

1 **Biofilm/Persister/Stationary Phase Bacteria Cause More Severe Disease Than Log Phase Bacteria – II**
2 **Infection with Persister Forms of *Staphylococcus aureus* Causes a Chronic Persistent Skin Infection with**
3 **More Severe Lesion that Takes Longer to Heal and is not Eradicated by the Current Recommended**
4 **Treatment in Mice**

5
6 Rebecca Yee^a, Yuting Yuan^a, Cory Brayton^b, Andreina Tarff Leal^c, Jie Feng^a, Wanliang Shi^a, Ashley Behrens^c,
7 Ying Zhang^{a*}

8
9 ^aDepartment of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins
10 University, Baltimore, MD

11 ^bDepartment of Comparative Medicine, Johns Hopkins University School of Medicine, Baltimore, MD

12 ^cThe Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD

13
14 ***Corresponding author:**

15
16 Ying Zhang, MD, PhD
17 Department of Molecular Microbiology and Immunology,
18 Bloomberg School of Public Health,
19 Johns Hopkins University,
20 Baltimore, MD 21205, USA
21 Email: yzhang@jhsph.edu

22
23 **Abstract**

24
25 *Staphylococcus aureus* is an opportunistic pathogen that can cause persistent infections clinically. Treatment for
26 chronic *S. aureus* infections ranges from at least one week to several months and such infections are prone to
27 relapse likely due to the presence of persistent forms of bacteria such as persister cells. Persister cells, which are
28 bacterial cells that become dormant under stress conditions, can be isolated *in vitro* but their clinical
29 significance in *in vivo* infections are largely unclear. Here, we evaluated *S. aureus* persistent forms using
30 stationary phase cultures and biofilm bacteria (enriched in persisters) in comparison with log phase cultures in
31 terms of their ability to cause disease in a mouse skin infection model. Surprisingly, we found that infection of
32 mice with stationary phase cultures and biofilm bacteria produced a more severe chronic skin infection with
33 more pronounced lesions which took longer to heal than log phase (actively growing) cultures. After two week
34 infection, the bacterial load and skin tissue pathology, as determined by hyperplasia, immune cell infiltration,
35 and crust/lesion formation, of mice infected with the more persistent forms (e.g. stationary phase bacteria and
36 biofilm bacteria) were greater than mice infected with log phase bacteria. Using our persistent infection mouse
37 model, we showed that the clinically recommended treatment for recurrent *S. aureus* skin infection, doxycycline
38 + rifampin, was not effective in eradicating the bacteria in the treatment study, despite reducing lesion sizes and
39 pathology in infected mice. Analogous findings were also observed in a *Caenorhabditis elegans* model, where *S. aureus*
40 stationary phase cultures caused a greater mortality than log phase culture as early as two days post-
41 infection. Thus, we established a new model for chronic persistent infections using persister bacteria that could
42 serve as a relevant model to evaluate therapeutic options for persistent infections in general. Our findings
43 connect persisters with persistent infections, have implications for understanding disease pathogenesis, and are
44 likely to be broadly valid for other pathogens.

50 Introduction

51 Infections with *Staphylococcus aureus* can lead to chronic and difficult-to-treat infections such as
52 recurrent skin and soft tissue infections, osteomyelitis, endocarditis, prosthetic joint infections and biofilm-
53 related infections found in patients with indwelling devices [1]. Treatments for persistent staphylococcal
54 infections ranges from over one week to over three months and can require a combination of drugs [2]. Patients
55 with osteomyelitis caused by MRSA receiving less than 8 weeks of treatment were 4.8 times more likely to
56 relapse than those receiving longer therapy [3]. In extreme cases for those with prosthetic implants such as in
57 joint implants, debridement procedures are practiced in addition to antibiotic therapy. Yet, even with invasive
58 therapies, the cure rate ranges from 52-80% of the patients [4-6]. Overall, treatment strategies for persistent
59 staphylococcal infections are burdensome for the patient and cannot achieve complete cure in the patient.

60 First described in 1942, Hobby et al. found that 1% of *S. aureus* cells were not killed by penicillin and
61 these were called persister cells [7]. The persister cells were not resistant to penicillin and hence, did not
62 undergo genetic changes; these cells were phenotypic variants that became tolerant to antibiotics [8]. A clinical
63 observation was also made as penicillin failed to clear chronic infections due to the presence of persister cells
64 found in patients [8]. Persister cells can be found to be heavily enriched in stationary phase cultures, drug-
65 stressed cultures, and inside biofilms. Bacteria inside the biofilm grow slowly, are representative of stationary
66 phase bacteria, and can comprise persister cells due to the high cell density, nutrient and oxygen limiting
67 environment inside the biofilm matrix [9].

