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ABSTRACT

Tumor heterogeneity provides a complex challenge to
cancer treatment and is a critical component of therapeutic
response, disease recurrence, and patient survival. Single-
cell RNA-sequencing (scRNA-seq) technologies reveal
the prevalence of intra- and inter-tumor heterogeneity.
Computational techniques are essential to quantify
the differences in variation of these profiles between
distinct cell types, tumor subtypes, and patients to fully
characterize intra- and inter-tumor molecular heterogeneity.
We devised a new algorithm, Expression Variation
Analysis in Single Cells (EVAsc), to perform multivariate
statistical analyses of differential variation of expression
in gene sets for scRNA-seq. EVAsc has high sensitivity
and specificity to detect pathways with true differential
heterogeneity in simulated data. We then apply EVAsc
to several public domain scRNA-seq tumor datasets to
quantify the landscape of tumor heterogeneity in several
key applications in cancer genomics, i.e. immunogenicity,
cancer subtypes, and metastasis. Immune pathway
heterogeneity in hematopoietic cell populations in breast
tumors corresponded to the amount diversity present in
the T-cell repertoire of each individual. In head and neck
squamous cell carcinoma (HNSCC) patients, we found
dramatic differences in pathway dysregulation across
basal primary tumors. Within the basal primary tumors
we also identified increased immune dysregulation in
individuals with a high proportion of fibroblasts present in
the tumor microenvironment. Moreover, cells in HNSCC
primary tumors had significantly more heterogeneity
across pathways than cells in metastases, consistent with
a model of clonal outgrowth. These results demonstrate
the broad utility of EVAsc to quantify inter- and intra-tumor
heterogeneity from scRNA-seq data without reliance on
low dimensional visualization.
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1. INTRODUCTION

Tumor heterogeneity poses significant challenges in
the clinical diagnosis and treatment of cancer. Variation
can occur among tumors of the same histological
subtype, giving rise to variability in therapeutic responses
among patients. Cellular heterogeneity can also occur
within tumors, allowing cancer to evolve over the course
of disease progression, resulting in drug resistance,
treatment failure, and disease recurrence’. An important
source of tumor heterogeneity is the molecular variation
among subclones and even individual cells within a
tumor. This variation drives tumor progression through
dysregulation of key cancer pathways and contributes to
the evolutionary fitness of tumors®*“. Differential variability
analysis of bulk transcriptional data from microarrays and
RNA-sequencing have also demonstrated that tumors
with worse prognosis have a corresponding increase in
transcriptional variation®®. Single-cell RNA-sequencing
(scRNA-seq) technologies provide an unprecedented
ability to measure gene expression from individual cells,
enabling in-depth exploration of tumor heterogeneity®°.

Accurate characterization of inter-sample variation
from scRNA-seq data of tumors is critical to quantify
tumor heterogeneity. Molecular heterogeneity of scRNA-
seq data is often analyzed visually, using computational
methods for dimensionality reduction that enable
qualitative interpretations based upon the dissimilarity
in transcriptional profiles between cells™'°. These
techniques enable visualization of the cellular composition
within each sample as a measure of heterogeneity.
However, stochastisticity, overplotting, and nonlinearity
can challenge biological interpretation from visual analysis
of scRNA-seq data. Moreover, the embeddings produced
by some algorithms such as tSNE do not specifically
preserve cluster heterogeneity. Instead, robust statistics
are essential. Coefficient of variation (CV)® has been
broadly applied to extend this visualization at a sample
level to quantify transcript variability across samples from
one group. Similarly, phenotypic volume was introduced to
quantify the variation between cells in a single sample?'.
These methods are able to visually segregate groups and
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identify highly variable genes or samples. Additional analysis
techniques are essential to capture relevant pathway level
heterogeneity that drives the observed deviations between
groups of cells from different phenotypes.

