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Abstract: Current phylogenetic clustering approaches for identifying pathogen transmission
clusters are limited by their dependency on arbitrarily-defined genetic distance thresholds for
within-cluster divergence. Incomplete knowledge of a pathogen’s underlying dynamics often
reduces the choice of distance threshold to an exploratory, ad-hoc exercise that is difficult to
standardise across studies. Phydelity is a new tool for the identification of transmission
clusters in pathogen phylogenies. It identifies groups of sequences that are more closely-
related than the ensemble distribution of the phylogeny under a statistically-principled and
phylogeny-informed framework, without the introduction of arbitrary distance thresholds.
Relative to other distance threshold-based and model-based methods, Phydelity outputs
clusters with higher purity and lower probability of misclassification in simulated
phylogenies. Applying Phydelity to empirical datasets of hepatitis B and C virus infections
showed that Phydelity identified clusters with better correspondence to individuals that are
more likely to be linked by transmission events relative to other widely-used non-parametric
phylogenetic clustering methods without the need for parameter calibration. Phydelity is

generalisable to any pathogen and can be used to identify putative direct transmission events.

Phydelity is freely available at https://github.com/alvinxhan/Phydelity.
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Introduction

Recent advances in high-throughput sequencing technologies have led to the widespread use
of sequence data in infectious disease epidemiology (Gardy and Loman 2017). In particular,
epidemiologically relevant information such as the structure of transmission networks and
infection source identification are increasingly inferred from virus phylogenies, especially
for measurably evolving viral pathogens like HIV-1 and hepatitis C viruses (Ambrosioni et
al. 2012; Bezemer et al. 2015; Matsuo et al. 2017; de Oliveira et al. 2017; Charre et al. 2018).
Non-parametric phylogenetic-based clustering tools operate on the assumption that pathogens
in a transmission cluster are linked by transmission events rapid enough that molecular
evolution between the transmitted pathogens is minimal, and thus genetically more similar
amongst themselves than to the ensemble of input isolates (Prosperi et al. 2011; Ragonnet-
Cronin et al. 2013). This assumption is generally valid for rapidly evolving pathogens such as
RNA viruses as genetic changes between sequences sampled from transmission pairs are

generally low (Campbell et al. 2018).

Non-parametric phylogenetic clustering methods typically measure the genetic divergence of
sequence pairs either by their genetic distances that are computed from the sequence data
directly (Aldous et al. 2012; Ragonnet-Cronin et al. 2013) or by their patristic distances from
the inferred phylogenetic tree (i.e. the sum of the inferred phylogenetic branch lengths linking
the two sequences; Brenner et al. 2007; Prosperi et al. 2011). The divergence of a cluster can
be defined as the median (Prosperi et al. 2011) or largest (Ragonnet-Cronin et al. 2013)
pairwise distance between member sequences of the cluster. To define transmission clusters,
an upper divergence threshold is implemented either as an absolute distance limit (Ragonnet-
Cronin et al. 2013) or as a percentile of the distribution of pairwise sequence distances
(Prosperi et al. 2011). A fundamental limitation of these non-parametric phylogenetic
clustering tools is the need to define this arbitrary absolute transmission cluster divergence
thresholds (termed as ‘cutpoints’ by Villandre et al., 2016). The lack of a consensus
definition of a phylogenetic transmission cluster (Grabowski and Redd 2014) coupled with
incomplete knowledge of a pathogen’s underlying epidemiological dynamics often reduces
the choice of cutpoints to an ad hoc exploratory exercise resulting in subjective cluster

definitions.
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Phydelity is a novel phylogenetic clustering tool designed to negate the need for arbitrarily
defined cluster divergence thresholds. Requiring only the phylogenetic tree as input,
Phydelity infers putative transmission clusters through the identification of groups of
sequences that are more closely-related to one another than the ensemble distribution under a
statistically-principled framework. Phydelity, like another phylogenetic clustering tool that
we recently developed, PhyCLIP, is based on integer linear programming (ILP) optimisation
(Han et al. 2019). However, the two clustering tools are substantially different in their
approaches and ILP models such that their clustering results have entirely distinct
interpretations. PhyCLIP uses the divergence information of the entire phylogenetic tree to
inclusively assign statistically-supported cluster membership to as many sequences in the tree
as possible that putatively capture variant ecological, evolutionary or epidemiological
processes. To this end, PhyCLIP is useful for sub-species nomenclature development.
Phydelity, on the other hand, exclusively distinguishes closely-related pathogens with
pairwise sequence divergence that are significantly more likely to be drawn from the same
low divergence distribution than that of the ensemble. As such, while PhyCLIP’s designated
clusters are underpowered to be interpreted as sequences linked by transmission events,
clusters inferred by Phydelity can be interpreted as putative transmission clusters (see

Supplementary Materials).

