classify the PCCs for η2, DENV-1 and 3 are separable from the class of 186

DENV-2 and 4. On the other hand, α, V0, Z0, φ, π1, π2 remain almost in the weak correlation regime with the viraemia for 187

all the serotypes. In row Fig 5B, the PCCs of the antibody response with δ show high negative correlation while the rest of 188

the parameter have no significant contributions. In the case of DI particles in row Fig 5C, all the parameters except φ and π2 189

appear with the same trend in Fig 5A, while φ and π2 show high positive correlation in all the serotypes on nearly every day 190
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Fig 3. Variability in model parameters: Distribution of the patient specific model parameters plotted in parallel
coordinates for (a) DENV-1, (b) DENV-2, (c) DENV-3, (d) DENV-4. The coordinate values (y-axes) are the values of the
parameters while the parameters are noted in the x-axes.

of illness. 191

Population of controls 192

Once the POMs have been constructed, we approach predicting the treatment for controlling the fever to the virtual 193

population of dengue patient models. As the total number of qualified models in the POMs is large (221 for DENV-1, 306 for 194

DENV-2, 93 for DENV-3, and 81 for DENV-4), we randomly choose 15% of the candidate models from the POMs of each 195

serotype for the control experiment. During the random selection, we draw the models from the POMs with a uniform 196

distribution and obtain 33,45, 13 and 12 models for DENV-1, DENV-2, DENV-3 and DENV-4, respectively. We could have 197

chosen the best 15% of the best fitted models as the candidates for control experiment, but those do not appear in every 198

domain of the POMs. In Fig 6, we present the viraemia, and DI particle levels before and after applying the control. For 199

DENV-1, the viraemia lasts until day 10 keeping the control on for the whole period in most of the cases, while in case of the 200

other serotypes the control shuts down approximately by day 8. The occurrence of the oscillatory peak in every few DENV-2 201

and DENV-3 models, pushes the control to higher dose although the viraemia cannot last beyond day 5. 202

The infected cellular dynamics also shows remarkable changes after the application of excess DI particles in the host 203

system (Fig 7). The general trend before and after applying the control is observed in the CD cells, which is similar to that of 204

the DI particles, as the DI particles are the major reason to generate the pool of CD cells. A similar relation is observed 205

between the CV ∗ cells with the viraemia profile as only CV ∗ cells release potential virus into the body fluid. Interestingly, the 206

application of the excess DI particles starts inhibiting both the virus and the CV ∗ cells. The population of CD cells are 207

produced from CU cells upon infected by D and CV D cells produce D. As a result, the pool of the DI particles drops sharply 208

as soon as the control shuts down and the consequences are reflected in the CD and CV D cells. 209

If we consider the area under the control curve (A) as the cost of the vaccination, then an efficient control must be cost 210

effective. To test the efficiency of the control, we estimate the area under the curve of the viraemia fold reduction (R) with 211
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Fig 4. Relative variability in the biomarker data: Scattered phase plots of antibody response (Z) vs. the viraemia (V)
on each day of illness for the dengue serotypes at each row: (a) DENV-1, (b) DENV-2, (c) DENV-3, (d) DENV-4.

respect to the area under the prescribed dose of control curve (A). Here the fold reduction (R) and control expense (A) are 212

defined as 213

R =

∫ T
0
V (t)(before control)dt∫ T

0
V (t)(after control)dt

, (26)

A =

∫ T

0

u(t)dt, T = 10 days. (27)

In Fig 8, we show the distribution of the viraemia fold reduction with respect to the control expense for all the four serotypes. 214

Approximate monotonic increments are observed in R, with S for all the serotypes except DENV-2. For DENV-2, we find two 215

separable clusters; one lies in the same cluster as the other serotypes and the other cluster appears with a completely opposite 216

trend but at higher control expense. 217

Discussion 218

The two prime interests of this paper are to capture the inherent variability in dengue infected patient data through a 219

within-host model and predict efficient intervention to control dengue fever via administration of excess defective interfering 220

particles (DIPs). We present the method of population of models (POMs) to execute the first goal and a population of 221

bang-bang optimal control settings for the second aim. We show that the POMs not only capture the biomarker dataset but 222

also provides the range of variability for each cell-virus interaction and its association with the biomarker kinetics in 223

population and individual levels. A sub-population of the calibrated POMs are used with bang-bang control to reduce the 224

viraemias in significant orders. In that case, the fever cannot reach severe dengue and the DI particles do not stop replicating. 225

As per our findings, the antiviral property of the DI particles appears as a potential intervention strategy to attenuate the 226

patient viraemia significantly. 227

We construct four serotype-specific populations of within-host models for dengue against the variability in the biomarker 228

levels in blood samples of the admitted patients as reported [8]. The four POMs explore a range of patient-specific 229
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Fig 5. Partial correlation coefficient heatmaps: Partial correlation coefficient maps between the sampled model
parameters and the model output of the biomarker levels: (a) plasma viraemia, (b) antibody level and (c) DI particles are
calculated as a measure of sensitivity analysis for the four dengue serotypes.

