

1 Riding the wave of genomics, to investigate aquatic coliphage diversity and activity

2

3

4 Slawomir Michniewski¹, Tamsin Redgwell¹, Aurelija Grigonyte¹, Branko Rihtman¹, Maria Aguiló-
5 Ferretjans¹, Joseph Christie-Oleza¹, Eleanor Jameson¹, David J. Scanlan¹ & Andrew D. Millard².

6

7 ¹School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL

8 ² Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester LE1
9 7RH, UK

10

11 *Corresponding author A.D. Millard: email: adm39@le.ac.uk

12

13 Keywords: bacteriophage; coliphage; marine viruses

14

15

16 **Summary**

17 Bacteriophages infecting *Escherichia coli* have been used as a proxy for faecal matter and water quality
18 from a variety of environments. However, the diversity of coliphages that are present in seawater
19 remains largely unknown, with previous studies largely focusing on morphological diversity. Here, we
20 isolated and characterised coliphages from three coastal locations in the UK and Poland. This revealed
21 a surprising genetic diversity, with comparative genomics and phylogenetic analysis of phage isolates
22 facilitating the identification of putative new species within the genera *RB69virus* and *T5virus* and a
23 putative new genus within the subfamily *Tunavirinae*. Furthermore, by combining this genomic data
24 with proteomic and host range analyses a number of phage structural proteins were identified, one
25 of which is likely to be responsible for the observed differences in host range.

26

27

28 **Introduction**

29 Bacteriophages are a key component of microbial communities playing important roles such as
30 increasing the virulence and driving the evolution of their bacterial hosts, and influencing major
31 biogeochemical cycles (see (1–3) for reviews). It is estimated that there are 10^{31} viruses in the
32 biosphere with each millilitre of seawater containing millions of these viruses (1, 2) largely infecting
33 the numerically dominant bacterial genera *Synechococcus*, *Prochlorococcus* and SAR11 (5–11).
34 Culture- and metagenomics-based approaches have shed much light on their genetic diversity (12–
35 16) including the description of several previously unknown phage groups that are widespread in the
36 environment (9, 10, 17–19).

37 In the context of marine systems, bacteriophage infecting *Escherichia coli*, so-called coliphage, have
38 perhaps received less attention even though they have been widely studied as a proxy for drinking
39 water quality and the presence of faecal coliforms and enteric viruses (20–23). Thus, much is known
40 about how the use of different *E. coli* strains or growth media used can lead to variable estimates of
41 phage abundance (24–26) and this has resulted in global standards for using coliphages as a measure
42 of water quality (27). For assessment of water quality these standards rely on the use of *E. coli* C strains
43 derived from ATCC13706, which has been shown to detect increased titres over *E. coli* B and *E. coli*
44 K12 derivatives (26). A criticism of the use of coliphages as indicators of water quality has been the
45 reproduction of coliphages in the environment which will increase abundance estimates (28). Whilst
46 the consensus seems to be that coliphage replication is not a significant issue (24), more recent
47 research provides evidence that coliphages may well replicate in the environment (29).

48 Regarding the diversity of coliphages found in seawater, studies have largely focused on
49 morphological diversity (29–32), assessing the number and range of *E. coli* hosts they can infect. This
50 has shown that many coliphages have a broad host range, with detection of coliphages comprising
51 members of the *Siphoviridae* and *Myoviridae* families off the Californian (29) and Brazilian coasts (31)
52 but with *Siphoviridae* being the most frequently observed taxa (31).

53 Coliphages in general are one of the most sequenced phage types with ~450 complete phage genomes
54 within Genbank, isolated from a variety of sources including animal faeces (33–36), human faeces (37),
55 urine (38), clinical samples (39) river water (40), agricultural surface waters (41), lagoons (42), sewage
56 (43) and animal slurries (34). However, as alluded to above, much less is known about the genetic
57 diversity of coliphages in seawater. To begin to resolve this we isolated coliphages from three locations
58 in the UK and Poland and undertook genomic and proteomic characterisation of the isolated phages,
59 to provide insights into their phylogenetic position and functional potential.

60 **Results**

61 For all samples tested the titre of coliphage detected was extremely low, generally <1 pfu ml⁻¹ (Table
62 1). A total of 10 phage were isolated and purified from three different seawater samples and one
63 phage from a freshwater urban pond. These phage were purified and their genomes sequenced to
64 assess their genomic diversity (Table 1). Coliphage genomes were first compared against each other
65 using MASH in an all-versus-all approach, which revealed three groups of phages based on similarity
66 to each other: group1 vB_Eco_mar003J3 and vB_Eco_mar004NP2; group2: vB_Eco_mar005P1,
67 vB_Eco_mar006P2, vB_Eco_mar007P3 vB_Eco_mar008P4 and vB_Eco_mar009P5; group3:
68 vB_Eco_swan01, vB_Eco_mar001J1 and vB_Eco_mar002J2. Each phage was then compared against a
69 database of complete phage genomes using MASH.

70 Phages vB_Eco_mar005P1, vB_Eco_mar006P2, vB_Eco_mar007P3, vB_Eco_mar008P4 and
71 vB_Eco_mar009P5 had greatest similarity to phages APCEc01 (KR422352) and *E. coli* O157 typing
72 phage 3 (KP869101), neither of which are currently classified by the ICTV. To further investigate the
73 phylogeny of these phages, the gene encoding the major capsid protein (*g23*) was used to construct a
74 phylogeny, as it is widely used as a phylogenetic marker including being used previously to classify
75 phages within the *Tevenvirinae* (44). The *g23* sequence for the four newly isolated phages
76 (vB_Eco_mar005P1, vB_Eco_mar006P2, vB_Eco_mar007P3, vB_Eco_mar008P4 and
77 vB_Eco_mar009P5) were identical, therefore only one copy was included in the phylogenetic analysis.
78 The analysis placed the new phage isolates within a clade that contains APCEc01, *E.coli* O157 typing
79 phage 3, HX01, vB_EcoM_JS09 and RB69 (Figure S1). The latter three of these form part of the genus
80 *Rb69virus*, suggesting the newly isolated phages are also part of this genus (Figure S1).

81 The genomes of phages from the genus *RB69virus* were further compared together with phage
82 phiE142, which has an ANI of ~94% compared to the new isolates in this study. The ANI of all phages
83 was calculated and compared in an all-v-all comparison, and the newly isolated phages had an ANI of
84 >95% to HX01, JS09 and RB69 suggesting they are representatives of one of these species based on
85 current standards (45). In fact, with the exception of phiE142, all phages had an ANI >95% with at least
86 one other phage (Figure 1). To further elucidate the evolutionary history of these phages a core gene
87 analysis was carried out. In the process of doing this, it became apparent phiE142 was ~50 kb smaller
88 than the other phages within this group. Furthermore, it lacks essential genes that encode the major
89 structural proteins and small and large subunit terminase. Therefore, it was excluded from further
90 analysis as it is incomplete despite being described as complete (46).

91 The core-genome of the genus *RB69virus* consisted of 170 genes, which accounted for 60.3-68.3 % of
92 the total genes in each phage (Table S1). To further classify these phages, the GET_PHYLOMARKERS

93 pipeline was used to identify suitable genes for phylogenetic analysis (47). Only 89 genes were
94 identified that did not show signs of recombination when tested with Phi test (48). This test was
95 carried out as recombination is known to result in inaccurate phylogenies and branch lengths (49). 86
96 of these passed further filtering to remove genes that were considered significant outliers using the
97 KDETREES test (50). The resulting top nine genes (Table S1) as determined via GET_PHYLOGENIES were
98 selected for phylogenetic analysis and a concatenated alignment was used for phylogenetic analysis
99 (**Error! Reference source not found.**). Phylogenetic analysis placed the newly isolated phages in a
100 clade with *Escherichia* phage APCEc01 (KR422352) further confirming they are they are part of the
101 genus *RB69virus*.

102 Current taxonomy classifies RB69, HX01, JS09 and Shf125875 as four species within the genus
103 *RB69virus* (Figure 1). This is based on the definition that phage species with $\geq 95\%$ similarity based on
104 BLASTn to another phage are the same species (45). The nucleotide identity between genomes was
105 estimated using ANI by fragmentation of the genomes (51) rather than simple BLASTn comparison
106 (45). Using an ANI value of $>95\%$ did not differentiate between phage species and maintained the
107 current taxonomy, with each phage having an ANI $>95\%$ to multiple phages suggesting that *RB69virus*
108 should contain only two species. Nevertheless, the phylogeny clearly supports multiple species within
109 the *RB69virus* genus, suggesting a cut-off of 95% ANI may not be suitable (Figure 1). Consequently, if
110 an ANI of $>97\%$ was used to differentiate species, this closely resembled the observed phylogeny
111 (Figure 1). The higher ANI cut-off value discriminates between RB69 and Shf125875, which are
112 currently classified as separate species. Furthermore, this will split the genus *RB69virus* into ten
113 species, which are represented by Shf125875, phiC120, RB69, vB_EcoM_PhAPEC2, SHSML-52-1, STO,
114 HX01, JS09, *E. coli* O157 typing phage 3 (strains *E. coli* O157 typing phage 6) and APCEc01 (including
115 the five new isolates in this study). This suggests the five phages identified in this study are
116 representatives of a new species within the genus *RB69virus*.

117 A similar approach was used for classification of the newly isolated phages vB_Eco_mar003J3 and
118 vB_Eco_mar004NP2 which were most similar to phages within the genus *T5virus*. All phages that are
119 currently listed as part of the genus *T5virus* were extracted from GenBank (April 2018). Initially, the
120 gene encoding for DNA polymerase was used to construct a phylogeny, which has previously been
121 used for the classification of phages within the genus *T5virus* (52) (Table S2). This confirmed that
122 phages vB_Eco_mar003J3 and vB_Eco_mar004NP2 were related to other phages within the genus
123 *T5virus* (Figure S2). Determination of the core-genome revealed 19 genes formed the core when using
124 90% identity for identification of orthologues using ROARY. However, when using this value and then
125 applying the same filtering parameters as used for the genus *RB69virus*, no genes were deemed
126 suitable for phylogenetic analysis. Therefore, an iterative process was used whereby the identity

127 between proteins was lowered by 5% on each run of ROARY and the analysis repeated until a number
128 of phylogenetic markers passed the filtering criteria, this was reached at a protein identity of 75%. At
129 this point 44 core-genes were identified, of which only 14 passed further filtering steps (Table S2). The
130 top nine markers as selected by the GET_PHYLOMARKERS pipeline were used for phylogenetic analysis
131 (47).