To demonstrate the utility of Phydelity in identifying putative transmission clusters, the
algorithm underlying Phydelity is first presented in detail. The clustering tool is then applied
to both simulated and empirical datasets, including outbreaks of Hepatitis B and C viruses as
well as seasonal A/H3N2 influenza virus infections, and compared against results generated
by existing phylogenetic clustering methods. Phydelity is freely available at
http://github.com/alvinxhan/Phydelity.
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95 Figure 1. (a) Phydelity algorithm pipeline. Phydelity considers the input phylogenetic tree as a collection of
96  putative clusters each defined by an internal node 7 and tips j that it subtends. The algorithm first infers the k-th
97 core distance distribution (D;) from the pairwise patristic distances of the closest k-neighbouring tips. k£ can be
98 defined by the user or scaled by Phydelity to obtain the supremum D,, with the lowest divergence. Dy, is then
99  used to compute the maximal patristic distance limit (MPL) under which tips are considered to be more closely-
100 related than to the ensemble. Dissociation of distally related subtrees/sequences (Figure 1¢) ensues such that
101 both monophyletic and paraphyletic clustering structures can be identified. Phydelity then incorporates the
102 distance and topological information of the remaining nodes and tips into an integer linear programming (ILP)
103 model to be optimised by clustering all tips that satisfy the relatedness constraints within the least number of
104 clusters. Finally, post-ILP steps are implemented to remove any tips that may have been spuriously clustered.
105 (b) Determination of the maximal patristic distance limit (MPL) using the median (¢) and robust estimator of
106 scale (o) based on the k-th core distance distribution (Dy,) of every sequence x; and its k-closest neighbours
107 (d(x;,x;,); k=2 in this case as shown by the pairs of sequences highlighted with distinct colours). (c) Distal
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dissociation of a putative transmission cluster subtended by internal node a. If a sequence tip has a pairwise
sequence distance that is greater than MPL, it will be dissociated and not be clustered under the internal node of
interest (i.e. internal node a). In this case, sequence x5 is dissociated from the putative cluster a due to its
exceedingly long branch length violating the MPL threshold (i.e. d(x3,x3,) > MPL). Additionally, whole
subtrees subtended by the internal node of interest will be dissociated if any of its inter-nodal patristic distance
exceeds MPL. Here, subtree d and its descending sequences (i.e. X, and x,) will be dissociated from a as its
inter-nodal distances with internal nodes b and ¢ are both larger than MPL.

Clustering Algorithm

Figure 1(a) shows the overall workflow of Phydelity. First, Phydelity considers the input
phylogeny as an ensemble of putative clusters, each consisting of an internal node i and the
leaves it subtends. The within-cluster diversity of node i is measured by its mean pairwise
patristic distance (y;). The patristic distance between two nodes, which can be any sequence
tips or internal nodes in the phylogeny, refers to the sum of branch lengths linking those two
nodes. Sequences subtended by i (i.e. all descendant tree tips of node 7) are considered for
clustering if y; is less than the maximal patristic distance limit (MPL), under which
sequences are considered more closely-related to one another than the ensemble distribution

(Figure 1b).

Phydelity computes the MPL by first calculating the pairwise patristic distance distribution
of closely-related tips comprising the pairwise patristic distances of sequence x; to the closest
k-neighbouring tips (i.e. d(xj, xjk) = d;) wherein their closest k-neighbours include sequence

x; as well (i.e. the k-th core distance distribution, Dy, ; Figure 1b). Additionally, Dy, is
incrementally sorted (d; < d;;,) and truncated up to d; if the common log difference

between d; and d; ;4 is more than zero:

= dl+1 - dl
Dk - dl; ...,dl; dl+1, ""dLIdl S dl+1r lg d—l S O

The user can opt to either input the desired k& parameter or allow Phydelity to automatically
scale & to the value that yields the supremum k-th core distance distribution with the lowest
overall divergence (i.e. the largest possible £ that still yields the lowest overall divergence
between k-neighbouring tips). This is done by testing if Dy, and D, are statistically distinct
(p <0.01) using the Kuiper’s test (see Supplementary Materials). All clustering results of

Phydelity presented in this work were generated using the autoscaled value of £.

The MPL is then calculated by:
MPL=ji+o


https://doi.org/10.1101/477653
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/477653; this version posted August 9, 2019. The copyright holder for this preprint (which was

143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175

not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

where 1 is the median pairwise distance of D;, and o is the corresponding robust estimator of
scale without assuming symmetry about f using the Qn method (see Supplementary

Materials, Rousseeuw and Croux 1993; Figure 1b).

This is then followed by dissociation of distantly-related descendant subtrees/sequences to all
putative nodes for clustering, thereby facilitating identification of both monophyletic as well
as nested paraphyletic clusters (Figure 1c; see Supplementary Materials). Phydelity filters
outlying tips from putative clusters under the assumption that viruses infecting individuals in
a transmission chain coalesce to the same most recent common ancestor (MRCA).
Additionally, Phydelity requires any clonal ancestors in between the MRCA and tips of a
putative cluster to be as genetically similar to each other as they are to the tips of the cluster.
As such, for a putative transmission cluster, the mean pairwise nodal distance between all

internal and tip nodes of a cluster must also be < MPL (Figure 1c).