In this paper, we extend our algorithm to quantify
relative pathway dysregulation between experimental
conditions from bulk transcriptional data?® called
Expression Variation Analysis (EVA) to scRNA-seq. We
call this Expression Variation Analysis in Single Cells
(EVAsc). Briefly, EVAsc provides a robust statistical test
to compare the heterogeneity of transcriptional profiles
of genes in a pathway between groups of cells from two
phenotypes. Using simulated data, we demonstrate that
this method is robust for imputed scRNA-seq data. With
the recent outpouring of large scale scRNA-seq studies
in cancer, publicly available datasets provide a breadth of
transcriptional data to explore the role of heterogeneity in
a variety of contexts. We utilize datasets from head and
neck®® and breast?' cancers, which contain thousands
of cells comprising dozens of cell types from different
tissues, subtypes, and individuals. These datasets
were selected to benchmark the performance of our
algorithm to characterize cases with known differences in
heterogeneity, such as between tumor and normal cells.
Pathways found to be statistically significant from EVAsc
are called differentially variable or heterogeneous between
cells from distinct sample groups. These analyses enable
novel characterization of the role of tumor heterogeneity in
complex processes in cancer. For example, these analyses
enable us for the first time to define the relationship between
variation in immune pathways and TCR clonality. They also
quantify inter-tumor heterogeneity between primary tumors
of a single subtype and identify immune dysregulation
related to the degree of fibroblasts present in the tumor
microenvironment (TME). Finally, these analyses enable
quantification of pervasive, differentially variable pathways
between primary tumors and metastases consistent with
the hypothesis of clonal outgrowth. Together, these results
suggest that EVAsc provides an important tool to quantify
inter-cellular heterogeneity directly from scRNA-seq data
to yield novel biological insights that are independent of
more subjective visualization techniques.

2. METHODS

2.1 EVA-sc analysis

We use EVAfrom the R/Bioconductor package GSReg?
version 1.17.0 to quantify pathway dysregulation in sets of
cells from one group relative to the set of cells in another.
Kendall-tau dissimilarities are computed with the function
in the GSReg package and other dissimilarity measures
using the R package philentropy version 0.2.0. Imputed
scRNA-seq data are input to this algorithm, with imputation
method described for each dataset below. Analyses are
performed for gene sets for Hallmark gene set pathways
from MSigDB version 6.124, meta-signatures from Puram
et al.?8, and Myeloid Innate Immunity Panel pathways from

nanoString (NanoString Technologies). P-values obtained
from EVA analysis are FDR adjusted with the Benjamini-
Hochberg correction and FDR adjusted p-values below 0.05
are called statistically significant.

All code for the EVAsc analyses is available from https://
github.com/edavis71/scEVA.

2.2 Simulated data

We generate two simulated datasets to benchmark the
performance of EVAsc, with varying degrees of complexity
to balance controlled testing of the algorithm with the
complex properties of scRNA-seq data. For the first, we
simulate count data with different amounts of missing data
using the squamous cell carcinoma bulk RNAseq dataset
with a binary phenotype from the R/Bioconductor package
GSBenchmark version 0.112.0. We randomly replace
count data with specified percentages of zeros to generate
multiple datasets with varying degrees of missingness. We
also generate a dataset with no signal by duplicating the
count data for one phenotype. Again, we randomize zeros to
determine the effect on the false positive rate in data without
signal. We perform 100 iterations of all randomizations and
test the performance against 35 distance measures.

While random zeros can be used to examine the
general effect of missing data on dissimilarity, this does not
accurately capture the nature of zeros in scRNA-seq data.
To explore this, we simulate scRNA-seq data generated
using the R/Bioconductor package Splatter version 1.0.3%.
We generated two simulated datasets: one with no signal
and one with known differential variation to assess the
dependence of EVAsc to missing data from scRNA-seq data.
For the first, count data was simulated for a single group
of 100 cells and 10,000 genes using default parameters. A
second group was simulated under the same conditions, with
the parameter for dropout = TRUE. Merging these outputs
resulted in a single dataset with a population of cells equally
distributed between two groups with identical transcriptomes
and varying number of random zeros in one group.

We impute the simulated dataset described above
with the R package Rmagic version 1.3.0%. To generate a
synthetic scRNA-seq count data consisting of two groups
with a high degree of differential variability, we then added
random noise into the expression matrix by randomizing of
the count data in each cell for one group to reflect pathway
heterogeneity.

2.3 Cancer scRNA-seq datasets

We use 45,000 immune cells from eight primary breast
carcinomas with matched normal breast tissue, blood, and
lymph nodes along along with 27,000 T-cells with paired
single-cell RNA and single-cell TCR sequencing previously
described in Azizi et al.?'. In our study, we impute the
scRNA-seq data from Puram et al.®® with MAGIC version
0.1.0 (Python) prior to analysis®. The scRNA-seq dataset
from Azizi et al.?' was previously imputed from their study
using BiSCUITZ.

