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Abstract

Accurately modeling cellular response to perturbations is a central goal of computational biology.
While such modeling has been proposed based on statistical, mechanistic and machine learning
models in specific settings, no generalization of predictions to phenomena absent from training data
(‘out-of-sample’) has yet been demonstrated. Here, we present scGen, a model combining variational
autoencoders and latent space vector arithmetics for high-dimensional single-cell gene expression
data. In benchmarks across a broad range of examples, we show that scGen accurately models dose
and infection response of cells across cell types, studies and species. In particular, we demonstrate
that scGen learns cell type and species specific response implying that it captures features that
distinguish responding from non-responding genes and cells. With the upcoming availability of large-
scale atlases of organs in healthy state, we envision scGen to become a tool for experimental design
through in silico screening of perturbation response in the context of disease and drug treatment.

Introduction

Single-cell transcriptomics has become an established tool for unbiased profiling of complex and
heterogeneous systems |1, 2]. The generated datasets are typically used for explaining phenotypes
through cellular composition and dynamics. Of particular interest is the dynamics of single cells in
response to perturbations, be it to dose [3], treatment [4, 5| or knock-out of genes [6-8|. Although
advances in single-cell differential expression analysis |9, 10] enabled the identification of genes
associated with a perturbation, generative modeling of perturbation response takes a step further
in that it enables in silico generation of data. The ability of generating data that cover phenomena
not seen during training, is particularly useful and referred to as ‘out-of-sample’ prediction.

While dynamic mechanistic models have been suggested for predicting low-dimensional quantities
that characterize cellular response [11, 12], such as a scalar measure of proliferation, they face fun-
damental problems. These models cannot be easily formulated in a data-driven way and require
temporal resolution of the experimental data. Due to the typically small number of time points
available, parameters are often hard to identify. Resorting to linear statistical models for model-
ing perturbation response [6, 8|, by contrast, leads to small predictive power for the complicated
nonlinear effects that single-cell data display. By contrast, neural network models do not face these
limits.

Recently, such models have been suggested for the analysis of single-cell RNA-seq data [13-17].
In particular, generative adversarial networks (GANs) have been proposed for simulating single cell
differentiation through so a called latent space interpolation [16]. While being an interesting alterna-
tive to established pseudotemporal ordering algorithms [18], this analysis does not demonstrate the
GAN’s capability of out-of-sample prediction. The use of GANSs for the harder task of out-of-sample
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Figure 1 | scGen, a method to predict single cell perturbation response. Given a set of observed
cell types in control and stimulation, we aim to predict the perturbation response of a new cell type A (blue)
by training a model that learns to generalize the response of the cells in the training set. Within scGen,
the model is a variational autoencoder and the predictions are obtained using vector arithmetics in the
autoencoder’s latent space. Specifically, we project gene expression measurements into a latent space using
an encoder network and obtain a vector § that represents the difference between perturbed and unperturbed
cells from the training set in latent space. Using J, unperturbed cells of type A are linearly extrapolated
in latent space. The decoder network then maps the linear latent space predictions to highly non-linear
predictions in gene expression space.

prediction is hindered by fundamental difficulties: (1) GANs are hard to train for structured high-
dimensional data, leading to high-variance predictions with large errors in extrapolation, and (2),
GANSs do not allow to directly map a gene expression vector z on a latent space vector z, making it
hard to impossible to generate a cell with wished properties. In addition, GANs for structured data
have not yet shown advantages over the simpler variational autoencoders (VAE) [19] (Supplemental
Note 1.1).

To overcome the problems inherent to GANs, we built scGen based on a VAE combined with vector
arithmetics with an architecture adapted for single-cell RNA-seq data. For the first time, scGen
enables predictions of dose and infection response of cells for phenomena absent from training data
across cell types, studies and species. In a broad benchmark, it outperforms other potential modeling
approaches such as linear methods, conditional variational autoencoders and style-transfer GANSs.
The benchmark of several generative neural network models should present a valuable resource for the
community showing opportunities and limitations for such models when applied to transcriptomic
data. scGen is based on Tensorflow [20] and on the single-cell analysis toolbox Scanpy [21].

Results

scGen accurately predicts single-cell perturbation response out-of-sample

High-dimensional scRNA-seq data is typically assumed to be well-parametrized by a low-dimensional
manifold arising from the constraints of the underlying gene regulatory networks. Current algorithms
mostly focus on characterizing the manifold using graph-based techniques [24, 25| in the space
spanned by a few principal components. More recently, the manifold has been modeled using neural
networks [13-17]. As in other application fields [26, 27], in the latent spaces of these models, the
manifolds display astonishingly simple properties, such as approximately linear axes of variation for
latent variables explaining a major part of the variability in the data. Hence, linear extrapolations
of the low-dimensional manifold could in principle capture variability related to perturbation and
other covariates (Supplemental Note 1.2, Supplemental Figure 1).

