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Expression variation analysis for tumor heterogeneity in single-cell 
RNA-sequencing data

ABSTRACT
Tumor heterogeneity provides a complex challenge to 

cancer treatment and is a critical component of therapeutic 
response, disease recurrence, and patient survival. Single-
cell RNA-sequencing (scRNA-seq) technologies reveal 
the prevalence of intra- and inter-tumor heterogeneity. 
Computational techniques are essential to quantify 
the differences in variation of these profiles between 
distinct cell types, tumor subtypes, and patients to fully 
characterize intra- and inter-tumor molecular heterogeneity. 
We devised a new algorithm, Expression Variation 
Analysis in Single Cells (EVAsc), to perform multivariate 
statistical analyses of differential variation of expression 
in gene sets for scRNA-seq. EVAsc has high sensitivity 
and specificity to detect pathways with true differential 
heterogeneity in simulated data. We then apply EVAsc 
to several public domain scRNA-seq tumor datasets to 
quantify the landscape of tumor heterogeneity in several 
key applications in cancer genomics, i.e. immunogenicity, 
cancer subtypes, and metastasis. Immune pathway 
heterogeneity in hematopoietic cell populations in breast 
tumors corresponded to the amount diversity present in 
the T-cell repertoire of each individual. In head and neck 
squamous cell carcinoma (HNSCC) patients, we found 
dramatic differences in pathway dysregulation across 
basal primary tumors. Within the basal primary tumors 
we also identified increased immune dysregulation in 
individuals with a high proportion of fibroblasts present in 
the tumor microenvironment. Moreover, cells in HNSCC 
primary tumors had significantly more heterogeneity 
across pathways than cells in metastases, consistent with 
a model of clonal outgrowth. These results demonstrate 
the broad utility of EVAsc to quantify inter- and intra-tumor 
heterogeneity from scRNA-seq data without reliance on 
low dimensional visualization. 
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1. INTRODUCTION
Tumor heterogeneity poses significant challenges in 

the clinical diagnosis and treatment of cancer. Variation 
can occur among tumors of the same histological 
subtype, giving rise to variability in therapeutic responses 
among patients. Cellular heterogeneity can also occur 
within tumors, allowing cancer to evolve over the course 
of disease progression, resulting in drug resistance, 
treatment failure, and disease recurrence1–3. An important 
source of tumor heterogeneity is the molecular variation 
among subclones and even individual cells within a 
tumor. This variation drives tumor progression through 
dysregulation of key cancer pathways and contributes to 
the evolutionary fitness of tumors3,4. Differential variability 
analysis of bulk transcriptional data from microarrays and 
RNA-sequencing have also demonstrated that tumors 
with worse prognosis have a corresponding increase in 
transcriptional variation5–8. Single-cell RNA-sequencing 
(scRNA-seq) technologies provide an unprecedented 
ability to measure gene expression from individual cells, 
enabling in-depth exploration of tumor heterogeneity9,10. 

Accurate characterization of inter-sample variation 
from scRNA-seq data of tumors is critical to quantify 
tumor heterogeneity. Molecular heterogeneity of scRNA-
seq data is often analyzed visually, using computational 
methods for dimensionality reduction that enable 
qualitative interpretations based upon the dissimilarity 
in transcriptional profiles between cells11–19. These 
techniques enable visualization of the cellular composition 
within each sample as a measure of heterogeneity. 
However, stochastisticity, overplotting, and nonlinearity 
can challenge biological interpretation from visual analysis 
of scRNA-seq data. Moreover, the embeddings produced 
by some algorithms such as tSNE do not specifically 
preserve cluster heterogeneity. Instead, robust statistics 
are essential. Coefficient of variation (CV)20 has been 
broadly applied to extend this visualization at a sample 
level to quantify transcript variability across samples from 
one group. Similarly, phenotypic volume was introduced to 
quantify the variation between cells in a single sample21. 
These methods are able to visually segregate groups and 
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identify highly variable genes or samples. Additional analysis 
techniques are essential to capture relevant pathway level 
heterogeneity that drives the observed deviations between 
groups of cells from different phenotypes.

In this paper, we extend our algorithm to quantify 
relative pathway dysregulation between experimental 
conditions from bulk transcriptional data22 called 
Expression Variation Analysis (EVA) to scRNA-seq. We 
call this Expression Variation Analysis in Single Cells 
(EVAsc). Briefly, EVAsc provides a robust statistical test 
to compare the heterogeneity of transcriptional profiles 
of genes in a pathway between groups of cells from two 
phenotypes. Using simulated data, we demonstrate that 
this method is robust for imputed scRNA-seq data. With 
the recent outpouring of large scale scRNA-seq studies 
in cancer, publicly available datasets provide a breadth of 
transcriptional data to explore the role of heterogeneity in 
a variety of contexts. We utilize datasets from head and 
neck23 and breast21 cancers, which contain thousands 
of cells comprising dozens of cell types from different 
tissues, subtypes, and individuals. These datasets 
were selected to benchmark the performance of our 
algorithm to characterize cases with known differences in 
heterogeneity, such as between tumor and normal cells. 
Pathways found to be statistically significant from EVAsc 
are called differentially variable or heterogeneous between 
cells from distinct sample groups. These analyses enable 
novel characterization of the role of tumor heterogeneity in 
complex processes in cancer. For example, these analyses 
enable us for the first time to define the relationship between 
variation in immune pathways and TCR clonality. They also 
quantify inter-tumor heterogeneity between primary tumors 
of a single subtype and identify immune dysregulation 
related to the degree of fibroblasts present in the tumor 
microenvironment (TME). Finally, these analyses enable 
quantification of pervasive, differentially variable pathways 
between primary tumors and metastases consistent with 
the hypothesis of clonal outgrowth. Together, these results 
suggest that EVAsc provides an important tool to quantify 
inter-cellular heterogeneity directly from scRNA-seq data 
to yield novel biological insights that are independent of 
more subjective visualization techniques.