132 Phylogenetic analysis on the selected marker genes confirmed that vB_Eco_mar004NP2 and
133 vB_Eco_mar003J3 fall within the genus *T5virus* (Figure 2). Phage vB_Eco_mar004NP2 is a sister group
134 to that of phage SPC35 (HQ406778) and vB_Eco_mar003J3 a sister group to that of phage LVR16A
135 (MF681663) (Figure 2). Phage vB_Eco_mar004NP2 represents a new species within the genus *T5virus*,
136 as it has <95% ANI with any other phage within the genus (45). For phage vB_Eco_mar003J3, it is not
137 clear if the phage represents a new species. It has an ANI >95% with phages saus132, and paul149
138 which have recently been described as new species (52). However, these phages are not the closest
139 group based on a phylogenetic analysis (Figure 2). When an ANI value of >97% is used then currently
140 defined species are more congruent with the observed phylogenetic analysis, suggesting
141 vB_Eco_mar003J3 is a novel species (Figure 2). Applying this threshold of 97% ANI across the entire
142 genus would maintain the current species and create a total of 23 species across the genus.

143 **Tunavirinae**

144 Phages vB_Eco_mar001J1, vB_Eco_mar002J2 and vB_Eco_swan01 had greatest nucleotide sequence
145 similarity to pSf-1 and SECphi27 which are members of the subfamily *Tunavirinae*. To classify the newly
146 isolated phages, a phylogenetic analysis was carried out using the gene encoding the large subunit
147 terminase that has previously been used to classify phages within the subfamily *Tunavirinae* by the
148 ICTV (53). The analysis included all current members of the subfamily *Tunavirinae* (April 2018). The
149 newly isolated phages vB_Eco_mar001J1, vB_Eco_mar002J2 and vB_Eco_swan01 form a clade with
150 phages pSf-1, SECphi27 and Esp2949-1 (Figure S3). This clade is a sister to the clades that represent
151 the previously defined genera of *KP36virus* and *TLSvirus*, thus clearly placing these new phages within
152 the subfamily *Tunavirinae* (Figure S3).

153 To further clarify the phylogeny of these phages, again a core-gene analysis of all members of the
154 subfamily *Tunavirinae* was carried out. Given these phage form part of a taxonomic sub-family, using
155 ROARY with similarity cut-off values of 90% resulted, unsurprisingly, in the detection of no core genes.
156 Therefore, an alternative method was used using an orthoMCL approach from within
157 GET_HOMOLOGUES software (54). OrthoMCL based analysis identified a core of only nine genes,
158 which were then filtered in the same manner as for the *RB69virus* and *T5virus* genera. A phylogeny
159 was then constructed based on the concatenated alignment of four core-genes (Figure 3).

160 Phylogenetic analysis confirmed the previously defined genera within *Tunavirinae*, with the five
161 genera of *Kp36virus*, *Roguevirus*, *Rtpvirus*, *T1virus* and *TLSvirus* also supported by good bootstrap
162 support values (Figure 3). Furthermore, a clade which is sister to that of genus *TLSvirus* was identified
163 with good bootstrap support comprising vB_Eco_mar001J1, vB_Eco_mar002J2, vB_Eco_swan01,
164 SECphi27 (KC710998) and pSF-1 (NC_021331). Their clear separation from existing genera within the
165 subfamily suggests this clade is a new genus. The phages within this putative genus all share an ANI
166 >75% with other phages in the genus, compared to 60-70% ANI with phages in the other described
167 genera within the *Tunavirinae*. All phages within the putative genus have a conserved genome
168 organisation and share thirty orthologues. We propose that this clade represents a new genus and
169 should be named *psF1virus* after pSF-1, the first representative isolate. Furthermore, we propose the
170 unclassified phage Esp2949-1 (NC_019509) is the sole representative of a new genus, as it doesn't
171 currently fit within currently defined genera. Phylogenetic analysis indicates that phages of the genus
172 *TL1virus*, *TLSvirus*, *psF1virus* all have a common ancestor, with Esp2949-1 ancestral to phages in the
173 genus *TL1virus* and *psF1virus*. (Figure 3). Comparative genomic analysis also supports this, with
174 Esp2949-1 having <70% ANI to phages of the genera *TL1virus* or *TLSvirus*, its closest relatives. Phages
175 within the putative genus *psF1virus* were further analysed to determine the number of species. Using
176 a cut-off of 95% or 97% ANI, the genus will contain three species vB_Eco_swan01 (SECphi27,
177 vB_Eco_swan01), vB_Eco_mar002J2 (vB_Eco_mar001J1, vB_Eco_mar002J2) and the orphan species
178 pSF-1.

179 Phylogenetic analysis demonstrated that of the ten phages isolated, five represented novel species. A
180 representative of each of these newly identified groups was further characterised both
181 morphologically and physiologically. The representative phages were vB_Eco_swan01 and
182 vB_Eco_mar002J2 (new species within the *Tunavirinae*), vB_Eco_mar003J3 and vB_Eco_mar004NP2
183 (new species within *T5virus*), and vB_Eco_mar005P1 (new species within *RB69virus*).

184 TEM

185 TEM analysis confirmed they were all members of the order *Caudovirales* (Figure 4, Table 2), which
186 contains all known tailed bacteriophages. Furthermore, phages vB_Eco_mar002J2, vB_Eco_mar003J3,
187 vB_Eco_mar004NP2 and vB_Eco_swan01 were observed to have long non-contractile tails with a
188 polyhedral head which are signatures of the family *Siphoviridae*. The length:width ratio further
189 classified the phages within subgroup B1 (55). Phage vB_Eco_mar005P1 was also observed to have a
190 polyhedral head, but with a long contractile tail, with tail fibres clearly observable which allows
191 classification within sub group A2 within the *Myoviridae* (55) (Figure S4, Table 2).

192

193 **Proteomic Characterisation**

194 As with most phages the majority of the genes predicted within each genome encode for hypothetical
195 proteins with unknown function. In order to identify further structural proteins or proteins that may
196 be contained within the capsid, proteomic analysis of representative phages was carried out using
197 electrospray ionization mass spectrometry (ESI-MS/MS). The number of identified proteins per phage
198 was five, five, seven and eight for phages vB_Eco_mar005P1, vB_Eco_swan01, vB_Eco_mar003J3, and
199 vB_Eco_mar004NP2 respectively (Table 3). This allowed the confirmation of two annotated structural
200 proteins (SWAN_00017 and SWAN_00019) and the identification of a further three structural proteins
201 (SWAN_00025, SWAN_00026, SWAN_00027). Based on the core-gene analysis this allowed
202 annotation of orthologues of SWAN_00017, SWAN_00019, SWAN_00025 in vB_Eco_mar001J1,
203 vB_Eco_mar002J2 and SECphi27, and SWAN_00026 and SWAN_00027 in vB_Eco_mar001J1 and
204 vB_Eco_mar002J2.

205 For phage vB_Eco_mar005P1, five proteins were identified three of which confirmed annotations as
206 structural proteins (MAR005P1_00047, MAR005P1_00051, MAR005P1_00054) all of which are core-
207 genes to phages within the genus *RB69virus*, along with an ADP-ribosyltransferase protein
208 (MAR005P1_00076) that is packaged within the phage capsid. An additional structural protein
209 (MAR005P1_00015) was confirmed that was previously annotated as a hypothetical protein, which is
210 also found in phages vB_Eco_mar005P1, vB_Eco_mar006P2, vB_Eco_mar007P3, vB_Eco_mar008P4
211 and vB_Eco_mar009P5.

212 Both phages vB_Eco_mar004NP2 and vB_Eco_mar003J3 are part of the genus *T5virus*, although
213 distantly related. For phage vB_Eco_mar004NP2 eight proteins were detected that confirmed their
214 annotation as various structural components of the capsid and tail (Table 3). For proteins
215 MAR003J3_00086 and MAR003J3_00094-97 the orthologous proteins in vB_Eco_mar004NP2 were
216 also detected. The proteins MAR004NP2NP2_00151, MAR004NP2_00157 and MAR004NP2_00160
217 were only detected in vB_Eco_mar004NP2. However, orthologous proteins were detected in
218 vB_Eco_mar003J3 through core-gene analysis. The protein MAR003J3_00081 which is a putative tail
219 fibre was only detected in vB_Eco_mar003J3, with no orthologue in vB_Eco_mar004NP2 based on
220 core-gene analysis.

221

222 **Phage infection parameters**

223 The burst size, latent period and eclipse period for representative phage isolates was also determined
224 (Table 2). There was considerable variation in these parameters across all isolates, with burst size

225 ranging from 31 (vB_Eco_mar005P1) to 192 (vB_Eco_mar004NP2) (Table 2). Similar variation was
226 observed for the latent period varying from 12 min (vB_Eco_mar002J2) to 40 min (vB_Eco_mar003J3)
227 whilst the eclipse period ranged from 9 min (vB_Eco_swan01 & vB_Eco_mar002J2) to 26 min
228 (vB_Eco_mar003J3). For phages vB_Eco_mar003J3 and vB_Eco_mar004NP2 that are part of the same
229 genus (*T5virus*), there was considerable variation in all three parameters, with the burst size of
230 vB_Eco_mar004NP2 (193) double that of vB_Eco_mar003J3 (76).

231 **Phage host range**

232 The host range of representative phage isolates was determined using a range of bacterial hosts via a
233 spot test assay (Table S4). Phylogenetic analysis highlighted that the isolated coliphages were often
234 closely related to phages that are known to infect other Enterobacteriaceae, including *Klebsiella* and
235 *Salmonella* (Figures 1, 2, 3). For this reason the host range of these phage was also tested against
236 other Enterobacteriace. Phage vB_Eco_mar005P1 a representative of the genus *RB69virus* was only
237 able to infect its host of isolation (*E. coli* MG1655), whereas phages of the genus *T5virus* and subfamily
238 *Tunavirinae* were capable of infecting between five and eight strains (Table S4). Whilst
239 vB_Eco_mar002J2 was found to infect the greatest number of strains (8), this was limited to strains of
240 *E. coli*, *Klebsiella pneumoniae* and *Klebsiella oxytoca*, whereas vB_Eco_mar004NP2 could also infect
241 *Salmonella typhimurium*, but fewer strains of *E. coli*.

242 **Detection in viral metagenomes**

243 The presence of these new coliphage species in viral metagenomes was investigated using existing
244 metagenomics databases. The Baltic virome dataset was chosen as it contains both DNA sequence
245 data and RNA expression data (56). The abundance of representative phage species was determined
246 by the stringent mapping of reads from the virome to representative genomes. *Synechococcus* phage
247 Syn9 was also included, as it has previously been demonstrated to be present in this dataset (56). The
248 overall coverage of each genome was low, with small numbers of reads mapping to each genome
249 (Figure S4a). However, reads mapping to coliphage were found, although at far less abundance than
250 cyanophages Syn9 (Figure S4a). We then searched for evidence of gene expression from these phages
251 using transcriptomic datasets. The majority of samples showed expression of cyanophage Syn9 genes,
252 as previously reported (56). In contrast, genes from coliphage NP2 and RB69 (Figure S4b) were only
253 detected in samples GS852 and GS677, respectively. These samples, GS852 and GS677, were collected
254 from low salinity surface waters (56). The reads mapping to coliphages were further analysed by
255 BLASTn against the nr database. The only significant similarity in addition to the genomes they mapped
256 against was to an un-annotated prophage region in five *E. coli* genomes, thus are likely transcripts
257 from phages.

