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Summary

Background

Deep vein thrombosis (DVT) is the formation of a thrombus/clot in the deep veins, when part of this
clot breaks off it can travel to the lungs, resulting in pulmonary embolism. These two conditions
together are known as venous thromboembolism (VTE), a leading cause of death and disability
worldwide. Despite the prevalence of VTE, we do not fully understand what causes it and it is often
overlooked as a major public health problem. Confirming and identifying risk factors associated with
DVT is likely to lead to a reduction in the incidence, morbidity and mortality of VTE especially where
these risk factors are modifiable. We can do this, by exploiting the availability of summary genetic data
from genome-wide association studies (GWAS) of numerous phenotypes, including DVT, which

permits hypothesis-free causal inference.
Objectives

To identify novel risk factors for DVT and to assess the causality of factors previously shown to be

associated with DVT.
Methods

Two-sample Mendelian randomization (MR) was performed using summarised genetic data. Inverse
variance weighted (IVW) estimates were calculated and validated by additional methods more robust
to horizontal pleiotropy (MR Egger, simple mode, weighted mode, and weighted median). Bidirectional

and heterogeneity sensitivity analyses were performed to further evaluate our findings.
Results

Forty-seven exposures passed an exposure-exposure correlation-adjusted Bonferroni P-value threshold
(5.43E-05). These included previously hypothesised risk factors for DVT (e.g. body mass index,
varicose veins, height, hyperthyroidism) and novel associations (e.g. prospective memory, basal

metabolic rate).
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Conclusion

Our analyses confirmed causal associations of risk factors previously associated with DVT and
highlighted several novel risk factors for the disease. Our study demonstrates the utility of using a

hypothesis free Mendelian randomization approach for the identification of novel disease risk factors.

Introduction

Under normal physiological circumstances, platelets and fibrin form clots to prevent blood loss
at sites of vessel injury (1). Thrombosis is characterised as the abnormal formation of a clot within a
blood vessel, which leads to reduced blood flow through the circulatory system (2, 3). When these
abnormal clots occur in the deep veins of the legs, groin or arms this is known as deep vein thrombosis
(DVT), and when part of one of these clots breaks away and becomes lodged in the lungs this is known
as pulmonary embolism. These two conditions are together termed venous thromboembolism (VTE), a

leading cause of death and disability worldwide.

Common symptoms of DVT include pain, swelling and tenderness of the effected limb and
redness/warmth at the site of the clots, however about half of those suffering DVT will have no
symptoms. Undiagnosed/untreated DVT can lead to serious health problems with 1 in 10 of those
untreated developing pulmonary embolism (PE), which can then lead to heart failure and in severe
cases, death (4). The symptoms of DVT alone are often not specific or sufficient to make a diagnosis,
but when considered in conjunction with known risk factors, can help determine the likelihood of DVT.
Furthermore, evaluating these risk factors can be used to determine whether thromboprophylaxis should

be administered to prevent DVT in high risk patients.

Patients with DVT are currently treated with anticoagulants. Intravenous heparin and oral
warfarin (a vitamin K antagonist) have been used in combination to treat DVT for over 50 years. Whilst
new treatments (dabigatran, rivaroxaban) have shown increased anticoagulative activity relative to the

traditional treatment, they do not target the main cause(s) of DVT (2, 3). Hence, the identification of
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novel causal risk factors for DVT is desired, as this could aid in the development of an efficient
prophylactic drug (3). Current research has established several risk factors for DVT: these are genetic,
such as deficiencies in anticoagulants antithrombin, protein C, and protein S or acquired, such as age,

obesity, cancer, pregnancy, trauma, or smoking (2, 5, 6).

Whilst most associations with a large effect size identified by observational epidemiology have
been found to be causal (e.g. a positive association between smoking and cancer), observational
epidemiology is limited, especially in the case of weak associations (7). This may be due to
confounding, reverse causation, or bias. Mendelian randomization (MR) applies the concept of
randomized controlled trials (RCTs) to genetic epidemiology, bypassing the high costs and ethical
issues associated with RCTs. In an MR framework, genetic variants are used as instrumental variables
(IVs) to infer the causality of potential risk factors. MR is seeing increasing application in the field of
epidemiology and has been proven to give reliable effect estimates, if certain assumptions are satisfied
(Box 1) (8-14). Unlike one-sample MR, which requires individual-level data, two-sample MR can be
conducted using summary-level data from published genome-wide association studies (GWAS) (15).
Summary data from GWAS are often publicly available, and as genetic data for exposures and outcomes
can be obtained from independent datasets, this makes two-sample MR a flexible, well-powered and

cost-effective method to investigate causal associations (16).

