
Antibiotic resistance and metabolic profiles as functional biomarkers 

that accurately predict the geographic origin of city metagenomics 

samples 

Carlos S. Casimiro-Soriguer
1,+

, Carlos Loucera
1,+

, Javier Perez Florido
1
, Daniel López-López

1
, 

Joaquin Dopazo
1,2,3,

* 

1. Clinical Bioinformatics Area. Fundación Progreso y Salud (FPS). CDCA, Hospital Virgen 

del Rocio. 41013. Sevilla. Spain 

2. Functional Genomics Node (INB). FPS. Hospital Virgen del Rocio. 41013 Sevilla. Spain 

3  Bioinformatics in Rare Diseases (BiER). Centro de Investigación Biomédica en Red de 

Enfermedades Raras (CIBERER). FPS. Hospital Virgen del Rocio. 41013. Sevilla. Spain; 

 

+ Equal contribution 

* Corresponding author Joaquin Dopazo joaquin.dopazo@juntadeandalucia.es 

 

  

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 22, 2018. ; https://doi.org/10.1101/476853doi: bioRxiv preprint 

https://doi.org/10.1101/476853
http://creativecommons.org/licenses/by/4.0/


Abstract 

Background: The availability of hundreds of city microbiome profiles allows the development 

of increasingly accurate predictors of the origin of a sample based on its microbiota 

composition. Typical microbiome studies involve the analysis of bacterial abundance profiles. 

Results: Here we use a transformation of the conventional bacterial strain or gene abundance 

profiles to functional profiles that account for bacterial metabolism and other cell 

functionalities. These profiles are used as features for city classification in a machine learning 

algorithm that allows the extraction of the most relevant features for the classification..  

Conclusions: We demonstrate here that the use of functional profiles not only predict accurately 

the most likely origin of a sample but also to provide an interesting functional point of view of 

the biogeography of the microbiota. Interestingly, we show how cities can be classified based 

on the observed profile of antibiotic resistances.  
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Background 

In recent years there has been an increasing interest in microbiome research, especially in the 

context of human health [1]. However, bacteria are ubiquitous and microbiotas from many 

different sources have been object of scrutiny [2]. Specifically, environmental metagenomics 

recently is gaining much attention [3]. The Metagenomics and Metadesign of the Subways and 

Urban Biomes (MetaSUB) is an International Consortium with a wide range of aims, currently 

involved in the detection, measurement, and design of metagenomics within urban 

environments [4]. Typically, microbiomes have been studied by analyzing microbial abundance 

profiles obtained either from 16S RNAs or from whole genome sequencing (WGS), which can 

be further related to specific conditions [5, 6]. More recently, 16sRNA data has been used as a 

proxy to derive functional profiles by assigning to each sample the functional properties 

(pathways, resistance or virulence genes, etc.) of the genomes of reference of each species 

identified in it [7, 8]. However, 16sRNA data does not allow direct inference of genes actually 

present in the bacterial population studied [9]. Contrarily, metagenomics shotgun sequencing 

allows inferring a quite accurate representation of the real gene composition in the bacterial pool 

of each sample that can be used to identify strain-specific genomic traits [10, 11]. For example, 

the focused study of specific traits such as antibiotic resistance or virulence genes has been used 

to detect pathogenic species among commensal strains of E. coli [12]. Also, general descriptive 

functional profile landscapes have been used to understand the contribution of microbiota to 

human disease [13]. However, in spite of the abundance of different types of metagenomics 

profiles in human health [12, 14], little is known on the value of existing profiling tools when 

applied to urban metagenomes [15].  

Here, we propose a machine learning innovative approach in which of functional profiles of 

microbiota samples obtained from shotgun sequencing are used as features for predicting 

geographic origin. Moreover, in the prediction schema proposed, a feature relevance method 

allows extracting the most important functional features that account for the classification. 