68 Many groups have pursued drug discovery research in search for better treatment strategies to kill
69 persisters and biofilms [10]. However, most treatment regimens have not undergone clinical trials for persistent
70 infections. One of the reasons is that there is a lack of chronic infection models of persistent bacterial infections
71 in mice. Recently, it has been shown that more persistent forms of *Borrelia burgdorferi* cause more severe
72 arthritis in a Lyme arthritis model suggesting that severity of disease is determined by the status and quality of
73 inocula bacteria [11]. In this study, we established a chronic skin infection mouse model for *S. aureus* using
74 “biofilm seeding” and evaluated drug combinations in clearing the infection in this persistent skin infection
75 model. Here, we show that persistent bacteria found in stationary phase and biofilm bacteria caused a more
76 severe chronic persistent skin infection in mice leading to bigger lesions and increased immunopathology.
77 Using our chronic skin infection model, we show that doxycycline + rifampin, the current clinically
78 recommended drug combination used to treat recurrent skin infections, failed to clear the infection and heal skin
79 lesions in our mouse model. Additionally, we further show that persistent forms of *S. aureus* were also more
80 virulent and caused increased mortality in *C. elegans*.

81 Results

82 Establishing a chronic skin infection in mice

83 To establish a severe, chronic skin infection model in mice, we evaluated the clinical outcomes of mice
84 subcutaneously infected with different forms of *S. aureus* (log phase, stationary phase, and biofilm bacteria)
85 (Fig 1). Mice infected with persistent forms (e.g. stationary phase and biofilms) have bigger and more severe
86 lesions than mice infected with actively growing forms (e.g. log phase) (Fig 1A-C). Mice infected with
87 persistent forms also have increased histopathology (Fig 1D-G). Infection with bacteria from biofilms showed
88 crust formation, hyperplasia, immune cell infiltration and focal lesion/abscess formation in tissue histology
89 whereas infection with log phase bacteria only showed low levels of immune cell infiltration. Mice infected
90 with stationary phase bacteria developed skin lesions that required at least one week longer to heal compared to
91 mice infected with log phase bacteria ($p<0.001$) (Fig 2A). At two weeks post-infection, the average lesion sizes
92 of mice infected with stationary phase bacteria and log phase bacteria was 32 mm^2 and 11 mm^2 , respectively.
93 Despite inoculation with equivalent amounts of bacteria (10^8 CFU), mice infected with bacteria from cultures
94 with more persister cells such as stationary phase or biofilms harbored elevated bacterial loads (Fig 2B)
95 recovered from the skin injection sites. Two weeks post-infection, mice infected with biofilm bacteria, the most
96 persistent form tested, harbored at least $10^4 \text{ CFU}/\text{gram}$ of tissue more bacteria than mice infected with log phase
97 ($p<0.05$). Mice infected with more persistent forms also had increased histopathology (Fig 2C) as determined

0 by pathological scores than mice infected with log phase bacteria ($p<0.05$). Overall, these *in-vivo* findings
1 suggest that infection of mice with persistent forms of bacteria (i.e. stationary phase bacteria and biofilm
2 bacteria) led to a more prolonged persistent infection with more severe lesion formation, than log phase bacteria.
3

4 *Clinically used antibiotic treatment failed to clear chronic skin infection in mice*

5 To evaluate the efficacy of treatment strategies in treating the persistent skin infection, we chose to
6 infect mice with bacteria from biofilms of *S. aureus* strain USA300 (a MRSA strain) as we observed the most
7 severe clinical presentation (Fig 1 & 2). We allowed the infection to develop for 7 days, followed by treatment
8 of 7 days (Fig 3A). Administration of the combination of doxycycline (50 mg/kg) + rifampin (10 mg/kg), a drug
9 combination used to treat recurrent skin infections[2], did not clear the infection (Fig. 3B). There were no
10 changes in the bacterial load upon treatment. All mice harbored 10^4 to 10^5 CFU/gram of tissue. The average
11 change of lesion sizes after treatment for doxycycline + rifampin and no treatment was an average increase of
12 15% and 200%, respectively, suggesting that while doxycycline + rifampin treatment did not heal the lesions,
13 the treatment, however, did slow the progression of lesion development (Fig 3C). Similar results were seen
14 when mice were infected with *S. aureus* Newman strain (a MSSA strain) suggesting that the antibiotic
15 susceptibility profile of the particular strain is not a confounding factor in our results.
16