Hypothesis-driven approaches based on previous research can be subject to publication bias,
which may prevent the identification of novel risk factors (10). Here, we conducted a hypothesis-free
two-sample MR analysis of 973 exposures on DVT. These exposures are those curated in an online
repository of genetic data; MR-Base (9). Our aim was to identify both novel risk factors for DVT
through a hypothesis-free analysis, and to test the causality of traits previously shown to be associated

with the disease.
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Methods

Data preparation

GWAS data for exposures

Hypothesis-free two-sample MR was conducted using the TwoSampleMR R package (9).
Genetic data on exposures were obtained from the MR-Base platform of harmonised GWAS summary
data. MR-Base is a database containing summary data from many GWAS with an in-built analytical
platform capable of performing Mendelian randomization (9). The platform allows a hypothesis-free
analysis of all the exposures in MR-Base to DVT to be conducted. The exposure data encompassed
lifestyle (e.g. BMI and education), disease (e.g. ulcerative colitis and squamous cell carcinoma) and
biological (e.g. bone density and oestrogen levels) traits. Prior to the MR analysis, we prepared the

summary data from the GWAS available in MR-Base (https://mrcieu.github.io/TwoSampleMR).

A list of studies with available GWAS summary statistics was obtained through the MR-Base
API in R Studio. Non-European (N=88) and duplicate (N=138) studies were automatically removed
using the dplyr R package (https://github.com/tidyverse/dplyr). In the case of duplicate studies, those
with the highest sample size were kept. VTE (DVT and PE) and VTE-related (e.g. phlebitis and
thrombophlebitis) traits were removed (N=9). The genetic instruments used for the analysis were single-
nucleotide polymorphisms (SNPs). Genetic confounding may bias MR estimates if SNPs are correlated
(17), therefore linkage disequilibrium (LD) PLINK clumping (radius = 10,000kb; r2 = 0.001) was
conducted to ensure the SNPs used to instrument exposures were independent. Depending on the nature
of the exposure, the reported effect size for a given SNP was expressed along with the standard error
(SE) as follows: as a one standard deviation (SD) increase in the level of the risk factor per risk allele

for a continuous exposure or as an odds ratio (OR) for a binary exposure.

Deep vein thrombosis data

GWAS data for European DVT cases were obtained from the Neale Lab analysis of UK

Biobank data (https://github.com/Nealelab/UK Biobank GWAS). During a 5-year period starting from
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2005, ~500,000 participants aged 45 to 69 were employed to take part in UK Biobank. DVT data was
collected through an online questionnaire, while diagnosis was confirmed by verbal interview with a
trained nurse at one of the Biobank Assessment Centres in the UK. Samples were originally genotyped
using a custom UK Biobank Affymetrix Axiom array (18). The latest Neale Lab data set version
contains auto-curated phenotypes using PHESANT, followed by genotypic data selected through SNP
quality control (QC). The GWAS data from the Neale Lab consortium was divided into multiple
datasets, ordered by trait. Our outcome of interest (DVT) was presented in MR-Base as “Non-cancer
illness code self-reported: deep venous thrombosis (dvt)”; these summary results relate to a GWAS of

6,767 cases and 330,392 controls.
Data harmonisation

For exposure and outcome data harmonisation, incorrect but unambiguous alleles were
corrected, while ambiguous alleles were removed. In the case of palindromic SNPs (A/T or C/G), allele
frequencies were used to solve ambiguities. Traits that did not have genetic variants in the DVT GWAS
were excluded (N = 483), resulting in a final list of 973 exposure phenotypes with which to perform the

MR analysis (Supplementary Table 1).