Let every cell i with expression profile x; be characterized by a variable p;, which represents a
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Figure 2 | scGen accurately predicts single-cell perturbation response out-of-sample. a, UMAP
visualization [22] of the distributions of condition, cell type and data split for the prediction of IFN-£ stim-
ulated CD4-T cells from altogether 16,893 PBMCs from Kang et al. [3]. b, Mean gene expression of 6,998
genes between scGen predicted and real stimulated CD4-T cells. ¢, Mean gene expression for control versus
stimulated resp. predicted CD4-T cells together with top five upregulated differentially expressed genes. d,
Comparison of R? values for mean gene expression between real and predicted cells for the 7 different cell
types of the study. e, Distribution of ISG15: the top uniform marker (response) gene to IFN-3 [23] between
control, predicted and real stimulated cells of scGen when compared with other potential prediction models.
f, Similar comparison of R? values to predict unseen CD4-T stimulated cells. g, Dot plot for comparing
control, true and predicted stimulation when predicting on seven cell types from Kang et al..

discrete attribute across the whole manifold, such as perturbation, species or batch. To start with,
we assume only two conditions 0 (unperturbed) and 1 (perturbed). Let us further consider the
conditional distribution P(z;|z;, p;), which assumes that each cell z; comes from a low-dimensional
representation z; in condition p;. We use a VAE to model P(z;|z;,p;) in its dependence on z; and
vector arithmetics in the VAE’s latent space to model the dependence on p; (Figure 1).

Equipped with this, consider a typical extrapolation problem. Assume cell type A exists in the
training data only in the unperturbed (p = 0) condition. From that, we predict the latent repre-
sentation of perturbed cells (p = 1) of cell type A using 2; 4 p—1 = 2, 4 p—0 + 9, where 2z; 4 ,—0 and
Zi Ap=1 denotes the latent representation of cells with cell type A in conditions p = 0 and p = 1, re-
spectively and ¢ is the difference vector of means between cells in the training set in condition 0 and
1 (Supplemental Note 1.3). From the latent space, scGen maps predicted cells to high-dimensional
gene expression space using the generator network estimated while training the VAE.

To demonstrate the performance of scGen, we apply it to published human PBMC samples in
control and under IFN-3 stimulation [3] (Supplemental Note 2). As a first test, we compare the
predictions of stimulated CD4-T cells held out during training (Figure 2a). scGen prediction of the
mean associated with the perturbation in CD4-T cells correlates well with the ground-truth across
all genes (Figure 2b). Comparing upregulated genes in stimulation (for example labeled transcripts
in Figure 2c) we observe that these genes very well coincide in real and predicted stimulated cells.
To evaluate generality, we trained six other models while holding out each of the six major cell types
present in the study. Figure 2d shows that our model accurately predicts all other cell types (average
R? = 0.954). Moreover, the distribution of the strongest regulated IFN-j response gene ISG15 as
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Figure 3 | scGen models infection response in two datasets of intestinal epithelial cells. a-b,
Prediction of early transit-amplifying (TA.early) cells from two different small intestine datasets from Haber
et al. [4] infected with Salmonella and helminth Heligmosomoides polygyrus (H.poly) after 2 and 10 days,
respectively. The mean gene expression for infected and control for different cell types shows how scGen
transforms control to predicted perturbed cells in a way that the expression of top 5 up and downregulated
differentially expressed genes are similar to real infected cells. c-d, Comparison of R? values for mean gene
expression between real and predicted cells for all the cell types in two different datasets illustrates that
scGen performs well for all cell types in different scenarios.

predicted by scGen not only provides a good estimate for the mean but also captures the variance
of the distribution (Figure 2e, all genes in Supplemental Figure 2a).

scGen outperforms alternative modeling approaches

Aside from scGen, we studied further natural candidates for modeling a conditional distribution that
is able to capture perturbation response. We benchmark scGen against four of these candidates,
including two generative neural networks and two linear models. The first of these models is the
conditional variational autoencoder (CVAE) (Supplemental Note 3, Supplemental Figure 3a, [28]),
which has recently been adapted to preprocessing, batch-correcting and differential testing of single-
cell data [13]. However, it has not been shown to be a viable approach for out-of-sample predictions,
even though, formally, it readily admits the generation of samples from different conditions. The
second class of models are style transfer GAN (Supplemental Note 4, Supplemental Figure 3b), which
are commonly used for unsupervised image to image translation [29, 30]. In our implementation,
such a model is directly trained for the task of transferring cells from one condition to another. The
adversarial training is highly flexible and does not require an assumption of linearity in a latent
space. In contrast to other propositions for mapping biological manifolds using GANs [31], style
transfer GANs are able to handle unpaired data, a necessity for their applicability to single-cell
RNA-seq data. We also mention that we tested ordinary GANs combined with vector arithmetics
similar to Ghahramani et al. [16]. However, for the fundamental problems outlined above, we were
not able to produce any meaningful out-of-sample predictions using this setup. In addition to the
non-linear generative models, we tested simpler linear approaches based on vector arithmetics in
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gene expression space and the latent space of principal component analyses (PCA).

Applying the competing models to the PBMC dataset, we observe that all other models fail to
predict mean and variance of the distribution of ISG15 (all genes in Supplemental Figure 2), in
stark contrast to scGen’s performance (Figure 2e). CVAE and style transfer GANs predictions are
vaguely correlated with ground truth values and linear models also yield incorrect negative values
(Supplemental Figure 2b-d). However, as shown in Figure 2b scGen provides most faithful prediction
to real CD4-T cells and outperforms all other potential models (Figure 2f, Supplemental Figure 2,
Supplemental Note 5).

