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Abstract

Many biological processes have to occur at specific locations on the cell membrane.
These locations are often specified by the localised activity of small GTPase proteins.
Some processes require the formation of a single cluster of active GTPase, also called
unipolar polarisation (here “polarisation”), whereas others need multiple coexisting
clusters. Moreover, sometimes the pattern of GTPase clusters is dynamically regulated
after its formation. This raises the question how the same interacting protein
components can produce such a rich variety of naturally occurring patterns. Most
currently used models for GTPase-based patterning inherently yield polarisation. Such
models may at best yield transient coexistence of at most a few clusters, and hence fail
to explain several important biological phenomena. These existing models are all based
on mass conservation of total GTPase and some form of direct or indirect positive
feedback. Here, we show that either of two biologically plausible modifications can yield
stable coexistence: including explicit GTPase turnover, i.e., breaking mass conservation,
or negative feedback by activation of an inhibitor like a GAP. Since we start from two
different polarising models our findings seem independent of the precise self-activation
mechanism. By studying the net GTPase flows among clusters, we provide insight into
how these mechanisms operate. Our coexistence models also allow for dynamical
regulation of the final pattern, which we illustrate with examples of pollen tube growth
and the branching of fungal hyphae. Together, these results provide a better
understanding of how cells can tune a single system to generate a wide variety of
biologically relevant patterns.

Author summary

Where to form a bud? Where to reinforce the cell wall? In which direction to move?
These are all important decisions a cell may have to make. Proper patterning of the cell
membrane is a critical part of such decisions. These patterns are often specified by the
local activity of proteins called small GTPases. Mathematical models have been an
important tool in understanding the mechanisms behind small GTPase-based
patterning. Most of these models, however, only allow for the formation of a single
cluster of active GTPase and thus cannot explain patterns of multiple coexisting
GTPase clusters. A previously proposed mechanism for such coexistence can only
explain a temporary, unstable coexistence, and fails to explain several key biological
phenomena. In this manuscript, we investigate two mechanisms that can produce
patterns of many stably coexisting GTPase clusters. Using a combination of modelling
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techniques, we show why these mechanisms work. We also show that these mechanisms
allow for the addition of new clusters to an existing pattern, as is observed for example
during the branching of fungal hyphae. With our results, we now have handles to
explain the full range of naturally occurring small GTPase patterns.

Introduction 1

Many cellular processes must occur at specific locations on the cell membrane. 2

Examples range from the formation of a yeast bud [1], to the localised reinforcements of 3

plant cell walls [2], to coordination of directed cell movement in animals [3]. The 4

localisation of these processes is determined by the local activity of highly conserved 5

small GTPase proteins (e.g., Rho, ROP, Rac, Ras, henceforth referred to as 6

GTPases) [4]. In some cases, such as yeast budding, a single cluster of active GTPase 7

forms, resulting in unipolar polarisation (henceforth referred to as polarisation). In 8

others, e.g., patterned plant cell wall reinforcement, the GTPase pattern consists of 9

many coexisting clusters (Fig 1A). This raises the question how the same biological 10

system can generate different types of patterns. Mathematical models are an important 11

tool in understanding the mechanisms of de novo pattern formation, but thus far, most 12

models for GTPase-based patterning only yield polarisation [5, 6]. 13

Fig 1. Models for GTPase-based membrane patterning. A: Types of
GTPase-based membrane patterns that occur in living cells. Some situations require the
formation of a single cluster of GTPase (polarisation, left), whereas others require stable
coexistence of multiple clusters (right). B: Active GTP-bound GTPases are inactivated
by hydrolysis of GTP to GDP under the influence of GAP proteins. Inactive GTPases
can be activated by GEF proteins that promote the exchange of GDP for GTP.
GTPases can bind to the cell membrane with their hydrophobic tails, but the inactive
form is selectively taken out by GDI proteins. C: Interaction motifs of the reaction
diffusion models. Solid lines indicate conversions and dashed lines indicate interactions.
Positive interactions are indicated by arrowheads and negative interactions by
perpendicular lines. Stars indicate the active form of GTPase.

Small GTPases function as molecular switches with an active, GTP-bound form and 14

an inactive, GDP-bound form (Fig 1B). They can be switched on by Guanine nucleotide 15

Exchange Factors (GEFs), which facilitate exchange of GDP for GTP, and off by GTP 16

hydrolysis, which can be accelerated by GTPase Activating Proteins (GAPs) [7, 8]. The 17

active form is membrane-bound, whereas the inactive form is removed from the 18

membrane by Guanine nucleotide Dissociation Inhibitors (GDIs) [9]. Since diffusion in 19

the cytosol is much faster than at the membrane [10], the inactive form effectively 20

diffuses much faster than the active form. This difference in diffusion is one of the 21

classical ingredients for pattern formation through a Turing-type reaction-diffusion 22

mechanism [11,12], making these GTPases particularly suitable for membrane 23

patterning in biological systems. 24

Many theoretical studies have been performed on the role of GTPases in 25

polarisation, for cells of organisms as diverse as animals, yeast, and the cellular slime 26

mold Dictyostelium discoideum [5]. Most of these models involve some form of positive 27

feedback, either through direct or indirect self-activation or through double negative 28

feedback between two antagonistic GTPases. In addition, these models generally do not 29

include protein turnover, so GTPase is only interconverted between active and inactive 30

form, and not produced or degraded (generally referred to as mass conservation). These 31

two properties seem to form a robust recipe for polarisation [13–17]. 32

However, GTPases also play important roles in the formation of other patterns than 33
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simple polarisation. For example, cell wall patterning in at least one common type of 34

plant vasculature, the metaxylem, relies on a pattern of multiple clusters of a 35

GTPase [18–20]. The interdigitated pattern of plant leaf epidermal cells (pavement 36

cells) is under the control of two antagonistic classes of GTPase [21–23]. Furthermore, 37

several GTPases are implicated in the outgrowth of multiple dendrites from neuron cell 38

bodies [4]. 39

Particularly interesting in this context is the role of GTPases in tip growing systems, 40

where the pattern of GTPase clusters may be dynamically regulated, adding an extra 41

layer of complexity. In these systems, a cluster of active GTPase determines the tip 42

region of a growing tube. Some of these systems, such as root hairs [24] and pollen 43

tubes [25], have a single growing tip. In others, such as fungal hyphae, multiple tips can 44

exist simultaneously, each with their own cap of active GTPase. More importantly, new 45

clusters can appear even after others have already been established, resulting in 46

branching. This is important for the establishment of a mycelial network [26,27]. 47

Additionally, in both pollen tubes and hyphae, growth can proceed in pulses, with the 48

GTPase cap diminishing or disappearing as growth slows or halts [28,29]. 49

This more complex growth requires the coexistence of multiple clusters as well as the 50

de novo generation of new clusters besides existing ones. Studying these processes in 51

one dimension (1D), as is often done for polarisation, saves computational time, but can 52

produce misleading results. For example, many mass conserved reaction-diffusion 53

models for polarisation show phase separating behaviour [13, 30, 31]. Phase separation is 54

characterised by the minimisation of interface length and total curvature in two 55

dimensions (2D), causing clusters to compete until only one remains [32]. In 1D, 56

however, only the (discrete) number of interfaces can be minimised. Consequently, the 57

meta-stable state with multiple clusters that these polarisation models can produce in 58

1D [13,30,31], is likely to be much less stable in 2D. 59

All this implies that in 2D, multiple domains can only (apparently) stably coexist if 60

supported by an irregular geometry such as the lobe-and-indent shape of leaf epidermal 61