Mendelian Randomization Analyses

Hypothesis-Free MR Analysis of human traits on DVT

Hypothesis-free two-sample MR was conducted using the TwoSampleMR R package (9). The
causal effect of a given trait on DVT was estimated using the inverse-variance weighted (IVW) method
for traits with more than one SNP. Wald ratios were derived for traits with a single SNP. Additional
MR methods were also performed as sensitivity analyses where genetic instruments were comprised of

more than 3 SNPs (MR Egger, simple mode, weighted mode, and weighted median) (19).

Multiple testing correction
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As our analysis required a large number of phenotypes to be studied for their association with
DVT, we expected that some of these traits might be highly correlated with each other. Therefore, we
used PhenoSpD (20) to estimate the number of independent variables present in a correlation structure
comprised of the particular traits of interest in order to correct for multiple testing. We used metaCCA
(21) to create a phenotypic correlation matrix by Pearson correlation between each phenotype, with the
aid of GWAS summary data. This correlation matrix was used as an input for PhenoSpD to assess the
independent phenotypes through matrix spectral decomposition (22, 23). Since PhenoSpD treats
exposures from separate studies as independent (e.g. BMI from study A can’t be found to correlate with
hip circumference from study B, even though this is most likely the case), the number of total variables

before the Bonferroni correction is more stringent.
Beta coefficient transformation

Historically, studies have used logistic regression to investigate the association between a trait
and disease. However, an issue with logistic regression is that effect estimates might not be
representative of the whole population. Therefore, linear mixed model (LMM) methodology has gained
popularity in genetic epidemiology due to its ability to control for population structure. Unlike in
logistic regression, odds ratios (ORs) and risk ratios (RRs) cannot be calculated directly, but rather
approximated, as the outcome from an LMM applied on a binary trait ranges on a scale of 0-1. In our
study, we converted the beta coefficients from our MR analysis to RRs, using previously described

methodology (24).

MR Sensitivity Analyses

Horizontal Pleiotropy Analysis

Horizontal pleiotropy occurs when a SNP affects the outcome through a separate biological
pathway than the exposure of interest (e.g. a genetic variant for cholesterol affects DVT not through
cholesterol, but through another biological pathway). This can bias estimation of the causal effect of an

exposure and subsequently leads to type I statistical errors, thus violating a key assumption of MR in a
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similar way to genetic confounding. Therefore, MR-Egger regression was performed where exposures

had more than 3 SNPs to test for this type of pleiotropy (27).

Heterogeneity Analysis

As part of the MR analysis, the causal effect of the genetic variants estimating for a single trait
is assumed to be the same (homogenous). However, an increase in the number of instruments for an
exposure can lead to heterogeneity, especially when there are multiple mechanisms through which the
exposure might affect the outcome (e.g. variants associated with BMI may be associated with DVT via
a number of alterations to the circulating metabolome) (28). To test for genetic heterogeneity, we used
the maximum likelihood estimator and MR-Egger for the results which passed multiple testing

correction.

Bidirectional MR

MR analysis of DVT on human traits

We performed a bidirectional MR analysis to assess the direction of the causal association
between our exposures and DVT (i.e. to confirm that exposures alter risk of DVT and not vice-versa).
As such, we performed an additional MR analysis, with DVT as the exposure and the traits causally
associated with DVT (as evidenced by our primary analysis) as outcomes. This was conducted to

identify potential pathways of reverse causation, which would invalidate MR assumptions (25, 26).

Results

Of the 973 phenotypes investigated, 945 were identified as independent by PhenoSpD, setting
the Bonferroni P-value threshold for our MR analysis at 5.43E-5. Forty-seven phenotypes were found
to be significantly associated with DVT at this threshold (Figure 1, Table 1). The results of the MR

analyses for all exposures are shown in Supplementary Table 2. We were able to confirm the
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association of traits related to adiposity, an established risk factor for DVT, such as “Body Mass Index”
(Log RR: 0.40, 95% CI: 0.32 to 0.47; P = 1.60E-22), “Waist circumference” (Log RR: 0.50, 95% CI:
0.40 to 0.59; P = 1.74E-22) and “Hip circumference” (Log RR: 0.36, 95% CI: 0.28 to 0.45; P =2.22E-
13). Other risk factors previously found to be associated with DVT were “Comparative height size at
age 10” (Log RR: 0.30, 95% CI: 0.20 to 0.40; P = 1.93E-06) and “Hyperthyroidism/thyrotoxicosis”

(Log RR: 2.39, 95% CI: 1.88 to 2.90; P = 8.69E-18).