A likely reason for why CVAE fails to provide meaningful out-of-sample predictions, is that it
disentangles perturbation information from the latent space. Hence, the model does not learn non-
trivial patterns linking perturbation to cell type. A likely reason for that the style transfer GAN
is incapable for achieving the task is it’s attempt of matching two high-dimensional distributions,
with much more complex models involved than in the case of scGen. While notoriously more
difficult to train. Some of these arguments can be better understood when inspecting the latent
space distribution embeddings of the generative models. As the CVAE completely strips off all
perturbation-variation, its latent space embedding does not allow to distinguish perturbed from
unperturbed cells (Supplemental Figure 4a). In contrast to CVAE representations, the scGen (VAE)
latent space representation captures both information for condition and cell type (Supplemental
Figure 4c), reflecting that non-trivial patterns across condition and cell type variability have been
learned.

scGen predicts both response shared among cell types and cell type specific response

Depending on shared or individual receptors, signaling pathways and regulatory networks, a group of
cells perturbation response may result in expression-level changes that are shared across all cell types
or unique to only some. Inferring both types of responses is essential for understanding mechanisms
involved in disease progression as well as adequate drug dose predictions [32, 33|. Here, we show
that scGen is able to capture both shared and cell type specific response after stimulation by IFN-4
when any of the cell types in the data is held out during training and subsequently predicted (Figure
2g). For this, we use previously reported marker genes 23] of three different kinds: cell type specific
markers independent of the perturbation such as CD79A for B cells, perturbation-response specific
genes like ISG15, IF16, IFIT1 expressed in all cell types, and genes of cell type specific responses to
the perturbation such as APOBFECS3A in for DC cells. Across the seven different held out perturbed
cell types present in the data of Kang et al., scGen consistently makes good predictions not only of
unperturbed and shared perturbation effects but also for cell type specific ones. Hence, although
scGen encodes perturbation response by a shared § across all cells in the latent space, after decoding
to expression space both shared and individual changes can be captured.

scGen robustly predicts intestinal epithelial cells response to infection

To illustrate that scGen works robustly, we evaluate its prediction performance quantitatively in
two datasets from Haber et al. [4] related to epithelial cells from the small intestine (Supplemental
Note 2) using the same network architecture as for the data of Kang et al.. These datasets consist of
intestinal epithelial cells after Salmonella or Heligmosomoides polygyrus (H.poly) infections, respec-
tively. scGen shows good performance for early transit-amplifying (TA.early) cells after infection
with H.poly and Salmonella (Figure 3a,b), predicting both up and downregulated genes for each
condition with high precision (R? = 0.98 and R? = 0.98, respectively). Figure 3c,d depicts similar
analyses for both datasets and all occurring cell types — as before, the predicted ones being held
out during training — indicating that scGen’s prediction accuracy is robust across most cell types.
scGen’s performance is by far poorest for Tuft and Endocrine cells (Figure 3c,d). Whereas these
cells, in reality, show a much weaker response than all other cells in the dataset, scGen predicts them
as essentially non-responding (see Supplemental Figure 5). Hence, while scGen fails to capture the
response quantitatively, it is remarkable that it captures the qualitative trend of the much weaker
response despite not having seen this phenomenon for a high number of cells during training — both
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Figure 4 | scGen accurately predicts single cell perturbation across different studies. a, scGen
can be used to translate the effect of stimulation trained in study A to how stimulated cells in study B
would look like, given a control sample set. b, Cell types for control and predicted stimulated cells for study
B (Zheng et al. [34]) in two conditions where ISG15, the top IFN-S response gene, is only expressed in
stimulated cells. c, Average expression between: control and stimulated F-Mono cells from study A (upper
left), control from study B and stimulated cells from study A (upper right) and control from study B and
predicted stimulated cells for study B (lower right). Red points denote top five differentially expressed genes
for F-Mono cells after stimulation in study A. d, Comparison of R? values highlighted in panel ¢ for F-Mono
and all other cell types.

Endocrine and Tuft cells only constitute a small fraction of the data.

In order to further understand when scGen starts to fail to make meaningful predictions, we again
trained it on the PBMC data of Kang et al., but now with more than one cell type held out.
This study shows that scGen’s predictions are robust when holding out several dissimilar cell types
(Supplemental Figure 6a-b) but start failing when training on data that only contains information
about the response of one highly dissimilar cell type (see CD4-T predictions in Supplemental Figure
6c).