17 *Persistent forms of *S. aureus* caused greater mortality in *C. elegans**

18 Besides the clinical outcomes of skin infections, *S. aureus* can also cause systemic infection and death in
19 animals such as *C. elegans*. We then used a nematode-killing assay to evaluate if persistent forms of bacteria are
20 more virulent and cause more severe disease in *C. elegans*. Upon infecting the *C. elegans* with different inocula
21 sizes (10^6 and 10^4 CFU), the mortality of *C. elegans* was the highest in worms that were infected with stationary
22 phase bacteria ($p<0.001$) (Fig 4). As early as two days post-infection, *C. elegans* infected with higher inoculum
23 (10^6 CFU) of stationary phase bacteria had a survival rate of 60% whereas infection with log phase bacteria
24 resulted in a survival rate of 82% (Fig. 4A). Half of the worms were killed by three days post-infection with
25 stationary phase bacteria but worms infected with log phase bacteria had a survival rate of 78%. Despite the
26 lower inoculum size (i.e. 10^4 CFU, two log-fold less), the difference in the survival rate of the worms due to
27 inocula status was still observed (Fig 4B). After two days post-infection, the survival rates of worms infected
28 with stationary and log phase bacteria were 64% and 84%, respectively; by day 4 post-infection, the survival
29 rates were 60% and 75%, respectively.
30

31 **Discussion**

32 The discovery of persister cells from Staphylococcal cultures was from many decades ago and it is
33 universally agreed that persister cells and biofilms are hard to kill. The clinical significance of persister cells,
34 which is usually observed in the context of relapsing infections but overall, is generally not well-recognized
35 because the significance of *in vitro* persisters to an *in vivo* clinical phenomenon is unclear. Here, we show that *S. aureus*
36 biofilm bacteria and stationary phase bacteria directly caused a more severe chronic persistent skin
37 infection in mice and formed lesions that were bigger and took longer to heal than log phase bacteria,
38 suggesting a direct clinical consequence of persisters in a host. Treatment of the chronically infected mice with
39 clinically recommended treatment for recurrent skin infection, doxycycline + rifampin, failed to clear the
40 infection and heal the lesions, further showing that current therapies are ineffective against persister bacteria.
41

42 It is interesting to note that the bacterial inocula used for animal infections are usually derived from log
43 phase growing bacteria rather than stationary phase or biofilm bacteria [12-15]. The direct association of
44 persistent forms of bacteria causing more severe disease in a host model is an interesting observation that has
45 implications for understanding persistent infection and developing relevant persistent infection models for
46 identifying more effective treatments. Biofilms can be readily found on indwelling catheters retrieved from
47 patients and antibodies against specific biofilm antigens can be isolated from osteoarticular specimens from
48 patients with diagnosed *S. aureus* infection in the bone or prosthetic joints [1]. Additionally, recently, using a
49 mouse arthritis model of Lyme Disease, Feng et al. show that infection of mice with biofilm-like microcolony
form, a persistent form, of *B. burgdorferi* caused the mice to develop more severe swollen joints compared to

50 mice infected with log phase cells [11]. Their findings suggest that "persister-seeding" or "biofilm seeding" can
51 be used to explain why some bacterial infections can become persistent [11]. Our findings here further elaborate
52 that severity of disease is also determined by the status of the inocula bacteria and not completely the bacterial
53 inocula size because our mice developed different disease severity despite the actual bacterial load being
54 comparable. The theory called "Inocula-Dependent Severity of Disease" is not only applicable to *B. burgdorferi*
55 but also to common bacterial pathogens such as *S. aureus* as shown in this study.

56 In typical mouse models for *S. aureus*, a mouse is infected with a low dose (10^{4-6} CFU) of log phase *S.*
57 *aureus* [12]. In our mouse model, we used a rather high inoculum (10^8 CFU) and we injected bacteria derived
58 from biofilms. While such conditions can be deemed as artificial, previous animal studies were able to recover
59 a bacterial load of 10^8 CFU from biofilms formed on heart valves in rabbits with endocarditis, another chronic
60 infection caused by *S. aureus* [16]. It is important to note that the chronic infection status of our mice is a key
61 component to our disease model. The phenotype observed in the severity of infection in the host caused by
62 persistent forms cannot be ignored and our model could potentially better mimic chronic infections in humans.
63 While Conlon et al also used a high dose to infect their mice and caused a deep-seated infection, they only
64 allowed the infection to develop for 24 hours before therapy and the mice were made neutropenic [17], a
65 condition that may not apply to a majority of patients suffering from chronic *S. aureus* infections as a competent
66 immune system may also induce for persistence.

67 In conclusion, we show that persistent forms of *S. aureus*, such as stationary phase bacteria and biofilm
68 bacteria, can cause chronic persistent skin infections in mice by producing more severe lesions that take longer
69 to heal and have increased pathology than log phase bacteria. Additionally, currently approved regimens are
70 ineffective in clearing these persistent *S. aureus* infections caused by these persister forms. Our findings provide
71 a good model for evaluating more effective therapies that eradicate persistent infections in the host. Thus, the
72 power of using a "persister seeding" model [18] to mimic and initiate a chronic persistent infection, has
73 profound implications for understanding disease pathogenesis of many chronic and biofilm infections caused by
74 bacterial, fungal or parasitic pathogens.