(pavement) cells [33]. A phase separating system, however, cannot explain the initial 62

formation of such a geometry, nor the appearance of additional lobes as these cells 63

grow [34]. These issues of dimensionality and de novo cluster formation also apply to a 64

recent theoretical study that proposes that saturation of self-activation, resulting in flat 65

concentration profiles, could slow down the competition between clusters to the extent 66

that they can coexist on biologically relevant time scales [35]. Therefore, a mechanism 67

that allows for truly stable coexistence would offer a more parsimonious explanation for 68

phenomena that require multiple GTPase clusters in a single cell. 69

From literature we have found two potential ways of obtaining stable coexistence. 70

Firstly, where GTPase-based polarisation models are typically mass conserved, turnover 71

is present in highly similar classical activator substrate-depletion models that do show 72

stable coexistence (e.g., [36]). Mass conservation has been suggested to play an 73

important role in the winner-takes-all mechanism [17] and an adaptation of a 74

polarisation model with production and degradation terms can generate multiple peaks 75

in 1D [37]. These results indicate that sufficiently large GTPase turnover on relevant 76

time scales might explain the stable coexistence of multiple GTPase clusters. Whether 77

that is a reasonable assumption may depend on the system. 78

Secondly, a parameter regime that allows stable coexistence has been reported 79

without further investigation in a modelling study on negative feedback in polarisation 80

of budding yeast [38]. This suggests a negative feedback that limits the growth of larger 81

clusters may also explain stable coexistence, but this mechanism remains to be fully 82

characterised. Some experimental evidence for negative feedback through the 83

recruitment of GAPs has been found in the case of metaxylem patterning [19]. 84

Here, we aim for a unified understanding of all biologically relevant GTPase-based 85
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patterns. Our goal is threefold: (1) to find out which GTPase interaction motifs can 86

make the difference between polarisation and stable coexistence in de novo 87

GTPase-based patterning of 2D membranes, (2) to understand why these differences in 88

GTPase interactions lead to different patterns, and (3) to explore the options these 89

mechanisms offer for dynamic regulation of membrane patterning. 90

We consider the interaction motifs from two existing partial differential equation 91

(PDE) models for polarisation and extensions thereof with GTPase turnover and with 92

negative feedback (See Fig 1C and Table 1 for an overview). These polarisation models 93

are the so-called “Wave Pinning” (WP) model [13] with a single GTPase directly 94

stimulating its own activation, and the “Mutual Inhibition” (MI) model [14] with two 95

GTPases inhibiting each other’s activation. The use of these two different models allows 96

us to draw conclusions that do not depend on the positive feedback mechanism. We 97

break the mass conservation of these models by adding turnover (WPT and MIT, 98

respectively). Negative feedback is included by having mass conserved GTPases activate 99

their own GAP. We consider the WP model with a single GAP (WPGAP) and the MI 100

model both with a GAP for one GTPase (MIGAP1) and GAPs for both GTPases 101

(MIGAP2). To study the entire process of de novo cluster formation, we perform 102

simulations starting from a homogeneous state with noise on a 2D domain sufficiently 103

large for the formation of complex patterns. We found that both polarisation models 104

indeed robustly yield a single GTPase cluster, whereas either breaking mass 105

conservation or adding GAP feedback appears to be sufficient for stable coexistence. 106

We also provide insight into the way these mechanisms operate, by using ordinary 107

differential equation (ODE) models derived from the PDEs to study fluxes between 108

competing clusters. Finally, we revisit the tip growing systems to explore the options 109

that the different mechanisms offer for dynamically regulating established patterns. In 110

particular, our findings reveal conditions that allow for branching. 111

Table 1. Characteristics of the different models. WP = wave pinning, MI = mutual inhibition, WPT = WP with
turnover, MIT = MI with turnover, WPGAP = WP with GAP feedback, MIGAP1 = MI with GAP feedback on one GTPase,
MIGAP2 = MI with GAP feedback on both GTPases.

Model Positive feedback Mass conservation Number of GTPases Number of GAPs Number of variables

WP Direct Yes 1 0 2
MI Double negative Yes 2 0 4
WPT Direct No 1 0 2
MIT Double negative No 2 0 4
WPGAP Direct Yes 1 1 4
MIGAP1 Double negative Yes 2 1 6
MIGAP2 Double negative Yes 2 2 8

Results 112

Simple mass conserved models can only result in polarisation 113

In this section we study the wave pinning (WP) and mutual inhibition (MI) models, 114

which have in common that the total amount of GTPase is conserved. Both can be 115
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written in the following dimensionless form (see section 1 of S1 Appendix): 116

∂ui
∂t

= f(ui, vi, uj) +∇2ui

∂vi
∂t

= −f(ui, vi, uj) +Dv∇2vi

for i, j ∈ {1, 2}, i 6= j,

(1)

where ui and vi are the concentrations of the ith active and inactive GTPase 117

respectively, Dv is the ratio between diffusion coefficients of inactive and active GTPase 118

(� 1), and f represents the interconversion between active and inactive form. For the 119

WP model ui = uj = u and vi = vj = v, and function f consists of constant activation 120

and inactivation terms and a saturating self-activation term. The dimensionless form of 121

f is given by: 122

f(u, v) = bv + γ
un

1 + un
v − u, (2)

where b is a constant activation rate, γ the self-activation rate at saturation, and n the 123

hill coefficient describing saturating self-activation. Due to mass conservation, the 124

average total (dimensionless) GTPase concentration T is a constant determined by 125

initial conditions. 126

For the MI model, function f has constant activation and inactivation terms and a 127

saturating inhibition term. The dimensionless form is given by: 128

f(ui, vi, uj) = bivi + γi
1

1 + unj
vi − ui

for i, j ∈ {1, 2}, i 6= j,

(3)

where bi is the constant activation rate of GTPase i, γi the activation rate of GTPase i 129

that can be inhibited by GTPase j, and n the hill coefficient describing inhibition. 130

Again, the total amount of each GTPase is constant and we use the average total 131

GTPase concentrations T1 and T2 as parameters. 132

We simulated these models on a rectangular domain with periodic boundary 133

conditions in the horizontal direction and zero-flux boundary conditions in the vertical 134

direction. In this way, our domain is an open cylinder resembling the membrane of a 135

large, elongated cell. Domain sizes were large compared to those used by the original 136

WP model study on polarisation [13], but the other parameters had similar values 137

(Table 2). We enlarged the domain size to ensure domain size was not limiting the 138

formation of multiple clusters. All simulations started in the homogeneous steady state 139

(HSS) with a small amount of noise added (see Methods for details). 140

As previously predicted [13,17], both polarisation models consistently generate a 141

single cluster of active GTPase in a pattern that changes from a spot to a stripe to a 142

gap as the amount of GTPase increases (Fig 2). Transiently, multiple clusters of varying 143

sizes form in an irregular pattern, with the larger clusters growing at the expense of the 144

smaller ones (Fig 3, S1 Video). Because of the varying sizes, most clusters disappear 145

quickly and only the last few compete for a long time. This shows that the previously 146

proposed mechanism of slow competition [35] cannot explain de novo formation of 147

patterns of many coexisting clusters. 148

Linear stability analysis (LSA, see Methods) performed on the WP model, reveals 149

that the domain size used does not prevent multiple different wave numbers from 150

becoming unstable (S2 Fig). Therefore, the formation of a single cluster results from 151

dynamics that occur after the initial symmetry breaking, when linearisation is no longer 152

appropriate. This means, as previously noted [39], that LSA cannot be used to 153

determine the length scale of the final pattern, because it is only valid around the 154

homogeneous state. 155
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Table 2. Descriptions and default values of parameters used for the dimensionless PDE models. In case of
multiple GTPases or GAPs the same values for b, γ, c, d, ξ, and Tg were used for both variants. N.A. = not applicable.