An ILP model is implemented and optimised under the objective to assign cluster
membership to sequences satisfying the aforementioned relatedness criteria within the least
number of clusters. In other words, Phydelity uses ILP optimisation to search for the
clustering configuration that favours the designation of larger clusters of closely-related
sequences which are likely linked by transmission events. Any topologically outlying
singletons that were spuriously clustered are removed. Finally, it is important to note that a
transmission cluster identified by Phydelity should only be interpreted as a fully connected
network of likely transmission pairs without implying any underlying transmission
directionality. The full algorithm description and mathematical formulation of Phydelity is

detailed in the Supplementary Materials.

Assessing clustering results of simulated epidemics

Phydelity was evaluated on phylogenetic trees derived from simulated HIV epidemics of a
hypothetical men who have sex with men (MSM) sexual contact network (C-type networks in
Villandre et al., 2016). The simulated sexual contact network comprised 100 subnetworks
(communities) sampled from an empirical distribution obtained from the Swiss HIV Cohort
Study. All communities were linked in a chain initially and additional connections between
any two communities were generated at a probability of 0.00075. Subjects in the network

29 ¢

could either be in the “susceptible”, “infected” or “removed” (i.e. individual was diagnosed
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and sampled) state. Transmission clusters were attributed to sexual contact among individuals

belonging to the same community.

300 epidemics were simulated for four different weights of inter-community transmission
rates (w = 25%, 50%, 75% or 100% of the within-community rate). Two infected individuals
were randomly introduced in any of the 100 communities. Transmission time along an edge
followed an exponential distribution with rates directly proportional to the associated
weights. Time until removal was based on a shifted exponential distribution with the shift
representing the minimum amount of time required for a virus to be transmitted to susceptible

neighbours. The simulation ended once 200 individuals were in the “removed” state.

These simulated datasets were tested by Villandre et al. (2016) to compare the outputs of four
“cutpoint-based” phylogenetic clustering methods where the arbitrary distance threshold
defining a transmission cluster (i.e. cutpoint) was computed as the: (i) absolute patristic
distance threshold between any two tips (Brenner et al. 2007); (ii) standardised number of
nucleotide changes (i.e. ClusterPicker, Ragonnet-Cronin ef al., 2013); (iii) percentile of the
phylogeny’s pairwise sequence patristic distance distribution (i.e. PhyloPart, Prosperi ef al.,
2011) and (iv) height of an ultrametric tree obtained using the weighted pair-group method of
analysis (WPGMA). For each method, Villandre et al. varied the corresponding cutpoint
parameter over an equivalent range of thresholds. Comparing the output clusters generated by
the four methods at their respective optimal cutpoint by adjusted rand index (see below), it
was found that the WPGMA method tended to produce clusters with better correspondence to
the underlying sexual contact structure. As such, clustering results from Phydelity were
compared to those obtained by Villandre et al. using the WPGMA method. Additionally,
Phydelity was also compared to the multi-state birth-death (MSBD) method which inferred
transmission clusters on the same simulated datasets by detecting significant changes in

transmission rates (Barido-Sottani et al. 2018).

To assess and compare the output clusters from Phydelity and the aforementioned clustering
methods that had been tested on these networks previously, several metrics were used to
measure how well the clustering results corresponded with the known sexual contact

network:
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Adjusted rand index (4RI). ARI measures the accuracy of the clustering results by
computing the frequencies of pairs of sequences of the identical (or distinct)
subnetwork(s) assigned to the same (or different) cluster(s) (Hubert and Arabie 1985).
ARI ranges between -1 (matching between output clusters and community labels is
worse than random clustering) and 1 (perfect match between output clusters and ground
truth).

Modified Gini index (I;). Gini impurity, commonly used in decision tree learning,
refers to the probability of a randomly selected item from a set of classes being
incorrectly labelled if it was randomly labelled by the distribution of occurrences in the
class set (Breiman et al. 1984). Here, I; measures how often a randomly selected
sequence from the given network would be incorrectly clustered by the inferred
clusters. For a sexual contact network with 7 communities (i.e. t € {1,2,...,T}), I; is

computed as:

T c*
=) |pe 1= picl)
t=1 c=1

where C* is the set of clusters defined to have correctly classified sequences attributed
to community ¢ (i.e. any cluster that constitutes the largest proportion of sequences
from community ¢ at both the cluster and the community label levels), p; is the
probability of sequence from community ¢ and p(c|t) refers to the probability that a
sequence is clustered under cluster ¢ conditional of it being from community z. If
output clusters perfectly align with the underlying sexual contact network (i.e. one
cluster only constitute one class of community), /; = 0. Conversely, if clustering

results are completely random, I; = 1.

iii. Purity measures the average extent that the output clusters contain only a single class

