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Abstract

Background: The availability of hundreds of city microbiome profiles allows the development
of increasingly accurate predictors of the origin of a sample based on its microbiota
composition. Typical microbiome studies involve the analysis of bacterial abundance profiles.

Results: Here we use a transformation of the conventional bacterial strain or gene abundance
profiles to functional profiles that account for bacterial metabolism and other cell
functionalities. These profiles are used as features for city classification in a machine learning
algorithm that allows the extraction of the most relevant features for the classification..

Conclusions: We demonstrate here that the use of functional profiles not only predict accurately
the most likely origin of a sample but also to provide an interesting functional point of view of
the biogeography of the microbiota. Interestingly, we show how cities can be classified based
on the observed profile of antibiotic resistances.
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Background

In recent years there has been an increasing interest in microbiome research, especially in the
context of human health [1]. However, bacteria are ubiquitous and microbiotas from many
different sources have been object of scrutiny [2]. Specifically, environmental metagenomics
recently is gaining much attention [3]. The Metagenomics and Metadesign of the Subways and
Urban Biomes (MetaSUB) is an International Consortium with a wide range of aims, currently
involved in the detection, measurement, and design of metagenomics within urban
environments [4]. Typically, microbiomes have been studied by analyzing microbial abundance
profiles obtained either from 16S RNAs or from whole genome sequencing (WGS), which can
be further related to specific conditions [5, 6]. More recently, 16sRNA data has been used as a
proxy to derive functional profiles by assigning to each sample the functional properties
(pathways, resistance or virulence genes, etc.) of the genomes of reference of each species
identified in it [7, 8]. However, 16sRNA data does not allow direct inference of genes actually
present in the bacterial population studied [9]. Contrarily, metagenomics shotgun sequencing
allows inferring a quite accurate representation of the real gene composition in the bacterial pool
of each sample that can be used to identify strain-specific genomic traits [10, 11]. For example,
the focused study of specific traits such as antibiotic resistance or virulence genes has been used
to detect pathogenic species among commensal strains of E. coli [12]. Also, general descriptive
functional profile landscapes have been used to understand the contribution of microbiota to
human disease [13]. However, in spite of the abundance of different types of metagenomics
profiles in human health [12, 14], little is known on the value of existing profiling tools when
applied to urban metagenomes [15].

Here, we propose a machine learning innovative approach in which of functional profiles of
microbiota samples obtained from shotgun sequencing are used as features for predicting
geographic origin. Moreover, in the prediction schema proposed, a feature relevance method
allows extracting the most important functional features that account for the classification.
Thus, any sample is described as a collection of functional modules (e.g. KEGG pathways,
resistance genes, etc.) contributed by the different bacterial species present in it, which account
for potential metabolic and other functional activities that the bacterial population, as a whole,
can perform. We show that the functional profiles, obtained from the individual contribution of
each bacterial strain in the sample, not only display a high level of predictive power to detect the
city of origin of a sample but also provide an interesting functional perspective of the city
analyzed. Interestingly, relevant features, such as antibiotic resistances, can accurately predict
the origin of samples and are compatible with epidemiological and genetic observations.
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Material and methods

Data

Sequence data were downloaded from the CAMDA web page
(http://camda2018.bioinf.jku.at/doku.php/contest_dataset#metasub_forensics_challenge). There
are four datasets: training dataset composed of 311 samples from eight cities (Auckland,
Hamilton, New York, Ofa, Porto, Sacramento, Santiago and Tokyo, test dataset 1, containing
30 samples from New York, Ofa, Porto and Santiago; test dataset 2 containing 30 samples from
three new cities (llorin, Boston and Lisbon) and test dataset 3 containing 16 samples from
llorin, Boston and Bogota

Sequence data processing

Local functional profiles were generated from the original sequencing reads by the application
MOCAT?2 [16] which uses several applications for the different steps. FastX toolkit is used for
trimming the reads and SolexaQA [17] to keep the reads in which all quality scores are above
20 and with a minimum length of 45. In order to remove possible contamination with human
genomes we screened the reads against hgl9. In this step MOCAT?2 use SOAPaligner v2.21
[18]. High quality reads were assembled with SOAPdenovo v1.05/v1.06 [18]. Then, genes were
detected inside contigs using Prodigal [19]. Figure 1A outlines the procedure followed.
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Figure 1. Schemas of: A) the annotation and machine learning procedure and B) the fusion pipeline, as
explained in Methods.