75 76 Materials and Methods

77 Culture Media, Antibiotics, and Chemicals

78 *Staphylococcus aureus* strain Newman and USA300 were obtained from American Type Tissue
79 Collections (Manassas, VA, USA). *S. aureus* strains were cultivated in tryptic soy broth (TSB) and tryptic soy
80 agar (TSA) from Becton Dickinson (Franklin Lakes, NJ, USA) at 37°C. Doxycycline and rifampin were
81 obtained from Sigma-Aldrich Co. (St. Louis, MO, USA). Stock solutions were prepared in the laboratory,
82 filter-sterilized and used at indicated concentrations.

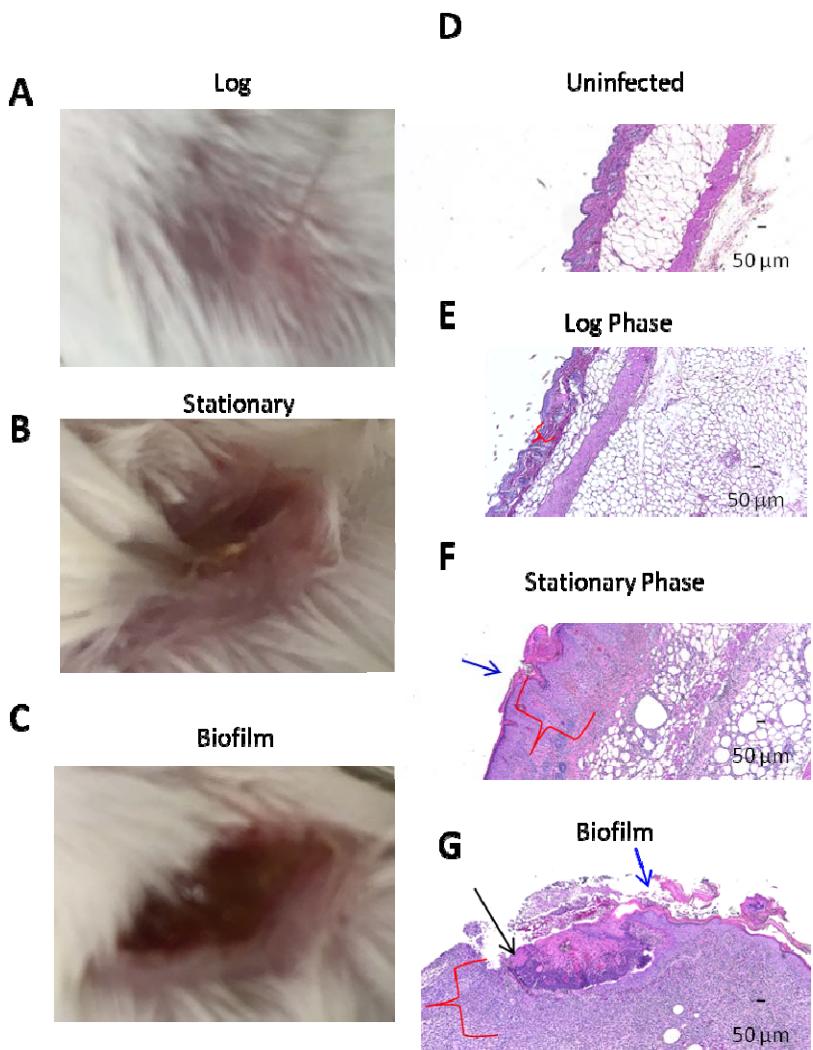
83 Mouse Skin Infection Model and Treatment