We found several novel associations, such as “Varicose veins” (Log RR: 1.90, 95% CI: 1.30
to 2.50; P = 2.36E-07) and “Varicose veins of the lower extremities” (Log RR: 3.40, 95% CI: 2.31 to
4.49; P = 5.13E-07), “Basal metabolic rate” (Log RR: 0.45, 95% CI: 0.36 to 0.54; P = 2.62E-20),
“Treatment/medication code: warfarin” (Log RR: 4.29, 95% CI: 3.09 to 5.49; P = 1.40E-09),
“Treatment/medication code: carbimazole” (Log RR: 3.60, 95% CI: 2.70 to 4.50; P = 2.41E-12) and

“Prospective memory result” (Log RR: 1.46, 95% CI: 1.02 to 1.90; 5.33E-08).

Over 50% of the exposures which passed our P-value threshold were found to be heterogenous
(N=27) using the maximum likelihood method. Of these, most (N=24) were traits related to body size
(mass and adiposity). The remaining heterogenous traits were basal metabolic rate (PHet: 3.71E-03),
warfarin (PHet: 5.66E-40), and comparative height size at age 10 (PHet: 1.56E-05). These findings

coincided with our IVW and MR-Egger heterogeneity analyses.

Through our MR-Egger analysis, we found strong evidence of horizontal pleiotropy for one
trait (“Qualifications: None of the above”) (intercept = -5.69E-04, P = 3.35E-02). We were unable to
assess whether the “Prospective memory result” trait was pleiotropic, as this exposure was instrumented
using only 2 SNPs. The bidirectional MR analysis found that DVT is causally associated with
“Treatment/medication code: warfarin” (P = 1.79E-30), representing a bidirectional causal effect, thus

invalidating MR assumptions (Table 2).

Finally, “Eicosapentaenoate (EPA; 20:5n3)” (Log RR: 1.1, 95% CI: 0.75 to 1.45; P = 3.14E-
07), “Stearidonate (18:4n3)” (Log RR: 1.09, 95% CI: 0.73 to 1.45; P = 1.22E-06), “Arachidonate

(20:4n6)” (Log RR: 0.913, 95% CI: 0.61 to 1.22; P = 2.08E-06), and “Mania/bipolar disorder/manic
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depression” (Log RR: 3.95, 95% CI: 2.60 to 5.30; P = 5.18E-06) were found to be associated with DVT.
As instruments for these exposures were comprised of one SNP, we were unable to test for

heterogeneity, horizontal pleiotropy or appraise the directionality of the association.

Discussion

We performed a hypothesis-free MR analysis of 973 exposures to DVT, of which 47 were
found to pass a conservative P-value threshold for evidence of causality. We have confirmed the causal
association of several previously established risk factors for DVT and have identified several novel

associations.

One of the most well-known risk factors for DVT is adiposity and adiposity-related traits. As
such, the association between these traits with DVT most likely represents a true causal relationship.
Previous studies have confirmed that obesity leads to an increased incidence of DVT, and the estimate
we report here for BMI largely coincides with that of a previous MR study (6). A hypothesised
mechanism is that altered metabolism in people with higher adiposity levels leads to a hypercoagulable

state, and due to an impaired venous return, increases the chance of thrombi formation (29, 30).

We also found that an increase in the fat-free mass of the body leads to an increased risk of
DVT, which reinforces the findings from previous studies which attest that the physical increase in
body measurements leads to an increase in DVT (30). As our waist circumference Log RR (0.5) was
higher compared to that of BMI (0.4) and hip circumference (0.36), this suggests that the distribution

of adiposity could be an important factor for DVT progression.