Model
Parameter Description WP MI WPT MIT WPGAP MIGAP1 MIGAP2

b Base activation rate 0.1 0.1 0.1 0.1 0.1 0.1 0.1
γ Feedback activation rate 2 2 2 2 2 2 2
n Hill exponent of feedback saturation 2 2 2 2 2 2 2
c GAP activation rate N.A. N.A. N.A. N.A. 1 1 1
d GAP inactivation rate N.A. N.A. N.A. N.A. 1 1 1
T(1) Average concentration of total

GTPase (1)
Variable

T2 Average concentration of total
GTPase 2

N.A. 5 N.A. N.A. N.A. 5 20

σ(1) Production rate of GTPase (1) Variable
σ2 Production rate of GTPase 2 N.A. N.A. N.A. 0.2 or 0.4 N.A. N.A. N.A.
ξ GTPase degradation rate N.A. N.A. 0.1 0.1 N.A. N.A. N.A.
Tg Average concentration of total GAP N.A. N.A. N.A. N.A. 10 10 10
Dv Ratio diffusion coefficients of inactive

to active GTPase
100 100 100 100 100 100 100

DG Ratio diffusion coefficients of active
GAP to active GTPase

100 100 100 100 100 or 40 100 100

Dg Ratio diffusion coefficients of inactive
GAP to active GTPase

100 100 100 100 100 100 100

Fig 2. Steady state active GTPase concentrations ([GTPase]) obtained by
model simulations. T = total amount of GTPase, σ = GTPase production rate. All
simulation domains have periodic boundary conditions in the x-direction and zero flux
boundary conditions in the y-direction. Dimensionless domain heights (H) and widths
(W ) are indicated by arrows. For models with two GTPases, only the concentrations of
the first GTPase are shown. In these cases, the second GTPase always clusters where
the first does not. Default parameters (Table 2) were used with indicated values of T
and σ. For the WPGAP model, two different values were used for the active GAP
diffusion coefficient (DG). Concentration ranges and simulation end times for each
simulation are shown in S1 Fig.

Fig 3. Transient active GTPase concentrations ([GTPase]) from simulations
of the WP model with T = 1.43. Simulation conditions were as in Fig 2.

To visualise regions of parameter space where the homogeneous state is unstable and 156

patterns form spontaneously (so-called Turing regimes), we generated two parameter 157

bifurcation plots. For models with two parameters this can be done with LSA. For 158

larger models this is no longer feasible and therefore we also used the more approximate 159

local perturbation analysis (LPA, see Methods). Where both methods can be used, they 160

yield highly similar results (Fig 4). For the WP model, they reveal that patterns only 161

form if the self-activation parameter γ is sufficiently large, while the total amount of 162

GTPase must be within certain boundaries. For the MI model, LPA predicts that a 163

wide range of total GTPase amounts give rise to spontaneous pattern formation, as long 164

as the amounts of both GTPases are similar (Fig 5A). 165
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Fig 4. Two parameter bifurcation plots for models with two variables (WP
and WPT). Both LSA (top) and LPA (bottom) analyses were performed on the WP
model for parameters T and γ (left) and on the WPT model for parameters σ and γ,
and σ and ξ (right). Cartoons indicate kind of pattern formed in different regimes
(empty square: no pattern, single spot: polarisation, five spots: coexistence). Black lines
delimit Turing regimes in which the homogeneous steady state is unstable. Dashed red
lines (LPA only) delimit predictions of regimes in which heterogeneous states exist that
may be reached from the homogeneous state by an arbitrarily large local perturbation.
Cyan lines indicate Hopf regimes. Arrowheads indicate default parameters.

Fig 5. Two parameter bifurcation plots for LPA analyses on models with
more than two variables. Default parameters were used. The bifurcation plot for
the two ratios σ/ξ in the MIT model (B) appears to be the same regardless of the value
of ξ1 = ξ2 = ξ (tested for ξ ∈ {0.05, 0.1, 0.2, 1}). For the WPGAP (C) model, the active
GAP diffusion coefficient (DG) was considered both in the limit DG →∞ (Fast active
GAP) and in the limit DG → 0 (slow active GAP). Lines delimiting different regimes
are coloured as in Fig 4. For the MI models with GAP feedback (D and E) we only
considered fast active GAP.

Breaking mass conservation is sufficient to allow stable 166

coexistence of multiple active GTPase clusters 167

To investigate the effect of breaking mass conservation, we extended the two 168

polarisation models with production and degradation terms. Since translation is a 169

cytosolic process, we assume that GTPases are produced in their inactive form. 170

Following a previous study [37], we here consider degradation of the active form. Later, 171

we will also consider degradation of the inactive form. These assumptions result in the 172

following dimensionless model equations: 173

∂ui
∂t

= f(ui, vi, uj)− ξiui +∇2ui

∂vi
∂t

= −f(ui, vi, uj) + σi +Dv∇2vi

for i, j ∈ {1, 2}, i 6= j,

(4)

with constant production σi of the inactive form, degradation of the active form with 174

factor ξi, and f given by Eq 2 or Eq 3. The equations for the WPT model are 175

equivalent to those used in a previous study [37]. 176

Consistent with previous results in 1D [37], breaking mass conservation allows 177

multiple clusters to survive (Fig 2, S1 Video). As for classical Turing systems [40], 178

higher GTPase production shifts the pattern from spots to stripes to gaps, suggesting 179

that the most important difference between these models and polarisation models is 180

indeed mass conservation. In the limit of no turnover, the WPT model converges to the 181

WP model. Simulations show a gradual decrease in the number of stably coexisting 182

clusters per unit area with decreasing turnover, until a single one remains and 183

polarisation behaviour is recovered (S3 Fig). 184

As for the WP model, LSA performed on the WPT model reveals many different 185

unstable wave numbers (S2 Fig), although simulations show a different class of patterns. 186

Bifurcation analysis reveals that, for patterning to occur, the WPT model also requires 187

a sufficiently large self-activation parameter γ. In addition, the GTPase production rate 188

σ must be within certain boundaries determined by degradation rate ξ (Fig 4). 189

Bifurcation analysis also reveals a Hopf regime within the Turing regime for the WPT 190

model. Simulations in the Hopf regime reveal no oscillations of the final pattern (S2 191
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Video), likely because this regime only applies close to the homogeneous state. LPA 192

shows that the Turing regime for the MIT model is considerably less elongated than 193

that for the MI model (Fig 5B). In addition, the Turing regime appears to scale linearly 194

with the degradation rate. 195

Both models considered here assume degradation of the active form. Similar 196

bifurcation and simulation analyses on a model with degradation of the inactive form do 197

not reveal regimes that admit stable patterns (see section 5 in S1 Appendix). This 198

shows that turnover can only stabilise multiple coexisting clusters if the active form is 199

(also) degraded. Such degradation could occur, for example, by recycling of membrane 200

patches. 201

Adding GAP feedback to the mass conserved models is also 202

sufficient to allow for coexistence 203

To investigate the effect of negative feedback, we modified both the WP and MI model 204

by including GAP proteins in such a way that both the total amount of GTPase and 205

the total amount of GAP are conserved. For the MI model, we considered both cases of 206

a single GAP acting on one of the GTPases (MIGAP1) and one GAP for each GTPase 207

(MIGAP2). This results in the following dimensionless equations for the GAP models: 208