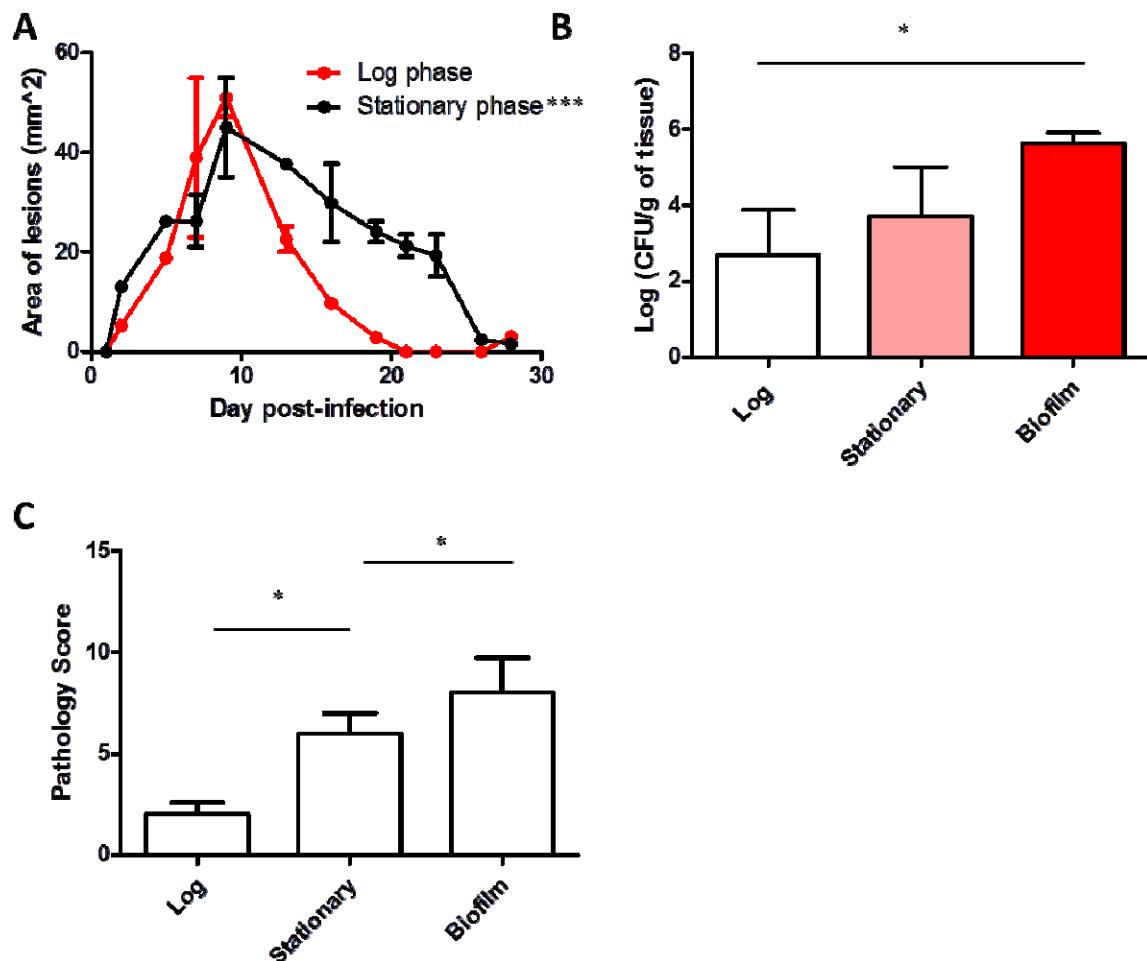
84 Female Swiss-Webster mice of 6 weeks of age were obtained from Charles River. They were housed 3
85 to 5 per cage under BSL-2 housing conditions. All animal procedures were approved by the Johns Hopkins
86 University Animal Care and Use Committee. *S. aureus* strain USA300 and strain Newman were used in the
87 mouse experiments. Mice were anesthetized and then shaved to remove a patch of skin of approximately 3 cm
88 by 2 cm. Bacteria of indicated inoculum size and age were subcutaneously injected into the mice. For log phase
89 inoculum, bacteria grown overnight were diluted 1:100 in TSB and grown for 2 hrs in 37°C at 220 RPM. For
90 stationary phase inoculum, overnight cultures of bacteria grown at 37°C were used. For biofilm inoculum,
91 biofilms were first grown in microtiter plates as described previously [19], and then resuspended and scraped up
92 with a pipette tip. Quantification of all inoculum was performed by serial dilution and plating. Skin lesion sizes
93 were measured at indicated time points up to 4 weeks using a caliper. For the treatment study, treatment was
94 started 1 week post-infection with doxycycline at 100 mg/kg and rifampin at 10 mg/kg twice daily for 7 days by
95 oral gavage as described previously [20]. Mice were euthanized 1 week post-treatment and skin tissues were
96 removed, homogenized, and serial diluted for bacterial plating and counting.

97 *Histology*

98 Skin tissues were dissected, laid flat, and fixed for 24 hrs with neutral buffered formalin. Tissues were
99 embedded in paraffin, cut into 5-um sections, and mounted on glass slides. Tissue sections were stained with
00 hematoxylin and eosin for histopathological scoring. Tissue sections were evaluated for crust formation, ulcer
01 formation, hyperplasia, inflammation, gross size, and bacterial count and were assigned a score on a 0–3 scale
02 (0 = none, 1 = mild, 2 = moderate, and 3 = severe). The cumulative pathology score represented the sum of each
03 individual pathology parameter. Scoring was performed by an observer in consultation with a boarded
04 veterinary pathologist. Representative images were taken using a Keyence BZ-X710 microscope.