Finally, similar to what has been shown by [16] for differentiation of epidermal cells, we cannot only
generate fully responding cell populations, but also intermediary cell states between two conditions.
Here, we do so for the IFN-S stimulation and the Salmonella infection (Supplemental Note 6,
Supplemental Figure 7).

scGen enables cross-study predictions

We showed that scGen predicts cells from a cell type in a specific biological condition using all other
cells available in that study. In order to be applicable to broad cell atlases such as the Human Cell
Atlas [35], the algorithm ought to be robust against batch effects and hence generalize its prediction
to unperturbed cells measured in a different study. For this, we consider a scenario with two single
cell studies: study A, where cells within a specific organ have been observed in two biological
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Figure 5 | scGen predicts single cell perturbation response across different species. a, Prediction
of unseen rat LPS phagocytes while accounting for both stimulation and species effect by learning two different
vectors for each, on control and stimulated scRNA-seq from mouse, rabbit and pig by Hagai et al. [5]. b, Mean
gene expression of 6,619 one-to-one orthologs between species for control rat cells plotted against true and
predicted LPS while highlighted points represent top 5 differentially expressed genes after LPS stimulation in
the real data. ¢, Dot plot of top 10 differentially expressed genes after LPS stimulation in each species, with
numbers indicating how many species have those responsive genes among their top 10 differentially expressed
genes.

conditions, e.g., control and stimulation, and study B with the same setting as study A but only in
the control condition. By jointly encoding the two datasets, scGen provides a model for predicting
the perturbation for study B (Figure 4a) by estimating the study effect as the linear perturbation
in the latent space. To demonstrate this, we use as study A the PBMC dataset from Kang et al.
and as study B another PBMC study consisting of 2623 cells that are available only in the control
condition (Zheng et al. [34]). After training the model on data from study A, we use the trained
model to predict how the PBMCs in study B would respond to stimulation with IFN-/.

As a first sanity check, we show that ISG15 is also expressed in the prediction of stimulated cells
based on the Zheng et al. (Figure 4b). This observation holds for all other differential genes
associated with the stimulation, which we show for FCGR3A+-Monocytes (F-Mono) (Figure 4c):
The predicted stimulated F-Mono cells correlate more strongly with the control cells in their study
than with stimulated cells from study A while still expressing differentially expressed genes known
from study A. Similarly, predictions for other cell types yield a higher correlation than the direct
comparison with study A (Figure 4d).

scGen predicts single-cell perturbation across species

In addition to learning the variation between two conditions, e.g. health and disease for a species,
scGen can be used to predict across species. We trained a model on single cell RNA-seq dataset by
Hagai et al. [5] comprised of bone marrow-derived mononuclear phagocytes from mouse, rat, rabbit,
and pig perturbed with lipopolysaccharide (LPS) after six hours. Similar to what we did previously,
we held out the rat LPS cells from the training data.

In contrast to previous scenarios, now, two global axes of variation exist in the latent space associated
with species and stimulation, respectively.

Based on this, we have two latent difference vectors: d;ps, which encodes the variation between
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Figure 6 | scGen removes batch effects. a, UMAP visualization of 4 technically diverse pancreatic
datasets with their corresponding batch and cell types. We report average silhouette width (ASW) for
batches in the original data (ASW = 0.2130, lower is better for batch effect evaluation). b, Data corrected
by scGen mixes shared cell types from different studies while preserving study specific cell types independent
(ASW = -0.0938).

control and LPS cells, and dgpecies, which accounts for differences between species. Next, we predict
rat LPS cells using 2; rat 1ps = %(Zi,mouse,Lps + Ospecies + Zi rat,control + 01,pg). This equation takes an
average of the two alternative ways of reaching rat LPS cells (Figure 5a). Figure 5(b) illustrates
that predicted LPS cells express similar differential genes as true LPS stimulated rat cells. All other
predictions along the major linear axes of variation also yield plausible results for stimulated rat
cells (Supplemental Figure 8).

In addition to the species-conserved response of a few upregulated genes, e.g. Ccl3 and Ccl/, cells
also display species specific responses. For example, [l1a is highly upregulated in all species except
rat. Strikingly, scGen correctly identifies the rat cells as non-responding with this gene. Only the
fraction of cells expressing Il1a increases at a low expression level (Figure 5c). Based on these early
demonstrations, we foresee the prediction of human cell response based on data from healthy human
and different healthy and perturbed animal models.

scGen removes batch effects

Let us now show that scGen is able to efficiently correct for batch effects. To evaluate scGen’s batch
correction capability, we merged four pancreatic datasets [36-39] (Figure 6a). We train scGen on
these data and define a source and destination batch and compute a difference vector dpqscn, between
the source and the destination batch. To remove the batch effects from the destination batch, we
add the learned 0pqtcn, to the latent representation of the cells in the destination batch (Figure 6b).
Using the cell type labels from the studies we observe a homogeneous overlap. A comparison with
four existing batch removal methods (Supplemental Figure 9) shows that scGen performs as well
as the other methods [23, 40-42]. To further evaluate batch removal ability of our model on a
larger dataset, we merged eight different mouse single cell atlases comprised of 114600 cells from
different organs [43-50]. As expected, the homogeneity of the data increased after batch correction
(Supplemental Figure 10).
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Discussion

We presented scGen, a model for predicting perturbation response of single cells based on generative
neural networks and latent-space vector arithmetic. By adequately encoding the original expression
space in a latent space, we achieve simple, near-to-linear mappings for highly non-linear sources
of variation in the original data, which explain a large portion of the variability in the data. We
provided examples for variation due to perturbation, species or batch. This allows to use scGen in
several contexts including perturbation prediction response for unseen phenomena across cell types,
study and species, for interpolating cells between conditions and for batch effect removal.