∂ui
∂t

= f(ui, vi, uj)−Giui +∇2ui

∂vi
∂t

= −f(ui, vi, uj) +Giui +Dv∇2vi

∂Gi
∂t

= ciuigi − diGi +DG∇2Gi

∂gi
∂t

= −ciuigi + diGi +Dg∇2gi

for i, j ∈ {1, 2}, i 6= j,

(5)

where Gi and gi are the dimensionless concentrations of active and inactive GAP 209

respectively, DG and Dg are the diffusion coefficients of active and inactive GAP 210

relative to that of active GTPase respectively, ci is the GTPase-dependent GAP 211

activation rate, and di is a constant GAP inactivation rate. Function f is again defined 212

by Eq 2 or Eq 3. For the MIGAP1 model, the second GAP (G2 and g2) is absent. Like 213

the total amount of GTPase, the total amount of GAP is conserved, resulting in 214

additional parameters for the average total GAP concentration Tg,i. 215

Consistent with previous indications [38], addition of GAP feedback results in 216

similar patterns as found for breaking mass conservation: multiple clusters of active 217

GTPase become stable and the pattern shifts from spots to stripes to gaps for 218

increasing levels of total GTPase (Fig 2, S1 Video). For the MI model, adding GAP 219

feedback to only one of the two GTPases is sufficient to achieve this effect. The similar 220

response of the two different polarisation models indicates that the difference between 221

polarisation and coexistence does not depend on the self-activation mechanism. 222

Bifurcation analysis of the WPGAP model reveals that, as long as GAPs diffuse fast 223

compared to active GTPase, the Turing regime widens and shifts to higher amounts of 224

GTPase as the amount of GAP increases (Fig 5C). This is consistent with previous 225

indications that negative feedback may act as a buffer against fluctuations in GTPase 226

concentration [38]. However, when active GAP diffusion is equal to that of active 227

GTPase, the picture changes completely and GAPs severely hamper pattern formation. 228

Trial simulations in the narrow Turing regime all resulted in polarisation (S4 Fig). 229

Therefore, it seems that for GAP feedback to stabilise coexistence, the effective diffusion 230

constant of active GAP must be larger than that of active GTPase. However, formation 231
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of coexisting GTPase clusters is still possible if active GAP diffuses more slowly than 232

inactive GTPase (Fig 2). A Hopf regime can also be found for the WPGAP model. As 233

for the WPT model, simulations in the Hopf regime do not reveal any oscillations of the 234

final pattern (S2 Video). 235

For the MIGAP2 model, there is a wide range of total GTPase amounts for which 236

patterns form spontaneously, as long as the total amount of both GTPases is similar 237

(Fig 5E). For the MIGAP1 model, a similar range is present, but there must be 238

considerably more of the first GTPase than of the second, because the second is not 239

hindered by GAP feedback (Fig 5D). 240

Multiple clusters drawing GTPase from a homogeneous pool 241

compete until only the largest survives 242

To better understand why some models yield only polarisation, whereas others allow for 243

multiple stable clusters, we considered a simplified model describing the competition 244

between multiple clusters, as transiently generated by the polarisation models (Fig 3, S1 245

Video). This approximation treats each cluster as a compartment, with an additional 246

non-cluster compartment representing a global pool of inactive GTPase. By using 247

compartments, we implicitly assume that the clusters have sharp boundaries and 248

constant active GTPase concentrations, making the total amount of GTPase in a cluster 249

proportional to its area. Using these assumptions, we derived a system of ODEs from 250

the PDE models (for derivation see section 6.1 of S1 Appendix), which is comparable to 251

a more phenomenological two-cluster model presented by Howell et al. [41]. Clusters 252

recruit active GTPase from the inactive pool at a rate proportional to their area or, 253

equivalently, their total amount of GTPase (Fig 6A). They lose GTPase both at a 254

constant rate, reflecting inactivation, and at a rate proportional to the circumference of 255

the cluster, reflecting loss at the boundary (Fig 6A). 256

Fig 6. Principles of the simplified ODE models. A: The basic mass conserved
ODE model starts with an arbitrary number of differently sized clusters (left, three are
shown). Clusters compete for the inactive GTPase from a shared homogeneous pool.
Activation and inactivation of membrane GTPase occur proportional to cluster size
(middle). Additional loss of active GTPase (by diffusion from cluster to pool) occurs
proportional to cluster circumference (right). B: An adaptation of the basic ODE model
where each cluster has its own local pool of inactive GTPase (P1-P3) with fluxes
connecting these local compartments (arrows). C: An adaptation of the basic ODE
model with GAP feedback, where each cluster recruits GAP from a shared homogeneous
pool at a rate proportional to the cluster size and GAPs (green) inactivate the GTPase
in the cluster. D: Larger clusters more effectively deplete their local pool (blue),
resulting in a concentration gradient and corresponding flux of GTPase from
compartments with small clusters to compartments with large clusters. With mass
conservation, this process continues until the small cluster is depleted. GTPase turnover
effectively redistributes GTPases by removing more from larger clusters and providing
new GTPase homogeneously, allowing the smallest cluster to compete in spite of this
flux. At the same time, the larger cluster suffers from a smaller GTPase pool to recruit
from. When GAP feedback is added, larger clusters recruit more GAP enhancing their
own depletion, allowing smaller clusters to compete.
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The resulting basic ODE model is given by: 257

dhc,n(t)

dt
= αhc,n(t)hp(t)− βhc,n(t)η − δhc,n(t)

dhp(t)

dt
= −αhp(t)

N∑
j=1

hc,j(t) + β
N∑
j=1

hc,j(t)
η + δ

N∑
j=1

hc,j(t),
(6)

where hc,n is the amount of (active) GTPase in cluster n (which is proportional to the 258

area of cluster n), hp is the amount of GTPase in the inactive pool, N is the total 259

number of clusters, exponent η is 1
2 for circular clusters, α is a positive constant 260

determining self-activation, β is the rate at which clusters lose GTPase by diffusion 261

across the circumference, and δ is a constant inactivation rate. This system is 262

redundant, because the total amount of GTPase is conserved (T = hp +
∑N
j=1 hc,j). 263

We calculated the rate of change of the ratio between the sizes of two arbitrary 264

clusters i and k: 265

d

(
hc,i(t)

hc,k(t)

)
dt

=
β

hc,k(t)1−η

((
hc,i(t)

hc,k(t)

)
−
(
hc,i(t)

hc,k(t)

)η)
. (7)

Not only for 2D circular clusters (η = 1
2 ), but for any 0 < η < 1, the ratio hc,i/hc,k 266

always increases when hc,i > hc,k and always decreases when hc,i < hc,k, so that 267

differences in cluster size will always grow. This suggests that a single winner will 268

emerge, and this winner will be the cluster that started out as the largest. Numerical 269

simulations confirm this, even when the initial difference in cluster size is very small 270

(Fig 7A). These results show that polarisation will occur when cluster growth increases 271

with cluster size faster than shrinkage does and all clusters rely on the same 272

homogeneous pool of inactive GTPase. 273

Fig 7. Simulations of the ODE models. Cartoons correspond to model variants
described in Fig 6. All simulations started with five clusters of different size (hc,n,
n ∈ {1, 2, 3, 4, 5}). Parameters α, β, and ε can be scaled out and were set to 1. Other
parameter values were: δ = 5, η = 0.5, and γ = ζ = 10. A: Simulations of the basic
mass conserved ODE model. The total amount of GTPase in the system (T ) was set to
21. B: Simulations of the ODE model with membrane compartments. Clusters had
starting levels of GTPase of 1, 2, 3, 4, and 5, while all membrane compartments had a
starting level of 6. Exchange rates between compartments (φ) were varied for both mass
conserved and non-mass conserved cases. For cases without mass conservation, GTPase
production rates in the local pools were set to 1 and degradation rates in either clusters
or local pool were set to 0.1. Insets show details of dynamics in boxed regions, including
dynamics of GTPase in local pool compartments (hp,n, dashed lines). C: For GAP
simulations, total GAP (Tg) was varied, always starting with all GAP in the shared
pool.