We also use scRNA-seq datasets of 6,000 cells from
18 head and neck squamous cell carcinoma (HNSCC)
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patients containing five sets of matched primary tumors and
lymph node metastases as previously described in Puram
et al.2%. HNSCC subtypes present in the data were called
using The Cancer Genome Atlas (TCGA) classification
profiles from bulk data on primary cancer cells®. Batch effect
correction was performed using the function ComBat from
R/Bioconductor package sva version 3.26.0%°, considering
each patient as a batch to isolate differences between cells
from distinct HNSCC subtypes.

2.4 TCR repertoire analysis

TCR repertoire clonality, richness, and Morisita-Horn
similarity index between samples were computed on the
TCR sequencing data from Azizi et al.?" using the R package
tcrSegR® version 1.0.6 available from https:/github.com/
ahopki14/tcrSeqR.

2.5 Differential expression and gene set en-
richment analysis

Differential expression analyses were performed across

all expressed genes using the Monocle R/Bioconductor
package version 2.6.1%'. In all tests, the number of genes
detected in each cell was included in both the full and
reduced models as a nuisance parameter. Gene set
enrichment was performed on differentially expressed
genes with FDR adjusted p-values below 0.05 using the
wilcoxGST function from the R package LIMMA version
3.32.10%. The alternative hypotheses of “up” and “down”
were used to determine if genes within Myeloid Innate
Immunity Panel pathways were generally upregulated or
downregulated, respectively.

3. RESULTS

3.1 EVAsc algorithm

EVA is a statistical algorithm designed to compare
the expected dissimilarity of expression profiles between
all pairs of samples from one phenotype relative to the
expected dissimilarity of expression profiles between all
pairs of samples from another. When applied to the set
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Figure 1 Overview of EVAsc algorithm to compare pathway-level transcriptional heterogeneity between groups of cells from two phenotypes.
A. EVAsc inputs a single-cell gene expression matrix for cells from two phenotypes (blue and red) and a list of genes annotated to a single pathway. B. EVAsc
extracts the expression profiles for pathway specific genes. C. It then computes the dissimilarity between the expression profiles for each pair of cells from
the same phenotype using a user specified dissimilarity metric. D. Finally, EVAsc computes the expected dissimilarity between pairs of cells of each pheno-
type and U-theory statistics are applied to test the null hypothesis that the expected dissimilarity between pairs of cells from one phenotype is equal to the
expected dissimilarity between paris of cells in the other. The expected dissimilarity between pairs of cells from one phenotype is called the EVAsc statistic,
which quantifies the inter-cellular heterogeneity for a given pathway. The U-theory statistics provide a robust estimate to quantify p-values that compare this
relative heterogeneity between phenotypes.
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of genes in a pathway, the expected dissimilarity between
all pairs of samples from one phenotype provides a
measure of pathway dysregulation, which we denote
as the EVA statistic. EVA tests the null hypothesis that
pathway dysregulation is equal in the phenotypes using a
computationally efficient approximation for p-values from
U-theory statistics?. The resulting EVA algorithm provides
a robust, non-competitive gene set measure to quantify the
relative inter-phenotype heterogeneity of pathway usage.
In our previous applications, we based our comparisons on
the Kendall-tau dissimilarity measure in bulk transcriptional
data. This measure was selected both because its rank-
based nature reduces sensitivity to data preprocessing and
models discordance between the expression of genes in a
profile, which is indicative of pathway dysregulation. Bulk
data lacks the resolution to quantify cellular heterogeneity
because it is inherently an aggregate. EVA is poised to
perform variation analysis based upon the measures of
cellular heterogeneity in scRNA-seq data. If we treat each
individual cell as a sample, we can adapt EVA to compare
transcriptional heterogeneity scRNA-seq data between
specified sets of cells (Figure 1).

