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Summary  

Background 

Deep vein thrombosis (DVT) is the formation of a thrombus/clot in the deep veins, when part of this 

clot breaks off it can travel to the lungs, resulting in pulmonary embolism. These two conditions 

together are known as venous thromboembolism (VTE), a leading cause of death and disability 

worldwide. Despite the prevalence of VTE, we do not fully understand what causes it and it is often 

overlooked as a major public health problem.  Confirming and identifying risk factors associated with 

DVT is likely to lead to a reduction in the incidence, morbidity and mortality of VTE especially where 

these risk factors are modifiable. We can do this, by exploiting the availability of summary genetic data 

from genome-wide association studies (GWAS) of numerous phenotypes, including DVT, which 

permits hypothesis-free causal inference. 

Objectives 

To identify novel risk factors for DVT and to assess the causality of factors previously shown to be 

associated with DVT. 

Methods 

Two-sample Mendelian randomization (MR) was performed using summarised genetic data. Inverse 

variance weighted (IVW) estimates were calculated and validated by additional methods more robust 

to horizontal pleiotropy (MR Egger, simple mode, weighted mode, and weighted median). Bidirectional 

and heterogeneity sensitivity analyses were performed to further evaluate our findings. 

Results 

Forty-seven exposures passed an exposure-exposure correlation-adjusted Bonferroni P-value threshold 

(5.43E-05). These included previously hypothesised risk factors for DVT (e.g. body mass index, 

varicose veins, height, hyperthyroidism) and novel associations (e.g. prospective memory, basal 

metabolic rate). 
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Conclusion 

Our analyses confirmed causal associations of risk factors previously associated with DVT and 

highlighted several novel risk factors for the disease. Our study demonstrates the utility of using a 

hypothesis free Mendelian randomization approach for the identification of novel disease risk factors. 

 

Introduction 

Under normal physiological circumstances, platelets and fibrin form clots to prevent blood loss 

at sites of vessel injury (1). Thrombosis is characterised as the abnormal formation of a clot within a 

blood vessel, which leads to reduced blood flow through the circulatory system (2, 3). When these 

abnormal clots occur in the deep veins of the legs, groin or arms this is known as deep vein thrombosis 

(DVT), and when part of one of these clots breaks away and becomes lodged in the lungs this is known 

as pulmonary embolism. These two conditions are together termed venous thromboembolism (VTE), a 

leading cause of death and disability worldwide.  

Common symptoms of DVT include pain, swelling and tenderness of the effected limb and 

redness/warmth at the site of the clots, however about half of those suffering DVT will have no 

symptoms. Undiagnosed/untreated DVT can lead to serious health problems with 1 in 10 of those 

untreated developing pulmonary embolism (PE), which can then lead to heart failure and in severe 

cases, death (4). The symptoms of DVT alone are often not specific or sufficient to make a diagnosis, 

but when considered in conjunction with known risk factors, can help determine the likelihood of DVT. 

Furthermore, evaluating these risk factors can be used to determine whether thromboprophylaxis should 

be administered to prevent DVT in high risk patients.  

Patients with DVT are currently treated with anticoagulants. Intravenous heparin and oral 

warfarin (a vitamin K antagonist) have been used in combination to treat DVT for over 50 years. Whilst 

new treatments (dabigatran, rivaroxaban) have shown increased anticoagulative activity relative to the 

traditional treatment, they do not target the main cause(s) of DVT (2, 3). Hence, the identification of 
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novel causal risk factors for DVT is desired, as this could aid in the development of an efficient 

prophylactic drug (3). Current research has established several risk factors for DVT: these are genetic, 

such as deficiencies in anticoagulants antithrombin, protein C, and protein S or acquired, such as age, 

obesity, cancer, pregnancy, trauma, or smoking (2, 5, 6).  

Whilst most associations with a large effect size identified by observational epidemiology have 

been found to be causal (e.g. a positive association between smoking and cancer), observational 

epidemiology is limited, especially in the case of weak associations (7). This may be due to 

confounding, reverse causation, or bias. Mendelian randomization (MR) applies the concept of 

randomized controlled trials (RCTs) to genetic epidemiology, bypassing the high costs and ethical 

issues associated with RCTs. In an MR framework, genetic variants are used as instrumental variables 

(IVs) to infer the causality of potential risk factors. MR is seeing increasing application in the field of 

epidemiology and has been proven to give reliable effect estimates, if certain assumptions are satisfied 

(Box 1) (8-14). Unlike one-sample MR, which requires individual-level data, two-sample MR can be 

conducted using summary-level data from published genome-wide association studies (GWAS) (15). 

Summary data from GWAS are often publicly available, and as genetic data for exposures and outcomes 

can be obtained from independent datasets, this makes two-sample MR a flexible, well-powered and 

cost-effective method to investigate causal associations (16). 

Hypothesis-driven approaches based on previous research can be subject to publication bias, 

which may prevent the identification of novel risk factors (10). Here, we conducted a hypothesis-free 

two-sample MR analysis of 973 exposures on DVT. These exposures are those curated in an online 

repository of genetic data; MR-Base (9). Our aim was to identify both novel risk factors for DVT 

through a hypothesis-free analysis, and to test the causality of traits previously shown to be associated 

with the disease. 
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Methods 

Data preparation 

GWAS data for exposures 

Hypothesis-free two-sample MR was conducted using the TwoSampleMR R package (9). 

Genetic data on exposures were obtained from the MR-Base platform of harmonised GWAS summary 

data. MR-Base is a database containing summary data from many GWAS with an in-built analytical 

platform capable of performing Mendelian randomization (9). The platform allows a hypothesis-free 

analysis of all the exposures in MR-Base to DVT to be conducted. The exposure data encompassed 

lifestyle (e.g. BMI and education), disease (e.g. ulcerative colitis and squamous cell carcinoma) and 

biological (e.g. bone density and oestrogen levels) traits. Prior to the MR analysis, we prepared the 

summary data from the GWAS available in MR-Base (https://mrcieu.github.io/TwoSampleMR). 