2. METHODS

2.1 EVA-sc analysis
We use EVA from the R/Bioconductor package GSReg22 

version 1.17.0 to quantify pathway dysregulation in sets of 
cells from one group relative to the set of cells in another. 
Kendall-tau dissimilarities are computed with the function 
in the GSReg package and other dissimilarity measures 
using the R package philentropy version 0.2.0. Imputed 
scRNA-seq data are input to this algorithm, with imputation 
method described for each dataset below. Analyses are 
performed for gene sets for Hallmark gene set pathways 
from MSigDB version 6.124, meta-signatures from Puram 
et al.23, and Myeloid Innate Immunity Panel pathways from 

nanoString (NanoString Technologies). P-values obtained 
from EVA analysis are FDR adjusted with the Benjamini-
Hochberg correction and FDR adjusted p-values below 0.05 
are called statistically significant. 

All code for the EVAsc analyses is available from https://
github.com/edavis71/scEVA.
2.2 Simulated data

We generate two simulated datasets to benchmark the 
performance of EVAsc, with varying degrees of complexity 
to balance controlled testing of the algorithm with the 
complex properties of scRNA-seq data. For the first, we 
simulate count data with different amounts of missing data 
using the squamous cell carcinoma bulk RNAseq dataset 
with a binary phenotype from the R/Bioconductor package 
GSBenchmark version 0.112.0. We randomly replace 
count data with specified percentages of zeros to generate 
multiple datasets with varying degrees of missingness. We 
also generate a dataset with no signal by duplicating the 
count data for one phenotype. Again, we randomize zeros to 
determine the effect on the false positive rate in data without 
signal. We perform 100 iterations of all randomizations and 
test the performance against 35 distance measures.

While random zeros can be used to examine the 
general effect of missing data on dissimilarity, this does not 
accurately capture the nature of zeros in scRNA-seq data. 
To explore this, we simulate scRNA-seq data generated 
using the R/Bioconductor package Splatter version 1.0.325. 
We generated two simulated datasets: one with no signal 
and one with known differential variation to assess the 
dependence of EVAsc to missing data from scRNA-seq data. 
For the first, count data was simulated for a single group 
of 100 cells and 10,000 genes using default parameters. A 
second group was simulated under the same conditions, with 
the parameter for dropout = TRUE. Merging these outputs 
resulted in a single dataset with a population of cells equally 
distributed between two groups with identical transcriptomes 
and varying number of random zeros in one group.

We impute the simulated dataset described above 
with the R package Rmagic version 1.3.026. To generate a 
synthetic scRNA-seq count data consisting of two groups 
with a high degree of differential variability, we then added 
random noise into the expression matrix by randomizing of 
the count data in each cell for one group to reflect pathway 
heterogeneity.  
2.3 Cancer scRNA-seq datasets

We use 45,000 immune cells from eight primary breast 
carcinomas with matched normal breast tissue, blood, and 
lymph nodes along along with 27,000 T-cells with paired 
single-cell RNA and single-cell TCR sequencing previously 
described in Azizi et al.21. In our study, we impute the 
scRNA-seq data from Puram et al.23 with MAGIC version 
0.1.0 (Python) prior to analysis26. The scRNA-seq dataset 
from Azizi et al.21 was previously imputed from their study 
using BiSCUIT27. 

We also use scRNA-seq datasets of 6,000 cells from 
18 head and neck squamous cell carcinoma (HNSCC) 
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patients containing five sets of matched primary tumors and 
lymph node metastases as previously described in Puram 
et al.23. HNSCC subtypes present in the data were called 
using The Cancer Genome Atlas (TCGA) classification 
profiles from bulk data on primary cancer cells28. Batch effect 
correction was performed using the function ComBat from 
R/Bioconductor package sva version 3.26.029, considering 
each patient as a batch to isolate differences between cells 
from distinct HNSCC subtypes.  
2.4 TCR repertoire analysis

TCR repertoire clonality, richness, and Morisita-Horn 
similarity index between samples were computed on the 
TCR sequencing data from Azizi et al.21 using the R package 
tcrSeqR30 version 1.0.6 available from https://github.com/
ahopki14/tcrSeqR. 
2.5 Differential expression and gene set en-
richment analysis

Differential expression analyses were performed across 

all expressed genes using the Monocle R/Bioconductor 
package version 2.6.131. In all tests, the number of genes 
detected in each cell was included in both the full and 
reduced models as a nuisance parameter. Gene set 
enrichment was performed on differentially expressed 
genes with FDR adjusted p-values below 0.05 using the 
wilcoxGST function from the R package LIMMA version 
3.32.1032. The alternative hypotheses of “up” and “down” 
were used to determine if genes within Myeloid Innate 
Immunity Panel pathways were generally upregulated or 
downregulated, respectively. 