258 **Discussion**

259 Using *E.coli* MG1655 we were able to isolate and characterise ten phages from coastal marine waters
260 and one from a freshwater pond. The titre of coliphages in all water samples was extremely low (range
261 0.0125 pfu ml⁻¹-0.28 pfu ml⁻¹). This low abundance is lower than previous reports of coliphages that
262 are present at an order of 1 x 10² pfu ml in other coastal environments (57–59). This lower abundance
263 may well be linked to water quality, as faecal contamination is known to be linked to coliphage
264 abundance and/or the time of sampling. Only one sample point was collected, and previous work has
265 found there are distinct seasonal patterns in coliphage abundance (59). Despite this low abundance,
266 it was still possible to isolate coliphages to further characterise their genetic diversity, which was the
267 focus of this study.

268 Given the small number of phages isolated and sequenced, there was a surprising amount of genomic
269 diversity. Five species of coliphage were identified in the 10 phages isolated. The phages
270 vB_Eco_mar005P1, vB_Eco_mar006P2, vB_Eco_mar008P4 and vB_Eco_mar009P5 were identical,
271 with vB_Eco_mar007P3 only differing from the others by a single SNP. This similarity is probably due
272 to the enrichment method, which has enriched for a single phage that has then proliferated in the
273 enrichment and been re-isolated. Phages vB_Eco_mar001J1 and vB_Eco_mar002J2 also had identical
274 genome sequences despite being independently isolated, and represent a novel species. The
275 remaining phages vB_Eco_mar003J3, vB_Eco_mar004NP2, vB_Eco_swanson01 were all unique and also
276 represent new species.

277 Phages infecting *Escherichia* account for ~7% of all phages sequenced to date. To discover a novel
278 genera from the sequencing of a small number of coliphages here further highlights the vast diversity
279 of phages present in the environment and how much more is to be discovered. To accurately place
280 phages in the context of current phage taxonomy, we identified core-genes and used the
281 GET_PHYLOMARKERS pipeline to select the most appropriate gene for phylogeny reconstruction that
282 do not show signs of recombination, and are thus likely to lead to inaccurate branch lengths (49). Our
283 phylogenetic analysis of phage genomes using selected marker genes was congruent with current
284 classifications of phage species. Some of these classifications are originally based on historical
285 phenotypic data such as phage RB69 which cannot recombine with phage T4 and was classified as a
286 separate species (60). Recently, this inability to recombine with phage T4 DNA was postulated to be
287 caused by the arabinosyl modification of DNA in RB69, likely caused by a novel glucosyltransferase
288 present in RB69 but not T4 (61). In this study, the gene thought to encode a putative
289 arabinosyltransferase (61), was found to be core to all members of the genus *RB69virus*. Whether the

290 phage isolated in this study also glycosylate their DNA in a similar manner to RB69 remains to be
291 determined. However, the genes thought to be responsible for it are clearly a signature of this genus.

292 Whilst the phylogenetic analysis was congruent with currently defined species within the *T5virus* and
293 *RB69virus* genera, combining this phylogenetic analysis with ANI data demonstrated that using an ANI
294 value >95% was insufficient to delineate species that were congruent with the observed phylogeny
295 when additional phage from this study, and those present in GenBank but having undefined species
296 were added. Phages that form clearly distinct clades had an ANI >95% with phages outside of the
297 phylogenetic clades. Thus, suggesting 95% ANI is insufficient to discriminate between species for some
298 genera. We therefore suggest an ANI of 97% should be used to discriminate phage within the genera
299 *T5virus* and *RB69virus*, which has previously been used for the demarcation of phage species within
300 the genus *Seuratvirus* (62).

301 Proteomic analysis of the representative phages resulted in a relatively small number of proteins being
302 detected per phage. Despite this, it was still possible to confirm the annotation of structural proteins
303 and identify new structural proteins in phage vB_Eco_mar005P1 and vB_Eco_swan01. Combined with
304 the core-gene analysis it confirmed the annotation of a large number of genes across all phage isolates
305 as structural proteins. In addition, the detection of a ADP-ribosyltransferase in vB_Eco_mar005P1
306 suggests that the carriage of this protein is common to phages in the genus *RB69virus* and presumably
307 acts similarly to the ADP-ribosyltransferase carried by phage T4, in modifying the host RNA polymerase
308 for early gene transcription (63, 64). For phage vB_Eco_mar003J3 a putative tail fibre gene
309 (MAR003J3_00081) was detected for which there is no orthologue in vB_Eco_mar004NP2.

310 The gene encoding MAR003J3_00081 is an orthologue of *ltaA* in phage DT57C and DT571/2 which with
311 *ltaB* encode for L-shaped tail fibres that allow attachment to different O-antigen types. This
312 arrangement of two genes encoding for the L-shaped tail fibres is different from T5 which encodes the
313 L-shaped tail fibres in a single gene (65, 66). vB_Eco_mar003J3 contains orthologues of both *ltaA* and
314 *ltaB*, suggesting that it too uses two gene products for L-shaped tail fibres, whereas
315 vB_Eco_mar004NP2 only contains an orthologue of *ltaB* (MAR004NP2_00162) and does not contain
316 an orthologue of the single gene used by T5 (*lta*). Comparison of the genomic context of the region of
317 *ltaB* in vB_Eco_mar004NP2 reveals two genes immediately upstream of *ltaB* that do not have
318 orthologues in vB_Eco_mar003J3, one of which likely encodes a protein to form the L-shaped tail fibre
319 with the product of *ltaB*. Similarly, there are two genes upstream of *ltaAB* in vB_Eco_mar003J3 that are
320 absent in vB_Eco_mar004NP2. However, immediately beyond this the genome contains 10 genes
321 either side of these genes that are present in the same order in both genomes. Given the observed
322 difference in host range between phages vB_Eco_mar003J3 and vB_Eco_mar004NP2, we speculate

323 that it is the differences in this region that contains tail fibre genes that are likely responsible and
324 contributes to the ability of vB_Eco_mar004NP2 to infect multiple genera of Enterobacteriaceae.

325 Differences in the properties of vB_Eco_mar003J3 and vB_Eco_mar004NP2 were also observed in
326 terms of their replication parameters, with vB_Eco_mar004NP2 having a burst size (193) twice that of
327 vB_Eco_mar003J3 (76). It has previously been reported that phage chee24 which is also part of the
328 genus *T5virus*, has a burst size of 1000 and a latent period of 44 mins (52), whereas other phages of
329 the *T5virus*, such as phage T5 and chee30 have burst size of ~77 and ~44 respectively, suggesting
330 considerable variation within the genus.

331 In comparison, there was similar variation in the burst size of phages within the genus *RB69virus*, with
332 vB_Eco_mar005P1 having a burst size that is very similar to the reported burst sizes of 31 for phage
333 RB69, but smaller than the burst size of 96 for phage APCE01 (37). Whether the lytic properties of
334 phages does correlate with phylogeny requires more data than is currently available and would
335 require standardised growth conditions for like-for-like comparisons, as it is known differences in
336 temperature can influence burst size.

337 Detection of reads from the Baltic virome using high stringency mapping suggests the coliphage
338 isolated in this study can also be found in the Baltic Sea, albeit at low abundance. Given some of the
339 samples used in the Baltic virome were collected from sources close to human habitation, detection
340 of coliphages is not completely surprising. In contrast the detection of both coliphage and Syn9
341 transcripts in the meta-transcriptomics dataset was. Transcripts from a phage (Syn9) infecting a
342 photosynthetic cyanobacteria would be expected in marine samples and has previously been reported
343 for this Baltic virome (56). However, the detection of coliphage transcripts at two sites was surprising
344 given coliphages are not thought to actively replicate in seawater (24).

345

346 **Conclusions**

347 We have begun to elucidate for the first time the genomic diversity of coliphage within seawater,
348 identifying phages that represent several novel taxa, further expanding the diversity of phages that
349 are known to infect *E. coli*. Furthermore, the analysis and identification of core-genes and selection of
350 genes suitable for phylogenetic analysis provides a framework for the future classification of phages
351 in the genera *RB69virus*, *T5virus* and subfamily *Tunavirinae*. We further suggest that an ANI of >95%
352 is not suitable for the delineation of species within the genera *RB69virus* and *T5virus* and that a value
353 of >97% ANI should be used. Characterisation of phage replication parameters and host range further
354 reinforces that morphologically similar phage can have diverse replication strategies and host ranges.

355 Whilst we are cautious about the detection of coliphage transcripts in seawater metatranscriptomes,
356 the most parsimonious explanation is that coliphage are actively replicating, an observation that
357 certainly warrants further investigation.

358

359 **Materials and Methods**

360 *Escherichia coli* MG1655 was used as the host for both phage isolation and phage characterisation
361 work. *E.coli* MG1655 was cultured in LB broth at 37°C with shaking (200 rpm). Seawater samples were
362 collected from UK and Polish coastal waters (see Table 1), filtered through a 0.22 µm pore-size
363 polycarbonate filter (Sarstedt) and stored at 4°C prior to use in plaque assays. Plaque assays were
364 undertaken within 24 hr of collecting these samples. Phages were initially isolated and enumerated
365 using a simple single layer plaque assay (67). However, where this was unsuccessful a modified plaque
366 assay was used that allowed a greater volume of water to be added. Briefly, filtered seawater was
367 mixed with CaCl₂ to a final concentration of 1 mM followed by addition of *E. coli* MG1655 cells at a
368 1:20 ratio and incubating the mixture at room temperature for 5 minutes. Subsequently, samples were
369 mixed with molten LB agar at a 1:1 ratio, final agar concentration 0.5% (w/v). Agar plates were
370 incubated overnight at 37°C and checked for the presence of plaques. For samples in which no
371 coliphage were detected an enrichment procedure was carried out. Briefly, 20 mL filtered seawater
372 was mixed with 20 mL LB broth and 1 mL *E. coli* MG1655 (OD600=≈0.3 i.e. mid-exponential phase) and
373 incubated overnight at 37°C, followed by filtration through a 0.22 µm pore-size filter. Phages from this
374 enriched sample were then isolated using the standard plaque assay procedure. Three rounds of
375 plaque purification were used to obtain clonal phage isolates (67) .