A list of studies with available GWAS summary statistics was obtained through the MR-Base 

API in R Studio. Non-European (N=88) and duplicate (N=138) studies were automatically removed 

using the dplyr R package (https://github.com/tidyverse/dplyr). In the case of duplicate studies, those 

with the highest sample size were kept. VTE (DVT and PE) and VTE-related (e.g. phlebitis and 

thrombophlebitis) traits were removed (N=9). The genetic instruments used for the analysis were single-

nucleotide polymorphisms (SNPs). Genetic confounding may bias MR estimates if SNPs are correlated 

(17), therefore linkage disequilibrium (LD) PLINK clumping (radius = 10,000kb; r2 = 0.001) was 

conducted to ensure the SNPs used to instrument exposures were independent. Depending on the nature 

of the exposure, the reported effect size for a given SNP was expressed along with the standard error 

(SE) as follows: as a one standard deviation (SD) increase in the level of the risk factor per risk allele 

for a continuous exposure or as an odds ratio (OR) for a binary exposure. 

Deep vein thrombosis data 

GWAS data for European DVT cases were obtained from the Neale Lab analysis of UK 

Biobank data (https://github.com/Nealelab/UK_Biobank_GWAS). During a 5-year period starting from 
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2005, ~500,000 participants aged 45 to 69 were employed to take part in UK Biobank. DVT data was 

collected through an online questionnaire, while diagnosis was confirmed by verbal interview with a 

trained nurse at one of the Biobank Assessment Centres in the UK. Samples were originally genotyped 

using a custom UK Biobank Affymetrix Axiom array (18). The latest Neale Lab data set version 

contains auto-curated phenotypes using PHESANT, followed by genotypic data selected through SNP 

quality control (QC). The GWAS data from the Neale Lab consortium was divided into multiple 

datasets, ordered by trait. Our outcome of interest (DVT) was presented in MR-Base as “Non-cancer 

illness code self-reported: deep venous thrombosis (dvt)”; these summary results relate to a GWAS of 

6,767 cases and 330,392 controls. 

Data harmonisation 

For exposure and outcome data harmonisation, incorrect but unambiguous alleles were 

corrected, while ambiguous alleles were removed. In the case of palindromic SNPs (A/T or C/G), allele 

frequencies were used to solve ambiguities. Traits that did not have genetic variants in the DVT GWAS 

were excluded (N = 483), resulting in a final list of 973 exposure phenotypes with which to perform the 

MR analysis (Supplementary Table 1).  

 

Mendelian Randomization Analyses 

Hypothesis-Free MR Analysis of human traits on DVT 

Hypothesis-free two-sample MR was conducted using the TwoSampleMR R package (9). The 

causal effect of a given trait on DVT was estimated using the inverse-variance weighted (IVW) method 

for traits with more than one SNP. Wald ratios were derived for traits with a single SNP. Additional 

MR methods were also performed as sensitivity analyses where genetic instruments were comprised of 

more than 3 SNPs (MR Egger, simple mode, weighted mode, and weighted median) (19). 

Multiple testing correction 
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As our analysis required a large number of phenotypes to be studied for their association with 

DVT, we expected that some of these traits might be highly correlated with each other. Therefore, we 

used PhenoSpD (20) to estimate the number of independent variables present in a correlation structure 

comprised of the particular traits of interest in order to correct for multiple testing. We used metaCCA 

(21) to create a phenotypic correlation matrix by Pearson correlation between each phenotype, with the 

aid of GWAS summary data. This correlation matrix was used as an input for PhenoSpD to assess the 

independent phenotypes through matrix spectral decomposition (22, 23). Since PhenoSpD treats 

exposures from separate studies as independent (e.g. BMI from study A can’t be found to correlate with 

hip circumference from study B, even though this is most likely the case), the number of total variables 

before the Bonferroni correction is more stringent. 

Beta coefficient transformation 

 Historically, studies have used logistic regression to investigate the association between a trait 

and disease. However, an issue with logistic regression is that effect estimates might not be 

representative of the whole population. Therefore, linear mixed model (LMM) methodology has gained 

popularity in genetic epidemiology due to its ability to control for population structure. Unlike in 

logistic regression, odds ratios (ORs) and risk ratios (RRs) cannot be calculated directly, but rather 

approximated, as the outcome from an LMM applied on a binary trait ranges on a scale of 0-1. In our 

study, we converted the beta coefficients from our MR analysis to RRs, using previously described 

methodology (24). 

 

MR Sensitivity Analyses 

Horizontal Pleiotropy Analysis 

Horizontal pleiotropy occurs when a SNP affects the outcome through a separate biological 

pathway than the exposure of interest (e.g. a genetic variant for cholesterol affects DVT not through 

cholesterol, but through another biological pathway). This can bias estimation of the causal effect of an 

exposure and subsequently leads to type I statistical errors, thus violating a key assumption of MR in a 
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similar way to genetic confounding. Therefore, MR-Egger regression was performed where exposures 

had more than 3 SNPs to test for this type of pleiotropy (27). 

Heterogeneity Analysis 

As part of the MR analysis, the causal effect of the genetic variants estimating for a single trait 

is assumed to be the same (homogenous). However, an increase in the number of instruments for an 

exposure can lead to heterogeneity, especially when there are multiple mechanisms through which the 

exposure might affect the outcome (e.g. variants associated with BMI may be associated with  DVT via 

a number of alterations to the circulating metabolome) (28). To test for genetic heterogeneity, we used 

the maximum likelihood estimator and MR-Egger for the results which passed multiple testing 

correction. 

 

Bidirectional MR 

MR analysis of DVT on human traits 

We performed a bidirectional MR analysis to assess the direction of the causal association 

between our exposures and DVT (i.e. to confirm that exposures alter risk of DVT and not vice-versa). 