3. RESULTS

3.1 EVAsc algorithm 
EVA is a statistical algorithm designed to compare 

the expected dissimilarity of expression profiles between 
all pairs of samples from one phenotype relative to the 
expected dissimilarity of expression profiles between all 
pairs of samples from another. When applied to the set 

Figure 1 Overview of EVAsc algorithm to compare pathway-level transcriptional heterogeneity between groups of cells from two phenotypes. 
A. EVAsc inputs a single-cell gene expression matrix for cells from two phenotypes (blue and red) and a list of genes annotated to a single pathway. B. EVAsc 
extracts the expression profiles for pathway specific genes. C. It then computes the dissimilarity between the expression profiles for each pair of cells from 
the same phenotype using a user specified dissimilarity metric. D. Finally, EVAsc computes the expected dissimilarity between pairs of cells of each pheno-
type and U-theory statistics are applied to test the null hypothesis that the expected dissimilarity between pairs of cells from one phenotype is equal to the 
expected dissimilarity between paris of cells in the other. The expected dissimilarity between pairs of cells from one phenotype is called the EVAsc statistic, 
which quantifies the inter-cellular heterogeneity for a given pathway. The U-theory statistics provide a robust estimate to quantify p-values that compare this 
relative heterogeneity between phenotypes.
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of genes in a pathway, the expected dissimilarity between 
all pairs of samples from one phenotype provides a 
measure of pathway dysregulation, which we denote 
as the EVA statistic. EVA tests the null hypothesis that 
pathway dysregulation is equal in the phenotypes using a 
computationally efficient approximation for p-values from 
U-theory statistics22. The resulting EVA algorithm provides 
a robust, non-competitive gene set measure to quantify the 
relative inter-phenotype heterogeneity of pathway usage. 
In our previous applications, we based our comparisons on 
the Kendall-tau dissimilarity measure in bulk transcriptional 
data. This measure was selected both because its rank-
based nature reduces sensitivity to data preprocessing and 
models discordance between the expression of genes in a 
profile, which is indicative of pathway dysregulation. Bulk 
data lacks the resolution to quantify cellular heterogeneity 
because it is inherently an aggregate. EVA is poised to 
perform variation analysis based upon the measures of 
cellular heterogeneity in scRNA-seq data. If we treat each 
individual cell as a sample, we can adapt EVA to compare 
transcriptional heterogeneity scRNA-seq data between 
specified sets of cells (Figure 1). 

Given that Kendall-tau dissimilarity is rank-based, it 
is robust to normalization and read depth. However, the 
abundance of zero counts from scRNA-seq data would 
lead to an increase of ties in the ranking. Moreover, dropout 
events in scRNA-seq data occur when an mRNA transcript 
is not captured by the library preparation reaction prior to 
sequencing and this generally happens more frequently in 
genes expressed at low levels. This, combined with the 
general bursting nature of the transcription machinery, 

leads to “false” zero counts, indistinguishable from biological 
zeros of truly unexpressed transcripts and inappropriate 
rank assignments in the Kendall-tau dissimilarity.
3.2 Simulated data

The EVAsc algorithm defaults to comparisons based 
upon the Kendall-tau dissimilarity metric. Because this metric 
quantifies the number of gene pairs which switch ranks 
between two conditions, it directly quantifies how tightly a 
set of genes in a pathway are regulated5,22. Yet, the U-theory 
statistics to compare the expected dissimilarity between 
groups of cells from distinct phenotypes are general and can 
be applied to any dissimilarity measure. In order to compare 
the sensitivity of different dissimilarity measures to variable 
sparsity, we use a bulk RNAseq dataset from GSBenchmark 
containing normal and tumor samples. This dataset has 
50 pathways which are significantly dysregulated between 
tumor and normal samples in bulk. For each metric, the 
significant pathways calculated on the data with no sparsity 
are used as our true positives in the scRNA-seq simulation 
respectively. We then test the performance of EVAsc using 
35 distance measures when varying percentages of missing 
data are present based upon these true positives. Even with 
no missing data, the number of significant pathways between 
tumor and normal vary widely across metrics (Supplemental 
Figure 1A). Several metrics including cosine and Ruzicka 
found no significant differentially variable pathways between 
normal and tumor samples. Kendall-tau detected the highest 
number of significant pathways, followed by Euclidean which 
is a commonly used distance to compare transcriptomes 
between single cells in methods such as tSNE11–17.
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Figure 2. Performance of EVAsc with Kendall-tau dissimilarity on simulated data. A. We apply EVAsc to a simulated dataset containing fifty path-
ways with no differential variation between cells from two phenotypes, but differential bias in their respective dropout rates. EVAsc statistics using a Kend-
all-tau dissimilarity have differential heterogeneity consistent with the simulated dropout rates. B. After MAGIC imputation of the data from A, EVAsc finds 
no significant differentially variable pathways and EVAsc statistics overlap for the two groups. C. We generate an additional simulated dataset by adding 
randomized signal to one group from the imputed data. The EVAsc statistics for significant pathways reflects the true heterogeneity in the simulated dataset.
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When the dataset is mirrored to produce two identical 
groups with no signal, as the percentage of zeros in the dataset 
increase so do the number of falsely detected significant 
pathways for a majority of the metrics (Supplemental Figure 
1B). The number of correctly identified significant true and 
false pathways compared to the known ground truth in the 
simulated dataset with signal vary greatly depending on the 
amount of missing data, with an overall loss of signal when 
the amount of zeros is the highest (Supplemental Figure 1C 
and 1D). Of note, Kendall-tau resulted in the detection of the 
greatest number of significant pathways in data with no zeros, 
and the lowest false positives of all metrics with increasing 
zeros in datasets with or without signal. These data indicate 
that all metrics have varying degrees of sensitivity to missing 
data. We select Kendall-tau for the remainder of the analyses 
in this paper based on the observed accuracy in the two 
simulated datasets without additional normalization. We note 
the rank-based nature of the Kendall-tau dissimilarity renders 
the EVA statistics performed on Kendall-tau dissimilarity 
independent of common normalization procedures, such as 
log transformation.