Given that Kendall-tau dissimilarity is rank-based, it
is robust to normalization and read depth. However, the
abundance of zero counts from scRNA-seq data would
lead to an increase of ties in the ranking. Moreover, dropout
events in scRNA-seq data occur when an mRNA transcript
is not captured by the library preparation reaction prior to
sequencing and this generally happens more frequently in
genes expressed at low levels. This, combined with the
general bursting nature of the transcription machinery,

leads to “false” zero counts, indistinguishable from biological
zeros of truly unexpressed transcripts and inappropriate
rank assignments in the Kendall-tau dissimilarity.

3.2 Simulated data

The EVAsc algorithm defaults to comparisons based
upon the Kendall-tau dissimilarity metric. Because this metric
quantifies the number of gene pairs which switch ranks
between two conditions, it directly quantifies how tightly a
set of genes in a pathway are regulated®?2. Yet, the U-theory
statistics to compare the expected dissimilarity between
groups of cells from distinct phenotypes are general and can
be applied to any dissimilarity measure. In order to compare
the sensitivity of different dissimilarity measures to variable
sparsity, we use a bulk RNAseq dataset from GSBenchmark
containing normal and tumor samples. This dataset has
50 pathways which are significantly dysregulated between
tumor and normal samples in bulk. For each metric, the
significant pathways calculated on the data with no sparsity
are used as our true positives in the scRNA-seq simulation
respectively. We then test the performance of EVAsc using
35 distance measures when varying percentages of missing
data are present based upon these true positives. Even with
no missing data, the number of significant pathways between
tumor and normal vary widely across metrics (Supplemental
Figure 1A). Several metrics including cosine and Ruzicka
found no significant differentially variable pathways between
normal and tumor samples. Kendall-tau detected the highest
number of significant pathways, followed by Euclidean which
is a commonly used distance to compare transcriptomes
between single cells in methods such as tSNE"-"7,

A B C
phenotype R .
C ;
LK
o Qo Qo
o ko] o
= = =
© © ©
3 s s
(2] 2] 2]
9] 1) 1)
] ] ]
< < <
> > >
L L 1N}
AL AAAAL
pathway pathway pathway
7000
»n 3 (7]
o 5 o
o O 531025 S 531.025
N 6000 N 8
b o
° < 531.000 S 531000
N
2 5000 2 ©
[= o]
IS 530.975 € 530.975
S 2 5
Z 4000 z
530.950 530.950
1 2 1 2 1 2
phenotype phenotype phenotype

Figure 2. Performance of EVAsc with Kendall-tau dissimilarity on simulated data. A. We apply EVAsc to a simulated dataset containing fifty path-
ways with no differential variation between cells from two phenotypes, but differential bias in their respective dropout rates. EVAsc statistics using a Kend-
all-tau dissimilarity have differential heterogeneity consistent with the simulated dropout rates. B. After MAGIC imputation of the data from A, EVAsc finds
no significant differentially variable pathways and EVAsc statistics overlap for the two groups. C. We generate an additional simulated dataset by adding
randomized signal to one group from the imputed data. The EVAsc statistics for significant pathways reflects the true heterogeneity in the simulated dataset.
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When the dataset is mirrored to produce two identical
groups with no signal, as the percentage of zerosinthe dataset
increase so do the number of falsely detected significant
pathways for a majority of the metrics (Supplemental Figure
1B). The number of correctly identified significant true and
false pathways compared to the known ground truth in the
simulated dataset with signal vary greatly depending on the
amount of missing data, with an overall loss of signal when
the amount of zeros is the highest (Supplemental Figure 1C
and 1D). Of note, Kendall-tau resulted in the detection of the
greatest number of significant pathways in data with no zeros,
and the lowest false positives of all metrics with increasing
zeros in datasets with or without signal. These data indicate
that all metrics have varying degrees of sensitivity to missing
data. We select Kendall-tau for the remainder of the analyses
in this paper based on the observed accuracy in the two
simulated datasets without additional normalization. We note
the rank-based nature of the Kendall-tau dissimilarity renders
the EVA statistics performed on Kendall-tau dissimilarity
independent of common normalization procedures, such as
log transformation.