As such, we performed an additional MR analysis, with DVT as the exposure and the traits causally 

associated with DVT (as evidenced by our primary analysis) as outcomes. This was conducted to 

identify potential pathways of reverse causation, which would invalidate MR assumptions (25, 26). 

  

Results 

Of the 973 phenotypes investigated, 945 were identified as independent by PhenoSpD, setting 

the Bonferroni P-value threshold for our MR analysis at 5.43E-5. Forty-seven phenotypes were found 

to be significantly associated with DVT at this threshold (Figure 1, Table 1). The results of the MR 

analyses for all exposures are shown in Supplementary Table 2. We were able to confirm the 
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association of traits related to adiposity, an established risk factor for DVT, such as “Body Mass Index” 

(Log RR: 0.40, 95% CI: 0.32 to 0.47; P = 1.60E-22), “Waist circumference” (Log RR: 0.50, 95% CI: 

0.40 to 0.59; P = 1.74E-22) and “Hip circumference” (Log RR: 0.36, 95% CI: 0.28 to 0.45; P = 2.22E-

13). Other risk factors previously found to be associated with DVT were “Comparative height size at 

age 10” (Log RR: 0.30, 95% CI: 0.20 to 0.40; P = 1.93E-06) and “Hyperthyroidism/thyrotoxicosis” 

(Log RR: 2.39, 95% CI: 1.88 to 2.90; P = 8.69E-18).  

We found several novel associations, such as  “Varicose veins” (Log RR: 1.90, 95% CI: 1.30 

to 2.50; P = 2.36E-07) and “Varicose veins of the lower extremities” (Log RR: 3.40, 95% CI: 2.31 to 

4.49; P = 5.13E-07), “Basal metabolic rate” (Log RR: 0.45, 95% CI: 0.36 to 0.54; P = 2.62E-20), 

“Treatment/medication code: warfarin” (Log RR: 4.29, 95% CI: 3.09 to 5.49; P = 1.40E-09), 

“Treatment/medication code: carbimazole” (Log RR: 3.60, 95% CI: 2.70 to 4.50; P = 2.41E-12) and 

“Prospective memory result” (Log RR: 1.46, 95% CI: 1.02 to 1.90; 5.33E-08). 

Over 50% of the exposures which passed our P-value threshold were found to be heterogenous 

(N=27) using the maximum likelihood method. Of these, most (N=24) were traits related to body size 

(mass and adiposity). The remaining heterogenous traits were basal metabolic rate (PHet: 3.71E-03), 

warfarin (PHet: 5.66E-40), and comparative height size at age 10 (PHet: 1.56E-05). These findings 

coincided with our IVW and MR-Egger heterogeneity analyses.  

Through our MR-Egger analysis, we found strong evidence of horizontal pleiotropy for one 

trait (“Qualifications: None of the above”) (intercept = -5.69E-04, P = 3.35E-02). We were unable to 

assess whether the “Prospective memory result” trait was pleiotropic, as this exposure was instrumented 

using only 2 SNPs. The bidirectional MR analysis found that DVT is causally associated with 

“Treatment/medication code: warfarin” (P = 1.79E-30), representing a bidirectional causal effect, thus 

invalidating MR assumptions (Table 2). 

Finally, “Eicosapentaenoate (EPA; 20:5n3)” (Log RR: 1.1, 95% CI: 0.75 to 1.45; P = 3.14E-

07), “Stearidonate (18:4n3)” (Log RR: 1.09, 95% CI: 0.73 to 1.45; P = 1.22E-06), “Arachidonate 

(20:4n6)” (Log RR: 0.913, 95% CI: 0.61 to 1.22; P = 2.08E-06), and “Mania/bipolar disorder/manic 
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depression” (Log RR: 3.95, 95% CI: 2.60 to 5.30; P = 5.18E-06) were found to be associated with DVT. 

As instruments for these exposures were comprised of one SNP, we were unable to test for 

heterogeneity, horizontal pleiotropy or appraise the directionality of the association.  

 

Discussion 

We performed a hypothesis-free MR analysis of 973 exposures to DVT, of which 47 were 

found to pass a conservative P-value threshold for evidence of causality. We have confirmed the causal 

association of several previously established risk factors for DVT and have identified several novel 

associations. 

One of the most well-known risk factors for DVT is adiposity and adiposity-related traits. As 

such, the association between these traits with DVT most likely represents a true causal relationship. 

Previous studies have confirmed that obesity leads to an increased incidence of DVT, and the estimate 

we report here for BMI largely coincides with that of a previous MR study (6). A hypothesised 

mechanism is that altered metabolism in people with higher adiposity levels leads to a hypercoagulable 

state, and due to an impaired venous return, increases the chance of thrombi formation (29, 30). 

We also found that an increase in the fat-free mass of the body leads to an increased risk of 

DVT, which reinforces the findings from previous studies which attest that the physical increase in 

body measurements leads to an increase in DVT (30). As our waist circumference Log RR (0.5) was 

higher compared to that of BMI (0.4) and hip circumference (0.36), this suggests that the distribution 

of adiposity could be an important factor for DVT progression.  

Height is also a well-documented risk factor for DVT and in support of this we show that 

“comparative height at age 10” was positively associated with DVT. Increased height leads to a greater 

volume of blood needed to be pumped throughout the body, which can increase the stress on the blood 

vessels, disrupting haemostasis. Height is also associated with an increase in body size, which might 
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have a standalone effect greater than that of metabolic changes due to obesity (29, 41). As expected, 

many body size related traits demonstrated heterogeneity. 

 Another risk factor that has been previously shown to be associated with DVT (by observational 

analysis) is hyperthyroidism (31, 32). Here we report a positive association between 

hyperthyroidism/thyrotoxicosis and DVT. Thyroid hormones (THs) regulate the metabolic processes in 

our body. An overabundance of these hormones leads to hyperthyroidism/thyrotoxicosis, leading to a 

hypercoagulable state and to changes in the basal metabolic rate and thermogenesis, both which affect 

body weight. Moreover, TH induces alterations in factor VIII synthesis and secretion, which in turn 

leads to an increase in thrombi formation (31, 32).  