While we showed proof-of-concept for in silico predictions of cell type and species specific cellular
response, in the present work, scGen has been trained on relatively small datasets, which only reflect
subsets of biological and transcriptional variability. While we demonstrated scGen’s predictive power
in these settings, a trained model cannot be expected to be predictive beyond the domain of the
training data. To gain confidence in predictions, one needs to make realistic estimates for prediction
errors by holding out parts of the data with known ground truth that are representative for the
task. It is important to realize that such a procedure arises naturally when applying scGen in an
alternating iteration of experiments, retraining based on new data and in silico prediction. By design,
such strategies are expected to yield highly performing models for specific systems and perturbations
of interest. It is evident that such strategies could readily exploit the upcoming availability of large-
scale atlases of organs in healthy state, such as the Human Cell Atlas [35].

In summary, we demonstrated that scGen is able to learn cell type and species specific response.
To be able to do so, the model needs to capture features that distinguish weakly from strongly
responding genes and cells. Building biological interpretations of these features, for instance, along
the lines of Ghahramani et al. [16] or Way and Greene [51], could help in understanding the differences
between cells that respond to certain drugs and cells that do not respond, which is often crucial for
understanding patient response to drugs [52].

Code availability

Code is available from https://github.com/theislab/scGen.

Data availability

All data is available from the original publications and linked on https://github.com/theislab/
scGen.
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Supplemental Note 1: Models and theoretical background

Supplemental Note 1.1: Variational autoencoders

A variational autoencoder is a neural network consisting of an encoder and a decoder similar to
classical autoencoders. Unlike the classical autoencoders, VAEs are able to generate new data
points. The mathematics behind VAEs is not similar to classical autoencoders. The difference is
that the model maximizes the likelihood of each sample x; in the training set under a generative
process as formulated in Equation (1).

P(x;0) :/P(xi\zi;O)P(ziW)dzi. (1)

where 6 is the model parameter which in our model corresponds to a neural network with its learnable
parameters and z; is a latent variable. The most important idea of a VAE is to sample latent
variables z; that are likely to produce x; and using those to compute P(x;|0) [54]. We approximate
the posterior distribution P(z;|z;,6) using the variational distribution Q(z;|z;,#) which is modeled
by a neural network with parameter ¢, called the inference network (the encoder). Next, we need a
distance measure between the true posterior P(z;|x;,0) and the variational distribution. To compute
such a distance we use the Kullback-Leibler (KL) divergence between Q(z;|x;, ¢) and P(zi|z;,0),
which yields:

KIL(Q(zi|ws, §)|| P(zi|wi, 0)) = EQ(z)ay,0) 108 Q(zi|Ti, @) — log P(zi|zs, 0)]. (2)

Now, we can derive both P(z;|0) and P(z;|z;, 6) by applying Bayes rule to P(z;|z;,0) which results
in:

KL(Q(zi|wi, §)||P(2i|i, 0)) = EQ(z,)2:,0) [log Q(zi|7i, §) — log P(2]0) — log P(x;]2;, )] + log P(x;]0).
(3)
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Finally, by rearranging some terms and exploiting the definition of KL divergence we have :
log P(x|0) — KL(Q(zi| s, 9)[| P(2i]i, 0)) = EQ(z;)2;.0) [l0g P(wil2i, 0)] = KL[Q(zi|i, §)|| P (2] 0)]. (4)

On the left hand side of Equation (4), we have the log-likelihood of the data denoted by log P(x;|6)
and an error term which depends on the capacity of the model. This term ensures that @ is
as complex as P and assuming a high capacity model for Q(z;|z;, ¢), this term will be zero [54].
Therefore, we will directly optimize log P(z;|0) :

EQ(z2:,0) [l0g P(xi|zi, 0)] — KL[Q(2i]xi, ¢)|| P(2:]0)]- (5)

In order to maximize the Equation (5), we choose the variational distribution Q(z;|zi, ¢) to be a
multivariate Gaussian Q(z;|z;) = N (zi; e (i), Xp(x;)) where py and Xy are implemented with the
encoder neural network and Xy is constrained to be a diagonal matrix. The KL term in Equation
(5) can be computed analytically since both both prior (P(z|0)) and posterior (Q(z;|x;, ¢)) are
multivariate Gaussian distributions. The integration for the first term in (5) has no closed-form and
we need Monte Carlo integration to estimate it. We can sample Q(z;|x;, ¢) L times and directly
use stochastic gradient descent to optimize Equation (6) as loss function for every training point x;
from dataset D :

L
Loss(z;) = ilz;log P(xi|ziy,0) — KL[Q(zi|zi, ¢)|| P(2i]0)]. (6)

However, the first term in Equation (6) only depends on the the parameters of P and the parameters

of variational distribution ) are not there. Therefore, it has no gradient with respect to ¢ to be

back-propagated. In order to address this, the reparameterization trick [19] has been proposed. This
1

trick works by first sampling from e ~ A(0,I) and then computing z; = pg(z;) + qu (z;) xe. In
consequence, we can use gradient-based algorithms to optimize Equation (6).

For the results shown in the present paper, we adapted the cost function (6) of the VAE by
replacing p(x;)? with (log ¥ (z;))? in the regularization (KL) term.