Thus, any sample is described as a collection of functional modules (e.g. KEGG pathways, 

resistance genes, etc.) contributed by the different bacterial species present in it, which account 

for potential metabolic and other functional activities that the bacterial population, as a whole, 

can perform. We show that the functional profiles, obtained from the individual contribution of 

each bacterial strain in the sample, not only display a high level of predictive power to detect the 

city of origin of a sample but also provide an interesting functional perspective of the city 

analyzed. Interestingly, relevant features, such as antibiotic resistances, can accurately predict 

the origin of samples and are compatible with epidemiological and genetic observations.   
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Material and methods 

Data 

Sequence data were downloaded from the CAMDA web page 

(http://camda2018.bioinf.jku.at/doku.php/contest_dataset#metasub_forensics_challenge). There 

are four datasets: training dataset composed of 311 samples from eight cities (Auckland, 

Hamilton, New York, Ofa, Porto, Sacramento, Santiago and Tokyo, test dataset 1, containing 

30 samples from New York, Ofa, Porto and Santiago; test dataset 2 containing 30 samples from 

three new cities (Ilorin, Boston and Lisbon) and test dataset 3 containing 16 samples from 

Ilorin, Boston and Bogota 

Sequence data processing 

Local functional profiles were generated from the original sequencing reads by the application 

MOCAT2 [16] which uses several applications for the different steps. FastX toolkit is used for 

trimming the reads and SolexaQA [17] to keep the reads in which all quality scores are above 

20 and with a minimum length of 45. In order to remove possible contamination with human 

genomes we screened the reads against hg19. In this step MOCAT2 use SOAPaligner v2.21 

[18]. High quality reads were assembled with SOAPdenovo v1.05/v1.06 [18]. Then, genes were 

detected inside contigs using Prodigal [19]. Figure 1A outlines the procedure followed.  

 
Figure 1. Schemas of: A) the annotation and machine learning procedure and B) the fusion pipeline, as 

explained in Methods. 

 

Functional profiles 

CD-hit [20] with a 95% identity and a of 90 % overlap with the sorter sequence was used to 

create a local gene catalog for each city. Gene catalogs were annotated using DIAMOND 

(v0.7.9.58) [21] to align the genes against the orthologues groups of the database eggNOG 

(v4.5) [22]. MOCAT2 pre-computed eggNOG orthologous groups sequences with annotations 

from other databases. Thus, a functional profile is generated for each sample by assessing the 
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gene coverage for KEGG (v74/57) [23] and CARD (August 2015) [24] functional modules. 

Finally each sample is normalized by the number of mapped reads against local gene catalog. 

Machine learning pipeline 

The machine learning phase takes the complete KEGG Module functional profile as the input 

feature space, i.e. each training/validation sample is represented as a 1D-array where the 

values/features are a one to one map with the KEGG modules. The machine learning pipeline 

has been implemented in python 3.6 by making use of scikit-learn [25]. The training and 

validation datasets are transformed according to a quantile transformation whose parameters are 

learned from the training data. Subsequently, we apply the learned data representation to each 

validation dataset. The quantile preprocessing performs a feature-wise non-linear transformation 

which consists on transforming each variable to follow a normal distribution. This is a robust 

preprocessing scheme since the impact of the outliers is minimized by spreading the most 

frequent values.  

In order to visualize such a high dimensional dataset we use the t-distributed Stochastic 

Neighbor Embedding (t-SNE) [26] methodology. Due to the fact that the feature space 

dimension is much greater than the number of samples, a principal component analysis (PCA) is 

performed to reduce the dimensionality of the embedding process carried out by t-SNE. 

Classification pipeline 

To classify each sample into one of the known cities a classification pipeline was developed 

which mainly consists of: i) A base learner with decision trees, ii) An ensemble of base learners 

via Scalable Tree Boosting [27] and, iii) A Bayesian optimization framework for tuning the 

hyper parameters. The optimization tuning has been done by following the guidelines provided 

in [28].  