Hyperthyroidism influences basal metabolic rate and this in turn has a large impact on body 

weight. Increased basal metabolic rate may lead individuals to consume a larger amount of food 

compared to an average person. Moreover, the basal metabolic rate is regulated by thyroid hormones, 

and this makes sense considering that hyperthyroidism leads to an increased risk of DVT (31). Here, 

we found that an increase in basal metabolic rate is associated with DVT. Although hyperthyroidism 

and basal metabolic rate traits are clearly linked biologically, we did not find evidence of heterogeneity.   

In MR-base there are genetic instruments that proxy for an increased likelihood of being 

prescribed a particular drug. Here, we found that the genetic instrument that proxies for an increased 

likelihood are being prescribed carbimazole is associated with increased risk of DVT. Carbimazole is a 

thionamide drug which has been used to treat thyrotoxicosis for over 60 years. It reduces the levels of 

circulating thyroid hormones (THs) by binding to thyroid peroxidase, the enzyme required for TH 

production. As hyperthyroidism/thyrotoxicosis is positively associated with DVT, we would expect that 

carbimazole to have a negative effect on the disease. Our MR analysis has shown that this is not the 

case, with the most probable explanation being that patients who take this type of thionamide drug are 

more likely to have been diagnosed with DVT. 

We also found that the genetic instrument that proxies for an increased likelihood of being 

prescribed warfarin is associated with an increased risk of DVT. Warfarin is an anticoagulant used to 
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treat DVT which acts as a vitamin K antagonist, reducing the production of vitamin K-dependent 

proteins involved in coagulation (FVIIa, FIXa, FXa, and thrombin). However, initial warfarin dosage 

may result in skin necrosis and a hypercoagulable state due to reductions in protein C and protein S 

levels, paradoxically increasing the risk of DVT. Moreover, our sensitivity analysis identified a 

bidirectional causal effect between warfarin treatment and DVT. This would make sense, as individuals 

who are prescribed warfarin are more likely to already suffer from a form of VTE (2, 33). 

There is some evidence that varicose veins may increase the risk of DVT (34) and here we 

demonstrate there is indeed a causal association. Varicose veins are characterised by their enlarged and 

twisted appearance. A common occurrence in varicose veins is the impaired action of leaflet valves, 

which prevent the blood from falling backwards. This results in the inability of the blood to fully return 

to the heart, leading to the enlargement of the veins, and in time, potentially an increased risk of DVT 

(34).  

Venous blood stasis caused by immobility is also a known risk factor for DVT. Here we report 

a positive association between long standing illness, disability or infirmity with DVT. This most likely 

causes stasis of the blood flow in the veins and can be either due to a particular neurological condition 

or due to the paralysis of the lower limbs. Moreover, immobility may also arise due to hospitalisation 

and surgery or a prolonged work-, air travel-, computer-related immobility (35, 36).  

In addition, current research suggests that comorbidities lead to a higher incidence of DVT. It 

can therefore be assumed that an individual taking prescription medication suffers from an ongoing 

medical condition (thus having a lower health rating), which in turn increases the risk of developing 

DVT. This depends on the comorbidity, as patients suffering from long-lasting conditions, such as 

cancer or chronic affections are more predisposed to developing DVT than other patients (37-40). This 

is consistent with our finding that “taking other prescription medications and overall health rating” is 

associated with an increased risk of DVT. 

Four of the traits which passed the P-value threshold were associated with only one SNP: 

“Eicosapentaenoate (EPA; 20:5n3)”, “Stearidonate (18:4n3)”, “Arachidonate (20:4n6)”, and 
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“Mania/bipolar disorder/manic depression”. This limited our capacity to discuss in further details the 

mechanistic insights and pathways through which these exposures might act, as we are unable to 

confirm the direction of a causal effect on DVT or conduct any additional sensitivity analysis. Unless 

additional instruments are found for these traits, a further colocalization analysis is required to assess 

the direction of their causal effects (42). We also report an association between prospective memory 

and DVT, however, we found no evidence from the literature to support this. As this trait was 

instrumented by 2 SNPs, we were unable to perform a horizontal pleiotropy analysis, and thus could 

not confirm that the genetic variants for prospective memory act only through this trait alone. 

Finally, we found an association between low qualification and DVT. As this association was 

found to be due to horizontal pleiotropy, the genetic variants associated with this trait most likely do 

not act through the exposure, but rather through a different pathway, thus invalidating one of the MR 

assumptions. However, a case can still be made for the relationship between education and DVT. 

Previous research has highlighted that a lower socioeconomic status is associated with a decrease in 

school performance (43), and that this in turn is associated  an increased incidence of VTE (44). 

 

Strengths 

Using MR, a genetic epidemiological method which utilises the availability of summary-level 

GWAS results, we were able to test the association between a number of exposures to a type of 

cardiovascular disease (DVT) for which the causes are still largely unknown. This makes using two-

sample MR in a hypothesis-free manner an attractive approach, as this ensures that novel risk factor 

identification is not hindered by publication bias. Unlike observational epidemiology, which 

necessitates the collection of primary data, two-sample MR can use genetic data compiled from 

previous studies to appraise the association between an exposure and an outcome. 

Our hypothesis-free approach has highlighted several exposures (prospective memory, basal 

metabolic rate) that have not been found through conventional methods, while confirming that 

adiposity, a previously-known risk factor, plays a large role in DVT aetiology. Detection of these 
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established associations increases the validity of our finding using two-sample MR. These findings may 

now be applied to bring additional insight into hypothesis-driven observational or laboratory studies. 