parameters, those in different combinations, produce four populations of feasible dengue models within the range of the 230

experimental data. The calibration of the POMs helps us to discriminate and classify among the serotypes and inter-patient 231

variability through the parameter variability and sensitivity. The aim of this methodology is not to look at the dynamics of 232

isolated models in the population as any single model does not represent an individual. The aim is to incorporate variability 233

in the same model and observe the whole population of patients with similar symptoms. 234

The variability appears in the population of the viraemia load and corresponding antibody response due to the differences 235

in the patient-specific parameters. One of the crucial factors that drives this variability is the incubation period for an 236

individual model. We want to mention that we trace the variability of incubation periods of an individual model in terms of 237

the variability in viral load on day 0 of illness (V0) and that efficiently fits with the calibration process. The dynamics of the 238

viraemia (V ) is directly dependent on δ, π1, π2 for release after maturation of the infected CV to CV ∗ and on the antibody 239

response (Z) for clearance. Indirectly, the rate of infection (k) also drives the viraemia. Amongst these parameters, δ is in 240

strong positive correlation with V , Z and D and that gradually leads to a flip as the viraemia dies with the days of illness, 241

but π1 is weakly correlated all the time. The variability of highly correlated parameters stay within a narrow range and 242

calibrates tightly with the biomarker data, but weakly correlated parameters spread over wide ranges to generate models with 243

similar behavior (Fig 3 and 5). 244

In the Ben-Shachar et. al. [31] statistical model, the populations of infected patients have been classified according to the 245

disease severity across the serotypes and the variability in their immune responses. Although this study is more concerned 246

with the immune response, they predicted the relation among virus replication rates with the timing of the viraemia peaks 247

over the days of illness. Our POMs results show consistency with their observations when we demonstrate the variability for 248

different parameters. DENV-1 and DENV-4 reach the viraemia peaks after the symptom onset, while the peaks appear before 249
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Fig 6. Effect of control in viraemia dynamics: The controlled viraemia, DI particles estimated from the optimal
bang-bang control model and the control profiles for the dengue serotypes: (a) DENV-1, (b) DENV-2, (c) DENV-3, (d)
DENV-4 are plotted in coloured lines while the black lines represent the corresponding profiles before applying the control.

the onset of the symptoms in case of DENV-2 and DENV-3 and it depends on the degree of infection (Fig 2). Although, the 250

few relatively high peak heights in viraemia data for DENV-1 cannot be captured in our model. 251

Among the reported infections of the hospitalized patients in our model, most of the DENV-1 infected patients have 252

primary infection while the majority of the patients with the other serotypes are reported as secondary infection. A careful 253

observation of the POMs of the viraemia profiles enables us to find the growth rate of the viraemia for most of the models in, 254

with the DENV-2 and DENV-3 POMs growing faster than the others. We explain this rapid growth in terms of the antibody 255

dependent enhancement (ADE) that only occurs in secondary infection [6]. In case of primary infection, the immune response 256

is triggered very slowly and the viraemia is almost cleared when the response level is significant. On the other hand, the same 257

response for the secondary infection is very rapid and prominent. 258
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Fig 7. Effect of control in cellular dynamics: The dynamics of different cell types for the candidate models in the
control experiment have been plotted during the febrile period. The uninfected cells (CU ) (black), cells infected by DI particles
only (CD) (blue) and cells infected by virus and are not available for superinfection (CV ∗) (red) are presented in black, blue
and red lines, respectively in (a) before and (b) after applying the control, i.e., administration of excess DI particles.

Fig 8. Control efficiency: The fold reduction in the viraemia is plotted with respect to the control, that is, the addition of
excess DI particles for the four serotypes, DENV-1 (red), DENV-2 (blue), DENV-3 (green), DENV-4 (cyan).

In the articles of Clapham et. al., two different within-host models for dengue infection have been presented for DENV-1 259

and DENV-2. They found variability in the rate of infection (k) only and that was used to discriminate between the ranges of 260

viraemia loads [20]. Later they have fitted another model with a direct and indirect effect of the antibody response through 261

free virus neutralization and infected cell death [19]. In this present article, we keep k and ε constant for each serotype and 262

included only the direct antibody response for virus particles (standard or defective) neutralization and the antibody response 263

is triggered by both of the free virus and free defective particles. The variability in the antibody response is captured by η1 264

and η2 and their contributions are reflected in the POMs. The greater the proliferation (η1) rate varies, the more the 265
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antibody plateau widens (Fig 2 and 3). Notably, in the case of DENV-4, the spread for both of η1 and η2 are narrow. Again, 266

the strong negative correlation of η1 with the viraemia does not appear to be significant in comparison with the case of the DI 267

particles and Z. This may explain the intensity of the triggered antibody response being more effective on V than D. 268