05 *Nematode-killing Assay*


06 *S. aureus* nematode-killing assay was performed as described [21]. *C. elegans* N2 Bristol worms
07 (Caenorhabditis Genetics Center) were synchronized to the same growth stage by treatment with alkaline
08 hypochlorite solution as described [22]. Briefly, worms of the adult stage were recovered with M9 buffer and
09 washed twice to remove the residual bacteria in their diet by centrifugation at 1500 rpm for 2 minutes at room
10 temperature. Hypochlorite (5%) was then added and incubated with the worms for 9 minutes to lyse the adult
11 stages and was stopped by addition of M9 buffer. Bleach was removed by centrifugation at 1500 rpm for 1
12 minute followed by three more washes with M9 buffer. To induce hatching of eggs, M9 buffer was added to the
13 pellet and incubated at 20 °C with gentle agitation and proper aeration. After 24 hours, worms were pelleted
14 with a 2-minute spin at 1500 rpm at room temperature and seeded onto OP50 seeded plates. L4 stage worms
15 were obtained after 48 hours at 20 °C. In each assay, approximately 100 L4-stage nematodes were added to each
16 well containing 1X PBS, 5-Fluoro-2'-deoxyuridine (100 µM) to inhibit progeny development and the indicated
17 inocula of *S. aureus*. The plates were incubated at 20 °C and scored for live and dead. A worm was considered
18 dead when it failed to respond to touch and move as observed under a microscope.


19 *Statistical Analysis*

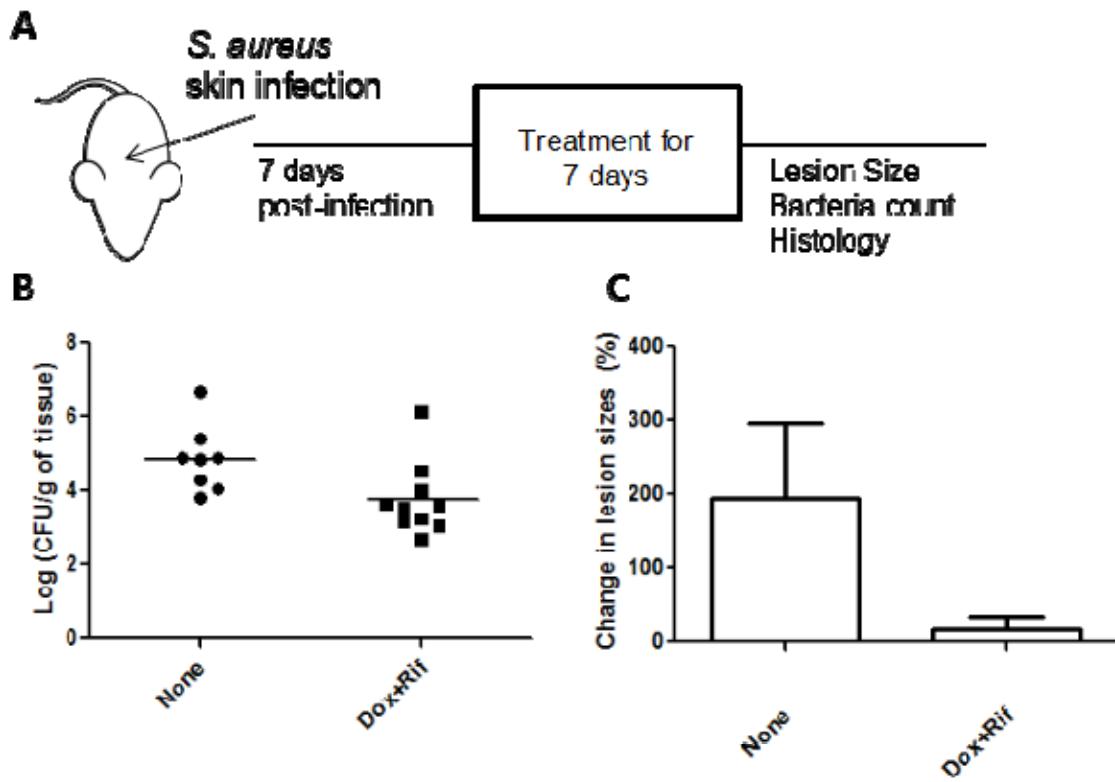
20 Statistical analyses were performed using two-tailed Student's *t*-test, two-way ANOVAs, and log-rank
21 comparisons, where appropriate. Mean differences were considered statistically significant if *p* was <0.05. All
22 experiments were performed in triplicates. Analyses were performed using GraphPad Prism and Microsoft
23 Office Excel.