Supplemental Note 1.2: Linearity of the latent space

scGen exploits vector arithmetics in the latent space of VAEs which assumes the shift (response)
induced by stimuli can be modeled linearly. Similar to what has been shown by [55], we empirically
demonstrate the linearity of the latent space with respect to biological conditions. In pursuance of
that, we design a simple linear classifier based on the difference vector (4) between two conditions
in the latent space. We hypothesize that the § vector directs toward a direction in the latent space
where condition 1 increases. Therefore, by moving along the direction of § we are moving from the
condition 0 to condition 1. A high-level intuition for this is the difference vector manipulates cells by
adding and removing information to them. Suppose, for example, a dimension of the latent vector
corresponds to the degree of the infection in a cell. Increasing that attribute would be as easy as
adding the ¢ vector corresponding for that attribute. In consequence, the dot product of the cells
from the condition 1 with ¢ will be approximately greater than zero (or a constant positive value)
indicating high similarity. Similarly, the dot product with cells in condition 0 would yield negative
values showing low similarity (Supplemental Figure 1a). After finding the difference vector for each
condition, including IFN-3 from Kang et al. [3], H.poly and Salmonella infections from Haber et al.
[4], we demonstrate the histogram of dot product results for the latent representation of all cells
with their corresponding difference vector (Supplemental Figure 1b).

We did another test by calculating dsim-x denoting the difference between stimulated and control
cells for cell type k. We also calculated another set of difference vectors, dcelitype-ij, representing
the difference between each of the seven cell types present in Kang et al. dataset irrespective of
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Supplemental Figure 1 | Linearity of the latent space. a, Building a linear classifier based on the dot
product between the difference vector () and the latent representation of each cell. b, Dot product results
between latent representation of all cells with their corresponding difference vector (¢) for each condition shows
that two conditions are approximately linearly separable using dot product classifier. ¢, Cosine similarity of

5stim—ka 5cclltype—ij with § where 5cclltypc—ij = an(chlltypc:i) - an(chlltype:j) and (sstim-k = an(Zstim, cclltypc:k)
— avg(Zetrl, celltype—k) for all seven cell types present in Kang et al. dataset (z denotes the latent representation
of all cells with the corresponding label). The third violin plot shows pairwise cosine similarity for a set of
1000 random samples from 100 dimensional standard normal distribution.

their condition. Next, we calculated the cosine similarity for each set of previous vectors with 4.
Supplemental Figure 1c depicts that vector in dgim-k set have very high cosine similarity with §
showing that they are both directing toward the same direction with a small angle. However, most
of the dcelitype-ij vectors have cosine similarity close to zero that shows the cell type and condition
vectors are different and nearly orthogonal. In order to get an intuition of how unlikely is to get a
high cosine similarity in 100-dimensional vector space, we randomly drew 1000 samples from 100-
dimensional standard normal distribution and calculated pair-wise cosine similarity between them
(Supplemental Figure lc, random).

Supplemental Note 1.3: § vector estimation

In order to estimate J, first, we extract all cells for each condition. Next, for each cell type, we
up-sample the cell type sizes to be equal to the maximum cell type size in that condition. To further
remove the population size bias, we randomly down-sample the condition with a higher sample size
to match the sample size of the other the condition. Finally, we estimate the difference vector by
calculating § = an(Zconditionzl) - avg(zconditionZO)a where Zcondition=1 and Zeondition=0 denote the
latent representation of cells in each condition, respectively.

Supplemental Note 2: Datasets

The First dataset includes two groups of peripheral blood mononuclear cells (PBMCs) from Kang
et al. [3]. The original dataset includes 29065 cells split into 14446 stimulated and 14619 control

13
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Supplemental Figure 2 | Distribution matching comparison between different models. a-e, Mean
and variance matching comparison between scGen and four alternative models for CD4-T cells, shows scGen
outperforms other models. Similarly, by comparing UMAP visualizations one can see predictions by scGen
have more overlap with ground truth cells whereas predictions from other models lie far from real stimulated
cells. f, Ground truth mean and variance between control and stimulated CD4-T cells.

cells from 8 individuals. We annotated cell types by extracting an average of top 20 cluster genes
from each of 8 identified cell types in PMBCs from [34]. Next, the Spearman correlation between
every single cell and all 8 cluster averages was calculated and each cell was assigned to the cell type
which it had a maximum correlation (similar to [3]). After identifying cell types, Megakaryocyte
cells were removed from the dataset due to the high uncertainty of assigned labels. Next, the dataset
was filtered for cells with minimum 500 expressed genes and genes which were expressed at least in
5 cells. Moreover, we normalized counts per-cell and top 6998 differentially expressed genes were
selected. Finally, we log-transformed the data in order to have a smoother training procedure.

The second dataset comprises of epithelial response to pathogen infection from Haber et al. [4].
In this dataset, the response of intestinal epithelial cells to Salmonella and parasitic helminth He-
ligmosomoides polygyrus (H.poly) were investigated. Moreover, it includes three different conditions
including, 1777 Salmonella infected cells and ten days (2,711) after H.poly infection and finally a
group of 3240 control cells. The data was normalized per-cell and top 7000 differentially expressed
genes were selected and finally log-transformed.