376 **Genome Sequencing**

377 Phage DNA was prepared using a previously established method (68). DNA was quantified using Qubit
378 and 1 ng DNA used as input for NexteraXT library preparation following the manufacturer's
379 instructions. Sequencing was carried out using a MiSeq platform with V2 (2 x250 bp) chemistry. Fastq
380 files were trimmed with Sickle v1, using default parameters (69). Genome assembly used SPAdes v3.7
381 with the careful option (70). Reads were then mapped back against the resulting contig with BWA
382 MEM v0.7.12 (71) and SAM and BAM files manipulated with SAMtools v1.6 to determine the average
383 coverage of each contig (71). If the coverage exceeded 100x then the reads were subsampled and the
384 assembly process repeated, as high coverage is known to impede assembly (68). Phage genomes were
385 then annotated with Prokka using a custom database of all phage genomes that had previously been
386 extracted from Genbank (72). Further annotation was carried out using the pVOG database to
387 annotate any proteins that fall within current pVOGS using hmmsearch (73, 74). Raw sequence data and
388 assembled genomes were deposited in the ENA under the project accession number PRJEB28824

389 **Bioinformatics and comparative genomics**

390 A MASH database was constructed of all complete bacteriophage genomes available at the time of
391 analysis (~ 8500, April 2018) using the following mash v2 settings “–s 1000” (75). This database was
392 then used to identify related genomes based on MASH distance which has previously been shown to
393 be equivalent to ANI (75). Phage genomes that were found to be similar were re-annotated with
394 Prokka to ensure consistent gene calling between genomes for comparative analysis (72). Core
395 genome analysis was carried out with ROARY using “--e --mafft -p 32 -i 90” as a starting point for
396 analysis (76). These parameters were adjusted as detailed in the text. The optimal phylogenetic
397 markers were determined using the GET_PHYLOMARKERS pipeline, with the following settings “-R1 –
398 t DNA” (47). Average nucleotide identity was calculated using autoANI.pl (77). Phylogenetic analysis
399 was carried out using IQ-TREE (78), with models of evolution selected using modeltest (79); trees were
400 visualised in iTOL (80).

401 **One-step growth experiments**

402 Phage growth parameters (burst size, eclipse and latent period) were determined by performing one-
403 step growth experiments as described by Hyman and Abedon (81), with free phages being removed
404 from the culture by pelleting the host cells via centrifugation at 10,000 g for 1 min, removing the
405 supernatant and resuspending cells in fresh medium (81). Three independent replicates were carried
406 out for each experiment.

407 **TEM**

408 Representative phages, as determined from genome sequencing, were imaged using a Transmission
409 electron microscope (TEM) as follows: 10 µl high titre phage stock was added to a glow discharged
410 formvar copper grid (200 mesh), left for 2 mins, wicked off and 10 µl water added to wash the grid
411 prior to being wicked off with filter paper. 10 µl 2% (w/v) uranyl acetate stain was added to the grid
412 and left for 30 secs, prior to its removal. The grid was air dried before imaging using a JEOL JEM-1400
413 TEM with an accelerating voltage of 100kV. Digital images were collected with a Megaview III digital
414 camera using iTEM software. Phage images were processed in ImageJ using the measure tool and the
415 scale bar present on each image to obtain phage particle size (82). Measurements are the average of
416 at least 10 phage particles.

417 **Preparation of viral proteomes for nanoLC-MS/MS and data analysis**

418 Prior to proteomics high titre phage stocks were purified using CsCl density gradient centrifugation at
419 35,000 g for 2 hrs at 4 °C. Subsequently, 30 µl concentrated phage was added to 10 µl NuPAGE LDS 4X
420 sample buffer (Invitrogen) heated for 5 min at 95°C and analysed by SDS-PAGE as described (83).
421 Polyacrylamide gel bands containing all phage proteins were excised and standard in-gel reduction

422 with iodoacetamide and trypsin (Roche) proteolysis was performed prior to tryptic peptide extraction
423 (83). Samples were separated and analysed by means of a nanoLC-ESI-MS/MS using an Ultimate 3000
424 LC system (Dionex-LC Packings) coupled to an Orbitrap Fusion mass spectrometer (Thermo Scientific)
425 with a 60 minute LC separation on a 25 cm column and settings as described previously (83). Compiled
426 MS/MS spectra were processed using the MaxQuant software package (version 1.5.5.1) for shotgun
427 proteomics (84). Default parameters were used to identify proteins (unless specified below), searching
428 an in-house-generated database derived from the translation of phage genomes. Firstly, a six reading
429 frame translation of the genome with a minimum coding domain sequence (CDS) cut-off of 30 amino
430 acids (*i.e.* stop-to-stop) was used to search for tryptic peptides. Second, the search space was reduced
431 by using a database containing only CDS detected in the first database search, again, looking for tryptic
432 peptides. Finally, the reduced CDS database was also searched using the N-terminus semi-tryptic
433 digest setting to find the protein N-terminus. Analysis was completed using Perseus software version
434 1.6.0.7 (85). All detected peptides from all three analyses are compiled in Supplementary Table S5.
435 Only proteins detected with two or more non-redundant peptides were considered.

436

437 **Acknowledgements**

438 Bioinformatic analysis was carried out using MRC CLIMB Infrastructure MR/L015080/1. AM was
439 funded by NERC AMR -EVAL FARMS (NE/N019881/1). T.R. and S.M. were in receipt of PhD
440 studentships funded by the Natural Environment Research Council (NERC) CENTA DTP. A.G. was
441 in receipt of a PhD studentship funded by the Engineering and Physical Sciences Research
442 Council (ESPRC) SynBio

443

444

445 **References**

446

- 447 1. Suttle CA. 2007. Marine viruses--major players in the global ecosystem. *Nat Rev Microbiol*
448 5:801–12.
- 449 2. Perez Sepulveda B, Redgwell T, Rihtman B, Pitt F, Scanlan DJ, Millard A. 2016. Marine phage
450 genomics: the tip of the iceberg. *FEMS Microbiol Lett* 363.
- 451 3. Breitbart M, Bonnain C, Malki K, Sawaya NA. 2018. Phage puppet masters of the marine
452 microbial realm. *Nat Microbiol*.
- 453 4. Breitbart M, Thompson LR, Suttle CA, Sullivan MB. 2007. Exploring the vast diversity of
454 marine viruses. *Oceanography* 20:135–139.
- 455 5. Mühlung M, Fuller NJ, Millard A, Somerfield PJ, Marie D, Wilson WH, Scanlan DJ, Post AF, Joint
456 I, Mann NH. 2005. Genetic diversity of marine *Synechococcus* and co-occurring cyanophage
457 communities: evidence for viral control of phytoplankton. *Environ Microbiol* 7:499–508.
- 458 6. Deng L, Ignacio-Espinoza JC, Gregory AC, Poulos BT, Weitz JS, Hugenholtz P, Sullivan MB.
459 2014. Viral tagging reveals discrete populations in *Synechococcus* viral genome sequence
460 space. *Nature* 513:242–245.
- 461 7. Sullivan MB, Waterbury JB, Chisholm SW. 2003. Cyanophages infecting the oceanic
462 cyanobacterium *Prochlorococcus*. *Nature* 424:1047–1051.
- 463 8. Suttle CA, Chan AM. 1993. Marine cyanophages infecting oceanic and coastal strains of
464 *Synechococcus*: abundance, morphology, cross-infectivity and growth characteristics. *Mar
465 Ecol Prog Ser* 92:99–109.
- 466 9. Kang I, Oh H-M, Kang D, Cho J-C. 2013. Genome of a SAR116 bacteriophage shows the
467 prevalence of this phage type in the oceans. *Proc Natl Acad Sci U S A* 110:12343–12348.
- 468 10. Zhao Y, Temperton B, Thrash JC, Schwalbach MS, Vergin KL, Landry ZC, Ellisman M, Deerinck
469 T, Sullivan MB, Giovannoni SJ. 2013. Abundant SAR11 viruses in the ocean. *Nature* 494:357–
470 60.
- 471 11. Wilson WH, Joint IR, Carr NG, Mann NH. 1993. Isolation and molecular characterization of five
472 marine cyanophages propagated on *Synechococcus* sp. strain WH7803. *Appl Env Microbiol*
473 59:3736–3743.
- 474 12. Millard AD, Zwirglmaier K, Downey MJ, Mann NH, Scanlan DJ. 2009. Comparative genomics of

- 475 marine cyanomyoviruses reveals the widespread occurrence of *Synechococcus* host genes
476 localized to a hyperplastic region: Implications for mechanisms of cyanophage evolution.
477 *Environ Microbiol* 11:2370–2387.
- 478 13. Gregory AC, Solonenko SA, Ignacio-Espinoza JC, LaButti K, Copeland A, Sudek S, Maitland A,
479 Chittick L, dos Santos F, Weitz JS, Worden AZ, Woyke T, Sullivan MB. 2016. Genomic
480 differentiation among wild cyanophages despite widespread horizontal gene transfer. *BMC*
481 *Genomics* 17.
- 482 14. Sullivan MB, Huang KH, Ignacio-Espinoza JC, Berlin AM, Kelly L, Weigle PR, DeFrancesco AS,
483 Kern SE, Thompson LR, Young S, Yandava C, Fu R, Krastins B, Chase M, Sarracino D, Osburne
484 MS, Henn MR, Chisholm SW. 2010. Genomic analysis of oceanic cyanobacterial myoviruses
485 compared with T4-like myoviruses from diverse hosts and environments. *Environ Microbiol*
486 12:3035–3056.
- 487 15. Hurwitz BL, Hallam SJ, Sullivan MB. 2013. Metabolic reprogramming by viruses in the sunlit
488 and dark ocean. *Genome Biol* 14:R123.
- 489 16. Brum JR, Ignacio-Espinoza JC, Roux S, Doulcier G, Acinas SG, Alberti A, Chaffron S, Cruaud C,
490 de Vargas C, Gasol JM, Gorsky G, Gregory AC, Guidi L, Hingamp P, Iudicone D, Not F, Ogata H,
491 Pesant S, Poulos BT, Schwenck SM, Speich S, Dimier C, Kandels-Lewis S, Picheral M, Searson S,
492 Tara Oceans Coordinators, Bork P, Bowler C, Sunagawa S, Wincker P, Karsenti E, Sullivan MB.
493 2015. Ocean plankton. Patterns and ecological drivers of ocean viral communities. *Science*
494 348:1261498.
- 495 17. Sabehi G, Shaulov L, Silver DH, Yanai I, Harel A, Lindell D. 2012. A novel lineage of myoviruses
496 infecting cyanobacteria is widespread in the oceans. *Proc Natl Acad Sci* 109:2037–2042.
- 497 18. Chan Y-W, Millard AD, Wheatley PJ, Holmes AB, Mohr R, Whitworth AL, Mann NH, Larkum
498 AWD, Hess WR, Scanlan DJ, Clokie MRJ. 2014. Genomic and proteomic characterization of
499 two novel siphovirus infecting the sedentary facultative epibiont cyanobacterium
500 *Acaryochloris marina*. *Environ Microbiol*.
- 501 19. Holmfeldt K, Solonenko N, Shah M, Corrier K, Riemann L, Verberkmoes NC, Sullivan MB. 2013.
502 Twelve previously unknown phage genera are ubiquitous in global oceans. *Proc Natl Acad Sci*
503 U S A 110:12798–803.
- 504 20. Snowdon JA, Coliver DO. 1989. Coliphages as indicators of human enteric viruses in
505 Groundwater. *Crit Rev Environ Control* 19:231–249.