In order to estimate the generalization error of the underlying model and its hyper-parameter 

search we have used a nested/non-nested cross-validation scheme. On the one hand, the non-

nested loop is used to learn an optimized set of hyper-parameters, on the other hand, the nested 

loop is used to estimate the generalization error by averaging test set scores over several dataset 

splits. The scoring metric is the accuracy and the hyper-parameter learning is done on the 

inner/nested cross validation by means of Bayesian optimization. Figure 1A contains a schema 

of the whole pipeline followed here. 

Fusion pipeline 

In order to improve the classification accuracy of the proposed method we can fuse different 

functional profiles by learning an approximation of the latent space by means of Canonical 

Correlation Analysis (CCA) and then applying the machine learning pipeline already proposed. 

Thus, a multi view classification problem, where the views are the functional profiles can be 

constructed. A quantile transformation is learned for each dataset as previously described 

(Figure 1A) and then,  the latent space between both views is built by making use of CCA as 

previously described [29]. Finally, we apply the proposed classification pipeline (except the 

quantile transformation). 

Given two datasets X1 and X2 that describe the same response Y, CCA-based feature fusion 

consists in concatenating, or adding, the latent representations of both views in order to build a 

single dataset that captures the most relevant patterns. CCA finds one transformation (Ti) for 

each view in such a way that the linear correlation between their projections is maximized in a 

latent space with less features that either X1 or X2. Figure 1B shows a diagram that summarizes 

the Fusion Pipeline.  
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Results and discussion 

The CAMDA challenge 

The CAMDA challenge test dataset consists of 311 samples from eight cities: Auckland, 

Hamilton, New York, Ofa, Porto, Sacramento, Santiago and Tokyo. The predictor was trained 

with this test dataset and then used to predict new samples  

Table 1. Cross validation of the CAMDA training dataset. 

 
Truth / Pred Auckland Hamilton NY Ofa Porto Sacramento Santiago Tokyo All 

Auckland 9 4 0 1 0 1 0 0 15 

Hamilton 3 11 2 0 0 0 0 0 16 

NY 1 0 110 1 0 6 2 6 126 

Ofa 0 0 3 17 0 0 0 0 20 

Porto 0 0 0 0 60 0 0 0 60 

Sacramento 0 0 0 0 0 34 0 0 34 

Santiago 0 0 1 0 0 0 17 2 20 

Tokyo 0 0 0 0 0 0 0 20 20 

All 13 15 116 19 60 41 19 28 311 

  

 
Figure 2. Percentages of 59 high level KEGG modules defining the functional profiles for each city and 

surface by city are shown (for the sake of the visualization KEGG modules were collapsed to the 

corresponding highest level definitions) 

 

Classification of the cities 

The sequences from the CAMDA test dataset were processed as described in methods and a 

KEGG-based functional profile was obtained for all the samples of the training datasets. The 

cities display characteristic functional profiles (see Figure 2) that clearly differentiate them. 

Figure 3 shows how the functional profiles separate the different cities as result of the 

application of the clustering pipeline on the training dataset 1. The results reveal the strong 

performance of the suggested pipeline as most of the classes (i.e. cities) are well separated, 

except for Hamilton and Auckland (both New Zealand cities) which are separated from the 

other cities but are very difficult to distinguish between themselves. This functional similarity 

was expected due to their geographical closeness and its connection. Table 1 shows the cross-
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validation results, where the New Zealand cities could not be properly resolved as some of the 

samples were missassigned. 

 
Figure 3. Classification of the cities of the training set based on KEGG-based functional profiles. A) As 

expected, the New York cluster shows the highest dispersion. B) Hamilton and Auckland (both New 

Zealand cities connected by a train) are separated from the other cities but are very difficult to 

distinguish among them. 

 

Feature extraction and biological relevance in the classification 

An advantage of using functional modules as classification features is that their biological 

interpretation is straightforward. Here, the most relevant features were extracted from the 

classification pipeline from each run of the experiment by averaging the feature importance of 

each base learner of the ensemble (an easily computable scores since we use decision trees). The 

features that appeared in all the experiments were selected. Then, to assure the relevance of each 

extracted feature we cross-reference it with those found by an l1-driven logistic regression 

model. Finally we perform a 10-fold cross-validated prediction in order to assert that the 

difference in accuracy is close to that found with the whole dataset. The total number of 

extracted features adds up to 44.  