To determine the effect of dropout and imputation
on EVAsc’s robustness to detect pathway variability, we
conducted a simulation study using synthetic scRNA-seq
datasets generated using the Splatter pipeline. We first
examined the performance of EVAsc on a dataset with no
signal and a bias in zeros. The simulated dataset contained
two identical groups, one containing only biological zeros,
and one where random dropout was also present (Figure
2A). Due to the abundance of zeros in the group with dropout
and the sensitivity of Kendall-tau to missing data, EVAsc
failed to recognize that the groups were otherwise identical
and detected differential heterogeneity across 62% (31 out
of 50) MSigDB Hallmark gene set pathway comparisons.
We then imputed the missing values in the simulated
dataset using MAGIC?. EVAsc analysis of this imputed
data had no pathways with statistically significant differential
heterogeneity between the two groups (Figure 2B).

We next examined the performance of EVAsc to detect
known differential variation in imputed scRNA-seq data.

Figure 3. All pathways are significantly dysregulated in immune cell
types from breast tumors relative to normal breast tissue. Boxplot
of EVAsc statistics of inter-cellular heterogeneity for all fifty hallmark path-
ways in major immune cell types from both tumor (blue) and normal (red)
breast tissue.

To simulate heterogeneity, pathway expression profiles
for each cell in one group were randomized from the
previously described imputed dataset. EVAsc detected
dramatic differences in variation between the two groups
across all randomized hallmark pathways. 100% (50 out of
50) of the comparisons were statistically significant. These
simulations demonstrate that EVAsc is able to assess the
degree of pathway dysregulation between conditions in
imputed scRNA-seq data.

3.3 EVAsc detects greater variation in tumor
than normal in samples in a real dataset

We next evaluated the ability of EVAsc to compare
heterogeneity between normal and tumor samples in
scRNA-seq data from breast tumors for distinct immune
cell types?'. Azizi et al.?' reported an increase in the
variance of tumor cell-intrinsic gene expression compared
to normal breast tissue. Genes with the largest differential
variance were enriched in signaling pathways important
to the TME. To demonstrate that EVAsc enables robust
statistical comparison of this heterogeneity in pathways, we
compared tumor to normal immune cells across multiple
cell types, which included T-cells, myeloid, and NK cells.
EVAsc analysis detected greater variation in breast tumor
than normal breast tissue across each immune cell type
tested. All 50 pathways tested were statistically significant
in each comparison (FDR adjusted p-value < 0.05) (Figure
3, Supplemental Tables 1-4). This suggests that increased
pathway heterogeneity within tumor-associated immune
cell types may be driven by distinct TMEs present within a
single tumor.

3.4 EVAsc finds increased immune pathway
heterogeneity in tumors with high T-cell clon-
ality

With the rapid increase of interest in the field of
immunotherapy, T-cell receptor (TCR) sequencing is
becoming a valuable tool for assessing immune response.
Accordingly, we used T-cells from breast cancer data?
to explore the relationship between the TCR repertoire
and heterogeneity in immune signaling pathways using
27,000 T-cells with paired single-cell RNA and V(D)J
sequencing from three breast cancer tumors. For each
individual tumor, we computed Shannon entropy for TCR
clonality and richness as a measure of TCR diversity based
on the single-cell TCR sequencing data (Figure 4A). A
Morisita-Horn similarity matrix was generated to compare
the similarity of TCR repertoires across tumor replicates
(Figure 4B). We then applied EVAsc to the scRNA-seq
data using the Myeloid Innate Immunity Panel pathways
from NanoString® to compare each T-cell subtype
between individuals. Hierarchical clustering of the EVA
statistics revealed a gradient of pathway dysregulation
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primary tumors and lymph node metastases?.
We first applied EVAsc to primary cancer cells of
HNSCC subtypes to examine the differences between

pates inter-tumor heterogeneity. Subtypes were previously called
11 g .
Becs) by TCGA classification and ComBat*® was performed to
B B e remove the impact of patient identity on transcriptional
o e | Eigggﬁ:ﬁﬂw profiles to compare cells from several patients with EVAsc?.
| TODBEM We include all MSigDB Hallmark gene set pathways and
T.cell. Activation.and.Checkpoint jnaliny TReg . . . . .

s III six meta-signatures derived from non-negative matrix

Cell.Cycle.and.Apoptosis fatistic . . H
T B T factorization programs that represent common expression
,H‘ii:‘;ff:;q o programs variable within multiple tumor forms? in our
5 - comparisons. 46% (77 out of 168) of the comparisons are

statistically significant when all pairwise combinations of
subtypes were considered (FDR adjusted p-value < 0.05)
(Supplemental Table 8). Hierarchical clustering of the EVAsc
statistics demonstrated patterns of subtype-specific pathway
dysregulation (Figure 5A).