To determine the effect of dropout and imputation 
on EVAsc’s robustness to detect pathway variability, we 
conducted a simulation study using synthetic scRNA-seq 
datasets generated using the Splatter pipeline. We first 
examined the performance of EVAsc on a dataset with no 
signal and a bias in zeros. The simulated dataset contained 
two identical groups, one containing only biological zeros, 
and one where random dropout was also present (Figure 
2A). Due to the abundance of zeros in the group with dropout 
and the sensitivity of Kendall-tau to missing data, EVAsc 
failed to recognize that the groups were otherwise identical 
and detected differential heterogeneity across 62% (31 out 
of 50) MSigDB Hallmark gene set pathway comparisons. 
We then imputed the missing values in the simulated 
dataset using MAGIC26. EVAsc analysis of this imputed 
data had no pathways with statistically significant differential 
heterogeneity between the two groups (Figure 2B).

We next examined the performance of EVAsc to detect 
known differential variation in imputed scRNA-seq data. 

To simulate heterogeneity, pathway expression profiles 
for each cell in one group were randomized from the 
previously described imputed dataset. EVAsc detected 
dramatic differences in variation between the two groups 
across all randomized hallmark pathways. 100% (50 out of 
50) of the comparisons were statistically significant. These 
simulations demonstrate that EVAsc is able to assess the 
degree of pathway dysregulation between conditions in 
imputed scRNA-seq data.
3.3 EVAsc detects greater variation in tumor 
than normal in samples in a real dataset

We next evaluated the ability of EVAsc to compare 
heterogeneity between normal and tumor samples in 
scRNA-seq data from breast tumors for distinct immune 
cell types21. Azizi et al.21 reported an increase in the 
variance of tumor cell-intrinsic gene expression compared 
to normal breast tissue. Genes with the largest differential 
variance were enriched in signaling pathways important 
to the TME. To demonstrate that EVAsc enables robust 
statistical comparison of this heterogeneity in pathways, we 
compared tumor to normal immune cells across multiple 
cell types, which included T-cells, myeloid, and NK cells. 
EVAsc analysis detected greater variation in breast tumor 
than normal breast tissue across each immune cell type 
tested. All 50 pathways tested were statistically significant 
in each comparison (FDR adjusted p-value < 0.05) (Figure 
3, Supplemental Tables 1-4). This suggests that increased 
pathway heterogeneity within tumor-associated immune 
cell types may be driven by distinct TMEs present within a 
single tumor. 
3.4 EVAsc finds increased immune pathway 
heterogeneity in tumors with high T-cell clon-
ality 

With the rapid increase of interest in the field of 
immunotherapy, T-cell receptor (TCR) sequencing is 
becoming a valuable tool for assessing immune response. 
Accordingly, we used T-cells from breast cancer data21 
to explore the relationship between the TCR repertoire 
and heterogeneity in immune signaling pathways using 
27,000 T-cells with paired single-cell RNA and V(D)J 
sequencing from three breast cancer tumors. For each 
individual tumor, we computed Shannon entropy for TCR 
clonality and richness as a measure of TCR diversity based 
on the single-cell TCR sequencing data (Figure 4A). A 
Morisita-Horn similarity matrix was generated to compare 
the similarity of TCR repertoires across tumor replicates 
(Figure 4B). We then applied EVAsc to the scRNA-seq 
data using the Myeloid Innate Immunity Panel pathways 
from NanoString® to compare each T-cell subtype 
between individuals. Hierarchical clustering of the EVA 
statistics revealed a gradient of pathway dysregulation 
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Figure 3. All pathways are significantly dysregulated in immune cell 
types from breast tumors relative to normal breast tissue. Boxplot 
of EVAsc statistics of inter-cellular heterogeneity for all fifty hallmark path-
ways in major immune cell types from both tumor (blue) and normal (red) 
breast tissue.
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primary tumors and lymph node metastases23.