With GTPase turnover, smaller clusters can sustain themselves 274

from their own local supply 275

The previous result does not depend on mass conservation, since, if present, the terms 276

describing production and degradation cancel out in the derivation of Eq 7. To 277

understand the mechanism by which breaking mass conservation stabilises coexistence, 278

we therefore have to take into account that the competing clusters actually are spatially 279

separated, possibly resulting in local differences in inactive GTPase availability. We 280
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therefore extended the basic ODE model in Eq 6 by giving every cluster its own local 281

pool with an amount hp,n of inactive GTPase (Fig 6B, see section 6.2 of S1 Appendix 282

for details). Clusters can only draw GTPase from their own compartments. Inactive 283

GTPase is passively exchanged between compartments at a constant rate resembling 284

Fick’s law for diffusion. This results in: 285

dhc,n(t)

dt
= αhc,n(t)hp,n(t)− βhc,n(t)η − δhc,n(t)− ξhc,n(t)

dhp,n(t)

dt
= σ − αhp,n(t)hc,n(t) + βhc,n(t)η + δhc,n(t)− ξphp,n(t) + φ

N∑
j=1

(hp,j − hp,n),

(8)
where σ is a constant production rate, ξ and ξp are constant degradation rates of active 286

and inactive GTPase respectively, and φ is the constant exchange rate between 287

compartments due to diffusion of inactive GTPase. 288

The counterpart of Eq 7 now reads as: 289

d

dt

(
hc,i(t)

hc,k(t)

)
=

β

hc,k(t)1−η

((
hc,i(t)

hc,k(t)

)
−
(
hc,i(t)

hc,k(t)

)η)
+ α

hc,i(t)

hc,k(t)
(hp,i − hp,k). (9)

The extra term depends on the difference between the amounts of GTPase in the two 290

non-cluster compartments. Since larger clusters are expected to more effectively drain 291

their local compartment, this term will act to decrease the ratio between sizes of 292

clusters i and k if cluster i is larger and decrease this ratio if cluster k is larger. 293

However, it is not a priori clear which of the two terms in Eq 9 is dominant. This 294

dominance may be affected by turnover. 295

Simulations suggest that without production and degradation (σ = ξ = ξp = 0, mass 296

conservation) the compartmentalised model only allows coexistence in the trivial case 297

where the exchange rate between compartments is zero (Fig 7B). In all other cases, 298

competition proceeds until only a single cluster remains, even though inactive GTPase 299

levels outside large clusters are smaller than GTPase levels outside small clusters. These 300

results indicate that in the mass conserved case larger clusters do indeed more 301

effectively deplete their local GTPase pool. Although this hampers their further growth, 302

it also results in a gradient and corresponding net flux of non-cluster GTPase from 303

compartments with smaller clusters to those with larger clusters (Fig 6D). Since there is 304

nothing to disrupt this flux or replenish the GTPase pools for smaller clusters, this 305

process continues until only the largest cluster remains. 306

Simulations with turnover, but without degradation of non-cluster GTPase did yield 307

coexistence (Fig 7B). Therefore, disruption of the flux form smaller to larger clusters by 308

turnover does not seem to be required for coexistence. Instead, turnover seems to 309

stabilise coexistence by removing GTPase mostly from larger clusters and redistributing 310

it homogeneously, thereby compensating the diffusive flux to the domains of larger 311

clusters (Fig 6D). At the same time, the growth of the larger clusters is hampered by 312

their smaller pool of non-cluster GTPase, allowing the smaller clusters to catch up. The 313

coexistence was lost at high rates of exchange between compartments, where the system 314

converges to the basic model with a single homogeneous pool. 315

Simulations with degradation in non-cluster compartments instead of in clusters all 316

resulted in unbounded growth of surviving clusters, again suggesting that removal must 317

target active GTPase to allow stable patterns to form. Note that this unbounded 318

growth is an artefact of the simplified model. In reality, described by the full spatial 319

(PDE) model, cluster growth stops when all clusters have merged, forming a new 320

homogeneous state (see section 5 in S1 Appendix and S3 Video). When considering 321

degradation of both active and inactive form at the same time, stable coexistence can 322

be found (section 7 in S1 Appendix and S4 Video), indicating that degradation of the 323

inactive form does not preclude coexistence. 324
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GAP feedback stabilises coexistence by punishing larger clusters 325

To study the way in which GAPs stabilise coexistence of multiple GTPase clusters, we 326

also considered an extension of the basic ODE model from Eq 6 including the effect of 327

GAPs (Fig 6C). In this extension, every cluster has its own amount of active GAP Gc,n 328

and all clusters share a common pool with an amount Gp of inactive GAP. Active GAPs 329

inactivate GTPase at a rate proportional to GAP and GTPase concentrations. GAPs 330

are activated by the active GTPase clusters, and inactivated at a constant rate and by 331

diffusion across the boundaries of the cluster. Together, these assumptions lead to the 332

following extended model: 333

dhc,n(t)

dt
= αhc,n(t)hp(t)− βhc,n(t)η − δhc,n(t)− εGc,n(t)

dhp(t)

dt
= −αhp(t)

N∑
j=1

hc,j(t) + β
N∑
j=1

hc,j(t)
η + δ

N∑
j=1

hc,j(t) + ε
N∑
j=1

Gc,j(t)

dGc,n(t)

dt
= γhc,n(t)Gp(t)− δgGc,n(t)− ζhc,n(t)η−1Gc,n

dGp(t)

dt
= −γGp(t)

N∑
j=1

hc,j(t) + δg

N∑
j=1

Gc,j(t) + ζ
N∑
j=1

hc,j(t)
η−1Gc,j(t),

(10)

where Gc,n is the total amount of active GAP in cluster n, γ is the GTPase-dependent 334

GAP activation rate, δg is a constant GAP inactivation rate, ζ is the rate at which the 335

cluster loses GAP by diffusion across the circumference, and ε the rate of 336

GAP-dependent GTPase inactivation. The form of the GAP-related terms in these 337

equations is a direct consequence of using amounts instead of concentrations (see 338

section 6.3 of S1 Appendix). The total amount of GAP Tg = Gp +
∑N
j=1Gc,j is 339

conserved. 340

In the same way as before, we obtained for each pair (i, k) of clusters: 341

d

dt

(
hc,i(t)

hc,k(t)

)
=

β

hc,k(t)1−η

((
hc,i(t)

hc,k(t)

)
−
(
hc,i(t)

hc,k(t)

)η)
−εGc,i(t)hc,k(t)−Gc,k(t)hc,i(t)

hc,k(t)2
.

(11)
Due to the extra GAP-dependent term, differences in cluster size no longer always 342

increase. As the cluster size increases, the amount of GAP in the cluster will also 343

increase, changing the rate at which the ratio between the two cluster sizes changes in 344

favour of the smaller cluster. However, the net effect of the GAP-dependent term 345

depends on the product of the amount of GAP in one cluster and the size of the other, 346

so the sign of this term is not a priori clear. If we assume that GAP dynamics is fast 347

compared to changes in cluster size, we can take a quasi steady state approximation, 348

which allows the amounts of GAP to be written as a function of cluster size (see 349

section 8 of S1 Appendix). This way Eq 11 can be written as: 350

d

dt

(
hc,i(t)

hc,k(t)

)
=

β

hc,k(t)1−η

((
hc,i(t)

hc,k(t)

)
−
(
hc,i(t)

hc,k(t)

)η)
−

εTg
hc,i(t)

hc,k(t)
·

1

hc,i(t)η−1 + δg/ζ
− 1

hc,k(t)η−1 + δg/ζ

ζ/γ +
∑N
j=1

hc,j(t)

hc,j(t)η−1 + δg/ζ

.