As genetic epidemiology is aided by the publication of new GWAS relating to the mediators of the 

human proteome and transcriptome, a more detailed analysis, outlying possible pathways through which 

an exposure might impact DVT will be possible (45-47). 

 

Limitations 

Although the number of available traits in MR-Base has risen significantly during the previous 

year, some traits are still in the process of being curated and introduced into the database. Moreover, it 

is possible that some risk factors might not possess any genetic instruments. As such, we were unable 

identify the association of some exposures (e.g. proteins which are associated with the disease – von 

Willebrand Factor or P-selectin) which were found to be potential risk factors in previous studies. 

A limitation in the conversion of beta coefficients to RRs in the case of all-or-none outcome 

traits is represented by the ratio of the number of cases to the number of controls. When this ratio is 

very small, the RR cannot be calculated in the case of those traits with negative betas under a certain 

value. As such, one trait which we found to be significant (“Qualifications: College or University 

degree”) in the initial stage of the analysis was left out. 

As PhenoSpD is not able to assess the correlation between traits which come from different 

studies, the number of independent variables resulting from the PhenoSpD analysis was higher, 

resulting in a more stringent P-value threshold following Bonferroni correction. This might have 

elevated the type 2 error rate, where traits which have a true causal effect on the disease were not found 

to be significant as they did not pass our threshold. We have included a supplementary table with those 

traits that, although did not pass our P-value threshold, did show evidence for an association 

(Supplementary Table 3). Another cause of false-negative findings arises from the limited power of 

some instruments. This discrepancy in power leads to a variation in significance of traits which are most 

likely correlated. For example, although we found many traits related to adiposity to be associated with 
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DVT (e.g. BMI, weight, body fat percentage), exposures such as “Obesity Class 1” and “Body fat” were 

not. 

The limitations of two-sample MR outlined above reflect that there is potential for better quality 

control of MR analyses, such as using only those instruments which pass a particular statistical power 

threshold, restricting the analysis to traits which possess more than one SNP, or using studies with a 

larger ratio of cases to controls in the case of those analyses where the outcome is a binary trait. 

 

Conclusion 

 As previous studies on DVT using conventional approaches have not yielded conclusive results, 

here we used MR to investigate DVT aetiology. Genetic epidemiology has been gaining in popularity 

during the last decade, partly due to the decreasing cost of genome sequencing and as well as limitations 

of observational epidemiological methods in causal inference. Through a hypothesis-free approach we 

were able to confirm the association of previously identified risk factors for DVT (e.g. adiposity-related) 

and identify novel causal associations (e.g. hyperthyroidism, basal metabolic rate) with the disease. 

Further research is required to inform mechanistic understanding of how these exposures alter DVT 

risk. This could be achieved by incorporating gene expression (the human transcriptome and proteome) 

and pQTL (protein quantitative trait locus) data into the further MR analyses or by future hypothesis-

driven studies, in an observational or laboratory setting.  

 

 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 22, 2018. ; https://doi.org/10.1101/476135doi: bioRxiv preprint 

https://doi.org/10.1101/476135
http://creativecommons.org/licenses/by-nc-nd/4.0/


References: 
 
 
1. Baaten CCFMJ, ten Cate H, van der Meijden PEJ, Heemskerk JWM. Platelet populations and 
priming in hematological diseases. Blood Reviews. 2017;31(6):389-99. 
2. Mackman N. New insights into the mechanisms of venous thrombosis. The Journal of 
Clinical Investigation. 2012;122(7):2331-6. 
3. Stone J, Hangge P, Albadawi H, Wallace A, Shamoun F, Knuttien MG, et al. Deep vein 
thrombosis: pathogenesis, diagnosis, and medical management. Cardiovascular Diagnosis and 
Therapy. 2017;7(Suppl 3):S276-S84. 
4. Zhu R, Hu Y, Tang L. Reduced cardiac function and risk of venous thromboembolism in 
Asian countries. Thrombosis Journal. 2017;15(1):12. 
5. Samuelson Bannow BT, Konkle BA. Laboratory biomarkers for venous thromboembolism 
risk in patients with hematologic malignancies: A review. Thrombosis Research. 2018;163:138-45. 
6. Klovaite J, Benn M, Nordestgaard BG. Obesity as a causal risk factor for deep venous 
thrombosis: a Mendelian randomization study. Journal of Internal Medicine. 2014;277(5):573-84. 
7. Grimes DA, Schulz KF. False Alarms and Pseudo-Epidemics: The Limitations of 
Observational Epidemiology. Obstetrics & Gynecology. 2012;120(4). 
8. Davey Smith G, Ebrahim S. ‘Mendelian randomization’: can genetic epidemiology contribute 
to understanding environmental determinants of disease?*. International Journal of Epidemiology. 
2003;32(1):1-22. 
9. Hemani G, Zheng J, Wade KH, Laurin C, Elsworth B, Burgess S, et al. MR-Base: a platform 
for systematic causal inference across the phenome using billions of genetic associations. bioRxiv. 
2016. 
10. Evans DM, Davey Smith G. Mendelian Randomization: New Applications in the Coming 
Age of Hypothesis-Free Causality. Annual Review of Genomics and Human Genetics. 
2015;16(1):327-50. 
11. Smith GD, Ebrahim S. Mendelian randomization: prospects, potentials, and limitations. 
International Journal of Epidemiology. 2004;33(1):30-42. 
12. Lewis SJ, Davey Smith G. Alcohol, ALDH2, and Esophageal Cancer: A Meta-analysis 
Which Illustrates the Potentials and Limitations of a Mendelian Randomization Approach. Cancer 
Epidemiology Biomarkers &amp; Prevention. 2005;14(8):1967. 
13. Lawlor Debbie A, Harbord Roger M, Sterne Jonathan AC, Timpson N, Davey Smith G. 
Mendelian randomization: Using genes as instruments for making causal inferences in epidemiology. 
Statistics in Medicine. 2008;27(8):1133-63. 
14. Davey Smith G, Hemani G. Mendelian randomization: genetic anchors for causal inference in 
epidemiological studies. Human Molecular Genetics. 2014;23(R1):R89-R98. 
15. Yavorska OO, Burgess S. MendelianRandomization: an R package for performing Mendelian 
randomization analyses using summarized data. International Journal of Epidemiology. 
2017;46(6):1734-9. 
16. Lawlor DA. Commentary: Two-sample Mendelian randomization: opportunities and 
challenges. International Journal of Epidemiology. 2016;45(3):908-15. 
17. Haycock PC, Burgess S, Wade KH, Bowden J, Relton C, Davey Smith G. Best (but oft-
forgotten) practices: the design, analysis, and interpretation of Mendelian randomization studies. The 
American Journal of Clinical Nutrition. 2016;103(4):965-78. 
18. Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, et al. UK biobank: an open 
access resource for identifying the causes of a wide range of complex diseases of middle and old age. 
PLoS medicine. 2015;12(3):e1001779-e. 
19. Hemani G, Bowden J, Haycock PC, Zheng J, Davis O, Flach P, et al. Automating Mendelian 
randomization through machine learning to construct a putative causal map of the human phenome. 
bioRxiv. 2017. 
20. Zheng J, Richardson T, Millard L, Hemani G, Raistrick C, Vilhjalmsson B, et al. PhenoSpD: 
an atlas of phenotypic correlations and a multiple testing correction for the human phenome. bioRxiv. 
2017. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 22, 2018. ; https://doi.org/10.1101/476135doi: bioRxiv preprint 