We first applied EVAsc to primary cancer cells of 
HNSCC subtypes to examine the differences between 
inter-tumor heterogeneity. Subtypes were previously called 
by TCGA classification and ComBat33 was performed to 
remove the impact of patient identity on transcriptional 
profiles to compare cells from several patients with EVAsc29. 
We include all MSigDB Hallmark gene set pathways and 
six meta-signatures derived from non-negative matrix 
factorization programs that represent common expression 
programs variable within multiple tumor forms23 in our 
comparisons. 46% (77 out of 168) of the comparisons are 
statistically significant when all pairwise combinations of 
subtypes were considered (FDR adjusted p-value < 0.05) 
(Supplemental Table 8). Hierarchical clustering of the EVAsc 
statistics demonstrated patterns of subtype-specific pathway 
dysregulation (Figure 5A).

To determine the degree of inter-tumor heterogeneity 
between patients within a single subtype we compared 
primary cancer cells between seven individuals with basal 
primary tumors. 78% (923 out of 1176) of the comparisons 
are statistically significant when all pairwise combinations 
of patients were considered (FDR adjusted p-value < 0.05) 
(Supplemental Table 9). EVAsc analysis revealed dramatic 
differences in pathway dysregulation across patients 
(Figure 5B). Additionally, we explored heterogeneity within 
cells of the primary TME across individuals with basal 
primary tumors. Previously, Puram et al.23 observed that the 
proportion of cell types within the TME vary for each patient. 
Notably, they found that the differences in the basal and 
mesenchymal subtypes of HPV-negative head and neck 
cancer can be attributed to a larger proportion of fibroblasts 
in the TME. Thus, we stratified these basal samples into a 
binary classification of high (>40%) or low-fibroblast (<40%). 
To determine the transcriptional status of immune-pathways 
within patient-specific populations of fibroblasts we applied 
EVAsc using the Myeloid Innate Immunity Panel pathways 
from NanoString®. Hierarchical clustering of the EVAsc 
statistics demonstrated increased immune dysregulation in 
individuals with a high proportion of fibroblasts present in the 
TME (Figure 5C). 69% (348 out of 504) of the comparisons 
are statistically significant when all pairwise combinations 
of patients were considered (FDR adjusted p-value < 
0.05) (Supplemental Table 10). We note that the fibroblast 
composition in each basal tumor is independent of the 
pathway dysregulation observed across cancer cells from 
distinct patients.

directly correlated with the degree of TCR clonality (Figure 
4C, Supplemental Table 5). We further applied GSEA to 
differentially expressed genes to compare the overlap 
between the enrichment of upregulated and downregulated 
immune pathways and the immune pathway dysregulation 
found with EVAsc (Supplemental Tables 6-7). The 
majority of the significantly dysregulated pathways from 
EVAsc overlapped with pathways that were enriched for 
upregulation in higher clonality compared to lower clonality 
individuals, with seven additional pathway comparisons 
that are significantly downregulated. We note that clonal 
expansion of T-cells is generally associated with a 
mounting immune response after antigen recognition. Our 
EVAsc results suggest that increased clonality of the TCR 
repertoire leads to increased heterogeneity in immune 
pathway expression as well as upregulated immune 
pathway expression.
3.5 EVAsc finds increased variation in primary 
tumors relative to metastases and sub-
type-specific pathway dysregulation

After demonstrating the ability of EVAsc to detect 
heterogeneity between tumors, we next aimed to identify 
differences in pathway heterogeneity between cancer 
subtypes, within subtypes, and within the TME. Further, 
we sought to characterize intra-tumor heterogeneity within 
primary tumors and associated metastases. In order to 
make these comparisons, we applied EVAsc to scRNA-
seq data for 18 HNSCC patients, including five matched 

Figure 4. TCR clonality is associated with immune 
pathway dysregulation in breast tumors. A. TCR 
clonality and richness for individual breast tumors with 
matched scRNA-seq and TCR-seq data. B. Heatmap 
of Morisita-Horn similarity index to quantify agreement of 
CDR3 clonotypes from duplicate TCR-seq data for the 
same breast tumor and between individual breast tumors. 
C. Hierarchical heatmap of EVAsc statistics of inter-cellular 
heterogeneity for immune pathways in each breast tumor 
T-cell subtype.
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4. DISCUSSION
We develop EVAsc to quantify heterogeneity in 

pathway level gene expression from imputed scRNA-
seq data to quantify differential variability between 
conditions. We demonstrate the suitability of EVAsc 
for identifying differential variability of pathway gene 
expression by applying it to simulated and real scRNA-
seq data. Simulated data generated with splatter was 
used to demonstrate the ability EVAsc to detect known 
variability between conditions. Validation was performed 
by comparing immune cell types between normal breast 
tissue and breast tumors from Azizi et al.21. As expected, 
EVAsc detected increased variability in the tumor cells for 
all cell type comparisons relative to normal cells (Figure 3).