25 **Acknowledgments**

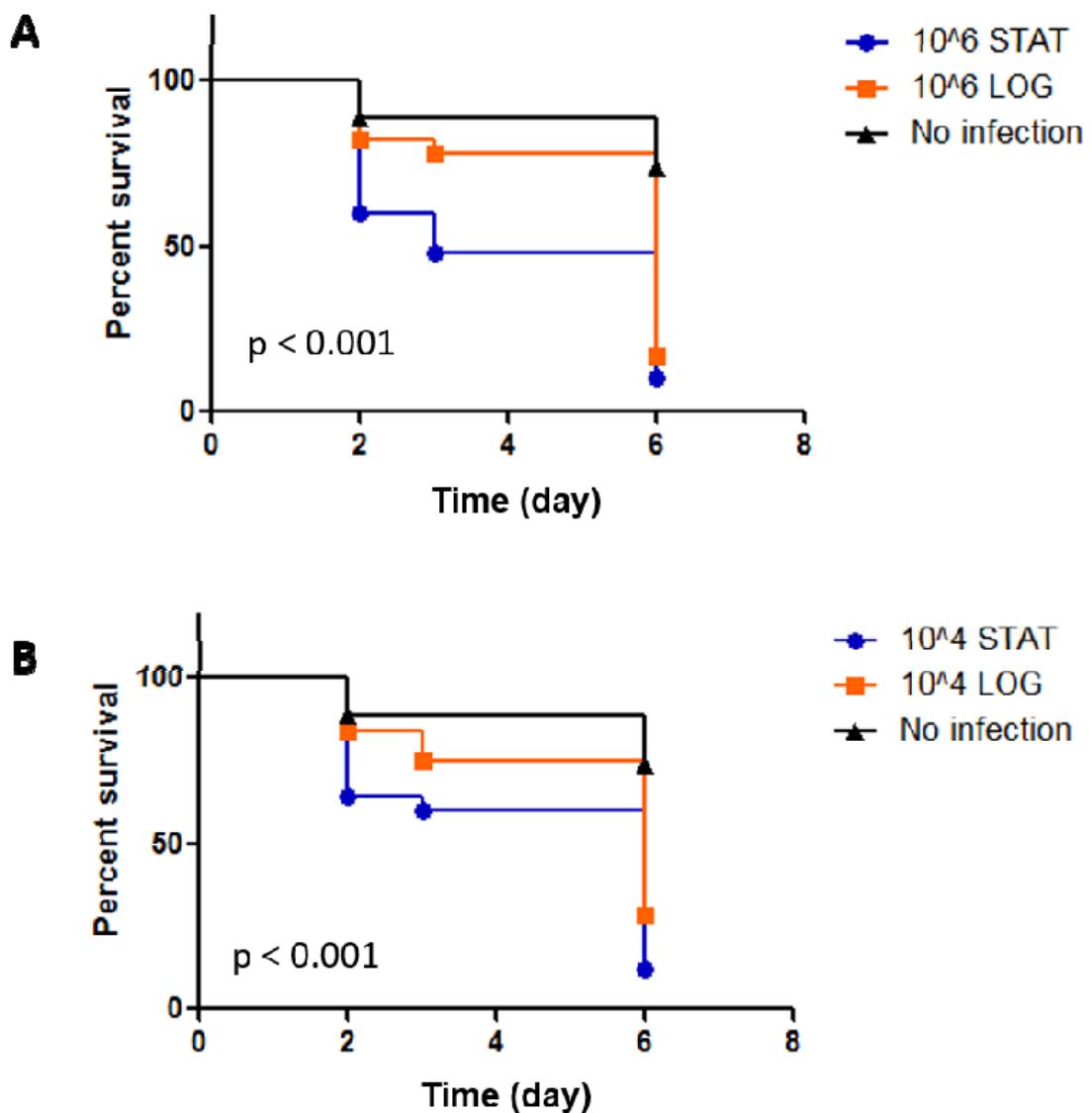
26 We thank Dr. Jiou Wang for help with the *C. elegans* model.

38

39


40 **Figure 2.** Establishing a chronic *S. aureus* persistent skin infection mouse model. The sizes of skin lesions from
41 mice infected with log phase bacteria and stationary phase bacteria were monitored over time (A). After 14 days
42 post-infection, bacterial load (B) was enumerated and pathology scores (C) were evaluated for the skin tissue.

43


44

45

46

47
48 **Figure 3.** Evaluation of doxycycline + rifampin in chronic skin infection model. Study design of *in vivo*
49 treatment study (A) as described in Methods. Comparison of bacterial load (B) and changes in lesion sizes (C)
50 of mice receiving different treatments.