https://doi.org/10.1101/476135
http://creativecommons.org/licenses/by-nc-nd/4.0/


21. Cichonska A, Rousu J, Marttinen P, Kangas AJ, Soininen P, Lehtimäki T, et al. metaCCA: 
summary statistics-based multivariate meta-analysis of genome-wide association studies using 
canonical correlation analysis. Bioinformatics. 2016;32(13):1981-9. 
22. Nyholt DR. A simple correction for multiple testing for single-nucleotide polymorphisms in 
linkage disequilibrium with each other. Am J Hum Genet. 2004;74(4):765-9. 
23. Li J, Ji L. Adjusting multiple testing in multilocus analyses using the eigenvalues of a 
correlation matrix. Heredity (Edinb). 2005;95(3):221-7. 
24. Lloyd-Jones LR, Robinson MR, Yang J, Visscher PM. Transformation of Summary Statistics 
from Linear Mixed Model Association on All-or-None Traits to Odds Ratio. Genetics. 
2018;208(4):1397. 
25. Zheng J, Baird D, Borges M-C, Bowden J, Hemani G, Haycock P, et al. Recent 
Developments in Mendelian Randomization Studies. Current Epidemiology Reports. 2017;4(4):330-
45. 
26. Lyngdoh T, Vuistiner P, Marques-Vidal P, Rousson V, Waeber G, Vollenweider P, et al. 
Serum Uric Acid and Adiposity: Deciphering Causality Using a Bidirectional Mendelian 
Randomization Approach. PLOS ONE. 2012;7(6):e39321. 
27. Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: 
effect estimation and bias detection through Egger regression. International Journal of Epidemiology. 
2015;44(2):512-25. 
28. Bowden J, Spiller W, Del Greco M F, Sheehan N, Thompson J, Minelli C, et al. Improving 
the visualization, interpretation and analysis of two-sample summary data Mendelian randomization 
via the Radial plot and Radial regression. International Journal of Epidemiology. 2018;47(4):1264-78. 
29. Cushman M, O'Meara ES, Heckbert SR, Zakai NA, Rosamond W, Folsom AR. Body size 
measures, hemostatic and inflammatory markers and risk of venous thrombosis: The Longitudinal 
Investigation of Thromboembolism Etiology. Thrombosis research. 2016;144:127-32. 
30. Kaze AD, Bigna JJ, Nansseu JR, Noubiap JJ. Body size measures and risk of venous 
thromboembolism: protocol for a systematic review and meta-analysis. BMJ open. 
2018;8(3):e018958-e. 
31. Mullur R, Liu Y-Y, Brent GA. Thyroid hormone regulation of metabolism. Physiological 
reviews. 2014;94(2):355-82. 
32. van Zaane B, Squizzato A, Huijgen R, van Zanten AP, Fliers E, Cannegieter SC, et al. 
Increasing levels of free thyroxine as a risk factor for a first venous thrombosis: a case-control study. 
Blood. 2010;115(22):4344-9. 
33. Binymin KA, Nasher M, Patel D. Warfarin-induced deep vein thrombosis. International 
medical case reports journal. 2014;7:123-5. 
34. Müller B, Leutgeb, Engeser, Achankeng N, Szecsenyi, Laux. Varicose veins are a risk factor 
for deep venous thrombosis in general practice patients. Vasa. 2012;41(5):360-5. 
35. Cushman M. Epidemiology and risk factors for venous thrombosis. Seminars in hematology. 
2007;44(2):62-9. 
36. Healy B, Levin E, Perrin K, Weatherall M, Beasley R. Prolonged work- and computer-related 
seated immobility and risk of venous thromboembolism. Journal of the Royal Society of Medicine. 
2010;103(11):447-54. 
37. Chung WS, Lin CL. Comorbid risks of deep vein thrombosis and pulmonary 
thromboembolism in patients with chronic pancreatitis: a nationwide cohort study. Journal of 
Thrombosis and Haemostasis. 2015;14(1):98-104. 
38. Corraini P, Ording AG, Henderson VW, Szépligeti S, Horváth-Puhó E, Sørensen HT. Cancer, 
other comorbidity, and risk of venous thromboembolism after stroke: a population-based cohort study. 
Thrombosis Research. 2016;147:88-93. 
39. Ording AG, Horváth-Puhó E, Garne JP, Nyström PW, Vyberg M, Sørensen HT, et al. Impact 
of comorbidity on risk of venous thromboembolism in patients with breast cancer: a Danish 
population-based cohort study. BMJ Open. 2014;4(6). 
40. Smith AB, Horvath-Puhó E, Nielsen ME, Lash TL, Baron JA, Sørensen HT. Effect of 
comorbidity on risk of venous thromboembolism in patients with renal cell carcinoma. Urologic 
oncology. 2014;32(4):466-72. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 22, 2018. ; https://doi.org/10.1101/476135doi: bioRxiv preprint 