Height is also a well-documented risk factor for DVT and in support of this we show that
“comparative height at age 10” was positively associated with DVT. Increased height leads to a greater
volume of blood needed to be pumped throughout the body, which can increase the stress on the blood

vessels, disrupting haemostasis. Height is also associated with an increase in body size, which might
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have a standalone effect greater than that of metabolic changes due to obesity (29, 41). As expected,

many body size related traits demonstrated heterogeneity.

Another risk factor that has been previously shown to be associated with DVT (by observational
analysis) is hyperthyroidism (31, 32). Here we report a positive association between
hyperthyroidism/thyrotoxicosis and DVT. Thyroid hormones (THs) regulate the metabolic processes in
our body. An overabundance of these hormones leads to hyperthyroidism/thyrotoxicosis, leading to a
hypercoagulable state and to changes in the basal metabolic rate and thermogenesis, both which affect
body weight. Moreover, TH induces alterations in factor VIII synthesis and secretion, which in turn

leads to an increase in thrombi formation (31, 32).

Hyperthyroidism influences basal metabolic rate and this in turn has a large impact on body
weight. Increased basal metabolic rate may lead individuals to consume a larger amount of food
compared to an average person. Moreover, the basal metabolic rate is regulated by thyroid hormones,
and this makes sense considering that hyperthyroidism leads to an increased risk of DVT (31). Here,
we found that an increase in basal metabolic rate is associated with DVT. Although hyperthyroidism

and basal metabolic rate traits are clearly linked biologically, we did not find evidence of heterogeneity.

In MR-base there are genetic instruments that proxy for an increased likelihood of being
prescribed a particular drug. Here, we found that the genetic instrument that proxies for an increased
likelihood are being prescribed carbimazole is associated with increased risk of DVT. Carbimazole is a
thionamide drug which has been used to treat thyrotoxicosis for over 60 years. It reduces the levels of
circulating thyroid hormones (THs) by binding to thyroid peroxidase, the enzyme required for TH
production. As hyperthyroidism/thyrotoxicosis is positively associated with DVT, we would expect that
carbimazole to have a negative effect on the disease. Our MR analysis has shown that this is not the
case, with the most probable explanation being that patients who take this type of thionamide drug are

more likely to have been diagnosed with DVT.

We also found that the genetic instrument that proxies for an increased likelihood of being

prescribed warfarin is associated with an increased risk of DVT. Warfarin is an anticoagulant used to
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treat DVT which acts as a vitamin K antagonist, reducing the production of vitamin K-dependent
proteins involved in coagulation (FVIla, FIXa, FXa, and thrombin). However, initial warfarin dosage
may result in skin necrosis and a hypercoagulable state due to reductions in protein C and protein S
levels, paradoxically increasing the risk of DVT. Moreover, our sensitivity analysis identified a
bidirectional causal effect between warfarin treatment and DVT. This would make sense, as individuals

who are prescribed warfarin are more likely to already suffer from a form of VTE (2, 33).

There is some evidence that varicose veins may increase the risk of DVT (34) and here we
demonstrate there is indeed a causal association. Varicose veins are characterised by their enlarged and
twisted appearance. A common occurrence in varicose veins is the impaired action of leaflet valves,
which prevent the blood from falling backwards. This results in the inability of the blood to fully return
to the heart, leading to the enlargement of the veins, and in time, potentially an increased risk of DVT

(34).

Venous blood stasis caused by immobility is also a known risk factor for DVT. Here we report
a positive association between long standing illness, disability or infirmity with DVT. This most likely
causes stasis of the blood flow in the veins and can be either due to a particular neurological condition
or due to the paralysis of the lower limbs. Moreover, immobility may also arise due to hospitalisation

and surgery or a prolonged work-, air travel-, computer-related immobility (35, 36).

In addition, current research suggests that comorbidities lead to a higher incidence of DVT. It
can therefore be assumed that an individual taking prescription medication suffers from an ongoing
medical condition (thus having a lower health rating), which in turn increases the risk of developing
DVT. This depends on the comorbidity, as patients suffering from long-lasting conditions, such as
cancer or chronic affections are more predisposed to developing DVT than other patients (37-40). This
is consistent with our finding that “taking other prescription medications and overall health rating” is

associated with an increased risk of DVT.