The second PBMC dataset from Zheng et al. [34] was obtained from http://cf.10xgenomics.
com/samples/cell-exp/1.1.0/pbmc3k/pbmc3k_filtered_gene_bc_matrices.tar.gz. After filter-
ing cells, the data was merged with filtered PBMCs from Kang et al. [3]. The Megakaryocyte cells
were removed from the smaller dataset. Next, the data was normalized and then we selected top
7000 differentially expressed genes. The merged dataset was log-transformed and cells from Kang et
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Supplemental Figure 3 | Graphical pipeline of two alternative approaches to predict unseen
single cell perturbations. a, CVAE pipeline at test time to predict unseen condition. In order to predict
cells in condition 1, we feed all cells present in condition 0 with inverse label 1 concatenated (shown with +
symbol) to the data matrix. This informs the model that these cells are from condition 1. Therefore, the
model changes the condition of input cells from 0 to 1. b, The style transfer GAN to transform one condition
to another. This would be possible by learning a joint two-way mapping in an adversarial learning setting.
There exist two generators, Gy_1 which transforms cells from condition 0 to 1 and G1_g which does the same
task but in the reverse direction. Two discriminators, denoted by Dy and D1, are trained to detect real from
fake cells generated by G1_¢ and Gy_1, respectively.

al. were used for training the model. The remaining 2623 cell from Zheng et al. were used for the
prediction.

Pancreatic datasets were downloaded from ftp://ngs.sanger.ac.uk/production/teichmann/
BBKNN/objects-pancreas.zip. All the comparisons to other batch corrections methods were per-
formed similar to [41] with n = 50 PCs. The data was already preprocessed and directly used for
training the model.

Mouse cell atlases were obtained from ftp://ngs.sanger.ac.uk/production/teichmann/BBKNN/
MouseAtlas.zip. The data was already preprocessed and directly used for training the model.

LPS dataset [5] was obtained from https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-6754/

?query=tzachi+hagai. The data were further filtered for cells, normalized and log-transformed. We
used BiomaRt (v84) [56] to find ENSEMBL IDs of the 1-to-1 orthologs in the other three species
with the mouse. In total 6619 genes were selected from all species for training the model.
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Supplemental Figure 4 | Latent space comparison. a-c, UMAP visualization of latent space represen-
tation for PBMCs from Kang et al. dataset. For scGen (VAE) and CVAE we used the bottleneck layer but
for style transfer GAN we used discriminator’s penultimate output as the input for UMAP algorithm.

Supplemental Note 3: Conditional variational autoencoder

The conditional variational autoencoder (CVAE) [28] is also based on the variational inference
framework. In the CVAE setting one can train a model conditioned on two existing biological
conditions. We concatenate the condition of every cell with its input (z;) and latent variable (z;).
At test time, we feed the model with cells in condition 0 and the label of condition 1 (inverse label)
to transform the cells to same cell type but in condition 1 (Supplemental Figure 3a).

Supplemental Note 4: Style transfer GAN

The original style transfer model [30] learns to transform images in one visual domain (e.g., domain
of all horses) to another domain (e.g., the domain of all zebras). We can adapt this to the single cell
domain by training a network that receives single cells in condition 0 and transforms them to similar
cells with the same cell type but in condition 1. This can be achieved in an adversarial training
fashion (Supplemental Figure 3b). As it is shown in Supplemental Figure 3b, the model transforms
cells in condition 0 to cells in condition 1 via Gg_1 and then transforms them back to condition 1
using G1—g. There exists a second line of networks which learns to transform cells from condition
1 to 0 and reconstruct them back to condition 0. These two pipelines must work in a way that
they can fool two discriminators (one for each condition) which are trained to detect real cells from
generated (fake) cells. In order to make the problem setting more constrained, the reconstructions
should not highly deviate from the real data according to a distance metric (e.g., L2). Moreover,
similar networks in both lines share parameters. At test time, one can feed the gene expression
profile of all target cells in condition 0 to transform them to condition 1.
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Supplemental Figure 5 | UMAP visualization for epithelial response to pathogen infection from
Haber et al. [4]. a, Different cell types have various degree of response after infection. In comparison with
other cell types, the Endocrine and Tuft cells are less affected after infection.

Supplemental Note 5: Model comparison

We compare the distribution matching capability of each model based on their variance and mean
estimation of every individual gene. Our model yields most accurate mean estimation (R? = 0.97,
Supplemental Figure 2a) while other models yield poor results. For example, CVAE completely fails
to upregulate differentially expressed genes and the result is more similar to control cells (R? = 0.88,
Supplemental Figure 2b). Notably, applying vector arithmetics in gene expression and PCA space
make the mean of some genes to take invalid negative values and leaves the variance intact as it
was in the real control cells (Supplemental Figure 2d,e). Furthermore, scGen also show reasonable
performance in variance estimation (R? = 0.63) and outperforms all other models (Supplemental
Figure 2a).