https://doi.org/10.1101/476135
http://creativecommons.org/licenses/by-nc-nd/4.0/


41. Brækkan SK, Borch KH, Mathiesen EB, Njølstad I, Wilsgaard T, Hansen J-B. Body Height 
and Risk of Venous ThromboembolismThe Tromsø Study. American Journal of Epidemiology. 
2010;171(10):1109-15. 
42. Giambartolomei C, Vukcevic D, Schadt EE, Franke L, Hingorani AD, Wallace C, et al. 
Bayesian Test for Colocalisation between Pairs of Genetic Association Studies Using Summary 
Statistics. PLOS Genetics. 2014;10(5):e1004383. 
43. Thomson S. Achievement at school and socioeconomic background—an educational 
perspective. npj Science of Learning. 2018;3(1):5. 
44. Kort D, Rein N, Meer FJM, Vermaas HW, Wiersma N, Cannegieter SC, et al. Relationship 
between neighborhood socioeconomic status and venous thromboembolism: results from a 
population-based study. Journal of Thrombosis and Haemostasis. 2017;15(12):2352-60. 
45. Manzoni C, Kia DA, Vandrovcova J, Hardy J, Wood NW, Lewis PA, et al. Genome, 
transcriptome and proteome: the rise of omics data and their integration in biomedical sciences. 
Briefings in Bioinformatics. 2018;19(2):286-302. 
46. Suhre K, Arnold M, Bhagwat AM, Cotton RJ, Engelke R, Raffler J, et al. Connecting genetic 
risk to disease end points through the human blood plasma proteome. Nature Communications. 
2017;8:14357. 
47. Sun BB, Maranville JC, Peters JE, Stacey D, Staley JR, Blackshaw J, et al. Genomic atlas of 
the human plasma proteome. Nature. 2018;558(7708):73-9. 

 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 22, 2018. ; https://doi.org/10.1101/476135doi: bioRxiv preprint 

https://doi.org/10.1101/476135
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 
  

Box 1. MR works in a similar way to randomized controlled trials (since alleles are randomly 
allocated at conception). It uses a genetic variant (G) as an instrument/proxy to determine 
whether an exposure (E) is causally associated with a disease outcome (O). During Mendelian 
Randomization, three conditions must be met to assure the validity of the analysis: 1) the 
instrument (G) is certainly associated with the exposure (E); 2) the association between the 
genetic instrument and the outcome (DVT) happens solely though the exposure; 3) the 
instrument is not associated with any confounder (8). These are invalidated by the presence 
of horizontal pleiotropy, where a genetic variant affects the outcome not through the studied 
exposure, but through a different pathway (27).   
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Figure 1. 1-to-many-forest plot of the exposures which passed the P-value threshold after multiple testing correction. Each trait is accompanied by two additional 
descriptive columns (No. SNP and Bonferroni-corrected P-value), while the Log Risk Ratio (RR) is displayed on the right, alongside with the standard error (SE). MR 
methods: Inverse Variance Weighted (SNP > 1) and Wald Ratio (SNP = 1). 
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Table 1

Exposure Log Risk Ratio SE No. SNP
P-value 

Bonferroni
PHet (ML) PPlt

Arm fat mass (right) 0.45 0.04 270 1.06E-30 3.60E-01 2.82E-01 0.38 0.52

Arm fat mass (left) 0.45 0.04 268 4.98E-29 1.93E-01 1.35E-01 0.38 0.53

Leg predicted mass (right) 0.52 0.04 361 8.79E-29 1.34E-02 6.65E-01 0.43 0.60

Weight 0.46 0.04 337 1.93E-28 1.33E-03 8.57E-01 0.38 0.54

Leg fat mass (right) 0.53 0.05 282 4.23E-28 9.07E-03 4.98E-01 0.44 0.62

Leg predicted mass (left) 0.52 0.05 356 2.99E-27 5.18E-03 8.05E-01 0.43 0.60

Whole body fat mass 0.44 0.04 280 4.65E-27 1.75E-01 1.77E-01 0.36 0.51

Leg fat-free mass (left) 0.51 0.05 361 6.10E-27 4.73E-03 8.07E-01 0.42 0.60

Leg fat-free mass (right) 0.50 0.05 363 1.11E-25 5.05E-03 5.56E-01 0.41 0.59

Trunk fat mass 0.43 0.04 283 1.73E-23 2.90E-03 6.36E-01 0.35 0.51

Leg fat mass (left) 0.50 0.05 281 1.85E-23 3.71E-02 5.53E-01 0.40 0.59

Body mass index (BMI) 0.40 0.04 305 1.60E-22 6.81E-02 5.29E-01 0.32 0.47

Waist circumference 0.50 0.05 227 1.74E-22 1.65E-02 5.22E-01 0.40 0.59

Comparative body size at age 10 0.57 0.06 157 3.98E-22 5.18E-01 1.95E-01 0.46 0.68

Body fat percentage 0.51 0.05 253 1.48E-20 4.79E-02 6.35E-01 0.41 0.61

Basal metabolic rate 0.45 0.05 377 2.62E-20 3.71E-03 7.06E-01 0.36 0.54

Leg fat percentage (right) 0.59 0.06 246 3.32E-18 2.87E-03 2.40E-01 0.47 0.71

Non-cancer illness code self-reported: hyperthyroidism/thyrotoxicosis 2.39 0.26 6 8.69E-18 6.69E-01 3.87E-01 1.88 2.90