(i.e. a particular sexual contact community; Manning et al. 2008):

purity - z (maX{NCf}>

where N, is the size of cluster ¢, N, is the number of tips from community ¢ clustered
under cluster ¢ and C is the set of all output clusters. Note that purity (as well as I;;)
can be inflated if the total number of clusters is large (i.e. if each tip is assigned to a

unique cluster, purity = 1 and I; = 0).
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iv. Normalised mutual information (NMI) trades off the output clustering quality against

the number of clusters (Manning et al. 2008):
I(T, C)
[H(T) + H(C)]/2

where H(T) and H(C) are the respective entropies of the network communities and

NMI =

output clusters, and /(7,C) is the mutual information between them. If clustering is
random with respect to the network community labels, I(T,C) = 0 (i.e. NMI = 0).
On the other hand, maximum mutual information is achieved (i.e. I(T,C) =

I(T, C)pax) either when the output clusters map the sexual contact network perfectly
or all clusters have one member only. Hence, to penalise large cardinalities (i.e.
number of members in a cluster) while normalising I(T, C) between 0 and 1, NMI is
calculated since (a) entropy increases with increasing number of clusters and (b)

[H(T) + H(C)]/2 is a tight upper bound to I(T, C).

Empirical datasets

Phydelity was also tested on three empirical datasets — acute hepatitis C virus infections
among men who have sex with men (Charre et al. 2018), hepatitis B viruses collected from
members of the same families (Matsuo et al. 2017) as well as A/H3N2 influenza viruses
collected from a community-based cohort of households during the 2014/2015 season
(McCrone et al. 2018). All phylogenetic trees were reconstructed using RAXML (v8.2.12)
under the GTRGAMMA model (Stamatakis 2014).

Comparisons to ClusterPicker and PhyloPart

ClusterPicker (Ragonnet-Cronin et al. 2013) and PhyloPart (Prosperi et al. 2011), two non-
parametric phylogenetic clustering tools that are methodologically comparable to Phydelity,
were also applied to the hepatitis C and hepatitis B virus datasets for comparisons. Either
clustering tool has been previously applied to multiple studies involving different pathogens
(Prosperi et al. 2011; Jacka et al. 2014; Bezemer et al. 2015; Bartlett et al. 2016; Coll et al.
2017; de Oliveira et al. 2017; Charre et al. 2018). Other than the phylogenetic tree, both
ClusterPicker and PhyloPart also require users to input an arbitrarily-defined genetic distance
threshold (as an absolute distance limit for ClusterPicker and percentile of the global pairwise

patristic distance for PhyloPart). As such, a range of distance limits (PhyloPart: 0.5-10%
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percentile; ClusterPicker: 0.005-0.1 nucleotide/site) were applied to both tools. No bootstrap
support threshold were implemented for comparability to Phydelity.

The lowest optimal threshold for the distance range tested was found by maximisation of the
mean silhouette index (S7) for both ClusterPicker and PhyloPart. The Silhouette index
measures how similar an item is to members of its own cluster as opposed to the nearest
neighbouring clusters - i.e. a larger mean silhouette index indicates that items of the same
cluster are more closely related amongst themselves than to its neighbours (Rousseeuw,

1987). No parameter optimisation was required for Phydelity.

Results

Simulated HIV epidemics

Phydelity was applied to simulated HIV epidemics among men who have sex with men
(MSM) belonging to a hypothetical sexual contact network structures where transmission
clusters were attributed to transmission by sexual contact among individuals belonging to the
same subnetwork (see Methods; Villandre et al., 2016). These simulations were originally
used to assess the performance of “cutpoint-based” clustering tools, including ClusterPicker,
PhyloPart as well as the weighted pair-group method of analysis (WPGMA) which generally
attained the highest adjusted rand-index (ARI) score across all simulations when calibrating
their respective cutpoint thresholds against the ground-truth. Phylogenetic trees generated
from these simulations were also tested by the multi-state birth death (MSBD) method
(Barido-Sottani et al. 2018).

Clustering results from Phydelity were compared to outputs from the MSBD method and
those from the WPGMA method achieving the best ARI scores. The purity, modified Gini
index (/;) and normalised mutual information (NMI) measures were also used to provide a
more comprehensive assessment of the clustering results (Figure 2, Supplementary Figure 3

and Supplementary Table 1; see Methods).
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297 Figure 2. Clustering results of simulated HIV epidemics in a hypothetical MSM sexual contact network. (a)
298 Clustering metrics for clustering algorithms (Phydelity, weighted pair-group method of analysis (WPGMA) and
299 multi-state birth death (MSBD) methods) applied simulated phylogenies with inter-communities transmission
300 rates weighted at half of within-community rates (i.e. w= 0.5). Coverage refers to the proportion of tips

301 clustered by Phydelity. Adjusted rand index (4R[) measures how accurate the output clusters corresponded with
302 the community labels. Purity gives the average extent clusters contain only a single class of community.

303 Modified Gini index (I;;) is the probbility that a randomly selected sequence would be incorrectly clustered.
304 Normalised mutual information (NMI) accounts for the trade-off between clustering quality and number of

305 clusters. (b) Results for simulations where inter-communities transmission rates were identical to within-

306  community rates (i.e. w=1.0). (¢) Sample output clusters of Phydelity for a subtree of an example simulation (w
307 = 0.5). Tips that were clustered by Phydelity are distinctly coloured according to their cluster membership. By
308 relaxing the monophyletic assumption, Phydelity is capable of detecting paraphyletic clusters (e.g. transmission
309 pair 166-T17 and 171-T17 and cluster subtending 132-T14, 135-T14 and 137-14).