(12)

Here, the first term always acts to increase differences in cluster size, whereas the 351

second term always acts to decrease differences for the entire range of 0 < η < 1. Which 352

effect dominates depends on the parameters. The equation suggests that a larger total 353
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amount of GAP will shift the balance in favour of coexistence. Numerical simulations 354

confirmed this (Fig 7C). This result indicates that GAP feedback stabilises the 355

coexistence of multiple clusters by punishing larger clusters, which tend to activate 356

more GAPs (Fig 6D). 357

Since the GAP dependent term in Eq 12 is proportional to the total amount of GAP, 358

one might expect that the number of stably coexisting clusters can be increased by 359

simply increasing the amount of GAP. Numerical simulations of the ODE model seem 360

to confirm this (Fig 7C). However, the ODE model assumes the existence of clusters 361

which in the full PDE model is not guaranteed. This provides the additional constraint 362

that the parameters must remain in the Turing regime, which strongly limits the extent 363

to which the total amount of GAP can be increased (Fig 5C). 364

Dynamic regulation of established patterns: a case study of tip 365

growing systems 366

Above, we established two mechanisms that can lead to stable coexistence of multiple 367

GTPase clusters. As a case study, we now explore tip growing systems, where dynamical 368

regulation of the GTPase pattern is often important. In pollen tube tip growth, the 369

supply of GAP increases as the cap of active GTPase at the tip grows, so that the size of 370

the GTPase cluster oscillates and the tip grows in pulses [28, 42]. In the fungus Ashbya 371

gossypii, the tip growth complex (polarisome) sometimes disappears, corresponding with 372

a stop in tip growth, after which it spontaneously re-establishes and growth continues, 373

suggesting a negative feedback [29]. In addition, two types of branching occur in A. 374

gossypii : lateral branching, where a new tip appears somewhere along the length of an 375

existing hypha, and apical branching, where a growing tip splits in two [43]. We use 376

proof of principle simulations of single GTPase clusters both to explore the options our 377

mechanisms give for such dynamic regulation of the GTPase pattern and to offer 378

possible explanations of these phenomena (see Methods for implementation details). 379

These simulations show that the cases of pulsing and disappearing GTPase caps can 380

be reproduced by an increase in either the total amount of GAP (Fig 8A-E, S5 Video), 381

or the GTPase degradation rate (S5 FigA-E, S5 Video). If these parameters return to 382

their base levels after the cluster has shrunk or disappeared, it will immediately grow 383

back or reappear, allowing the cycle to start again. The required change in parameters 384

under the current settings is at most 50%, which could reasonably be achieved by 385

changes in GAP production or release, or the recycling of membrane proteins. Note that 386

as long as we start off with an existing cluster, the total amount of GAP or the GTPase 387

degradation rate may even end up somewhat outside the Turing regime without the 388

cluster disappearing. However, the cluster disappears long before leaving the regime 389

where LPA predicts a heterogeneous state to exist (Fig 8B and S5 FigB). This indicates 390

that although Turing regimes are accurately predicted by LPA, regimes with a stable 391

heterogeneous state are not. 392

It has been suggested that lateral branching in fungi may be the result of apical 393

dominance factors in the tip that suppress branching in the vicinity [44,45]. However, 394

our finding that turnover or negative feedback is needed to prevent polarisation (Fig 2) 395

suggests that apical dominance may well be the default state and not require any 396

dominance factor. Inhibitors (e.g. GAPs) may well be involved, but rather than merely 397

creating an inhibition zone where no new clusters can be formed, their main role could 398

be to keep the existing cluster from expanding indefinitely, thereby actually enabling 399

the formation of new clusters. Alternatively, at large distances from the tip, it may no 400

longer be reasonable to assume mass conservation across the entire hypha, and GTPase 401

turnover will break competition, allowing a new tip to form. 402

Apical branching requires the splitting of an existing cluster rather than the 403
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Fig 8. Tip growth simulations with the WPGAP model. B and G: Bifurcation
plots with symbols showing parameter settings used in the simulations, corresponding to
symbols above simulations and cartoons. For meaning of lines see Fig 5. A: In pollen
tubes, growth occurs in pulses as negative feedback during growth results in an
oscillatory GTPase cluster at the growing tip. C: Simulation of a single active GTPase
cluster with increase in Tg upon reaching steady state followed by a return to starting
levels. D: In growing hyphae of A. gossypii, the tip growth complex sometimes
disappears corresponding to a halt in growth, suggesting involvement of negative
feedback. E: Simulation with two subsequent increases in Tg, followed by a return to the
starting level. F: In apical branching of growing hyphae, the tip growth complex and
the growing tip itself split in two. H: Simulation at elevated GTPase (T ) and GAP (Tg)
levels (+) resulting in two clusters. I: Simulation starting in the one cluster regime (x)
followed by a increase in T and Tg causing the single cluster to split. Time points (t) of
snapshots are indicated inside each plot. All simulations domains have periodic
boundary conditions in both directions. Colourbars indicate active GTPase
concentrations ([GTPase]).

appearance of a new one. Previously, an accumulation of inhibitor in the cluster has 404

been suggested as potential mechanism [46]. Our results on the ODE model with GAP 405

feedback suggest this might be possible, if we could significantly increase the amount of 406

GAP without leaving the Turing regime. We can achieve this by simultaneously raising 407

the total amount of GTPase (Fig 8G). At higher levels of both total GTPase and GAP 408

compared to the single cluster set-up used before, we indeed find that two stable 409

clusters form (Fig 8F-H, S5 Video). Upon increasing the total amounts of GTPase and 410

GAP to this level starting from a single cluster steady state, the single cluster splits in 411

two (Fig 8I, S5 Video). This suggests that apical branching may occur by accumulation 412

of GTPase and GAP from fusing vesicles during tip growth. 413

These results and considerations demonstrate that a mechanism that allows for 414

stable coexistence can offer elegant explanations for a range of phenomena in tip 415

growing systems that could not well be explained with a polarisation mechanism. The 416

specifics of individual systems remain a topic for future investigation. 417

Discussion 418

In this study, we uncovered and investigated several mechanisms through which highly 419

similar GTPase-based systems can generate different types of patterns. Polarisation is 420

the invariable result of a mass conserved GTPase under positive feedback activation, 421

because the stronger activation in larger GTPase clusters leads to a gradient and 422

corresponding net flux of inactive GTPase from smaller clusters to larger ones (Fig 9A). 423

Stable coexistence of multiple GTPase clusters can be achieved either by breaking mass 424

conservation, or adding negative feedback through the activation of an inhibitor. In the 425

first case, a constant supply of fresh GTPase across the membrane allows smaller 426

clusters to grow in spite of the net flux to larger clusters (Fig 9B). In the latter case, 427

larger clusters activate more inhibitor, limiting their growth (Fig 9C). In contrast to a 428

previously proposed mechanism based on saturation of self-activation, these mechanisms 429

lead to actually stable coexistence and can also explain the emergence of additional 430

clusters as occurs, e.g., during branching in tip growth. Our use of two different 431

minimal models suggests that these conclusions do not depend on the precise positive 432

feedback mechanism. 433
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Mass conserved polarisation models cannot explain all relevant 434

membrane patterns 435

Most existing models for polarisation involve mass conservation and some form of 436

positive feedback [5]. Our results show that these two properties indeed consistently 437

result in polarisation for both direct positive feedback and double negative feedback. 438

Analysis of a simplified ODE approximation of a system of competing clusters suggests 439

that this happens because larger clusters more effectively deplete their local reserve of 440

inactive GTPase (Fig 9A). In the ODE model, the local pool of inactive GTPase is 441

considered homogeneous. In reality, the level of inactive GTPase in the cluster will be 442

lower than the level surrounding the cluster and inactive GTPase will flow towards both 443

clusters from their direct surroundings. However, even in the worst case scenario the 444

larger circumference of the larger cluster will cause more inactive GTPase to diffuse to 445

the larger cluster. On a 1D domain, this effect would not be apparent. This insight may 446

explain the longer competition times in 1D as compared to 2D. 447

Fig 9. Proposed mechanisms for polarisation and coexistence. A: In
polarisation models, larger clusters of active GTPase more effectively deplete the local
supply of inactive GTPase than smaller ones. This results in a gradient of inactive
GTPase that favours diffusion towards the larger cluster allowing the larger cluster to
grow at the expense of the smaller one. B: When mass conservation is broken,
production provides a fresh supply of GTPase to sustain smaller clusters in spite of this
flux while degradation prevents larger clusters from growing uncontrollably, enabling
coexistence. C: When active GTPase promotes GAP activation, larger clusters activate
GAPs more effectively, promoting their own inactivation and allowing smaller clusters
to survive. However, if GAPs were to diffuse as slowly as active GTPase, they would
not be able to escape the cluster and quench the ability of the system to give rise to
patterns in the first place.