We then applied EVAsc to perform novel analyses of 
differential heterogeneity on two publicly available cancer 
scRNA-seq datasets. We used paired single-cell RNA 
and single-cell TCR sequencing data21 to compare inter-
patient T-cell subtype heterogeneity in relation to TCR 
clonality. TCR repertoire analysis showed differences in 
the level of TCR clonality for each individual (Figure 4A). 

We next examined intra-tumor pathway dysregulation 
between the matched primary and metastatic cancer cells 
within five individual HNSCC patients. 98% (55 out of 56) 
of the pathways are statistically significant for patient HN25, 
with 100% (56 out of 56) statistically significant for patient 
HN26 (FDR adjusted p-value < 0.05) (Supplemental Table 
11). In both cases, all significant hits have greater variation 
in the primary tumor than the metastasis (Figure 5D). For the 
remaining three patients, no significant pathway dysregulation 
was observed. Puram et al.23 previously observed that the 
expression profiles of lymph node metastases overlapped 
with the corresponding primary tumors. While this indicates 
that there appears to be no mean differences between the 
paired samples, our method is able to capture significant 
differential variation between these phenotypes which was 
previously unrecognized.

Figure 5. Inter- and intra-tu-
mor heterogeneity distin-
guish HNSCC subtypes and 
metastases. A. Heatmap of 
EVAsc statistics of inter-cellu-
lar heterogeneity in hallmark 
pathways for cancer cells from 
patients in distinct HNSCC 
subtypes. B. A heatmap of 
EVAsc statistics reveals that in-
ter-cellular heterogeneity varies 
between primary cancer cells 
of the basal tumor type for all 
hallmark pathways, although 
no differences in mean expres-
sion were observed previously 
with tSNE23. C. EVAsc analysis 
observes significant increases 
in inter-cellular variation of im-
mune pathways for fibroblasts 
that are associated with the 
total fibroblast content in each 
basal HNSCC tumor. Previous 
observations of TCGA sub-
types noted that tumors with 
high fibroblast content (red) 
were classified as mesenchy-
mal and low fibroblast content 
(blue) as basal, suggestive of 
fibroblast mediated differences 
between immune pathway ac-
tivity in these subtypes. D. Box-
plot of EVAsc statistics in pri-
mary and metastatic HNSCC 
cancer cells for each patient 
demonstrate higher inter-cel-
lular heterogeneity in primary 
cancer cells than metastatic 
cells for two patients.
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between individuals with basal primary tumors demonstrated 
that TMEs with a large proportion of fibroblasts have a high 
degree of immune pathway dysregulation. This indicated 
immune pathway heterogeneity within the fibroblast 
expression states, likely due to the immunomodulatory role 
of cancer-associated fibroblasts within the TME36.

Beyond immunology, the intra-patient comparison 
with EVAsc enables evaluation of the role of intra-tumor 
heterogeneity in metastasis. Specifically, we compared 
cancer cells from primary tumors to metastases from 
individual patients in HNSCC single-cell data. This analysis 
revealed a clear pattern: either uniform dysregulation 
or no significant differences between the primary tumor 
and metastasis. For the two patients that had differential 
variability, the heterogeneity within the primary tumor was 
significantly higher than the metastatic cancer cells (Figure 
5D). This observation agrees with Nowell’s theory of clonal 
evolution, which states that cancer originates from a single 
cell, accumulates genetic alterations, and during the process 
of metastasis there is an enrichment for the most aggressive 
clones37. This theory would indicate that clonal metastases 
are more homogeneous, as very few cells gain invasive 
and metastatic potential. Such intra-tumor discrepancies 
that may evolve as the disease progresses between the 
primary tumor and disseminated metastasis can result in 
incorrect biomarkers being used to make clinical decisions 
and lead to therapeutic failure1. The differences in molecular 
heterogeneity may also give rise to different therapeutic 
responses in primary tumors than metastases. We note that 
the analyses performed in this study used current landmark 
cohorts of breast and head and neck tumors, which were 
limited in sample size. Future work with EVA analysis on 
larger sample cohorts is essential to establish the role of 
heterogeneity in complex dynamic processes in cancer 
progression and therapeutic response. 

Together, the results of these analyses show that 
EVAsc is a robust algorithm for detecting inter- and 
intra-tumor heterogeneity in scRNA-seq data. EVAsc is 
applicable to imputed scRNA-seq datasets, which we 
demonstrate using MAGIC and BiSCUIT imputed data. 
In the applications to some of the cancer datasets in this 
study, such as tumor versus normal and primary tumor 
versus metastasis, we observe widespread changes 
across a majority of pathways between phenotypes. We 
attribute these changes to the pervasive transcriptional 
reprogramming in cancer. While the pathways examined in 
this study are in no way exhaustive, this is suggestive of 
global disruption of gene expression and makes for broad 
interpretations. Comparisons within immune cells and 
primary cancer subtypes show phenotype specific patterns 
of dysregulation, allowing more specific interpretation of the 
molecular mechanisms in tumor heterogeneity. We note that 
EVAsc can be widely applied beyond cancer, for example 
to evaluate the role of transcriptional variation on cell fate 
specification in development38. In this context, heterogeneity 
is more constrained than in cancer and EVAsc finds different 
patterns of inter-cellular heterogeneity for distinct pathways, 

EVAsc analysis revealed significant differences in immune 
pathway heterogeneity between individuals, consistent 
with the degree of TCR clonality: increased TCR clonality, 
increased heterogeneity (Figure 4C). We then performed 
differential expression analysis between individuals to 
explore the direction of gene set enrichment. There was 
a large amount of overlap in differentially variable and 
differentially upregulated pathways, indicating increased 
heterogeneity as well as increased gene expression in 
higher clonality individuals.