- 506 21. Hilton MC, Stotzky G. 1973. Use of coliphages as indicators of water pollution. *Can J Microbiol*
507 19:747–751.
- 508 22. Vaughn JM, Metcalf TG. 1975. Coliphages as indicators of enteric viruses in shellfish and
509 shellfish raising estuarine waters. *Water Res* 9:613–616.
- 510 23. Palmateer GA, Dutka BJ, Janzen EM, Meissner SM, Sakellaris MG. 1991. Coliphage and
511 bacteriophage as indicators of recreational water quality. *Water Res* 25:355–357.
- 512 24. Jofre J. 2009. Is the replication of somatic coliphages in water environments significant? *J*
513 *Appl Microbiol* 106:1059–1069.
- 514 25. Muniesa M, Colomer-Lluch M, Jofre J. 2013. Could bacteriophages transfer antibiotic
515 resistance genes from environmental bacteria to human-body associated bacterial
516 populations? *Mob Genet Elements* 3:e25847.
- 517 26. Havelaar a H, Hogeboom WM. 1983. Factors affecting the enumeration of coliphages in
518 sewage and sewage-polluted waters. *Antonie Van Leeuwenhoek* 49:387–97.
- 519 27. ISO. 2000. ISO 10705-2:2000 Water quality - Detection and enumeration of bacteriophages.
520 Part 2: Enumeration of somatic coliphages.
- 521 28. Borrego JJ, Córñax R, Moriñigo MA, Martínez-Manzanares E, Romero P. 1990. Coliphages as
522 an indicator of faecal pollution in water. their survival and productive infectivity in natural
523 aquatic environments. *Water Res* 24:111–116.
- 524 29. Reyes VC, Jiang SC. 2010. Ecology of coliphages in southern California coastal waters. *J Appl*
525 *Microbiol* 109:431–440.
- 526 30. Jofre J, Lucena F, Blanch AR, Muniesa M. 2016. Coliphages as model organisms in the
527 characterization and management of water resources. *Water (Switzerland)* 8:1–21.
- 528 31. Kisielius JJ, Almeida BC, Souza CP, Markman C, Martins GG, Albertini L, Rivera ING. 2011.
529 Diversity of Somatic Coliphages in Coastal Regions with Different Levels of Anthropogenic
530 Activity in São Paulo State , Brazil □ 77:4208–4216.
- 531 32. Muniesa M, Lucena F, Jofre J. 1999. Study of the potential relationship between the
532 morphology of infectious somatic coliphages and their persistence in the environment. *J Appl*
533 *Microbiol* 87:402–409.
- 534 33. Smith R, O'Hara M, Hobman JL, Millard AD, O'Hara M, Hobman JL, Millard AD, O'Hara M,
535 Hobman JL, Millard AD. 2015. Draft genome sequences of 14 *Escherichia coli* phages isolated

- 536 from cattle slurry. *Genome Announc* 3:e01364-15.
- 537 34. Sazinas P, Smith C, Suhami A, Hobman JL, Dodd CER, Millard AD. 2016. Draft genome
538 sequence of the bacteriophage vB_Eco_slurp01. *Genome Announc* 4:e01111-16.
- 539 35. Niu YD, McAllister TA, Nash JHEE, Kropinski AM, Stanford K. 2014. Four *Escherichia coli*
540 O157:H7 phages: A new bacteriophage genus and taxonomic classification of T1-like phages.
541 *PLoS One* 9.
- 542 36. Golomidova AK, Kulikov EE, Kudryavtseva A V, Letarov A V. 2018. Complete Genome
543 Sequence of *Escherichia coli* Bacteriophage PGT2. *Genome Announc* 6:4-5.
- 544 37. Dalmasso M, Strain R, Neve H, Franz CMAPAP, Cousin FJ, Ross RP, Hill C, Cousin J, Ross RP, Hill
545 C. 2016. Three new *Escherichia coli* phages from the human gut show promising potential for
546 phage therapy. *PLoS One* 11:1-16.
- 547 38. Malki K, Sible E, Cooper A, Garreto A, Bruder K, Watkins SC, Putonti C. 2016. Seven
548 bacteriophages isolated from the female urinary microbiota. *Genome Announc* 4:e01003-16.
- 549 39. Golomidova AK, Kulikov EE, Babenko V V., Kostryukova ES, Letarov A V. 2018. Complete
550 genome sequence of bacteriophage St11Ph5, which infects uropathogenic *Escherichia coli*
551 strain up11. *Genome Announc* 6:5-6.
- 552 40. Alijošius L, Šimoliūnas E, Kaliniene L, Meškys R, Truncaitė L. 2017. Complete genome
553 sequence of *Escherichia coli* phage vB_EcoM_Alf5. *Genome Announc* 5:5-6.
- 554 41. Liao Y, Liu F, Sun X, Li RW, Wu VCH. 2018. Complete genome sequence of <i>Escherichia
555 coli</i> phage vB_EcoS Sa179lw, isolated from surface water in a produce-growing area in
556 Northern California. *Genome Announc* 6:1-2.
- 557 42. Ngazoa-Kakou S, Philippe C, Tremblay DM, Loignon S, Koudou A, Abole A, Ngolo Coulibaly D,
558 Kan Kouassi S, Kouamé Sina M, Aoussi S, Dosso M, Moineau S. 2018. Complete genome
559 sequence of Ebrios, a novel T7virus isolated from the Ebrie Lagoon in Abidjan, Côte d'Ivoire.
560 *Genome Announc* 6:4-5.
- 561 43. Trotreau A, Gonnet M, Viardot A, Lalmanach A-C, Guabiraba R, Chanteloup NK, Schouler C.
562 2017. Complete genome sequences of two *Escherichia coli* phages, vB_EcoM_ESCO5 and
563 vB_EcoM_ESCO13, which are related to phAPEC8. *Genome Announc* 5:1-2.
- 564 44. Adriaenssens EM, Cowan D a. 2014. Using signature genes as tools to assess environmental
565 viral ecology and diversity. *Appl Environ Microbiol* 80:4470-4480.

- 566 45. Adriaenssens EM, Brister JR. 2017. How to name and classify your phage: an informal guide.
567 Viruses 9:1–9.
- 568 46. Amarillas L, Chaidez C, González-Robles A, León-Félix J. 2016. Complete genome sequence of
569 new bacteriophage phiE142, which causes simultaneously lysis of multidrug-resistant
570 *Escherichia coli* O157:H7 and *Salmonella enterica*. Stand Genomic Sci 11:89.
- 571 47. Vinuesa P, Ochoa-Sánchez LE, Contreras-Moreira B. 2018. GET_PHYLOMARKERS, a software
572 package to select optimal orthologous clusters for phylogenomics and inferring pan-genome
573 phylogenies, used for a critical geno-taxonomic revision of the genus *Stenotrophomonas*.
574 Front Microbiol 9.
- 575 48. Bruen TC. 2005. A simple and robust statistical test for detecting the presence of
576 recombination. Genetics 172:2665–2681.
- 577 49. Didelot X, Maiden MCJ. 2010. Impact of recombination on bacterial evolution. Trends
578 Microbiol 18:315–322.
- 579 50. Weyenberg G, Huggins PM, Schardl CL, Howe DK, Yoshida R. 2014. KDETREES: Non-
580 parametric estimation of phylogenetic tree distributions. Bioinformatics 30:2280–2287.
- 581 51. Goris J, Konstantinidis KT, Klappenbach J a, Coenye T, Vandamme P, Tiedje JM. 2007. DNA-
582 DNA hybridization values and their relationship to whole-genome sequence similarities. Int J
583 Syst Evol Microbiol 57:81–91.
- 584 52. Sváb D, Falgenhauer L, Rohde M, Szabó J, Chakraborty T, Tóth I. 2018. Identification and
585 characterization of T5-like bacteriophages representing two novel subgroups from food
586 products. Front Microbiol 9:1–11.
- 587 53. Kropinski AM, Niu D, Adriaenssens EM. 2015. 2015.019a-abB.A.v3.Tunavirinae.
- 588 54. Contreras-Moreira B, Vinuesa P. 2013. GET_HOMOLOGUES, a versatile software package for
589 scalable and robust microbial pangenome analysis. Appl Environ Microbiol 79:7696–7701.
- 590 55. Ackermann HW, Krisch HM. 1997. A catalogue of T4-type bacteriophages. Arch Virol
591 142:2329–2345.
- 592 56. Zeigler Allen L, McCrow JP, Ininbergs K, Dupont CL, Badger JH, Hoffman JM, Ekman M, Allen
593 AE, Bergman B, Venter JC. 2017. The Baltic Sea virome: diversity and transcriptional activity of
594 DNA and RNA viruses. mSystems 2:e00125-16.
- 595 57. Kisielius JJ, Almeida BC, Souza CP, Markman C, Martins GG, Albertini L, Rivera ING, Burbano-

- 596 Rosero EM, Ueda-Ito M, Kisielius JJ, Nagasse-Sugahara TK, Almeida BC, Souza CP, Markman C,
597 Martins GG, Albertini L, Rivera ING. 2011. Diversity of somatic coliphages in coastal regions
598 with different levels of anthropogenic activity in São Paulo state, Brazil. *Appl Environ
599 Microbiol* 77:4208–4216.
- 600 58. Dutka BJ, El Shaarawi A, Martins MT, Sanchez PS. 1987. North and south american studies on
601 the potential of coliphage as a water quality indicator. *Water Res* 21:1127–1134.
- 602 59. Janelidze N, Jaiani E, Lashkhi N, Tskhvediani A, Kokashvili T, Gvarishvili T, Jgenti D,
603 Mikashavidze E, Diasamidze R, Narodny S, Obiso R, Whitehouse CA, Huq A, Tediashvili M.
604 2011. Microbial water quality of the Georgian coastal zone of the Black Sea. *Mar Pollut Bull*
605 62:573–580.
- 606 60. Richard Russel. 1967. Speciation among the T-even bacteriophages. Russell, R.L. *Speciation
607 among the T-Even Bacteriophages*;California Institute of Techonology: Pasadena,CA,USA.
- 608 61. Thomas J, Orwenyo J, Wang L-X, Black L. 2018. The odd “RB” phage—Identification of
609 arabinosylation as a new epigenetic modification of DNA in T4-like phage RB69. *Viruses*
610 10:313.
- 611 62. Sazinas P, Redgwell T, Rihtman B, Grigonyte A, Michniewski S, Scanlan DJ, Hobman J, Millard
612 A. 2017. Comparative genomics of bacteriophage of the genus *Seuratvirus*. *Genome Biol Evol*
613 10:72–76.
- 614 63. Koch T, Raudonikiene A, Wilkens K, Rüger W. 1995. Overexpression, purification, and
615 characterization of the ADP-ribosyltransferase (gpAlt) of bacteriophage T4: ADP-ribosylation
616 of *E. coli* RNA polymerase modulates T4 “early” transcription. *Gene Expr* 4:253–64.
- 617 64. Miller ES, Kutter E, Mosig G, Kunisawa T, Rüger W, Arisaka F, Ru W, Kunisawa T, Ruger W.
618 2003. Bacteriophage T4 genome †. *Microbiol Mol Biol Rev* 67:86–156.
- 619 65. Golomidova AK, Kulikov EE, Prokhorov NS, Guerrero-Ferreira RC, Knirel YA, Kostryukova ES,
620 Tarasyan KK, Letarov A V. 2016. Branched lateral tail fiber organization in T5-like
621 bacteriophages DT57C and DT571/2 is revealed by genetic and functional analysis. *Viruses*
622 8:1–21.
- 623 66. Nobrega FL, Vlot M, de Jonge PA, Dreesens LL, Beaumont HJE, Lavigne R, Dutilh BE, Brouns
624 SJ. 2018. Targeting mechanisms of tailed bacteriophages. *Nat Rev Microbiol*.
- 625 67. Van Twest R, Kropinski AM. 2009. *Bacteriophage enrichment from water and soilMethods
626 and Protocols*. Humana Press, Totowa, NJ.