Functional profiles

CD-hit [20] with a 95% identity and a of 90 % overlap with the sorter sequence was used to
create a local gene catalog for each city. Gene catalogs were annotated using DIAMOND
(v0.7.9.58) [21] to align the genes against the orthologues groups of the database eggNOG
(v4.5) [22]. MOCAT?2 pre-computed eggNOG orthologous groups sequences with annotations
from other databases. Thus, a functional profile is generated for each sample by assessing the
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gene coverage for KEGG (v74/57) [23] and CARD (August 2015) [24] functional modules.
Finally each sample is normalized by the number of mapped reads against local gene catalog.

Machine learning pipeline

The machine learning phase takes the complete KEGG Module functional profile as the input
feature space, i.e. each training/validation sample is represented as a 1D-array where the
values/features are a one to one map with the KEGG modules. The machine learning pipeline
has been implemented in python 3.6 by making use of scikit-learn [25]. The training and
validation datasets are transformed according to a quantile transformation whose parameters are
learned from the training data. Subsequently, we apply the learned data representation to each
validation dataset. The quantile preprocessing performs a feature-wise non-linear transformation
which consists on transforming each variable to follow a normal distribution. This is a robust
preprocessing scheme since the impact of the outliers is minimized by spreading the most
frequent values.

In order to visualize such a high dimensional dataset we use the t-distributed Stochastic
Neighbor Embedding (t-SNE) [26] methodology. Due to the fact that the feature space
dimension is much greater than the number of samples, a principal component analysis (PCA) is
performed to reduce the dimensionality of the embedding process carried out by t-SNE.

Classification pipeline

To classify each sample into one of the known cities a classification pipeline was developed
which mainly consists of: i) A base learner with decision trees, ii) An ensemble of base learners
via Scalable Tree Boosting [27] and, iii) A Bayesian optimization framework for tuning the
hyper parameters. The optimization tuning has been done by following the guidelines provided
in [28].

In order to estimate the generalization error of the underlying model and its hyper-parameter
search we have used a nested/non-nested cross-validation scheme. On the one hand, the non-
nested loop is used to learn an optimized set of hyper-parameters, on the other hand, the nested
loop is used to estimate the generalization error by averaging test set scores over several dataset
splits. The scoring metric is the accuracy and the hyper-parameter learning is done on the
inner/nested cross validation by means of Bayesian optimization. Figure 1A contains a schema
of the whole pipeline followed here.

Fusion pipeline

In order to improve the classification accuracy of the proposed method we can fuse different
functional profiles by learning an approximation of the latent space by means of Canonical
Correlation Analysis (CCA) and then applying the machine learning pipeline already proposed.
Thus, a multi view classification problem, where the views are the functional profiles can be
constructed. A quantile transformation is learned for each dataset as previously described
(Figure 1A) and then, the latent space between both views is built by making use of CCA as
previously described [29]. Finally, we apply the proposed classification pipeline (except the
quantile transformation).

Given two datasets X; and X, that describe the same response Y, CCA-based feature fusion
consists in concatenating, or adding, the latent representations of both views in order to build a
single dataset that captures the most relevant patterns. CCA finds one transformation (T;) for
each view in such a way that the linear correlation between their projections is maximized in a
latent space with less features that either X; or X,. Figure 1B shows a diagram that summarizes
the Fusion Pipeline.
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Results and discussion
The CAMDA challenge

The CAMDA challenge test dataset consists of 311 samples from eight cities: Auckland,
Hamilton, New York, Ofa, Porto, Sacramento, Santiago and Tokyo. The predictor was trained
with this test dataset and then used to predict new samples

Table 1. Cross validation of the CAMDA training dataset.