To determine the degree of inter-tumor heterogeneity
between patients within a single subtype we compared
primary cancer cells between seven individuals with basal
primary tumors. 78% (923 out of 1176) of the comparisons
are statistically significant when all pairwise combinations
of patients were considered (FDR adjusted p-value < 0.05)
(Supplemental Table 9). EVAsc analysis revealed dramatic
differences in pathway dysregulation across patients
(Figure 5B). Additionally, we explored heterogeneity within
cells of the primary TME across individuals with basal
primary tumors. Previously, Puram et al. observed that the
proportion of cell types within the TME vary for each patient.
Notably, they found that the differences in the basal and
mesenchymal subtypes of HPV-negative head and neck
cancer can be attributed to a larger proportion of fibroblasts
in the TME. Thus, we stratified these basal samples into a
binary classification of high (>40%) or low-fibroblast (<40%).
To determine the transcriptional status of immune-pathways
3.5 EVAsc finds increased variation in primary within patient-specific populations of fibroblasts we applied

tumors relative to metastases and sub_ EVAsc using the MyeI0|d Innate Immunlty Panel pathways

_ PP : from NanoString®. Hierarchical clustering of the EVAsc
type-specific pathway dysregulation statistics demonstrated increased immune dysregulation in

After demonstrating the ability of EVAsc to detect jndividuals with a high proportion of fibroblasts present in the
heterogeneity between tumors, we next aimed to identify  TME (Figure 5C). 69% (348 out of 504) of the comparisons
differences in pathway heterogeneity between cancer gre statistically significant when all pairwise combinations
subtypes, within subtypes, and within the TME. Further, of patients were considered (FDR adjusted p-value <
we sought to characterize intra-tumor heterogeneity within 0.05) (Supplemental Table 10). We note that the fibroblast
primary tumors and associated metastases. In order o composition in each basal tumor is independent of the

make these comparisons, we applied EVAsc to scRNA-  pathway dysregulation observed across cancer cells from
seq data for 18 HNSCC patients, including five matched gistinct patients.

directly correlated with the degree of TCR clonality (Figure
4C, Supplemental Table 5). We further applied GSEA to
differentially expressed genes to compare the overlap
between the enrichment of upregulated and downregulated
immune pathways and the immune pathway dysregulation
found with EVAsc (Supplemental Tables 6-7). The
majority of the significantly dysregulated pathways from
EVAsc overlapped with pathways that were enriched for
upregulation in higher clonality compared to lower clonality
individuals, with seven additional pathway comparisons
that are significantly downregulated. We note that clonal
expansion of T-cells is generally associated with a
mounting immune response after antigen recognition. Our
EVAsc results suggest that increased clonality of the TCR
repertoire leads to increased heterogeneity in immune
pathway expression as well as upregulated immune
pathway expression.
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We next examined intra-tumor pathway dysregulation
between the matched primary and metastatic cancer cells
within five individual HNSCC patients. 98% (55 out of 56)
of the pathways are statistically significant for patient HN25,
with 100% (56 out of 56) statistically significant for patient
HN26 (FDR adjusted p-value < 0.05) (Supplemental Table

1). In both cases, all significant hits have greater variation
in the primary tumor than the metastasis (Figure 5D). For the
remaining three patients, no significant pathway dysregulation
was observed. Puram et al.2® previously observed that the
expression profiles of lymph node metastases overlapped
with the corresponding primary tumors. While this indicates
that there appears to be no mean differences between the
paired samples, our method is able to capture significant
differential variation between these phenotypes which was
previously unrecognized.

type

4. DISCUSSION

We develop EVAsc to quantify heterogeneity in
pathway level gene expression from imputed scRNA-
seq data to quantify differential variability between
conditions. We demonstrate the suitability of EVAsc
for identifying differential variability of pathway gene
expression by applying it to simulated and real scRNA-
seq data. Simulated data generated with splatter was
used to demonstrate the ability EVAsc to detect known
variability between conditions. Validation was performed
by comparing immune cell types between normal breast
tissue and breast tumors from Azizi et al.?'. As expected,
EVAsc detected increased variability in the tumor cells for
all cell type comparisons relative to normal cells (Figure 3).