- 627 68. Rihtman B, Meaden S, Clokie MRJ, Koskella B, Millard AD, Rihtman B, Clokie MRJ, Koskella B,
628 Millard AD. MS. 2016. Assessing Illumina technology for the high-throughput sequencing of
629 bacteriophage genomes. *PeerJ* 4:e2055.
- 630 69. Joshi NA, Fass JN, others. 2011. Sickle: A sliding-window, adaptive, quality-based trimming
631 tool for FastQ files (Version 1.33)[Software].
- 632 70. Bankevich A, Nurk S, Antipov D, Gurevich A a., Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI,
633 Pham S, Prjibelski AD, Pyshkin A V., Sirotnik A V., Vyahhi N, Tesler G, Alekseyev M a., Pevzner
634 P a. 2012. SPAdes: A new genome assembly algorithm and its applications to single-cell
635 sequencing. *J Comput Biol* 19:455–477.
- 636 71. Li H. 2013. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM.
637 arXiv Prepr arXiv 00:3.
- 638 72. Seemann T. 2014. Prokka: Rapid prokaryotic genome annotation. *Bioinformatics* 30:2068–
639 2069.
- 640 73. Graziotin AL, Koonin E V, Kristensen DM. 2017. Prokaryotic Virus Orthologous Groups (pVOGs): a resource for comparative genomics and protein family annotation 45:491–498.
- 642 74. Eddy SR. 2011. Accelerated profile HMM searches. *PLoS Comput Biol* 7.
- 643 75. Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH, Koren S, Phillippy AM. 2016. Mash: Fast genome and metagenome distance estimation using MinHash. *Genome Biol* 17.
- 645 76. Page AJ, Cummins C a., Hunt M, Wong VK, Reuter S, Holden MTG, Fookes M, Falush D, Keane
646 J a., Parkhill J. 2015. Roary: rapid large-scale prokaryote pan genome analysis. *Bioinformatics*
647 31:3691–3693.
- 648 77. Davis II EW, Weisberg AJ, Tabima JF, Grunwald NJ, Chang JH. 2016. Gall-ID: tools for
649 genotyping gall-causing phytopathogenic bacteria. *PeerJ* 4:e2222.
- 650 78. Nguyen L, Schmidt HA, von Haeseler A, Minh BQ. 2015. IQ-TREE: A fast and effective
651 stochastic algorithm for estimating maximum-likelihood phylogenies. *Mol Biol Evol* 32:268–
652 274.
- 653 79. Posada D, Crandall KA. 1998. MODELTEST: Testing the model of DNA substitution.
654 *Bioinformatics* 14:817–818.
- 655 80. Letunic I, Bork P. 2007. Interactive Tree Of Life (iTOL): An online tool for phylogenetic tree
656 display and annotation. *Bioinformatics* 23:127–128.

- 657 81. Hyman P, Abedon ST. 2009. Practical methods for determining phage growth parameters.
658 Methods Mol Biol 501:175–202.
- 659 82. Rasband W. 2016. ImageJ. U S Natl Institutes Heal Bethesda, Maryland, USA.
- 660 83. Kaur A, Hernandez-Fernaud JR, Aguiló-Ferretjans M del M, Wellington EM, Christie-Oleza JA.
661 2018. 100 Days of marine *Synechococcus–Ruegeria pomeroyi* interaction: a detailed analysis
662 of the exoproteome. Environ Microbiol.
- 663 84. Cox J, Mann M. 2008. MaxQuant enables high peptide identification rates, individualized
664 p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol.
- 665 85. Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, Mann M, Cox J. 2016. The
666 Perseus computational platform for comprehensive analysis of (prote)omics data. Nat
667 Methods.
- 668
- 669

670 **Table 1.** Locations of water samples, titre of coliphages detected and phage isolates from each location.

Water Source	Titre	Phage Isolates	Date of isolation
Oliva Stream Estuary, Jelitkowo, Gdansk, Poland	0.28 pfu ml ⁻¹	vB_Eco_mar001J1 vB_Eco_mar002J2 vB_Eco_mar003J3	30.01.2017 30.01.2017 30.01.2017
Martwa Wisla Estuary, Nowy Port, Gdansk, Poland	0.11 pfu ml ⁻¹	vB_Eco_mar004NP2	30.01.2017
Swanswell Pool, Coventry, United Kingdom	0.0125 pfu ml ⁻¹	vB_Eco_swan01	08.12.2016
Great Yarmouth, United Kingdom	ND	vB_Eco_mar005P1 vB_Eco_mar006P2 vB_Eco_mar007P3 vB_Eco_mar008P4 vB_Eco_mar009P5	08.12.2016 08.12.2016 08.12.2016 08.12.2016 08.12.2016

671

672 **Table 2.** Morphological and lytic properties of representative phages.

673

674

Phage Isolate	Burst Size	Latent Period	Eclipse Period	Head width (nm)	Head length (nm)	Tail Length (nm)	Tail Width (nm)	Sub Group	Family
vB_Eco_swan01	78+-9	15	9	53+-2	56+-1	154+-10	10+-1	B1	<i>Siphoviridae</i>
vB_Eco_mar003J3	76+-22	40	26	67+-5	70+-5	185+-19	9+-1	B1	<i>Siphoviridae</i>
vB_Eco_mar005P1	31+-9	14	23	86+-6	111+-11	121+-7	20+-3	A2	<i>Myoviridae</i>
vB_Eco_mar002J2	51+-17	12	9	55+-4	56+-4	143+-13	11+-1	B1	<i>Siphoviridae</i>
vB_Eco_mar004NP2	193+-26	33	20	66+-2	71+-5	176+-9	10+-1	B1	<i>Siphoviridae</i>

675 **Table 3.** Proteomic analysis of phages vB_Eco_swan01, vB_Eco_mar005P1, vB_Eco_mar002J2,
676 vB_Eco_mar003J3 and vB_Eco_mar004NP2.

Phage	Locus Tag of Detected Protein		Product	Locus Tags of Homologues
vB_Eco_mar003J3	MAR003J3_00081		phage tail fibers	
vB_Eco_mar003J3	MAR003J3_00086		phage tail length tape-measure protein	MAR004NP2_00155
vB_Eco_mar003J3	MAR003J3_00090		major tail protein	
vB_Eco_mar003J3	MAR003J3_00094		major head protein precursor	MAR004NP2_00147
vB_Eco_mar003J3	MAR003J3_00095		putative prohead protease	MAR004NP2_00146
vB_Eco_mar003J3	MAR003J3_00096		putative tail protein	MAR004NP2_00145
vB_Eco_mar003J3	MAR003J3_00097		portal protein	MAR004NP2_00144
vB_Eco_mar004N P2	MAR004NP2_001 44		portal protein	MAR003J3_00097
vB_Eco_mar004N P2	MAR004NP2_001 45		putative tail protein	MAR003J3_00096
vB_Eco_mar004N P2	MAR004NP2_001 46		putative prohead protease	MAR003J3_00095
vB_Eco_mar004N P2	MAR004NP2_001 47		major head protein precursor	MAR003J3_00094
vB_Eco_mar004N P2	MAR004NP2_001 51		major tail protein	
vB_Eco_mar004N P2	MAR004NP2_001 55		pore-forming tail tip protein	MAR003J3_00086
vB_Eco_mar004N P2	MAR004NP2_001 57		tail protein Pb3	

vB_Eco_mar004N P2	MAR004NP2_001 60 putative tail fiber protein	
vB_Eco_mar005P 1	MAR005P1_0004 7 tail sheath	
vB_Eco_mar005P 1	MAR005P1_0005 1 prohead core protein	
vB_Eco_mar005P 1	MAR005P1_0005 4 major capsid protein	
vB_Eco_mar005P 1	MAR005P1_0007 6 ADP-ribosyltransferase	
vB_Eco_mar005P 1	MAR005P1_0001 5 hypothetical protein	
vB_Eco_swan01	SWAN_00017 tail tape-measure protein	MAR001J1_00002, MAR002J2_00028, LT841304_00017, LT961732_00067
vB_Eco_swan01	SWAN_00019 major tail protein	MAR001J1_00004, MAR002J2_00030, LT841304_00019, LT961732_00065
vB_Eco_swan01	SWAN_00025 putative major capsid protein	LT841304_00025, LT961732_00059, MG241338_00049
vB_Eco_swan01	SWAN_00026 hypothetical protein	MAR001J1_00011, MAR002J2_00037, LT841304_00026
vB_Eco_swan01	SWAN_00027 hypothetical protein	MAR001J1_00012, MAR002J2_00038, LT841304_00027

678

679 **Table S1.** Core-genes, ANI and genes used for phylogenetic analysis of phages within the genus
680 *RB69virus*. All phages were re-annotated to ensure consistent gene calling. ANI was calculated using
681 autoANI.

682

683 **Table S2.** Core-genes, ANI, and genes used for phylogenetic analysis of phages within the genus
684 *T5virus*. All phages were re-annotated to ensure consistent gene calling. ANI was calculated using
685 autoANI.

686

687 **Table S3.** Core-genes, ANI, and genes used for phylogenetic analysis of phages within the subfamily
688 *Tunavirinae*. ANI was calculated using autoANI.