Truth / Pred Auckland  Hamilton NY Ofa Porto  Sacramento  Santiago  Tokyo All
Auckland 9 4 0 1 0 1 0 0 15
Hamilton 3 11 2 0 0 0 0 0 16

NY 1 0 110 1 0 6 2 6 126
Ofa 0 0 3 17 0 0 0 0 20
Porto 0 0 0 0 60 0 0 0 60

Sacramento 0 0 0 0 0 34 0 0 34

Santiago 0 0 1 0 0 0 17 2 20
Tokyo 0 0 0 0 0 0 0 20 20
All 13 15 116 19 60 41 19 28 311
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Figure 2. Percentages of 59 high level KEGG modules defining the functional profiles for each city and
surface by city are shown (for the sake of the visualization KEGG modules were collapsed to the
corresponding highest level definitions)

Classification of the cities

The sequences from the CAMDA test dataset were processed as described in methods and a
KEGG-based functional profile was obtained for all the samples of the training datasets. The
cities display characteristic functional profiles (see Figure 2) that clearly differentiate them.
Figure 3 shows how the functional profiles separate the different cities as result of the
application of the clustering pipeline on the training dataset 1. The results reveal the strong
performance of the suggested pipeline as most of the classes (i.e. cities) are well separated,
except for Hamilton and Auckland (both New Zealand cities) which are separated from the
other cities but are very difficult to distinguish between themselves. This functional similarity
was expected due to their geographical closeness and its connection. Table 1 shows the cross-
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validation results, where the New Zealand cities could not be properly resolved as some of the
samples were missassigned.
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Figure 3. Classification of the cities of the training set based on KEGG-based functional profiles. A) As
expected, the New York cluster shows the highest dispersion. B) Hamilton and Auckland (both New
Zealand cities connected by a train) are separated from the other cities but are very difficult to
distinguish among them.

Feature extraction and biological relevance in the classification

An advantage of using functional modules as classification features is that their biological
interpretation is straightforward. Here, the most relevant features were extracted from the
classification pipeline from each run of the experiment by averaging the feature importance of
each base learner of the ensemble (an easily computable scores since we use decision trees). The
features that appeared in all the experiments were selected. Then, to assure the relevance of each
extracted feature we cross-reference it with those found by an I1-driven logistic regression
model. Finally we perform a 10-fold cross-validated prediction in order to assert that the
difference in accuracy is close to that found with the whole dataset. The total number of
extracted features adds up to 44.

Importantly, the features used for the classification have a direct biological meaning and
account for city-specific functional properties of the bacterial samples found in each city. As an
example of easy interpretation is the city of Ofa. Out of the seven features that distinguish this
city from the rest of cities (see Figure 4), three KEGG modules are related with antibiotic
resistances (see Table 2). Interestingly, antibiotic resistance had already been studied in the
MetSUB dataset by directly searching the presence in P. stutzeri mexA strains (that carry the
mexA gene, a component of the MexAB-OprM efflux system, that confer resistance to
antibiotics [30]) present in samples from some cities [15]. However, in the approach presented


https://doi.org/10.1101/476853
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/476853; this version posted November 22, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

here, that allowed the detection of the most relevant functional features that characterize cities,
antibiotic resistance arises as a highly discriminative feature for some of them.
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Figure 4. The most relevant KEGG features extracted from the classification pipeline by averaging the
feature importance of each base learner of the ensemble in each run of the experiment. In a blue square
the features characteristic from Ofa, and listed in table 2, are shown.

Table 2: The most relevant KEGG modules in Ofa

KEGG ID KEGG name

MO00090 Phosphatidylcholine (PC) biosynthesis, choline => PC

M00092 Phosphatidylethanolamine (PE) biosynthesis, ethanolamine => PE

M00224 Fluoroquinolone transport system

M00309 Non-phosphorylative Entner-Doudoroff pathway, gluconate/galactonate => glycerate
M00480 VraS-VraR (cell-wall peptidoglycan synthesis) two-component regulatory system
M00494 NatK-NatR (sodium extrusion) two-component regulatory system

MO00658 VanS-VanR (actinomycete type vancomycin resistance) two-component regulatory system

Particularly, Fluoroguinolone transport system (M00224) is an ABC-2 type transporter that
confers resistance to fluoroquinolone, a widely used antibiotic [31, 32]. Similarly, VraS-VraR
(M00480) and VanS-VanR (M00658) are two-component regulatory systems involved in the
response to two antibiotics, B-lactam [33] and glycopeptides [34], respectively. Interestingly,
Fluoroquinolone transport system and VraS-VraR are known to confer resistance in
Staphylococcus aureus, a pathogen which is known to have higher incidence rates in sub
Saharan Africa than those reported from developed countries [35], maybe because a higher
genetic susceptibility of these populations [36]. Since Staphylococcus aureus is a skin pathogen
it is easier to find it over-represented in the African MetaSUB samples. This observation
captured by the functional analysis of MetaSUB samples proposed here suggests an excessive
use of antibiotics that could eventually have caused an emergence of resistant strains. Actually,
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epidemiologic studies report the prevalence of Staphylococcal disease in sub-Saharan Africa,
along with an increase in antibiotic resistance [35]. Moreover, two single-nucleotide
polymorphisms (SNPs) in the human leukocyte antigen (HLA) class Il region on chromosome 6
was demonstrated to be associated with susceptibility to S. aureus infection at a genome-wide
significant level [37] and a recent admixture mapping study demonstrated that genomic
variations with different frequencies in these SNPs in European and African ancestral genomes
influence susceptibility to S. aureus infection, strongly suggesting a genetic basis for our
observations [36].