A recent theoretical study proposed that severely slowed competition as a result of 448

saturation could explain the difference between polarisation and coexistence [35]. On 449

top of its inability to explain the appearance of new clusters after an initial pattern has 450

been established, our findings show that this mechanism works less well when the 451

formation of many clusters at the same time is considered. Therefore, the mechanisms 452

for stable coexistence we propose here provide a better explanation for patterns as 453

found in metaxylem [19], pavement cells [34], neurons [4], and fungal hyphae [27]. 454

Two types of model extensions can stabilise coexisting clusters 455

Sufficiently strong GTPase turnover can stabilise coexistence 456

The main difference between existing polarisation models that generate a single cluster 457

and classical activator substrate depletion models that generate multiple clusters [12] is 458

the assumption of mass conservation. We showed in 2D that by simply adding 459

production and degradation terms to the two polarisation models, stable steady states 460

with multiple clusters can be obtained as has been shown before for the 1D case [37]. 461

Our ODE approximation suggests that this coexistence results from a redistribution of 462

GTPase, with degradation mostly affecting larger clusters while production is 463

homogeneous (Fig 9B). Moreover, we found that stable coexistence requires degradation 464

of the active form. If only the inactive form is degraded, active GTPase in clusters can 465

escape degradation and clusters keep growing until they fill the entire domain. 466

Broken mass conservation can only explain patterns of coexisting clusters if there is 467

sufficient GTPase turnover for a given domain size. When the turnover rate or domain 468
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size becomes too small, models with turnover will converge to mass conserved models 469

and polarisation will occur. This explains, for example, how a study on root hair 470

initiation could obtain a single GTPase cluster with a model containing production and 471

degradation terms [47]. To obtain stable coexistence, half-lives should most likely be 472

shorter than the 10 to 30 hours reported for GTPases from a macrophage cell line [48]. 473

However, different GTPases may have different turnover rates, and even half-lives of the 474

same GTPase may be altered significantly by regulation [49], so this does not seem 475

unreasonable. 476

Stable coexistence through GTPase turnover seems especially plausible on large 477

domains, such as plant cells. In contrast, mass conservation is more plausible on smaller 478

domains, such as neuron cell bodies [50], so that other mechanisms may be required to 479

explain coexistence there. Since larger domains can hold more stable clusters, broken 480

mass conservation may also be able to explain the formation of new clusters in between 481

existing ones on a growing domain. This may explain the appearance of new protrusions 482

during lateral branching of hyphae [43] and in growing pavement cells [34]. However, 483

this behaviour does not provide the cell with much dynamic control, as it links cluster 484

number to the domain size for any given turnover rate. 485

GAP feedback is a flexible alternative for stabilising coexistence 486

Even in cases of (near) mass conservation, coexistence is still possible through further 487

additions to the interaction motif. Our results show that addition of negative feedback 488

through activation of a sufficiently fast diffusing inhibitor (GAP) can stabilise 489

coexistence in the two polarisation motifs studied. This is consistent with previous 490

suggestions [38]. The ODE model indicates that GAP feedback fulfils this role by 491

punishing larger clusters, which activate more GAP (Fig 9C). This mechanism only 492

works when GAPs diffuse faster than active GTPase, possibly because too slowly 493

diffusing GAPs will too strongly accumulate locally in clusters and extinguish them. 494

This difference in diffusion rates could be achieved if active GAPs are not 495

membrane-bound, or at least do not interact as strongly with the membrane or 496

membrane-bound proteins as active GTPase. 497

GAP feedback and broken mass conservation are not mutually exclusive and which 498

interaction motif is used in practice will have to be judged on a case by case basis. 499

Experimental evidence suggests GAP feedback is involved in the spotted pattern found 500

in metaxylem [19]. Our modelling results predict that if this feedback is indeed 501

responsible for the coexistence of multiple GTPase clusters, experiments reducing GAP 502

expression would result in fewer clusters. 503

Unlike broken mass conservation, GAPs provide extra options for regulation, making 504

them more flexible. As shown by our tip splitting simulations, simultaneously providing 505

extra GTPase and GAP can result in the splitting of a GTPase cluster. Previously, 506

dilution due to repeated fusion of vesicles during tip growth has been suggested as a 507

source of negative feedback to achieve tip splitting [46], but it would be hard to combine 508

this with an increase in GTPase levels. Regulating GAP feedback, however, gives the 509

cell the ability to control the number of clusters, even independent of the domain size. 510

Another example can be found in fission yeast (Schizosaccharomyces pombe), where 511

a bipolar pattern of two active GTPase clusters promotes growth of the rod shaped cells 512

in both directions. Upon cell division, both daughter cells start with a unipolar pattern 513

and grow in a single direction until a certain size is reached at which a second GTPase 514

cluster forms and bipolar growth is resumed (“new end take off”; NETO) [51]. The 515

appearance of an additional cluster on a larger domain could be explained by both 516

types of coexistence models. However, to also explain the reported oscillations between 517

both tips requires a time delayed negative feedback [52,53], which could not be achieved 518

through linear GTPase degradation, whereas an extra molecular player (such as GAP) 519
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offers more flexibility to introduce a delay. 520

Dynamic regulation of GTPase patterns in tip growing systems 521

Our findings suggest that multiple as yet poorly understood phenomena in mycelial tip 522

growth could be explained by assuming some form of (GAP-like) negative feedback as is 523

also implicated in pollen tube growth [28,54]. Such negative feedback could, for 524

instance, explain the occasional disappearance and reappearance of the tip growth 525

complex observed in A. gossypii [29]. A combination of regulated negative feedback and 526

an increase in total GTPase may also explain apical branching observed in this 527

species [43]. Root hairs in plants do not normally branch, but overexpression mutants of 528

ROP2, the GTPase controlling tip growth in root hairs, have root hairs with strong 529

apical branching [55]. This supports the hypothesis that an increase in total GTPase, 530

combined with some form of negative feedback, can result in apical branching through 531

splitting of the GTPase cluster at the tip. 532

Since our models show that a single cluster is obtained unless sufficient turnover or 533

GAP feedback is involved, polarisation may well be the default state. In this case, 534

hypothesized apical dominance factors [45] that suppress branching would not be 535

required. Rather, there would be more need for a branching signal that either 536

stimulates negative feedback or GTPase turnover. Indeed, for arbuscular mycorrhizal 537

fungi, a branching signal seems to be present in the form of strigolactones, although the 538

precise molecular mechanism is still poorly understood [56]. Therefore, studies on 539

hyphal branching focusing on identifying and characterising such branching factors may 540

prove more fruitful than studies looking for apical dominance factors. 541

Materials and methods 542

Initial conditions 543

We initiated PDE simulations at the homogeneous steady state (see section 2 in S1 544