310

311  The phylogenetic trees generated from the simulations had a large number of clusters that
312 were relatively small in size (i.e. percentage of sequences that were part of ground truth

313 clusters with sizes < 8 tips = 33.9% (weight of inter-community transmission rates, w =

314 25%); 55.5% (w =100%); see Barido-Sottani ez al. (2018) for more details). Furthermore,
315  these ground truth clusters were not all monophyletic (Figure 2c). As a result, while

316  Phydelity and WPGMA yielded comparable ARI scores (Phydelity: 0.44-0.45 (s.d. = 0.05);
317  WPGMA: 0.44-0.56 (s.d. = 0.05-0.05); Supplementary Table 1), Phydelity’s output clusters,
318  which allows paraphyletic clusters (Figure 2¢), are substantially purer (mean purity;

319  Phydelity: 0.81-0.88 (s.d. = 0.03); WPGMA: 0.67-0.74 (s.d. = 0.06-0.06)) and have a lower
320  probability of misclassification when compared to WPGMA which assumes clusters are

321  strictly monophyletic (mean I;; Phydelity: 0.27-0.28 (s.d. = 0.04-0.05); WPGMA: 0.33-0.40
322 (s.d. =0.04-0.05)). Coverage of sequences clustered by Phydelity lies between 58.2% and
323 61.6%.

324

325  The clustering results from WPGMA presented in this work were based on the optimal

326  distance threshold derived by calibration against the simulated ground-truth. Notably,

327  Phydelity’s auto-scaling mitigates the need for threshold calibration and enables application
328  to empirical datasets where ground truth clustering is unavailable, as is typically the case for
329  epidemiological studies.

330

331  Hepatitis B virus transmission between family members

332 Phydelity was tested on empirical datasets to demonstrate its applicability on real-world data,
333 including hepatitis B viruses (HBV) collected from residents in the Binh Thuan Province of
334 Vietnam (Matsuo et al. 2017). In such highly endemic regions, HBV is commonly
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transmitted either vertically from mothers to children during the perinatal period or
horizontally between cohabitants of the same household (Matsuo et al. 2017). As complete
genome nucleotide sequences were not available for all individuals, a phylogenetic tree was
reconstructed using the viral polymerase sequences collected from 41 patients, of which 12 of
them were confirmed to be members of three families (i.e. denoted as F2, F3 and F4) by a
family survey as well as mitochondrial analyses. Besides Phydelity, the resulting phylogeny

was also implemented in ClusterPicker and PhyloPart.

Phydelity identified three likely transmission clusters that distinguish between the separate
family households (Figure 3). At their respective optimal distance thresholds by mean
Silhouette index (see Methods), ClusterPicker and PhyloPart achieved similar clustering
results. Importantly, Phydelity was able to obtain the same optimal clustering results without

optimisation and implementation of a hard-to-interpret distance parameter.

13
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349  Figure 3. Clustering results of hepatitis B viruses (HBV) collected from residents in the Binh Thuan Province
350 of Vietnam. (a) Plots of mean Silhouette index (S7) computed for the range of genetic distance thresholds

351 implemented in ClusterPicker and PhyloPart. Clustering results from the lowest optimal distance threshold

352 (toptimar) With the highest SI value for each method were compared to Phydelity as depicted in b (ClusterPicker:
353 toptima = 0.011 nucleotide/site, S = 0.265; PhyloPart: t,,;mq = 4.60%, SI=0.225). Plot for ClusterPicker is
354  truncated at ~0.05 nucleotide/site as the entire tree collapsed to single cluster after this threshold. (b) Maximum
355 likelihood phylogeny of HBV polymerase sequences derived from viruses collected from 41 patients. 12
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patients were confirmed to be members of three separate family households (F2, F3 and F4; tip names shaded
with a distinct colour for each family). Clustering results from Phydelity are depicted as a heatmap alongside
outputs from ClusterPicker and PhyloPart based on their respective top¢imq:- Each distinct colour of the heatmap
cells denotes a different cluster.