Four of the traits which passed the P-value threshold were associated with only one SNP:

“Eicosapentacnoate (EPA; 20:5n3)”, “Stearidonate (18:4n3)”, “Arachidonate (20:4n6)”, and
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“Mania/bipolar disorder/manic depression”. This limited our capacity to discuss in further details the
mechanistic insights and pathways through which these exposures might act, as we are unable to
confirm the direction of a causal effect on DVT or conduct any additional sensitivity analysis. Unless
additional instruments are found for these traits, a further colocalization analysis is required to assess
the direction of their causal effects (42). We also report an association between prospective memory
and DVT, however, we found no evidence from the literature to support this. As this trait was
instrumented by 2 SNPs, we were unable to perform a horizontal pleiotropy analysis, and thus could

not confirm that the genetic variants for prospective memory act only through this trait alone.

Finally, we found an association between low qualification and DVT. As this association was
found to be due to horizontal pleiotropy, the genetic variants associated with this trait most likely do
not act through the exposure, but rather through a different pathway, thus invalidating one of the MR
assumptions. However, a case can still be made for the relationship between education and DVT.
Previous research has highlighted that a lower socioeconomic status is associated with a decrease in

school performance (43), and that this in turn is associated an increased incidence of VTE (44).

Strengths

Using MR, a genetic epidemiological method which utilises the availability of summary-level
GWAS results, we were able to test the association between a number of exposures to a type of
cardiovascular disease (DVT) for which the causes are still largely unknown. This makes using two-
sample MR in a hypothesis-free manner an attractive approach, as this ensures that novel risk factor
identification is not hindered by publication bias. Unlike observational epidemiology, which
necessitates the collection of primary data, two-sample MR can use genetic data compiled from

previous studies to appraise the association between an exposure and an outcome.

Our hypothesis-free approach has highlighted several exposures (prospective memory, basal
metabolic rate) that have not been found through conventional methods, while confirming that

adiposity, a previously-known risk factor, plays a large role in DVT actiology. Detection of these
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established associations increases the validity of our finding using two-sample MR. These findings may
now be applied to bring additional insight into hypothesis-driven observational or laboratory studies.
As genetic epidemiology is aided by the publication of new GWAS relating to the mediators of the
human proteome and transcriptome, a more detailed analysis, outlying possible pathways through which

an exposure might impact DVT will be possible (45-47).

Limitations

Although the number of available traits in MR-Base has risen significantly during the previous
year, some traits are still in the process of being curated and introduced into the database. Moreover, it
is possible that some risk factors might not possess any genetic instruments. As such, we were unable
identify the association of some exposures (e.g. proteins which are associated with the disease — von

Willebrand Factor or P-selectin) which were found to be potential risk factors in previous studies.

A limitation in the conversion of beta coefficients to RRs in the case of all-or-none outcome
traits is represented by the ratio of the number of cases to the number of controls. When this ratio is
very small, the RR cannot be calculated in the case of those traits with negative betas under a certain
value. As such, one trait which we found to be significant (“Qualifications: College or University

degree”) in the initial stage of the analysis was left out.

As PhenoSpD is not able to assess the correlation between traits which come from different
studies, the number of independent variables resulting from the PhenoSpD analysis was higher,
resulting in a more stringent P-value threshold following Bonferroni correction. This might have
elevated the type 2 error rate, where traits which have a true causal effect on the disease were not found
to be significant as they did not pass our threshold. We have included a supplementary table with those
traits that, although did not pass our P-value threshold, did show evidence for an association
(Supplementary Table 3). Another cause of false-negative findings arises from the limited power of
some instruments. This discrepancy in power leads to a variation in significance of traits which are most

likely correlated. For example, although we found many traits related to adiposity to be associated with
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DVT (e.g. BMI, weight, body fat percentage), exposures such as “Obesity Class 1” and “Body fat” were

not.

The limitations of two-sample MR outlined above reflect that there is potential for better quality
control of MR analyses, such as using only those instruments which pass a particular statistical power
threshold, restricting the analysis to traits which possess more than one SNP, or using studies with a

larger ratio of cases to controls in the case of those analyses where the outcome is a binary trait.