Importantly, the features used for the classification have a direct biological meaning and 

account for city-specific functional properties of the bacterial samples found in each city. As an 

example of easy interpretation is the city of Ofa. Out of the seven features that distinguish this 

city from the rest of cities (see Figure 4), three KEGG modules are related with antibiotic 

resistances (see Table 2). Interestingly, antibiotic resistance had already been studied in the 

MetSUB dataset by directly searching the presence in P. stutzeri mexA strains (that carry the  

mexA gene, a component of the MexAB-OprM efflux system, that confer resistance to 

antibiotics [30]) present in samples from some cities [15]. However, in the approach presented 
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here, that allowed the detection of the most relevant functional features that characterize cities, 

antibiotic resistance arises as a highly discriminative feature for some of them.   

 
Figure 4. The most relevant KEGG features extracted from the classification pipeline by averaging the 

feature importance of each base learner of the ensemble in each run of the experiment. In a blue square 

the features characteristic from Ofa, and listed in table 2, are shown. 

 

 

Table 2: The most relevant KEGG modules in Ofa  

KEGG ID KEGG name 

M00090   Phosphatidylcholine (PC) biosynthesis, choline => PC 

M00092 Phosphatidylethanolamine (PE) biosynthesis, ethanolamine => PE 

M00224 Fluoroquinolone transport system 

M00309 Non-phosphorylative Entner-Doudoroff pathway, gluconate/galactonate => glycerate 

M00480 VraS-VraR (cell-wall peptidoglycan synthesis) two-component regulatory system 

M00494 NatK-NatR (sodium extrusion) two-component regulatory system 

M00658 VanS-VanR (actinomycete type vancomycin resistance) two-component regulatory system 

 

Particularly, Fluoroquinolone transport system (M00224) is an ABC-2 type transporter that 

confers resistance to fluoroquinolone, a widely used antibiotic [31, 32]. Similarly, VraS-VraR 

(M00480) and  VanS-VanR (M00658) are two-component regulatory systems involved in the 

response to two antibiotics, β-lactam [33] and glycopeptides [34], respectively. Interestingly, 

Fluoroquinolone transport system and VraS-VraR are known to confer resistance in 
Staphylococcus aureus, a pathogen which is known to have higher incidence rates in sub 

Saharan Africa than those reported from developed countries [35], maybe because a higher 

genetic susceptibility of these populations [36]. Since Staphylococcus aureus is a skin pathogen 

it is easier to find it over-represented in the African MetaSUB samples. This observation 

captured by the functional analysis of MetaSUB samples proposed here suggests an excessive 

use of antibiotics that could eventually have caused an emergence of resistant strains. Actually, 
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epidemiologic studies report the prevalence of Staphylococcal disease in sub-Saharan Africa, 

along with an increase in antibiotic resistance [35]. Moreover, two single-nucleotide 

polymorphisms (SNPs) in the human leukocyte antigen (HLA) class II region on chromosome 6 

was demonstrated to be associated with susceptibility to S. aureus infection at a genome-wide 

significant level [37] and a recent admixture mapping study demonstrated that genomic 

variations with different frequencies in these SNPs in European and African ancestral genomes 

influence susceptibility to S. aureus infection, strongly suggesting a genetic basis for our 

observations [36].   

Classification of new samples of the cities in the training set 

In order to test the generalization power of the predictor obtained with the training dataset, we 

have used the test dataset 1 composed by 30 samples belonging to the same cities that the 

training dataset. Table 3 shows the cross validation and the confusion matrix, in which, the 

functional heterogeneity of New York clearly introduces some noise in the classification 

(probably with a real biological meaning). The accuracy of the predictor is of 0.73. 