Hepatitis C virus transmission among MSM

Incidence of HCV infections among HIV-negative MSM has been relatively limited as
compared to their HIV-positive counterparts. However, the recent uptake of pre-exposure
prophylaxis (PrEP) among HIV-negative individuals to prevent HIV infection could pose
higher risk of sexually transmitted HCV infections (Volk et al. 2015; Charre et al. 2018). In a
study on HIV-positive and HIV-negative MSM patients in Lyon, 108 cases of acute HCV
infections (80 primary infections; 28 reinfections) were reported between 2014 and 2017
among 96 MSM (72 HIV-positive; 24 HIV-negative, of which 16 (67%) of them were on
PrEP; Charre et al. 2018). Separate phylogenetic analyses were performed on a subset of 89
(68 HIV-positive; 21 HIV-negative) HCV isolates belonging to genotypes 1a and 4d based on
their NS5B sequences. Additionally, 25 HCV sequences from HIV-infected MSM collected
before 2014 were included along with 60 control HCV sequences derived from HIV-
negative, non-MSM patients residing in the same geographical area as controls. All
sequences collected from MSM patients were given strain names in the format of

“MAH(ID) accession” while control sequences from non-HIV, non-MSM patients were
denoted as “NCH(ID) accession” (Figure 4). Phydelity as well as ClusterPicker and
PhyloPart were applied to the reconstructed phylogenies, with the latter calibrated over a
range of distance thresholds. Again, only clustering results based on the lowest distance
threshold maximising the mean Silhouette index for ClusterPicker and PhyloPart were

compared to Phydelity’s output clusters (see Methods).

Generally, membership of the MSM transmission clusters and pairs identified by Phydelity
across both genotypes were strictly limited to sequences derived from MSM patients.
Relaxing the monophyletic assumption by dissociating distantly-related tips from putative
monophyletic clusters (see Methods) enables Phydelity to identify likely outlying sequences
as evidenced by their relatively longer branch lengths from the cluster ensemble (Table 1 and
Figure 4; Genotype 1a: cluster C1 — MAH66 and cluster C3 — MAH31, MAH62 and
MAH72; Genotype 4d: cluster C3 — MAH24 and MAHO8). In particular, for genotype 1a,
even though the mean pairwise distance of MAH72 to members of cluster C3 is within a

standard deviation of the latter’s within-cluster diversity, its distance to the more distant
15
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members (e.g. MAH15 and MAH40, Figure 4) violated the inferred MPL (Table 1).
Additionally, as a result of distal dissociation, Phydelity distinguishes clusters that are
genetically more alike amongst themselves than to those phylogenetically ancestral to it (e.g.

cluster C1.1 that is “nested” within cluster C1 for genotype 1a; Figure 4a).

For both genotypes, Phydelity found multiple clusters that included both HIV-positive and
HIV-negative MSM patients (i.e. Genotype la: clusters C2 and C3, Figure 4a; Genotype 4d:
clusters C2 and C2.2, as well as pair P2, Figure 4b). While it is not clear which of the HIV-
negative patients were on PrEP (information not supplied in the original paper), the clustering
results from Phydelity were in line with the findings by Charre et al. that acute HCV
infections among HIV-negative MSM were likely sourced from their HIV-positive

counterparts.

While ClusterPicker managed to consolidate all of the MSM genotype 4d sequences into a
single monophyletic cluster (Figure 4b), its clustering of genotype 1a was problematic as a
large number of non-MSM control sequences were clustered together with those from MSM
patients (Figure 4a). PhyloPart’s optimal clustering output was consistent Phydelity’s for
genotype la. However, the larger number of identical sequences in the genotype 4d tree
skewed the optimal distance parameter (expressed as x-th percentile of the pairwise patristic

distribution of the entire phylogeny) to only cluster these identical sequences.

Mean pairwise patristic

Mean pairwise patristic . ) .
P P Outlier distance of outliers to

Genotype  MPL  Cluster distance of cluster (o)
cluster members (o)
la 0.029 C1 0.011 (0.012) MAH66 0.043 (0.009)
C3 0.016 (0.009) MAH62 0.045 (0.027)
MAH31 0.041 (0.025)
MAH72 0.022 (0.015)
4d 0.010 C1 0.006 (0.004) MAH24 0.019 (0.006)

MAHO08 0.009 (0.005)

Table 1: Comparing the genetic distance between outlying tips and the clusters they coalescence to with the
genetic diversity of those clusters.
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414  Figure 4. Maximum likelihood phylogeny and clustering results of hepatitis C viruses (HCV) obtained from
415 men who have sex with men (MSM) in Lyon, France. All highlighted tip names denoted in the format

416  “MAH(ID) accession” were samples from MSM patients (blue: HIV-positive, red: HIV-negative, green: HIV-
417 positive and considered as outlying sequences by Phydelity). Non-highlighted tips were collected from non-
418  HIV, non-MSM patients residing in the same geographic region and time period. Clustering results from

419  Phydelity, ClusterPicker and PhyloPart are depicted as a heatmap. Each distinct colour refers to a different
420  cluster. Similar to the Vietnamese hepatitis B empirical viral datasets (Figure 3a and Supplementary Figure 4),
421  mean Silhouette index was used as the optimality criterion to determine the optimal absolute distance threshold
422  for ClusterPicker and PhyloPart. Only results based on the optimised thresholds are shown here for

423  ClusterPicker and PhyloPart. No parameter optimisation is required for Phydelity. (a) Genotype la. (b)

424 Genotype 4d.

425
426
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427  Seasonal A/H3N?2 influenza virus infections within a community and the effects of sampling
428  Phydelity was also applied to A/H3N2 influenza viruses collected from a community-based
429  cohort of 340 households (1431 participants) in Southeastern Michigan, U.S. during the