Another significant outcome of such a population level modeling approach is in the quantitative prediction of vaccination or 269

any kind of intervention strategy. We use an optimal bang-bang control approach to add excess DI particles in to the system 270

to reduce the viraemia. Previously, Rodrigues et. al. showed optimal control for dengue using vaccination compartment inside 271

an epidemic viewpoint [18]. But intervening individual human host models within a population has not been observed yet. 272

Furthermore, the naturally occurring defective interfering particles have not been utilized in dengue control before. 273

Bang-bang control is a prominent optimization tool in dynamical programming for linear systems and can be solved easily 274

using boundary value problem (BVP) solvers [32]. But a nonlinear two-point boundary value problem (TPBVP) such as our 275

present model cannot be solved directly with traditional solvers. We use the forward backward sweep method, where ODE 276

solvers are used twice: forward for the state equations and backward for the costate equations [33]. Then we update the 277

switching function(∂H/∂u) and control (u(t)) [34,35]. In most of the cases, for such nonlinear models, nonlinear 278

programming is mostly used for calculating discontinuous controls. We use the same Pontryagin’s minimum principle and 279

solve the discontinuous right hand side of the state and co-state equations. We note that this method needs many more 280

iterations than continuous control methods to converge. However, for models with strong non-linearity such as stiff and 281

oscillatory control problems, this method is reasonably efficient. 282

We perform the control experiment on a randomly chosen 15 per cent of models from the calibrated population of models 283

for each serotype. In Fig 6, the population of controls (POCs) profiles for the four serotypes are quite self-explanatory. As the 284

replication of the DI particles depend on the replicative machinery of the standard virus, the excess DI particles are rapidly 285

cleared out of the host system as soon as the control shuts down and viraemia is cleared. We ensure the amplitude of the 286

control, i.e., addition of excess DI particles, to be equivalent to the level of viraemia peak during computing the controls, 287

otherwise the amount of the DI particles are not sufficient to reduce the viraemia peak. Our aim is to keep the viral load 288

approximately below 108 but for DENV-2 and DENV-3 it is difficult to achieve that even after applying 1011 of DI particles. 289

The reason behind this is the higher rates of virus replication (β and π2) in DENV-2 and DENV-3 as mentioned before. In 290

the cases of DENV-1 and DENV-4, as soon as the DI particles start boosting, the viral load drops quickly, as DI particles 291

interfere in the virus replication. Very tiny persistent oscillations in the case of DENV-2 and DENV-3 in all the cell types and 292

viraemia also validates the same conclusions. 293

To examine the efficiency of the control experiment, we refer to the scatter plot in Fig 8 for the measured control expense 294

(A) and the corresponding reduction in viraemia (R). For DENV-1, DENV-3 and DENV-4, most of the models are in the left 295

half of the figure (i.e., A ≤ 103) while DENV-2 has many more models in the high A domain (i.e., A ≥ 103). In most of the 296

cases for DENV-1, the reduction (R) is higher than the other serotypes at low expense on control (A) and that makes the 297

control for DENV-1 as the most efficient. The present model predicts that large numbers of DI particles would be 298

administered to DENV patients to have any effect on viraemia as patients only become symptomatic and seek medical 299

assistance at the time of peak viraemia or soon after. The model also assumes that DI particles and wild type viruses are of 300

equal fitness when competing for replicative machinery within host cell. If, however, DI particles are interfering with 301

replication of wild type viruses by enhancing production of interferon or some other mediator, then a single DI 302

particle/genome may elicit a response in the host cell that interferes with the replication of large number of wild type viruses. 303

In addition, there exists no specific metric that may provide room to define the efficiency of the DI particles. A distribution 304

of DI particle with variability in their competitions with the virus particles for the replication and packaging can be modeled 305

to predict the efficiency of the DI particles through successive passages. Existing models and experiments with DI particles 306

assume the efficiency of the DI particles inversely proportional to their nucleotide lengths though the nucleotide lengths 307

cannot decide on DIP efficiency. A single cell stochastic model with distribution of DIPs and their evolutionary aspects may 308

open a new avenue to explore the DIP efficiency. 309

Despite the availability of real clinical data for the admitted patients and experimental success, the intra-host dengue virus 310

dynamics is not explored well. As a consequence, the virus transmission dynamics to mosquitoes is not clear. This paper 311

explores the variability regime of the intra-host DENV dynamics across a population of patients for the four DENV serotypes. 312

These POMs are able to predict the effective roles of the virus replication and subsequent immune response to determine the 313

within-host viraemia characteristics. For the same patients population, a human to mosquito transmission model is underway. 314

Those results may explore the quantitative analysis of infected patients turned into infectious and their infectiousness in terms 315

of the transmission. Addition of minimal amount of defective particles leads to significant reduction in the viraemia 316

characteristics reflecting the potential anti-viral property to be manifested in dengue control. 317
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