Table 3. Cross validation and confusion matrix of KEGG functional profiles obtained from the samples 

from the test dataset 1, belonging to the cities from the training dataset. 

Truth / Preds Auckland Hamilton NY Ofa Porto Sacramento Santiago Tokyo All Accuracy 

NY 1 1 8 0 0 0 0 0 10 0.8 

Ofa 0 0 2 3 0 0 0 0 5 0.6 

Porto 0 0 1 0 8 0 0 1 10 0.8 

Santiago 0 0 1 0 0 1 3 0 5 0.6 

All 1 1 12 3 8 1 3 1 30 0.73 

 

Table 4. The most relevant antibiotic resistance modules (CARD) in Ofa 

ACCESSION NAME DESCRIPTION 

3002940 vanSN vanSN is a vanS variant found in the vanN gene cluster 

3000217 blaR1 blaR1 is a transmembrane spanning and signal transducing protein 

which in response to interaction with beta-lactam antibiotics results 

in upregulation of the blaZ/blaR1/blaI operon. 

3003069 vanXYG vanXYG is a vanXY variant found in the vanG gene cluster 

3000180 tetA(P) TetA(P) is a inner membrane tetracycline efflux protein found on the 

same operon as the ribosomal protection protein TetB(P). It is found 

in Clostridium, a Gram-positive bacterium. 

3002541 AAC(3)-VIIa AAC(3)-VIIa is a chromosomal-encoded aminoglycoside 

acetyltransferase in Streptomyces rimosus 

 

Classification using different functional profiles 

KEGG encompasses a global compendium of bacterial functionalities, providing features with a 

high discriminatory power but, in some cases, with no much biological interest, which can mask 

functionalities of more relevance from a medical, forensic or epidemiological viewpoint. 

Instead, other databases that collect specific bacterial activities or functionalities could be used. 

Since antibiotic resistance has emerged among the generic functionalities as a high relevant 

feature in the classification, in addition to have an obvious importance by itself, it seemed worth 

focusing on features that specifically describe antibiotic resistances. Therefore, a new training 

process was carried out using CARD, the database of antibiotic resistances [24]. Again, a set of 

antibiotic resistance features clearly distinguishes Ofa from the rest of cities, as previously 
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observed (Figure 5A). Table 4 describes the specific resistances found as characteristic from 

Ofa which, overall, reinforce our previous finding with KEGG about transporters [31, 32] and 

two-component regulatory systems involved in the response to antibiotics [33, 34], but 

providing more detail on specific resistance mechanisms. Interestingly, the characteristic that 

distinguishes Porto samples from those of other cities is the absence of antibiotic resistances 

(Figure 5B). Although we do not have a strong epidemiological explanation for this, recent 

studies show that Portugal is among the countries in Europe with the highest defined daily dose 

per habitant [38]. Whether the high antibiotic consumption can be behind this observation or not 

needs of deeper epidemiological studies but, in any case, it is pointing to a distinctive local 

characteristic of clear epidemiological relevance.   

 
Figure 5. The most relevant CARD (antibiotic resistances) features extracted from the classification 

pipeline by averaging the feature importance of each base learner of the ensemble in each run of the 

experiment. A) Features characteristic from Ofa. B) Features characteristic from Porto. 

 

Table 5 shows the cross validation and the confusion matrix with the CARD functional profiles, 

in which, the functional heterogeneity of New York is still introducing some noise in the 

classification but the accuracy of the predictor increased to 0.8. 

Table 5. Cross validation and confusion matrix of antibiotic resistances (CARD) functional profiles 

obtained from the samples from the test dataset 1, belonging to the cities from the training dataset. 