430  2014/2015 season (McCrone et al. 2018). Of the influenza positive cases, 206 virus samples
431  were collected from 166 individuals that belonged to 81 households and sequenced. As

432 concurrent infections among individuals within the same household do not necessarily imply
433 transmission, McCrone et al. implemented stringent epidemiological as well as genetic

434  distance constraints to identify transmission pairs: (i) the donor and recipient of a

435  transmission pair were of the same household with onset of illness symptoms occurring

436  within 7 days of each other, with the donor having the earlier symptom onset date; (ii) there
437  must be no other potential donors with the same symptom onset date; (iii) symptom onset
438  dates of donor and recipient should not be on the same day unless they were index cases; and
439  (iv) genetic distance between the within-host viral populations of donor and recipient must be
440  below the 5™ percentile of the distance distribution of random pairs of infected individuals
441  from the community (McCrone et al. 2018). In total, 50 virus isolates constituting 32 high-
442  quality transmission pairs were identified. Consolidating transmission pairs with overlapping
443  donors and recipients into clusters, there were 22 genetically-validated transmission clusters,
444 comprising of 16 pairs and 6 trios in total.

445

446  Using the phylogeny constructed from the consensus whole genome sequences of all 206
447  viruses, Phydelity was able identify 20 of the 22 high-quality transmission clusters as distinct
448  clusters (Supplementary Figure 5). Applying the same metrics used to assess clustering

449  performance of the simulated dataset earlier and using the high-quality transmission cluster
450 labels as ground truth, Phydelity was able to produce highly pure clusters (97.8%), with a low
451  probability of misclassification (I; = 0.022) and good accuracy (4RI = 0.962), even after
452  accounting for the number of predicted clusters (NMI = 0.993; Table 2). As transmission

453  events defined by McCrone et al. were based on highly conservative criteria imposed on deep
454  sequencing datasets, Phydelity, which operates at the consensus sequence level, could also
455  cluster viruses that did not satisfy these constraints but were still linked epidemiologically by
456  their household identities. As such, Phydelity’s clustering results were assessed based on the
457  household association of the clustered individuals as well, yielding slightly diminished but
458  nonetheless high quality performance (Purity = 0.894, I; = 0.081, AR/ =0.791, NMI =

459  0.964; Supplementary Figure 5 and Table 2).
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460
Basis Neampte  Yorrans  Purity lg  ARI NMI
All 098 0.02 0.96 0.99
25% 0.87 0.06 0.72 0.93
High-quality transmission clusters 52 45% 0.87°0.040.74 095
70% 0.85 0.07 076 094
93 25% 094 0.03 0.88 0.98
45% 094 0.03 090 0.98
All 0.89 0.08 0.79 0.96
25% 056 029 035 0.82
52 45% 0.73 0.16 0.56 0.90
Household 70% 0.82 011 0.74 0.93
93 25% 0.75 0.16 0.64 0.92
45% 0.87 0.11 0.80 0.95

461  Table 2: Clustering performance of Phydelity on seasonal A/H3N2 influenza viruses collected by McCrone et
462  al. (2018). Ground truth used for clustering assessment is either based on the identities of genetically-validated,
463  high-quality transmission clusters as defined by McCrone et al. or by the patients’ households. Besides

464  analysing all of the viruses collected (bolded results), Phydelity was also applied to downsampled datasets
465 consisting of different sample size (Ngqmpe ) and proportion of sequences derived from the aforementioned
466  high-quality transmission pairs (%;yqns). Adjusted rand index (4RI) measures how accurate the output clusters
467  corresponded with the ground truth labels. Purity gives the average extent clusters contain only a single class.
468  Modified Gini index (I;) is the probbility that a randomly selected sequence would be incorrectly clustered.
469 Normalised mutual information (NMI) accounts for the trade-off between clustering quality and number of
470  clusters.

471

472  The full A/H3N2 sequence dataset was then randomly sampled to smaller pools of 52 (25%)
473 as well as 93 (45%) isolates to assess how low sampling rates might affect Phydelity’s

474  performance. To ensure that sequences involved in high-quality transmission pairs were also
475  sampled, such isolates would constitute different proportions (either 25% or 45%; as well as
476  70% for pools of 52 sequences only) of the downsampled datasets. 10 distinct downsamples
477  were generated for each sample size/high-quality transmission sequence combination and the
478  average results were tabulated (Table 2).

479

480  Asthe MPL is informed by the phylogenetic tree, clustering results will consequently be

481  sensitive to the diversity of closely-related tips within the input phylogeny. Specifically, the
482  closely-related sequences that constitute the k-th core patristic distance distribution (D) must
483  be homogenous (i.e. similar difference between consecutive distances when Dj, is sorted; see
484  Methods) but sufficiently distinct from the background diversity of the phylogeny. This was

485  demonstrated by the improved clustering results with respect to household identities with
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greater proportional inclusion of genetically similar, high-quality transmission pairs in the
downsampled dataset (Table 2). Furthermore, erroneous clustering of distantly-related tips
can be obtained if D, has a similar distance distribution relative to the entire tree due to
insufficient divergence information from reduced sampling. This is evident from the general
decrease in the clustering performance of all downsampled data. In particular, clustering

closely-related, high-quality transmission clusters was worse off with a lower sample size.