Ikeda et al.34 examined the relationship between intra-
tumor expression levels of immune-related genes and TCR 
repertoire in endometrial cancer. They found increased 
mRNA expression levels in cases with high T-cell clonality, 
which was associated with a better prognosis. These results 
were obtained using total RNA and Quantitative real-time 
PCR in relatively few genes and are consistent with our 
findings at a comprehensive single-cell RNA level. Recent 
data has also shown that increased clonal expansion of 
T-cells and low baseline clonality are associated with longer 
survival after being treated with anti-CTLA4 inhibitors in 
pancreatic ductal adenocarcinoma30. Thus, characterizing 
the immune microenvironment by expression of immune 
pathways, immune pathway heterogeneity, and the 
clonality of infiltrated T-cell receptors may be an important 
biomarker for clinical response to immunotherapy. With 
the advent of paired single-cell RNA and TCR profiling 
methods, studying the transcriptional effect of TCR 
repertoire changes across cancer cells may provide further 
insight into the mechanisms of immunotherapy.

Further, an HNSCC cancer scRNA-seq dataset 
from Puram et al.23 was used to examine differences in 
heterogeneity between HNSCC subtypes. Previously, 
bulk studies have classified HNSCC tumors into four 
distinct molecular subtypes based on their expression 
profiles28: atypical, basal, classical, and mesenchymal. 
EVAsc analysis revealed unique patterns of pathway 
dysregulation in each of the subtypes detected by TCGA 
classification (Figure 5A). Overall, immune pathways are 
enriched in the atypical subtype. It has been reported that 
mesenchymal and atypical subtypes have the highest 
degree of immune infiltration, making them attractive 
targets for immunotherapy35. Our results suggest a key 
immune component specific to the atypical subtype.

Previous analyses of the HNSCC scRNA-seq data 
found that the cancer cells in the mesenchymal and basal 
subtypes have similar expression profiles when stromal 
contribution was removed23 and refined the classification 
of mesenchymal to basal subtype. We speculated that the 
cellular compositions of the TME within individual basal 
tumors could contribute to the molecular heterogeneity. 
Importantly, fibroblasts have opposing roles in the TME 
and showed a wide-range of inter-tumor proportional 
variability. Normal fibroblasts exert anti-tumorigenic effects 
to suppress tumor growth but can be reprogrammed 
to a cancer-associated phenotype supportive of tumor 
evolution. EVAsc analysis comparing fibroblast populations 
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cer genes. PLoS One 8, e56823 (2013).
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with some pathways increasing over developmental time 
and others decreasing.

In addition, EVAsc is broadly applicable to any dissimilarity 
metric and is not limited to Kendall-tau (Supplemental Figure 
1). This flexibility in the algorithm allows users to specify 
appropriate distance metrics for datasets and enables the 
direct comparison of performance across various metrics. 
We note that different dissimilarity metrics may have different 
sensitivities to the preprocessing used for the scRNA-seq 
datasets. The rank-based Kendall-tau dissimilarity metric 
used for the majority of this study is independent of many 
sample-specific normalization procedures, such as log 
transformation or quantile normalization. Other dissimilarity 
measures may be sensitive to these transformations, and 
this effect must be evaluated before applying EVAsc to 
compare dissimilarity based upon these metrics. Emerging 
variance stabilization methods to account for the pervasive 
heteroscedastic mean variance relationship of scRNA-seq 
data may impact the results obtained with this algorithm, and 
are essential to evaluate in future studies. Thus, EVAsc is a 
robust multivariate statistical method to quantify differential 
variation of pathway gene expression and provides the ability 
to explore transcriptional variation in numerous disease 
and normal contexts at a single-cell resolution. Future work 
to improve the EVAsc algorithm will involve integrating 
mathematical models to compute comparisons on scRNA-
seq data without the need for imputation.