Truth/pred Auckland NY Ofa Porto Santiago All Accuracy 

NY 2 8 0 0 0 10 0.8 

Ofa 0 1 4 0 0 5 0.8 

Porto 0 0 0 10 0 10 1 

Santiago 0 2 0 1 2 5 0.4 

All 2 11 4 11 2 30 0.8 

 

Classification using mixed functional profiles 

In addition to build predictors with a single functional feature, it is possible to combine different 

functional profiles producing higher accuracies in the classification. Here we combined KEGG 

and CARD profiles using the Fusion Pipeline (see Methods) and the resulting classification 

accuracy increased to 0.9. Table 6 shows the cross validation values obtained with the mixed 

profiles. Only New York, which is the most heterogeneous cite from a functional point of view, 

shows a couple of bad predictions (the Ofa misplaced sample was assigned to New York, 

probably for the same reason).  
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Table 6. Cross validation and confusion matrix of functional profiles obtained from the combination of 

KEGG and CARD corresponding to samples from the test dataset 1 belonging to the cities from the 

training dataset. 

truth/pred Auckland NY Ofa Porto Santiago All Accuracy 

NY 1 8 1 0 0 10 0.8 

Ofa 0 1 4 0 0 5 0.8 

Porto 0 0 0 10 0 10 1 

Santiago 0 0 0 0 5 5 1 

All 1 11 3 10 5 30 0.9 

 

More functional profiles could be included by using an extension of the Fusion Pipeline to N 

datasets as previously shown [39], coupled with robust Least Squares techniques [40], to 

accommodate for the challenging low sample size high dimensional data scenario.  

Classification new samples of with new cities 

In order to check the performance of the predictor with samples from cities that were not used in 

the initial training dataset we used the 30 samples from the test dataset 2, from the cities: Ilorin 

(close to Ofa), Lisbon (in Portugal as Porto, but not close) and Boston (in USA, but not close to 

Ney York). 

 
Figure 6. Classification of all the cities based on KEGG-based functional profiles. A) Ilorin and Ofa, 

two physically close cities in Nigeria (connected by a train) map close to each other. B) New York, not 

close to C) Boston, D) Lisbon is not close to E) Porto. F) Hamilton and Auckland, both New Zealand 

cities connected by a train, also map together.  
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Figure 6 shows how the cities are clustered very much as expected. Thus Ilorin maps together 

with Ofa (Figure 6A) because these two cities are physically close cities in Nigeria (and 

connected by a train). As expected, the New York cluster shows the highest dispersion (Figure 

6B), although is not similar to Boston (Figure 6C). The same is observed with Lisbon (Figure 

6D), which is not close to Porto (Figure 6E) and both map in different places. Interestingly, the 

Porto “outlier” sample maps on the Lisbon cluster. Similarly to the case of Ofa and Ilorin, 

Hamilton and Auckland, both New Zealand cities connected by a train also map together as well 

(Figure 6F). 

Machine Learning Pipeline Comparison 

Finally, the performance of each machine learning pipeline was evaluated by joining the 

samples from the training and the three validation datasets. For each model a 10-fold city-wise 

stratified cross-validation was performed. In order to provide statistical evidence for the results 

each experiment is repeated 10 times with different random seeds initializations. Figure 7 shows 

a box plot diagram of the different experiments grouped by the functional profile used, namely: 

kegg for KEGG-Modules, card for CARD-ARO and fusion for the Multiview case. As 

expected, the model performance follows the tendency already exhibited: the fusion pipeline 

outperforms the single-view case, and the CARD-ARO view provides slightly better results than 

KEGG-Modules. 

 
Figure 7. Accuracies obtained using the whole dataset (Training dataset and test datasets 1, 2 and 3) 

with only KEGG profiles, only CARD profiles and the fusion of both profiles. 

 

 

Conclusions 

The recodification of metagenomics data from the conventional gene or strain abundance 

profiles to other types of profiles with biological meaning offers new avenues for the analysis of 

microbiome data. Here we show how the use of KEGG- and CARD-based functional profiles, 

derived from the original metagenomics data, not only provides accurate sample classification 

but also offers interesting epidemiological and biological interpretations of the results found. 

Interestingly, antibiotic resistance arises as a relevant classification feature, supported by 

epidemiological [35] and genetic [36] previous observations.  
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