Classification of new samples of the cities in the training set

In order to test the generalization power of the predictor obtained with the training dataset, we
have used the test dataset 1 composed by 30 samples belonging to the same cities that the
training dataset. Table 3 shows the cross validation and the confusion matrix, in which, the
functional heterogeneity of New York clearly introduces some noise in the classification
(probably with a real biological meaning). The accuracy of the predictor is of 0.73.

Table 3. Cross validation and confusion matrix of KEGG functional profiles obtained from the samples
from the test dataset 1, belonging to the cities from the training dataset.

Truth/Preds |Auckland Hamilton NY  Ofa Porto Sacramento Santiago Tokyo All Accuracy
NY 1 1 0 0 0 0 0 10 0.8
Ofa 0 0 3 0 0 0 0 5 0.6
Porto 0 0 0 8 0 0 1 10 0.8
Santiago 0 0 0 0 1 3 0 5 0.6
All 1 1 12 3 8 1 3 1 30 0.73

Table 4. The most relevant antibiotic resistance modules (CARD) in Ofa

ACCESSION NAME DESCRIPTION
3002940 vanSN vanSN is a vanS variant found in the vanN gene cluster
3000217 blaR1 blaR1 is a transmembrane spanning and signal transducing protein

which in response to interaction with beta-lactam antibiotics results
in upregulation of the blaZ/blaR 1/blal operon.

3003069 vanXYG vanXYG is a vanXY variant found in the vanG gene cluster

3000180 tetA(P) TetA(P) is a inner membrane tetracycline efflux protein found on the
same operon as the ribosomal protection protein TetB(P). It is found
in Clostridium, a Gram-positive bacterium.

3002541 AAC(3)-VIla AAC(3)-Vlla is a chromosomal-encoded aminoglycoside
acetyltransferase in Streptomyces rimosus

Classification using different functional profiles

KEGG encompasses a global compendium of bacterial functionalities, providing features with a
high discriminatory power but, in some cases, with no much biological interest, which can mask
functionalities of more relevance from a medical, forensic or epidemiological viewpoint.
Instead, other databases that collect specific bacterial activities or functionalities could be used.
Since antibiotic resistance has emerged among the generic functionalities as a high relevant
feature in the classification, in addition to have an obvious importance by itself, it seemed worth
focusing on features that specifically describe antibiotic resistances. Therefore, a new training
process was carried out using CARD, the database of antibiotic resistances [24]. Again, a set of
antibiotic resistance features clearly distinguishes Ofa from the rest of cities, as previously
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observed (Figure 5A). Table 4 describes the specific resistances found as characteristic from
Ofa which, overall, reinforce our previous finding with KEGG about transporters [31, 32] and
two-component regulatory systems involved in the response to antibiotics [33, 34], but
providing more detail on specific resistance mechanisms. Interestingly, the characteristic that
distinguishes Porto samples from those of other cities is the absence of antibiotic resistances
(Figure 5B). Although we do not have a strong epidemiological explanation for this, recent
studies show that Portugal is among the countries in Europe with the highest defined daily dose
per habitant [38]. Whether the high antibiotic consumption can be behind this observation or not
needs of deeper epidemiological studies but, in any case, it is pointing to a distinctive local
characteristic of clear epidemiological relevance.
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Figure 5. The most relevant CARD (antlblotlc re5|stances) eatures extracted f the classification
pipeline by averaging the feature importance of each base learner of the ensemble in each run of the
experiment. A) Features characteristic from Ofa. B) Features characteristic from Porto.

Table 5 shows the cross validation and the confusion matrix with the CARD functional profiles,
in which, the functional heterogeneity of New York is still introducing some noise in the
classification but the accuracy of the predictor increased to 0.8.