Trunk fat percentage 0.44 0.05 237 2.91E-16 2.43E-03 6.18E-01 0.35 0.54

Whole body water mass 0.42 0.05 405 7.67E-15 1.32E-04 3.44E-01 0.32 0.51

Arm predicted mass (left) 0.45 0.05 349 3.37E-14 1.53E-05 2.58E-01 0.34 0.55

Whole body fat-free mass 0.41 0.05 405 3.90E-14 2.06E-04 3.42E-01 0.31 0.50

Overall health rating 0.80 0.10 54 4.40E-14 5.14E-01 6.40E-01 0.61 0.99

Arm fat percentage (right) 0.55 0.07 234 8.48E-14 8.47E-17 6.94E-01 0.42 0.68

Arm fat-free mass (right) 0.44 0.05 350 1.66E-13 2.95E-04 2.18E-01 0.33 0.54

Hip circumference 0.36 0.04 282 2.22E-13 2.92E-04 8.76E-02 0.28 0.45

Arm predicted mass (right) 0.43 0.05 364 6.96E-13 9.35E-05 2.66E-01 0.32 0.54

Arm fat percentage (left) 0.55 0.07 253 1.61E-12 1.32E-24 6.98E-01 0.41 0.68

Leg fat percentage (left) 0.54 0.07 248 1.76E-12 7.00E-04 7.26E-01 0.40 0.67

Arm fat-free mass (left) 0.42 0.05 355 1.84E-12 3.14E-05 1.92E-01 0.32 0.53

Treatment/medication code: carbimazole 3.60 0.46 9 2.41E-12 5.21E-01 1.05E-01 2.70 4.50

Trunk fat-free mass 0.39 0.05 406 2.32E-11 2.46E-06 5.75E-02 0.29 0.48

Trunk predicted mass 0.38 0.05 406 4.10E-11 9.09E-06 5.13E-02 0.28 0.48

Qualifications: None of the above 0.99 0.14 64 2.03E-10 6.18E-01 3.35E-02 0.72 1.26

Treatment/medication code: warfarin 4.29 0.61 7 1.40E-09 5.66E-40 4.26E-01 3.09 5.49

Prospective memory result 1.46 0.23 2 5.33E-08 4.61E-01 NA 1.02 1.90

Long-standing illness  disability or infirmity 1.25 0.20 14 8.13E-08 2.17E-01 4.46E-01 0.87 1.63

Diagnoses - main ICD10: I83 Varicose veins of lower extremities 1.90 0.31 16 2.36E-07 1.91E-01 5.04E-01 1.30 2.50

Eicosapentaenoate (EPA; 20:5n3) 1.10 0.18 1 3.14E-07 NA NA 0.75 1.45

Non-cancer illness code self-reported: varicose veins 3.40 0.56 2 5.13E-07 4.42E-01 NA 2.31 4.49

Stearidonate (18:4n3) 1.09 0.18 1 1.22E-06 NA NA 0.73 1.45

Taking other prescription medications 1.17 0.20 10 1.36E-06 4.83E-01 4.40E-01 0.79 1.55

Comparative height size at age 10 0.30 0.05 364 1.93E-06 1.56E-05 1.08E-01 0.20 0.40

Arachidonate (20:4n6) 0.91 0.16 1 2.08E-06 NA NA 0.61 1.22

Obesity class 2 0.17 0.03 11 2.79E-06 5.45E-01 6.86E-01 0.11 0.22

Non-cancer illness code self-reported: mania/bipolar disorder/manic depression 3.95 0.69 1 5.18E-06 NA NA 2.60 5.30

Overweight 0.28 0.05 14 3.07E-05 3.44E-01 1.71E-01 0.18 0.38

CI (95%)

Main MR analysis. Methods: Inverse Variance Weighted (SNP > 1) and Wald Ratio (SNP = 1).
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Table 2

Outcome No. SNP Beta SE P-value P-value Bonferroni

Treatment/medication code: warfarin 9 0.29 0.02 3.81E-32 1.79E-30

Stearidonate (18:4n3) 5 1.35 0.50 6.78E-03 3.19E-01

Prospective memory result 9 0.40 0.17 1.64E-02 7.71E-01

Arachidonate (20:4n6) 5 0.24 0.30 2.73E-02 1.00E+00

Eicosapentaenoate (EPA; 20:5n3) 5 0.58 0.44 2.86E-02 1.00E+00

Obesity class 2 5 1.20 2.53 4.12E-02 1.00E+00

Overweight 5 -0.46 1.17 4.69E-02 1.00E+00

Non-cancer illness code  self-reported: varicose veins 9 0.02 0.01 4.71E-02 1.00E+00

Treatment/medication code: carbimazole 9 0.00 0.01 8.84E-02 1.00E+00

Body mass index (BMI) 9 0.03 0.40 9.53E-02 1.00E+00

Weight 9 0.22 0.25 9.89E-02 1.00E+00

Overall health rating 9 0.27 0.16 1.87E-01 1.00E+00

Long-standing illness  disability or infirmity 9 0.19 0.10 1.91E-01 1.00E+00

Body fat percentage 9 0.04 0.37 2.06E-01 1.00E+00

Whole body fat mass 9 0.13 0.36 2.38E-01 1.00E+00

Whole body fat-free mass 9 0.20 0.32 3.62E-01 1.00E+00

Whole body water mass 9 0.20 0.32 3.80E-01 1.00E+00

Basal metabolic rate 9 0.21 0.28 3.89E-01 1.00E+00

Leg fat percentage (right) 9 -0.25 0.28 3.96E-01 1.00E+00

Leg fat mass (right) 9 -0.04 0.29 4.15E-01 1.00E+00

Bidirectional MR of DVT on traits founds significant in our main MR 
analysis. Method: Inverse variance weighted (IVW).
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