Conclusion

As previous studies on DVT using conventional approaches have not yielded conclusive results,
here we used MR to investigate DVT aetiology. Genetic epidemiology has been gaining in popularity
during the last decade, partly due to the decreasing cost of genome sequencing and as well as limitations
of observational epidemiological methods in causal inference. Through a hypothesis-free approach we
were able to confirm the association of previously identified risk factors for DVT (e.g. adiposity-related)
and identify novel causal associations (e.g. hyperthyroidism, basal metabolic rate) with the disease.
Further research is required to inform mechanistic understanding of how these exposures alter DVT
risk. This could be achieved by incorporating gene expression (the human transcriptome and proteome)
and pQTL (protein quantitative trait locus) data into the further MR analyses or by future hypothesis-

driven studies, in an observational or laboratory setting.
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(3)

Box 1. MR works in a similar way to randomized controlled trials (since alleles are randomly
allocated at conception). It uses a genetic variant (G) as an instrument/proxy to determine
whether an exposure (E) is causally associated with a disease outcome (O). During Mendelian
Randomization, three conditions must be met to assure the validity of the analysis: 1) the
instrument (G) is certainly associated with the exposure (E); 2) the association between the
genetic instrument and the outcome (DVT) happens solely though the exposure; 3) the
instrument is not associated with any confounder (8). These are invalidated by the presence
of horizontal pleiotropy, where a genetic variant affects the outcome not through the studied
exposure, but through a different pathway (27).
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Trait No. SNP P-val

Warfarin i 2.79e-06
Mania/Bipolar disorder/Manic depression il 3.07e-05 .
Carbimazole - 1.93e-06 <
Varicose veins 2 222e13 .
Hyperthyroidism/Thyrotoxicosis [ 4 10e-11 .
Varicose veins of lower extremities 16 232e-11 *
Prospective memory result 2 160e-22

Long-standing illness disability or infirmity 14 3.90e-14

Taking other prescription medications 10 7.67e-15

Eicosapentaenoate (EPA; 20:5n3) q 1.84e-12

Stearidonate (18:4n3) 1 1.73e-23

Qualifications: None of the above 64 6.96e-13

Arachidonate (20:4n6) 1 1.66e-13

Overall health rating 54 4.65e-27

Leq fat percentage (right) 246 291e-16 .

Comparative body size at age 10 157 3.37e-14 -

Arm fat percentage (right) 234 2.62e-20 .

Arm fat percentage (left) 253 1.06e-30 .

Leq fat percentage (left) 248 4.98e-29 b

Leq fat mass (right) 282 193e-28 -

Leq predicted mass (right) 361 185e-23 b

Leq predicted mass (left) 356 174e-22 *

Body fat percentage 253 1.11e-25 *

Leq fat-free mass (left) 361 6.10e-27 -

Leg fat-free mass (right) 363 1.48e-20 *

Waist circumference 227 2.99e-27 *

Leg fat mass (left) 281 8.79e-29 *

Weight 337 4.23e-28 *

Arm fat mass (left) 268 161e-12 L

Arm fat mass (right) 270 176e-12 *

Basal metabolic rate 3 §.48e-14 s

Arm predicted mass (left) 349 398e-22 b

Trunk fat percentage 237 332e-18 *

Whole body fat mass 280 4.40e-14 >

Arm fat-free mass (right) 350 2.08e-06 -

Arm predicted mass (right) 364 2.03e-10 .

Trunk fat mass 283 1.22e-06 L

Arm fat-free mass (left) k5 3 14e-07 b

Whole body water mass 405 1.36e-06 *

Whole body fat-free mass 405 8.13e-08 *

Body mass index (BMI) 305 5.33e-08 -

Trunk fat-free mass 408 2.36e-07 *

Trunk predicted mass 406 8.69e-18 *

Hip circumference 282 6.13e-07 -*

Comparative height size at age 10 364 24Me-12 .

Overweight 14 5.16e-06 .