51
52 **Figure 4.** Mortality of *C. elegans* infected with different forms of *S. aureus*. Infection of *C. elegans* with 10^6 (A)
53 and 10^4 CFU (B) of stationary phase *S. aureus* (STAT) killed *C. elegans* faster than log phase bacteria (LOG).
54 (Log-rank test)

55
56
57
58
59
60
61
62

53 References

- 54 1. Tong, S.Y., et al., *Staphylococcus aureus infections: epidemiology, pathophysiology, clinical*
55 *manifestations, and management.* Clin Microbiol Rev, 2015. **28**(3): p. 603-61.
- 56 2. Liu, C., et al., *Clinical practice guidelines by the infectious diseases society of america for the treatment*
57 *of methicillin-resistant Staphylococcus aureus infections in adults and children.* Clin Infect Dis, 2011.
58 **52**(3): p. e18-55.
- 59 3. Park, K.H., et al., *Clinical characteristics and therapeutic outcomes of hematogenous vertebral*
60 *osteomyelitis caused by methicillin-resistant Staphylococcus aureus.* J Infect, 2013. **67**(6): p. 556-64.
- 71 4. Senneville, E., et al., *Outcome and predictors of treatment failure in total hip/knee prosthetic joint*
72 *infections due to Staphylococcus aureus.* Clin Infect Dis, 2011. **53**(4): p. 334-40.
- 73 5. Romano, C.L., et al., *Value of debridement and irrigation for the treatment of peri-prosthetic infections.*
74 *A systematic review.* Hip Int, 2012. **22 Suppl 8**: p. S19-24.
- 75 6. Peel, T.N., et al., *Outcome of debridement and retention in prosthetic joint infections by methicillin-*
76 *resistant staphylococci, with special reference to rifampin and fusidic acid combination therapy.*
77 Antimicrob Agents Chemother, 2013. **57**(1): p. 350-5.
- 78 7. Hobby, G.L., K. Meyer, and E. Chaffee, *Observations on the mechanism of action of penicillin.* Proc
79 Soc Exp Biol NY, 1942. **50**: p. 281-285.
- 80 8. Bigger, J.W., *Treatment of staphylococcal infections with penicillin by intermittent sterilisation.* Lancet,
81 1944. **244**: p. 4.
- 82 9. Kavanaugh, J.S. and A.R. Horswill, *Impact of Environmental Cues on Staphylococcal Quorum Sensing*
83 *and Biofilm Development.* J Biol Chem, 2016. **291**(24): p. 12556-64.
- 84 10. Defraigne, V., M. Fauvert, and J. Michiels, *Fighting bacterial persistence: Current and emerging anti-*
85 *persister strategies and therapeutics.* Drug Resist Updat, 2018. **38**: p. 12-26.
- 86 11. Feng, J., Li, T., Zhang, Y, *Biofilm Structures of Borrelia burgdorferi Not Only Display More Tolerance*
87 *to Lyme Antibiotics But Also Cause More Severe Pathology In a Mouse Arthritis Model: Implications*
88 *for Understanding Persistence, PTLDs, and Treatment Failure.* 2018.
- 89 12. Kim, H.K., D. Missiakas, and O. Schneewind, *Mouse models for infectious diseases caused by*
90 *Staphylococcus aureus.* J Immunol Methods, 2014. **410**: p. 88-99.
- 91 13. Nakagawa, S., et al., *Staphylococcus aureus Virulent PSMalpha Peptides Induce Keratinocyte Alarmin*
92 *Release to Orchestrate IL-17-Dependent Skin Inflammation.* Cell Host Microbe, 2017. **22**(5): p. 667-
93 677.e5.
- 94 14. Qin, L., et al., *Toxin Mediates Sepsis Caused by Methicillin-Resistant Staphylococcus epidermidis.* PLoS
95 Pathog, 2017. **13**(2): p. e1006153.
- 96 15. Mansour, S.C., et al., *Bacterial Abscess Formation Is Controlled by the Stringent Stress Response and*
97 *Can Be Targeted Therapeutically.* EBioMedicine, 2016. **12**: p. 219-226.
- 98 16. Thomas, V.C., et al., *A central role for carbon-overflow pathways in the modulation of bacterial cell*
99 *death.* PLoS Pathog, 2014. **10**(6): p. e1004205.
- 100 17. Conlon, B.P., et al., *Activated ClpP kills persisters and eradicates a chronic biofilm infection.* Nature,
101 2013. **503**(7476): p. 365-70.
- 102 18. Zhang, Y., *Persisters, Persistent Infections and the Yin-Yang Model.* Emerging Microbes and Infection,
103 2014. **3**: p. 10.
- 104 19. O'Toole, G.A., *Microtiter dish biofilm formation assay.* J Vis Exp, 2011(47).
- 105 20. Cui, P., et al., *Disruption of Membrane by Colistin Kills Uropathogenic Escherichia coli Persisters and*
106 *Enhances Killing of Other Antibiotics.* Antimicrob Agents Chemother, 2016. **60**(11): p. 6867-6871.
- 107 21. Darby, C., *Interactions with microbial pathogens.* WormBook, 2005: p. 1-15.
- 108 22. Porta-de-la-Riva, M., et al., *Basic Caenorhabditis elegans methods: synchronization and observation.* J
109 Vis Exp, 2012(64): p. e4019.