We then applied EVAsc to perform novel analyses of
differential heterogeneity on two publicly available cancer
scRNA-seq datasets. We used paired single-cell RNA
and single-cell TCR sequencing data?' to compare inter-
patient T-cell subtype heterogeneity in relation to TCR
clonality. TCR repertoire analysis showed differences in
the level of TCR clonality for each individual (Figure 4A).
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EVAsc analysis revealed significant differences in immune
pathway heterogeneity between individuals, consistent
with the degree of TCR clonality: increased TCR clonality,
increased heterogeneity (Figure 4C). We then performed
differential expression analysis between individuals to
explore the direction of gene set enrichment. There was
a large amount of overlap in differentially variable and
differentially upregulated pathways, indicating increased
heterogeneity as well as increased gene expression in
higher clonality individuals.

Ikeda et al.** examined the relationship between intra-
tumor expression levels of immune-related genes and TCR
repertoire in endometrial cancer. They found increased
mMRNA expression levels in cases with high T-cell clonality,
which was associated with a better prognosis. These results
were obtained using total RNA and Quantitative real-time
PCR in relatively few genes and are consistent with our
findings at a comprehensive single-cell RNA level. Recent
data has also shown that increased clonal expansion of
T-cells and low baseline clonality are associated with longer
survival after being treated with anti-CTLA4 inhibitors in
pancreatic ductal adenocarcinoma®. Thus, characterizing
the immune microenvironment by expression of immune
pathways, immune pathway heterogeneity, and the
clonality of infiltrated T-cell receptors may be an important
biomarker for clinical response to immunotherapy. With
the advent of paired single-cell RNA and TCR profiling
methods, studying the transcriptional effect of TCR
repertoire changes across cancer cells may provide further
insight into the mechanisms of immunotherapy.

Further, an HNSCC cancer scRNA-seq dataset
from Puram et al.2® was used to examine differences in
heterogeneity between HNSCC subtypes. Previously,
bulk studies have classified HNSCC tumors into four
distinct molecular subtypes based on their expression
profiles®: atypical, basal, classical, and mesenchymal.
EVAsc analysis revealed unique patterns of pathway
dysregulation in each of the subtypes detected by TCGA
classification (Figure 5A). Overall, immune pathways are
enriched in the atypical subtype. It has been reported that
mesenchymal and atypical subtypes have the highest
degree of immune infiltration, making them attractive
targets for immunotherapy®. Our results suggest a key
immune component specific to the atypical subtype.

Previous analyses of the HNSCC scRNA-seq data
found that the cancer cells in the mesenchymal and basal
subtypes have similar expression profiles when stromal
contribution was removed? and refined the classification
of mesenchymal to basal subtype. We speculated that the
cellular compositions of the TME within individual basal
tumors could contribute to the molecular heterogeneity.
Importantly, fibroblasts have opposing roles in the TME
and showed a wide-range of inter-tumor proportional
variability. Normal fibroblasts exert anti-tumorigenic effects
to suppress tumor growth but can be reprogrammed
to a cancer-associated phenotype supportive of tumor
evolution. EVAsc analysis comparing fibroblast populations

between individuals with basal primary tumors demonstrated
that TMEs with a large proportion of fibroblasts have a high
degree of immune pathway dysregulation. This indicated
immune pathway heterogeneity within the fibroblast
expression states, likely due to the immunomodulatory role
of cancer-associated fibroblasts within the TME?®®.

Beyond immunology, the intra-patient comparison
with EVAsc enables evaluation of the role of intra-tumor
heterogeneity in metastasis. Specifically, we compared
cancer cells from primary tumors to metastases from
individual patients in HNSCC single-cell data. This analysis
revealed a clear pattern: either uniform dysregulation
or no significant differences between the primary tumor
and metastasis. For the two patients that had differential
variability, the heterogeneity within the primary tumor was
significantly higher than the metastatic cancer cells (Figure
5D). This observation agrees with Nowell’s theory of clonal
evolution, which states that cancer originates from a single
cell, accumulates genetic alterations, and during the process
of metastasis there is an enrichment for the most aggressive
clones®. This theory would indicate that clonal metastases
are more homogeneous, as very few cells gain invasive
and metastatic potential. Such intra-tumor discrepancies
that may evolve as the disease progresses between the
primary tumor and disseminated metastasis can result in
incorrect biomarkers being used to make clinical decisions
and lead to therapeutic failure'. The differences in molecular
heterogeneity may also give rise to different therapeutic
responses in primary tumors than metastases. We note that
the analyses performed in this study used current landmark
cohorts of breast and head and neck tumors, which were
limited in sample size. Future work with EVA analysis on
larger sample cohorts is essential to establish the role of
heterogeneity in complex dynamic processes in cancer
progression and therapeutic response.