Supplemental Note 6: Latent space interpolation

We exemplify the latent space interpolation ability of our model by generating 2000 intermediary TA
(Salmonella, Haber et al.) and CD4-T (IFN-3, Kang et al.) cells. First, we project average control
and predicted cells into the latent space and then linearly interpolate 2000 intermediary points
between them. Next, by using generator network we map back latent intermediary cells into high-
dimensional gene expression space (Supplemental Figure 7a-b). One can observe a smooth change
of the top five up and downregulated Salmonella response genes as we traverse cell manifold from
control towards Salmonella cells (Supplemental Figure7c). Similarly, we can see the upregulation of
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Supplemental Figure 6 | scGen performs robustly when holding out more than one cell type.
a-c, Predicting IFN-3 stimulated CD4-T and F-Mono cells form Kang et al. dataset in different scenarios
with different number of held out cell types. First panel shows UMAP visualization for the position of held
out cells. Other panels show mean gene expression of all genes and violin plot for ISG15, the top response
gene after stimulation with IFN-5 for CD4-T and F-mono cells.

top five IFN- response genes (Supplemental Figure 7d).

Supplemental Note 7: Training and technical details

We used a similar architecture to train all models in all scenarios. This architecture includes reduc-
ing input dimension to 800 and creating another 800 features from the previous layer and finally
projecting into 100 dimensional Gaussian governed latent space (inputg;, — 800 — 800 — 100).
The batch normalization [57] was applied to every layer except Gaussian and output layers. Leaky
ReLU (Rectified Linear Unit) activation function was used for all the layers except Gaussian and
output layers which linear and ReLLU were used, Respectively. In order to avoid over-fitting, we ex-
ploited several techniques including dropout [58], Le regularization and early-stopping. Note that,
the degree of regularization, dropout rate, and early stopping hyper-parameters are the only changes
we made to train the model on different datasets. Adam [59] optimizer with learning rate 0.001 was
used to train the networks. The detailed hyper-parameters for each dataset are listed on the GitHub
repository.

Usually, the conditions sizes are not equal leading to a biased § vector estimation. Moreover,
White [55] discovered that by removing smile vector from woman face, the male attribute was also
added. This originates from the sampling bias induced by unequal size of smiling man and woman
samples. In order to prevent a similar problem, as previously described we balanced cell type and
condition size before estimating . Supplemental Figure 11 depicts the effects of using biased and
unbiased ¢ vector for the prediction of stimulated CD4-T from Kang et al.
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Supplemental Figure 7 | scGen enables the generation of intermediary cells between two con-
ditions. a-b, PCA visualization of generated intermediary TA (Haber et al.) and CD4-T (Kang et al.)
cells between control and predicted cells. ¢, Top five up and downregulated genes as we move from control
to Salmonella infected cells. d, Similarly, variation of top five IFN-S marker genes while transitioning from
control to predicted IFN-S stimulated cells.

Supplemental Note 8: Evaluations

Silhouette width, we calculated the Silhouette width based on the first 50 PCs of the corrected
data or the latent space of the algorithm if it did not return corrected data. The Silhouette coefficient
for for cell i is defined as:
N — _ b(i)—a(d)
$00) = S et 607
where a(i) and b(7) indicate the mean intra~cluster distance and the mean nearest-cluster distance
for sample i, respectively. Instead of cluster labels one can use batch labels to asses batch correction

methods. We used silhouette_ score function from scikit-learn [60] to calculate the average Silhouette
width over all samples.

Error bars, were computed by re-sampling the data points with replacement for 100 times and
fitting the regression line for the re-sampled data. The interval represents the original estimation of
R? plus/minus the standard deviation of R? values obtained from 100 fitted lines.

cosine similarity, computes the similarity as the normalized dot product of X and Y defined as:

cosine _similarity(X,Y) = _||<X)T|’|§|/Y>||

The cosine_ similarity function from scikit-learn was used to compute cosine similarity.
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Supplemental Figure 8 | Alternative vector arithmetics for cross species prediction. a-f, Pre-
diction of ratypg by adding difference vectors estimated using rat and mouse. g-h, Prediction of ratypg by
addlng 6average to rateontrol where 6average = a'Vg(ZLPS, all species) - a'Vg(Zcontrol, all species)~
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Supplemental Figure 9 | Comparison of existing batch effect removal methods at integrating
four different pancreatic datasets. a, Original data contains large technical variation which causes
similar cell types cluster separately. We report average silhouette width (ASW) for batches in the original
data (ASW = 0.2130, lower is better). b, scGen aligns shared cell types in different studies while preserving
study specific cell types independent after batch correction and returns lowest ASW (-0.0938). ¢, Scanorama
marges shared cell types but they are not perfectly mixed and does not persevere the structure of the small
study specific cell types. d, CCA connects batches well but shared cell types are not perfectly mixed. e, MNN
mixes some cell types while keeping batch effect for others and it successfully preserves structure of study
specific cell types. f, Results of bbknn show shared cell types are not perfectly mixed and some cell types are
mistakenly merged into wrong clusters. In contrast to other methods this model only returns modified KNN
graph and does not provide any form of corrected data thus ASW is not directly applicable to corrected data.
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Supplemental Figure 10 | scGen integrates eight mouse single cell atlasess with 114600 cells.
a, UMAP visualization of eight different datasets with their corresponding study, cell type and organ labels.
ASW was calculated based on the 57300 randomly sub-sampled cells with their study labels. b, scGen merges
the data by connecting the similar cell types according to their cell labels while having lower ASW (-0.28147).
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Supplemental Figure 11 | Biased sampling effect. a, UMAP visualization of CD4-T cells prediction
depicts that unbiased predicted cells have more overlap with real stimulated cells than biased predictions.
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