ACKNOWLEDGEMENTS
This work was supported by grants from the NIH (R01CA177669, 
U01CA196390, and U01CA212007 to EJF), the Chan-Zuckerberg Ini-
tiative DAF (2018-183445 to LAG and 2018-183444 to EJF) an advised 
fund of Silicon Valley Community Foundation, the Johns Hopkins Uni-
versity Catalyst (EF & LAG) and Discovery awards (EJF), and the Johns 
Hopkins University School of Medicine Synergy Award (LAG, & EJF). 
EMJ and ERT acknowledge funding from the Broccoli Foundation, The 
Bloomberg~Kimmel Institute for Cancer Immunotherapy, and The Skip 
Viragh Center for Pancreas Cancer Clinical Research and Patient Care, 
and The Commonwealth Foundation for Cancer Research. ERT is funded 
through the MacMillan Pathway to Independence Fellowship. EMJ, ERT, 
and AH are also supported through NIH R01CA184926, as well as Stand 
Up To Cancer which is a program of the Entertainment Industry Founda-
tion administered by the American Association for Cancer Research. The 
authors thank L. Cope, A. Ewald, K. Schuebel, R. Scharpf, V. Yegnasu-
bramanian, R. Riggins, L. Kagohara, D. Gaykalova, T. Triche, and W. H. 
Jin for feedback on the algorithm and manuscript. 

REFERENCES
1. Bedard, P. L., Hansen, A. R., Ratain, M. J. & Siu, L. L. Tumour hetero-
geneity in the clinic. Nature 501, 355–364 (2013).
2. Pogrebniak, K. L. & Curtis, C. Harnessing Tumor Evolution to Circum-
vent Resistance. Trends Genet. 34, 639–651 (2018).
t3. Gatenby, R. A., Gillies, R. J. & Brown, J. S. Of cancer and cave fish. 
Nat. Rev. Cancer 11, 237–238 (2011).
4. Burrell, R. A., McGranahan, N., Bartek, J. & Swanton, C. The causes 
and consequences of genetic heterogeneity in cancer evolution. Nature 
501, 338 (2013).
5. Eddy, J. A., Hood, L., Price, N. D. & Geman, D. Identifying tightly regu-
lated and variably expressed networks by Differential Rank Conservation 
(DIRAC). PLoS Comput. Biol. 6, e1000792 (2010).
6. Bravo, H. C., Pihur, V., McCall, M., Irizarry, R. A. & Leek, J. T. Gene ex-
pression anti-profiles as a basis for accurate universal cancer signatures. 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 27, 2018. ; https://doi.org/10.1101/479287doi: bioRxiv preprint 

https://doi.org/10.1101/479287
http://creativecommons.org/licenses/by-nd/4.0/


10 Davis-Marcisak, et al 2018, BioRxiv Preprint

BioRxiv Preprint
33. Johnson, W. E., Li, C. & Rabinovic, A. Adjusting batch effects in mi-
croarray expression data using empirical Bayes methods. Biostatistics 
8, 118–127 (2007).
34. Ikeda, Y. et al. Clinical significance of T cell clonality and expres-
sion levels of immune-related genes in endometrial cancer. Oncol. 
Rep. 37, 2603–2610 (2017).
35. Mandal, R. et al. The head and neck cancer immune landscape 
and its immunotherapeutic implications. JCI Insight 1, e89829 (2016).
36. Alkasalias, T., Moyano-Galceran, L., Arsenian-Henriksson, M. & Le-
hti, K. Fibroblasts in the Tumor Microenvironment: Shield or Spear? Int. 
J. Mol. Sci. 19, (2018).
37. Greaves, M. & Maley, C. C. Clonal evolution in cancer. Nature 481, 
306–313 (2012).
38. Clark, B. et al. Comprehensive analysis of retinal development at 
single cell resolution identifies NFI factors as essential for mitotic exit 
and specification of late-born cells. (2018). doi:10.1101/378950Expres-
sion variation analysis for tumor heterogeneity in single-cell RNA-se-
quencing data

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 27, 2018. ; https://doi.org/10.1101/479287doi: bioRxiv preprint 

https://doi.org/10.1101/479287
http://creativecommons.org/licenses/by-nd/4.0/


11Davis-Marcisak, et al 2018, BioRxiv Preprint

BioRxiv Preprint
SUPPLEMENTAL FIGURES

Supplemental Figure 1 A. Barplot of the number of significant hallmark gene set pathways across 35 metrics from performing EVA on a benchmark bulk 
RNA-sequencing dataset with normal and cancer samples.
B. Number of significant hallmark gene set pathways across 35 metrics from performing 100 EVA permutations on a mirrored bulk RNA-sequencing data 
set so that there is no signal. Each bar is colored by the percentage of random zeros added to the dataset. As the number of random zeros increases, the 
number of significant pathways (all false positives) tends to increase. 
C. Number of true significant hallmark gene set pathways across 35 metrics from performing 100 EVA permutations on the bulk RNA-sequencing data from 
(A). True positives are defined as any pathway that was significant for a metric when no zeros are present. Each bar is colored by the percentage of random 
zeros added to the dataset. For most metrics, as the number of random zeros increases, the number of significant pathways increases around 40% and 
60% zeros, and the signal drops at 80%.
D. Number of false positive significant hallmark gene set pathways across 35 metrics from performing 100 EVA permutations on the bulk RNA-sequencing 
data from (A). False positives are defined as any pathway that was not significant for a metric when no zeros are present. Each bar is colored by the percent-
age of random zeros added to the dataset. For most metrics, as the number of random zeros increases, the number of significant pathways peaks around 
40% and 60% zeros, with some metrics peaking at 80%. This indicates variable sensitivity to zeros in a dataset with signal. 
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