Together, the results of these analyses show that
EVAsc is a robust algorithm for detecting inter- and
intra-tumor heterogeneity in scRNA-seq data. EVAsc is
applicable to imputed scRNA-seq datasets, which we
demonstrate using MAGIC and BiSCUIT imputed data.
In the applications to some of the cancer datasets in this
study, such as tumor versus normal and primary tumor
versus metastasis, we observe widespread changes
across a majority of pathways between phenotypes. We
attribute these changes to the pervasive transcriptional
reprogramming in cancer. While the pathways examined in
this study are in no way exhaustive, this is suggestive of
global disruption of gene expression and makes for broad
interpretations. Comparisons within immune cells and
primary cancer subtypes show phenotype specific patterns
of dysregulation, allowing more specific interpretation of the
molecular mechanisms in tumor heterogeneity. We note that
EVAsc can be widely applied beyond cancer, for example
to evaluate the role of transcriptional variation on cell fate
specification in development®®. In this context, heterogeneity
is more constrained than in cancer and EVAsc finds different
patterns of inter-cellular heterogeneity for distinct pathways,
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with some pathways increasing over developmental time
and others decreasing.

Inaddition, EVAscisbroadly applicable to any dissimilarity
metric and is not limited to Kendall-tau (Supplemental Figure
1). This flexibility in the algorithm allows users to specify
appropriate distance metrics for datasets and enables the
direct comparison of performance across various metrics.
We note that different dissimilarity metrics may have different
sensitivities to the preprocessing used for the scRNA-seq
datasets. The rank-based Kendall-tau dissimilarity metric
used for the majority of this study is independent of many
sample-specific normalization procedures, such as log
transformation or quantile normalization. Other dissimilarity
measures may be sensitive to these transformations, and
this effect must be evaluated before applying EVAsc to
compare dissimilarity based upon these metrics. Emerging
variance stabilization methods to account for the pervasive
heteroscedastic mean variance relationship of scRNA-seq
data may impact the results obtained with this algorithm, and
are essential to evaluate in future studies. Thus, EVAsc is a
robust multivariate statistical method to quantify differential
variation of pathway gene expression and provides the ability
to explore transcriptional variation in numerous disease
and normal contexts at a single-cell resolution. Future work
to improve the EVAsc algorithm will involve integrating
mathematical models to compute comparisons on scRNA-
seq data without the need for imputation.
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Supplemental Figure 1 A. Barplot of the number of significant hallmark gene set pathways across 35 metrics from performing EVA on a benchmark bulk
RNA-sequencing dataset with normal and cancer samples.

B. Number of significant hallmark gene set pathways across 35 metrics from performing 100 EVA permutations on a mirrored bulk RNA-sequencing data
set so that there is no signal. Each bar is colored by the percentage of random zeros added to the dataset. As the number of random zeros increases, the
number of significant pathways (all false positives) tends to increase.

C. Number of true significant hallmark gene set pathways across 35 metrics from performing 100 EVA permutations on the bulk RNA-sequencing data from
(A). True positives are defined as any pathway that was significant for a metric when no zeros are present. Each bar is colored by the percentage of random
zeros added to the dataset. For most metrics, as the number of random zeros increases, the number of significant pathways increases around 40% and
60% zeros, and the signal drops at 80%.

D. Number of false positive significant hallmark gene set pathways across 35 metrics from performing 100 EVA permutations on the bulk RNA-sequencing
data from (A). False positives are defined as any pathway that was not significant for a metric when no zeros are present. Each bar is colored by the percent-
age of random zeros added to the dataset. For most metrics, as the number of random zeros increases, the number of significant pathways peaks around
40% and 60% zeros, with some metrics peaking at 80%. This indicates variable sensitivity to zeros in a dataset with signal.
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