Table 5. Cross validation and confusion matrix of antibiotic resistances (CARD) functional profiles
obtained from the samples from the test dataset 1, belonging to the cities from the training dataset.

Truth/pred  Auckland NY Ofa Porto Santiago All Accuracy
NY 2 8 0 0 0 10 0.8
Ofa 0 1 4 0 0 5 0.8
Porto 0 0 0 10 0 10 1
Santiago 0 2 0 1 2 5 0.4
All 2 11 4 11 2 30 0.8

Classification using mixed functional profiles

In addition to build predictors with a single functional feature, it is possible to combine different
functional profiles producing higher accuracies in the classification. Here we combined KEGG
and CARD profiles using the Fusion Pipeline (see Methods) and the resulting classification
accuracy increased to 0.9. Table 6 shows the cross validation values obtained with the mixed
profiles. Only New York, which is the most heterogeneous cite from a functional point of view,
shows a couple of bad predictions (the Ofa misplaced sample was assigned to New York,
probably for the same reason).
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Table 6. Cross validation and confusion matrix of functional profiles obtained from the combination of
KEGG and CARD corresponding to samples from the test dataset 1 belonging to the cities from the
training dataset.

truth/pred  Auckland NY Ofa Porto Santiago All Accuracy
NY 1 8 1 0 0 10 0.8
Ofa 0 1 4 0 0 5 0.8
Porto 0 0 0 10 0 10 1
Santiago 0 0 0 0 5 5 1
All 1 11 3 10 5 30 0.9

More functional profiles could be included by using an extension of the Fusion Pipeline to N
datasets as previously shown [39], coupled with robust Least Squares techniques [40], to
accommodate for the challenging low sample size high dimensional data scenario.

Classification new samples of with new cities

In order to check the performance of the predictor with samples from cities that were not used in
the initial training dataset we used the 30 samples from the test dataset 2, from the cities: llorin
(close to Ofa), Lisbon (in Portugal as Porto, but not close) and Boston (in USA, but not close to

Ney York).
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Figure 6. Classification of all the cities based on KEGG-based functional profiles. A) llorin and Ofa,
two physically close cities in Nigeria (connected by a train) map close to each other. B) New York, not
close to C) Boston, D) Lisbon is not close to E) Porto. F) Hamilton and Auckland, both New Zealand
cities connected by a train, also map together.
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Figure 6 shows how the cities are clustered very much as expected. Thus llorin maps together
with Ofa (Figure 6A) because these two cities are physically close cities in Nigeria (and
connected by a train). As expected, the New York cluster shows the highest dispersion (Figure
6B), although is not similar to Boston (Figure 6C). The same is observed with Lisbon (Figure
6D), which is not close to Porto (Figure 6E) and both map in different places. Interestingly, the
Porto “outlier” sample maps on the Lisbon cluster. Similarly to the case of Ofa and llorin,
Hamilton and Auckland, both New Zealand cities connected by a train also map together as well
(Figure 6F).

Machine Learning Pipeline Comparison

Finally, the performance of each machine learning pipeline was evaluated by joining the
samples from the training and the three validation datasets. For each model a 10-fold city-wise
stratified cross-validation was performed. In order to provide statistical evidence for the results
each experiment is repeated 10 times with different random seeds initializations. Figure 7 shows
a box plot diagram of the different experiments grouped by the functional profile used, namely:
kegg for KEGG-Modules, card for CARD-ARO and fusion for the Multiview case. As
expected, the model performance follows the tendency already exhibited: the fusion pipeline
outperforms the single-view case, and the CARD-ARO view provides slightly better results than
KEGG-Modules.
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Figure 7. Accuracies obtained using the whole dataset (Training dataset and test datasets 1, 2 and 3)
with only KEGG profiles, only CARD profiles and the fusion of both profiles.

Conclusions

The recodification of metagenomics data from the conventional gene or strain abundance
profiles to other types of profiles with biological meaning offers new avenues for the analysis of
microbiome data. Here we show how the use of KEGG- and CARD-based functional profiles,
derived from the original metagenomics data, not only provides accurate sample classification
but also offers interesting epidemiological and biological interpretations of the results found.
Interestingly, antibiotic resistance arises as a relevant classification feature, supported by
epidemiological [35] and genetic [36] previous observations.
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