689

690

691 **Table S4.** Host range of coliphages vB_Eco_swan01, vB_Eco_mar005P1, vB_Eco_mar002J2,
692 vB_Eco_mar003J3 and vB_Eco_mar004NP2 against Enterobacteriaceae hosts. Infected hosts are
693 marked with a black box and those that are not infected with -

694

695

Host bacterial strains	Phage Isolate				
	vB_Eco_mar002J2	vB_Eco_mar003J3	vB_Eco_mar004NP2	vB_Eco_mar005P1	vB_Eco_swan01
<i>Escherichia coli</i> MG1655 (K12)	1	1	1		1
<i>Escherichia coli</i> GD45	-	-	-	-	-
<i>Escherichia coli</i> GU48	-	-	1	-	-
<i>Escherichia coli</i> T3-21	-	-	-	-	-
<i>Escherichia coli</i> SFR-11	-	-	-	-	-
<i>Escherichia coli</i> D22	1	1	1	-	1
<i>Escherichia coli</i> N43	1	1	1	1	1
<i>Escherichia coli</i> EV36	1	1	1	1	1
<i>Escherichia coli</i> 170713	-	-	-	-	-
<i>Escherichia coli</i> 170972	-	-	-	-	-
<i>Klebsiella varicola</i> DSM 15968	-	-	-	-	1
<i>Klebsiella oxytoca</i> DSM 5175	-	-	-	-	-
<i>Klebsiella oxytoca</i> DSM 25736	-	-	-	-	-
<i>Klebsiella quasipneumoniae</i> DSM28211	-	-	-	-	-
<i>Klebsiella michiganensis</i> DSM 25444	-	-	-	-	-
<i>Klebsiella pneumoniae pneumoniae</i> DSM30104	-	-	-	-	-
<i>Klebsiella pneumoniae</i> isolate 170723	-	-	-	-	-
<i>Klebsiella oxytoca</i> isolate 170748	1	-	1	-	-
<i>Klebsiella pneumoniae</i> isolate 170820	-	1	-	-	-
<i>Klebsiella oxytoca</i> isolate isolate 170821	-	-	-	-	-
<i>Klebsiella pneumoniae</i> isolate 170958	1	1	1	-	-
<i>Klebsiella pneumoniae</i> isolate 171167	1	1	-	-	-
<i>Klebsiella oxytoca</i> isolate 171266	-	-	-	-	-
<i>Klebsiella pneumoniae</i> isolate 170304	-	-	-	-	-
<i>Salmonella typhimurium</i>	-	-	1	-	-

696

697

698 **Table S5** Peptides detected from phages vB_Eco_swan01, vB_Eco_mar005P1, vB_Eco_mar002J2,
699 vB_Eco_mar003J3 and vB_Eco_mar004NP2.

700

701 **Figure Legends**

702

703 **Figure 1.** Phylogenetic analysis of phages within the genus *RB69virus*. The tree is based on the
704 nucleotide sequence of nine concatenated genes using a GTR+F+ASC+R2 model of evolution, with
705 1000 bootstrap replicates using IQTREE (78). Current phage species as defined by the ICTV are marked
706 with an *. Bootstrap values above 70% are marked with a filled circle, with the size proportional to
707 the bootstrap value. The ANI value between phages is represented as a heatmap.

708

709 **Figure 2.** Phylogenetic analysis of phages within the genus *T5virus*. The tree is based on the nucleotide
710 sequence of two concatenated genes using a GTR+F+ASC+R2 model of evolution, with 1000 bootstrap
711 replicates using IQTREE (78). Current phage species as defined by the ICTV are marked with an *.
712 Bootstrap values above 70% are marked with a filled circle, with the size proportional to the bootstrap
713 value. The ANI value between phages is represented as a heatmap.

714

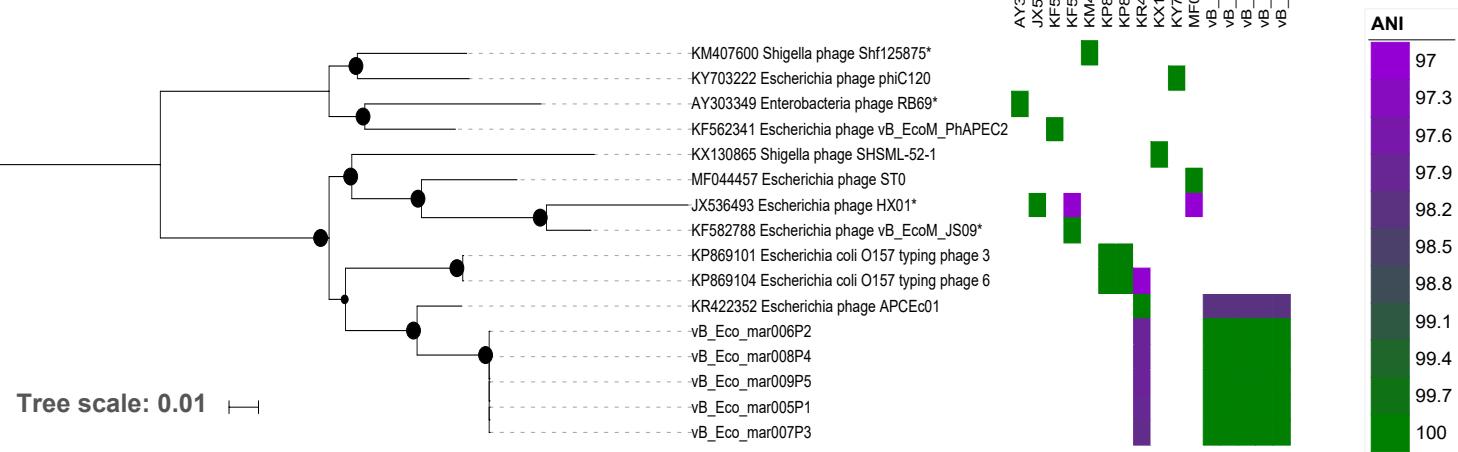
715 **Figure 3.** Phylogenetic analysis of phages within the subfamily *Tunanvirnae*. The tree is based on the
716 nucleotide sequence of four concatenated genes using a GTR+F+ASC+G4 model of evolution, with
717 1000 bootstrap replicates using IQTREE (78). Current phage genera as defined by the ICTV are marked
718 with the first coloured strip chart. Bootstrap values above 70% are marked with a filled circle, with the
719 size proportional to the bootstrap value. The ANI value between phages is represented as a heatmap.

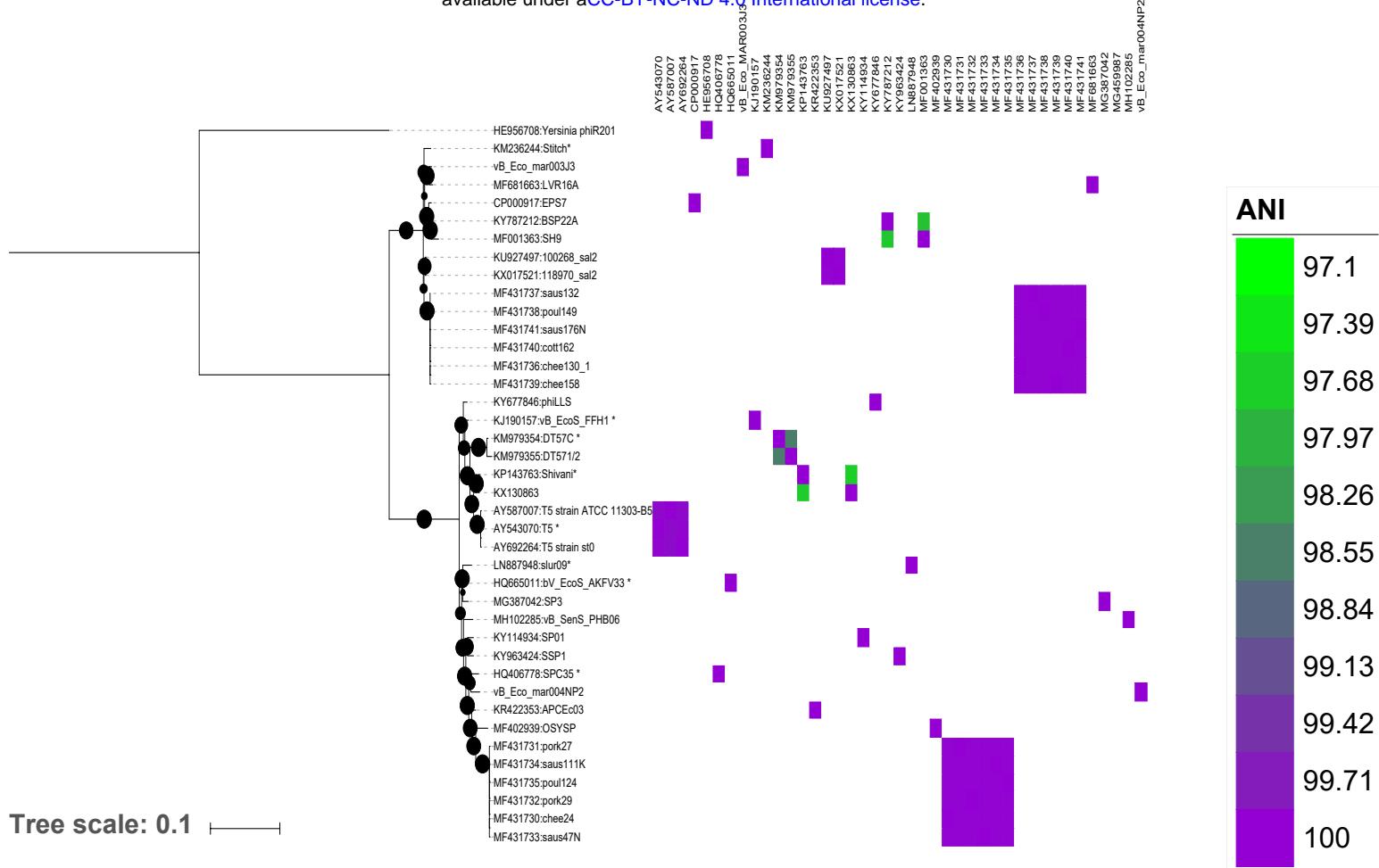
720 **Figure 4.** Morphology of phage isolates. Phages vB_Eco_swan01, vB_Eco_mar005P1,
721 vB_Eco_mar002J2, vB_Eco_mar003J3, vB_Eco_mar004NP2 were stained with 2% (w/v) uranyl acetate
722 and imaged in a JEOL JEM-1400 TEM with an accelerating voltage of 100 kV.