Appendix) with an amount of noise added to each integration pixel for the active form 545

and the same amount subtracted from the corresponding inactive form. This made it as 546

if a random small amount was interconverted between active and inactive form, without 547

changing the total mass at each pixel. Per pixel, the noise was drawn from a normal 548

distribution with a mean of 0 and a standard deviation of 10−6. 549

Numerical methods 550

We performed numerical simulations using the python package Dedalus [57], which 551

implements a spectral solver method, with the recommended dealias factor of 1.5 and 552

the Runge-Kutta time-stepper. Fourier and Chebyshev basis functions were used for the 553

x- and y-direction respectively, except for single cluster simulations, where Fourier basis 554

functions were used in both directions. To determine appropriate temporal and spatial 555

step sizes, we first performed several trial simulations for each model with reproducible 556

perturbations as previously described [58], so that accuracy could be assessed using 557

mesh refinement and time step reduction. We performed the final simulations with 558

noise added directly to each integration pixel to ensure all possible wave lengths are 559

represented. Integration steps used for final simulations are given in S1 Table. We 560

continued all simulations until a steady state was reached (no more noticeable changes 561

in the concentrations). In some simulations, a stable pattern ended up drifting at a 562

constant speed in the periodic direction. This can happen because with periodic 563

boundary conditions any shift of a solution is also a solution. Therefore, such drifting 564

patterns were regarded as steady states. 565
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We performed simulations of the ODE models in matlab using the function ode45 566

with default parameters. 567

Bifurcation and stability analysis 568

For the models with only two states (WP and WPT), we performed both a classical 569

linear stability analysis (LSA) and the asymptotic local perturbation analysis (LPA). 570

For the remaining models, LSA is not feasible and only LPA was used. LSA can be used 571

to determine under what conditions arbitrarily small spatial perturbations in a 572

homogeneous state can grow. This way, parameter regimes where spontaneous 573

patterning occurs can be identified. The wave numbers of the perturbations that 574

become unstable have often been used to predict the length scales of the pattern, but 575

these are only valid close to the homogeneous state and therefore not in general a good 576

reflection of the length scales of the final pattern [39]. We performed LSA as previously 577

described [59] as described in section 3 of S1 Appendix. 578

LPA is a recently developed asymptotic analysis for reaction-diffusion models [60,61]. 579

It works by considering the behaviour of a local pulse in the activator concentration, in 580

the limiting case where the diffusion coefficients of slowly diffusing components 581

approach zero and those of rapidly diffusing components approach infinity. This reduces 582

the system of PDEs to a system of ODEs that can be analysed with existing bifurcation 583

software. It is, therefore, not as exact as LSA, but it can be more easily scaled up to 584

models with more than two components and it can also be used to chart the areas of 585

parameter space where the homogeneous state is stable, but coexists with a stable 586

heterogeneous state. In our case, we used strong differences (100 fold) in diffusion rates 587

and, therefore, regimes predicted by LSA and LPA matched quite closely. We performed 588

LPA on all our models as described by others [60] (see section 4 of S1 Appendix for 589

details) and analysed the resulting ODEs using the matcont package for matlab [62]. 590

Single cluster simulations 591

To study phenomena observed during tip growth, we performed simulations with the 592

same parameters as before, but on a smaller domain, such that only a single cluster 593

formed. For these simulations we used a square domain with periodic boundary 594

conditions on all sides. This domain represents the tip of the growing tube. The 595

dimensionless domain size was 19.0x19.0 for the WPGAP models, and 31.6x31.6 for the 596

WPT model. To ensure that any unstable states reached would be disrupted, we added 597

noise not only at the beginning, but also every 10 time units. This noise was also drawn 598

from a normal distribution with a mean of 0 and a standard deviation of 10−6. 599

Supporting information 600

S1 Fig. Model simulations with concentrations and time points. 601

Simulations are as in Fig 2, but concentration ranges and time points at which 602

simulations were stopped are indicated. 603

S2 Fig. Linear stability analysis for models with two variables. When the 604

real part of at least one eigenvalue (λ) corresponding to a certain admissible wave 605

number (k) is greater than zero the homogeneous state is unstable and a pattern forms. 606

Admissible wave numbers for the geometry of the simulations are indicated with red 607

crosses (top figures) for various parameter values. Green lines show the maximum real 608

part of λ as a function of total GTPase (T , WP model) or GTPase production rate (σ, 609

WPT model), plotted both against these parameters (bottom) and against the squared 610
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wave numbers (top). Cyan lines indicate real parts of complex eigenvalues where 611

present. 612

S3 Fig. Reduced turnover decreases the number of coexisting clusters 613

generated by the WPT model. Steady state (t = 200000) active GTPase profiles 614

generated by the WPT model with production (σ) and degradation (ξ) rates reduced by 615

a factor 10, 100, and 1000 compared to default parameters. 616

S4 Fig. Two parameter bifurcation plot for the WPGAP model with low 617

active GAP diffusion from Fig 5C. Crosses indicate parameter settings where trial 618

simulations were performed. All simulations resulted in polarisation. 619

S5 Fig. Tip growth simulations with the WPT model. B: Bifurcation plot 620

with symbols showing parameter settings used in the simulations, corresponding to 621

symbols over simulations and cartoons. For meaning of lines see Fig 5. A: In pollen 622

tubes, growth occurs in pulses as negative feedback during growth results in an 623

oscillatory GTPase cluster at the growing tip. C: Simulation of a single active GTPase 624

cluster with increase in ξ upon reaching steady state followed by a return to starting 625

levels. D: In growing hyphae of A. gossypii, the tip growth complex sometimes 626

disappears corresponding to a halt in growth, suggesting involvement of negative 627

feedback. E: Simulation with two subsequent increases in ξ, followed by a return to the 628

starting level. Symbols over simulations correspond to those in the bifurcation plot. 629

Time points (t) of snapshots are indicated inside each plot. All simulations domains 630

have periodic boundary conditions in both directions. Colourbars indicate active 631

GTPase concentrations ([GTPase]). 632

S1 Table. Spatial and temporal integration step sizes used for numerical 633

integration. 634

S1 Appendix. Supplementary text. Including non-dimensionalisation, derivation 635

of homogeneous steady states, details of LSA and LPA methods, analysis of the WPT 636

model with degradation of active GTPase, detailed derivation of the ODE models, and 637

the quasi steady state approximation used for the ODE model with GAP feedback. 638

S1 Video. Model simulations. Time lapse movies of model simulations from Fig 2, 639

showing concentrations of active GTPase. For models with two GTPases only 640

concentrations of the first are shown. The concentration profile of the second GTPase is 641

always complementary to that of the first. 642

S2 Video. Model simulations in Hopf regimes. Time lapse movies of model 643

simulations in Hopf regimes for the WPT and WPGAP models. Concentrations of 644

active GTPase are shown. The WPT simulation was performed with parameters 645

σ = 0.4 and ξ = 1, domain height H = 316, and domain width W = 190. The WPGAP 646

simulation was performed with parameters T = 34.83 and Tg = 100, domain height 647

H = 50 and domain width W = 30. All other parameters were at default values. 648

S3 Video. Simulation WPT model with degradation of inactive GTPase. 649

Time lapse movie of model simulation described in section 5 of S1 Appendix, showing 650

concentrations of active GTPase. 651
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S4 Video. Simulation WPT model with degradation of both active and 652

inactive GTPase. Time lapse movie of model simulation described in section 7 of S1 653

Appendix, showing concentrations of active GTPase. 654

S5 Video. Simulations of tip growth scenarios. Time lapse movies of model 655

simulations from Fig 8 and S5 Fig, showing concentrations of active GTPase. 656

S1 Code. Scripts used to generate the figures. 657
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