Computational performance
For computational performance, Phydelity can process a phylogeny of 1000 tips, on an
Ubuntu 16.04 LTS operating system with an Intel Core 17-4790 3.60 GHz CPU, in ~3

minutes using a single CPU core and 253 MB of peak memory usage.

Discussion

Phydelity is a statistically-principled tool capable of identifying putative transmission clusters
from pathogen phylogenies without the need to introduce arbitrary distance thresholds.
Instead, Phydelity infers the maximal patristic distance limit (MPL) for cluster designation
using the pairwise patristic distance distribution of closely-related tips in the input
phylogenetic tree. Unlike other cutpoint-based methods, Phydelity does not assume clusters
are strictly monophyletic and can identify paraphyletic clustering owing to its distal
dissociation approach. For datasets that span extended periods of time, multiple introductions
within the same contact network and concurrent onward transmissions to other communities
can result in “nested” introduction events that would go undetected by monophyletic
clustering (Barido-Sottani et al. 2018). By relaxing this assumption, not only can Phydelity
pick up these “nested” events, it tends to produce clusters that are purer with a lower chance
of misclassification while excluding putative outlying tips that are exceedingly distant from

the inferred cluster.

Even though there are algorithmic similarities between PhyCLIP (Han et al. 2019) and
Phydelity, clustering results generated by PhyCLIP should not be interpreted as sequences
linked by transmission events. For instance, when applied to the HCV genotype 1a NS5B
dataset, PhyCLIP clustered 131 of the 155 input sequences into seven clades, all of which
encompasses genetically similar viruses of both MSM and non-MSM origins that were

endemic in Lyon during a specific period in time. In contrast, Phydelity assigned 73
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sequences into 12 transmission pairs and 5 transmission clusters that distinguished the
underlying MSM transmission events from non-MSM ones (Supplementary Figure 1). A
detailed comparison between Phydelity and PhyCLIP can be found in Supplementary

Materials.

One of the key assumptions made by Phydelity is that the transmitted pathogens coalesce to
the same most recent common ancestor (MRCA) and that the pairwise genetic distance of
internal nodes found between the MRCA and the tips of the cluster to be bounded below
MPL. While Phydelity does not explicitly equate the inferred phylogeny to a transmission
tree, imposing a distance threshold between the internal nodes within a phylogenetic cluster
may be construed as an implicit assumption that the internal nodes are representative of
transmission events. There are important differences in the interpretation of phylogenetic and
transmission trees. The former depicts the shared ancestry between the sampled tips while the
latter represents the true transmission history between the transmitted pathogens (Pybus and
Rambaut 2009; Ypma et al. 2013). It should be noted that Phydelity neither attributes any
interpretation of transmission events to the internal nodes nor does it relate branch lengths of
the phylogenetic tree, which correlate with the timing of coalescence, to transmission times.
Restricting the distances between internal nodes below the MPL is strictly meant to increase

conservatism in identifying clusters that are as closely-related as possible.

There have also been criticisms that non-parametric cluster identification by genetic
similarity is biased towards the detection of recent infections as opposed to discerning
variations in transmission rates between different subpopulations, which can be further
exacerbated by oversampling (Poon 2016; Dearlove et al. 2017; Le Vu et al. 2018). While
this caveat limits the interpretation of the inferred transmission clusters, it does not render all
phylogenetic clustering tools obsolete. Phylogenetic clustering tools supplemented by
epidemiological meta-data can still be used to systematically identify infection trends,
potential risk factors and target subpopulations, as demonstrated by multiple epidemiological
studies of different measurably-evolving pathogens (Matsuo et al. 2017; de Oliveira et al.

2017; Charre et al. 2018).

Additionally, constructing a phylogenetic tree can be a computational bottleneck for large

sequence datasets. As an alternative, genetic distance-based clustering algorithms such as

22


https://doi.org/10.1101/477653
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/477653; this version posted August 9, 2019. The copyright holder for this preprint (which was

552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584

not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

HIV-TRACE (Kosakovsky Pond et al. 2018) which negate the need to build a phylogenetic
tree have becoming increasingly popular. However, HIV-TRACE still requires users to
specify an arbitrary absolute distance threshold. Additionally, while it performed better than
other existing phylogenetic clustering methods, HIV-TRACE did not preclude problems with
bias towards higher sampling rates (Poon 2016).

Despite its limitations, clustering results generated by Phydelity for the simulation and
empirical datasets in this study demonstrate its superior performance over current widely
used phylogenetic clustering methods. Importantly, Phydelity obviates the need for users to
define or optimise non-biologically-informed distance thresholds. Phydelity is fast,

generalisable, and freely available at https://github.com/alvinxhan/Phydelity.
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