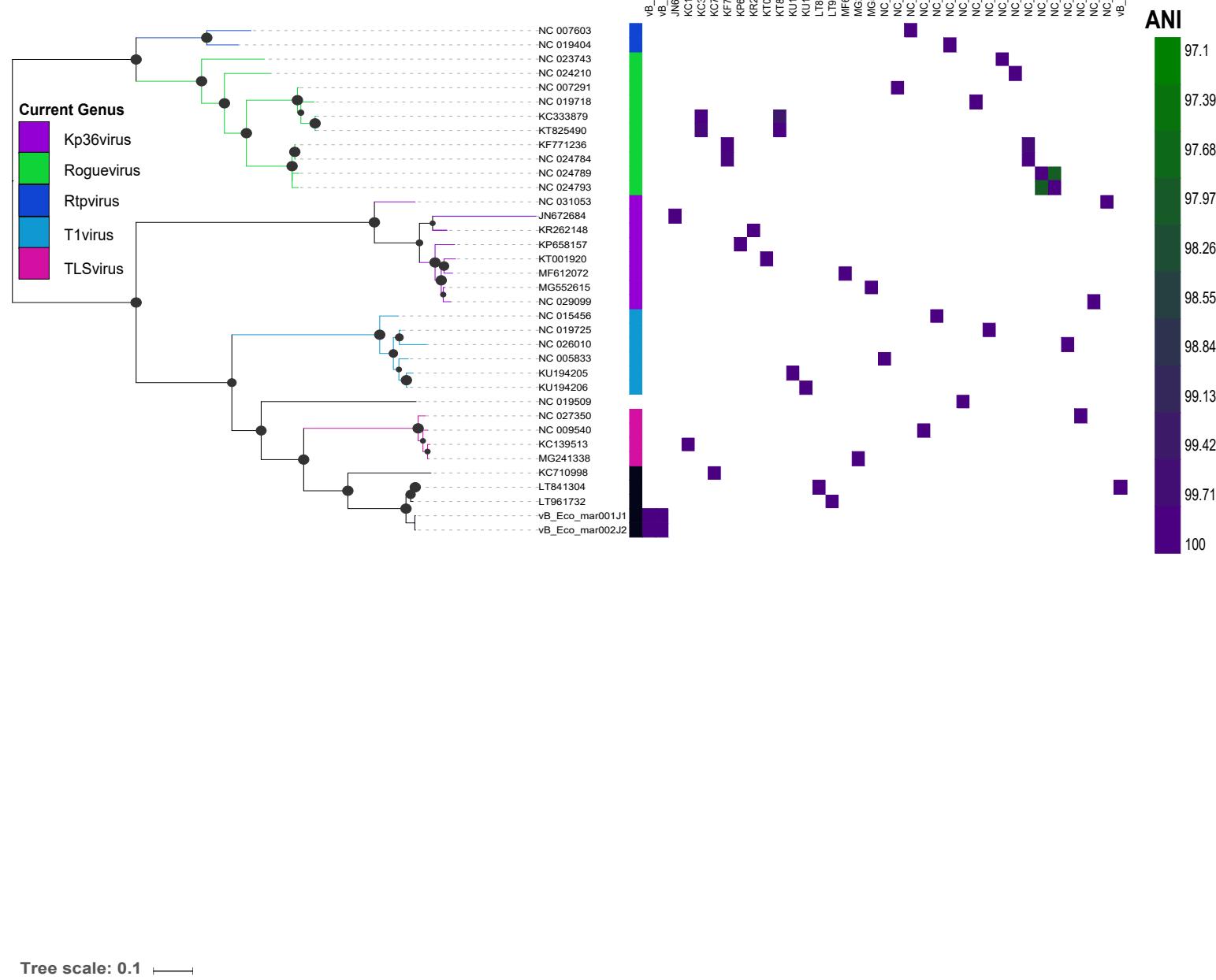
723

724 **Supplementary Figures**

725 **Figure S1.** Phylogenetic analysis of phages within the genus *RB69virus*. The tree is based on the
726 nucleotide sequence of the terminase gene, using a TIM2+F+R5 model of evolution, with 1000
727 bootstrap replicates using IQTREE (78).

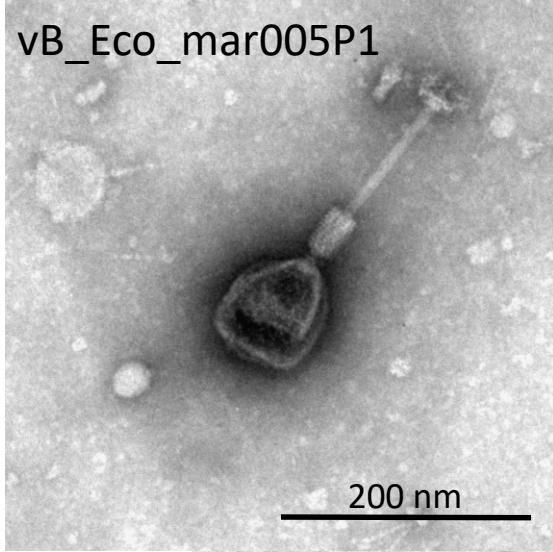

728 **Figure S2.** Phylogenetic analysis of phages within the genus *T5virus*. The phylogenetic tree is based on
729 the nucleotide sequence of the terminase gene, using a TIM2+F+R3 model of evolution, with 1000
730 bootstrap replicates using IQTREE (78).

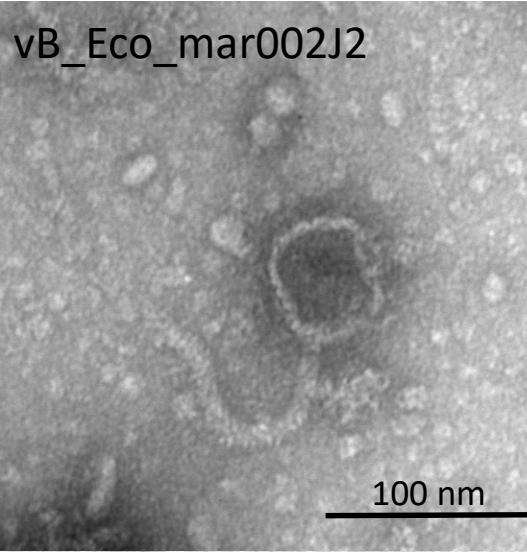

731 **Figure S3.** Phylogenetic analysis of phages within the subfamily *Tunavirnae*. The tree is based on the
732 nucleotide sequence of the terminase gene, using a TIM2+F+R3 model of evolution, with 1000
733 bootstrap replicates using IQTREE (78).


734 **Figure S5 A)** The abundance of representative bacteriophages in the Baltic Virome (DNA). Genome
735 coverage was calculated using BBMap with the following options 'covstats minid=90' using the Baltic
736 Virome fasta data available from iMicrobe under project code CAM_P_0001109. The coverage data
737 presented was calculated by the covstats function within BBMap. **B)** Abundance of transcripts from
738 representative bacteriophages from the Baltic metatranscriptomic dataset. Reads from the
739 metatranscriptomics dataset were sequentially downloaded using fasterq-dump from the short read
740 archive. Reads were again stringently mapped to a single file that contained all representative
741 genomes using BBMap with the settings 'minid=90, covstats, outm'. The number of reads mapped to
742 each genome was normalised for both length of the phage genome and the number of reads per
743 sample.

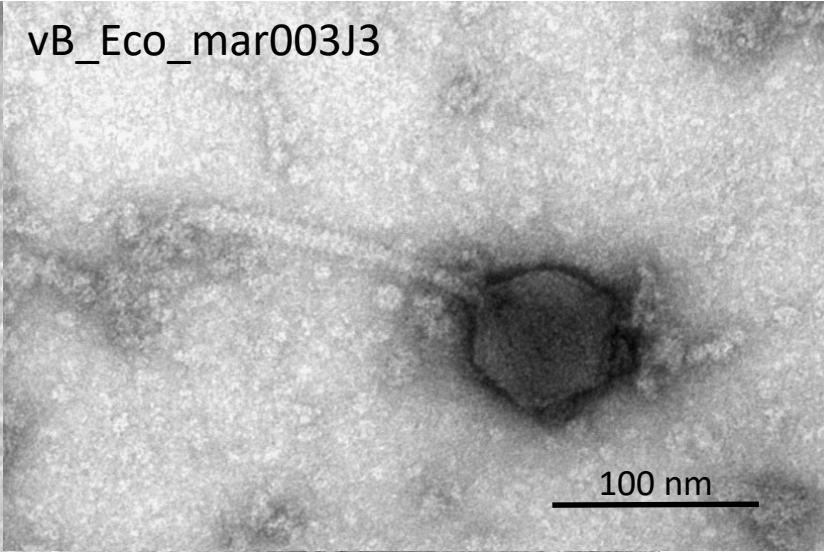
744
$$\left[\frac{\text{[Number of reads mapped/Reference genome size (kb)]}}{\text{[Number of reads in database]}} \right] \times 1\,000,000$$

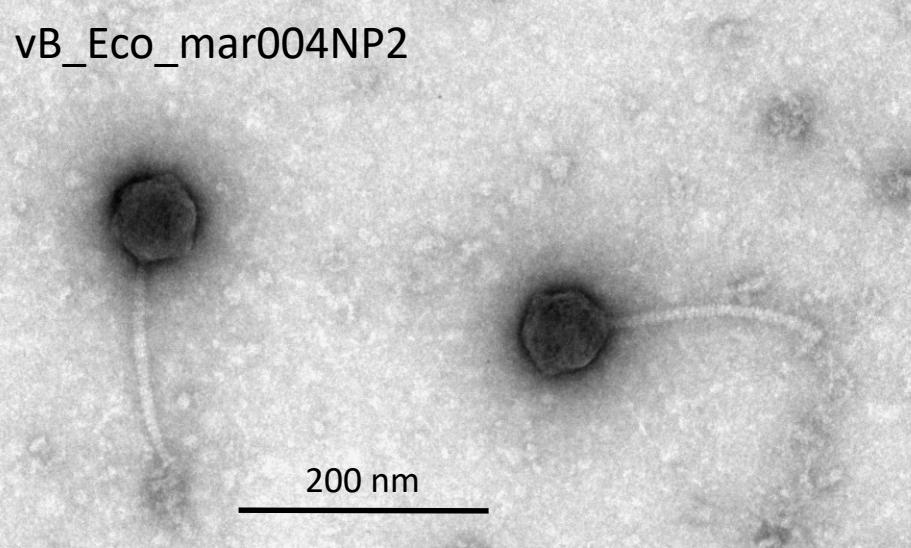
745 To give the number of reads mapped per kb of phage genome per million reads in the database. This
746 data was plotted for each sampling site. For ease of display only accession numbers are plotted as
747 used in the original publication for this data (56).

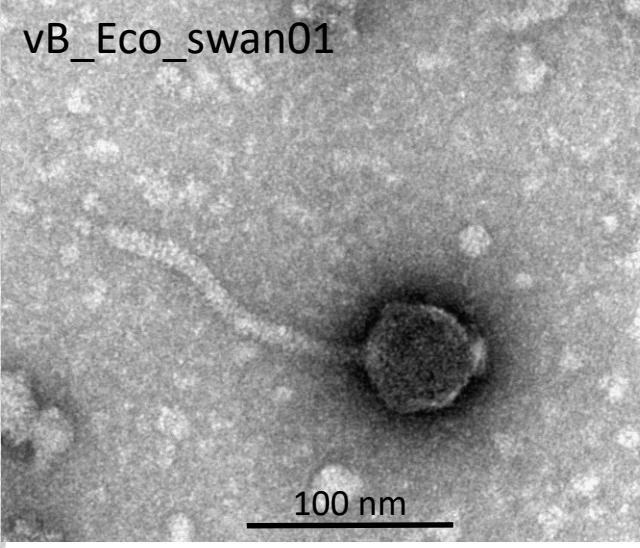




Tree scale: 0.1


vB_Eco_mar005P1


vB_Eco_mar002J2


vB_Eco_mar003J3

vB_Eco_mar004NP2

vB_Eco_swan01