Obesity class 2 11 1.40e-09 -

2
Log Risk Ratio for DVT per unit increase in trait

4

Figure 1. 1-to-many-forest plot of the exposures which passed the P-value threshold after multiple testing correction. Each trait is accompanied by two additional
descriptive columns (No. SNP and Bonferroni-corrected P-value), while the Log Risk Ratio (RR) is displayed on the right, alongside with the standard error (SE). MR
methods: Inverse Variance Weighted (SNP > 1) and Wald Ratio (SNP = 1).
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Table 1 Main MR analysis. Methods: Inverse Variance Weighted (SNP > 1) and Wald Ratio (SNP = 1).
Exposure LogRiskRatio| SE | No.SNP B;’]‘f’:‘lrl:sm - Pon C1(95%)
Arm fat mass (right) 0.45 0.04 270 1.06E-30 3.60E-01 2.82E-01 0.38 0.52
Arm fat mass (left) 0.45 0.04 268 4.98E-29 1.93E-01 1.35E-01 0.38 0.53
Leg predicted mass (right) 0.52 0.04 361 8.79E-29 1.34E-02  6.65E-01 0.43 0.60
Weight 0.46 0.04 337 1.93E-28 1.33E-03 8.57E-01 0.38 0.54
Leg fat mass (right) 0.53 0.05 282 4.23E-28  9.07E-03 4.98E-01 0.44 0.62
Leg predicted mass (left) 0.52 0.05 356 2.99E-27 5.18E-03 8.05E-01 0.43 0.60
Whole body fat mass 0.44 0.04 280 4.65E-27 1.75E-01 1.77E-01 0.36 0.51
Leg fat-free mass (left) 0.51 0.05 361 6.10E-27 4.73E-03  8.07E-01 0.42 0.60
Leg fat-free mass (right) 0.50 0.05 363 1.11E-25 5.05E-03 5.56E-01 0.41 0.59
Trunk fat mass 0.43 0.04 283 1.73E-23 2.90E-03 6.36E-01 0.35 0.51
Leg fat mass (left) 0.50 0.05 281 1.85E-23 3.71E-02 5.53E-01 0.40 0.59
Body mass index (BMI) 0.40 0.04 305 1.60E-22 6.81E-02 5.29E-01 0.32 0.47
Waist circumference 0.50 0.05 227 1.74E-22 1.65E-02  5.22E-01 0.40 0.59
Comparative body size at age 10 0.57 0.06 157 3.98E-22 5.18E-01 1.95E-01 0.46 0.68
Body fat percentage 0.51 0.05 253 1.48E-20 4.79E-02  6.35E-01 0.41 0.61
Basal metabolic rate 0.45 0.05 377 2.62E-20 3.71E-03  7.06E-01 0.36 0.54
Leg fat percentage (right) 0.59 0.06 246 3.32E-18 2.87E-03  2.40E-01 0.47 0.71
Non-cancer illness code self-reported: hyperthyroidism/thyrotoxicosis 2.39 0.26 6 8.69E-18 6.69E-01 3.87E-01 1.88 2.90
Trunk fat percentage 0.44 0.05 237 2.91E-16 2.43E-03 6.18E-01 0.35 0.54
Whole body water mass 0.42 0.05 405 7.67E-15 1.32E-04 3.44E-01 0.32 0.51
Arm predicted mass (left) 0.45 0.05 349 3.37E-14 1.53E-05 2.58E-01 0.34 0.55
Whole body fat-free mass 0.41 0.05 405 3.90E-14 2.06E-04 3.42E-01 0.31 0.50
Overall health rating 0.80 0.10 54 4.40E-14 5.14E-01 6.40E-01 0.61 0.99
Arm fat per (right) 0.55 0.07 234 8.48E-14 8.47E-17 6.94E-01 0.42 0.68
Arm fat-free mass (right) 0.44 0.05 350 1.66E-13 2.95E-04 2.18E-01 0.33 0.54
Hip circumference 0.36 0.04 282 2.22E-13 2.92E-04 8.76E-02 0.28 0.45
Arm predicted mass (right) 0.43 0.05 364 6.96E-13 9.35E-05 2.66E-01 0.32 0.54
Arm fat percentage (left) 0.55 0.07 253 1.61E-12 1.32E-24 6.98E-01 0.41 0.68
Leg fat percentage (left) 0.54 0.07 248 1.76E-12 7.00E-04 7.26E-01 0.40 0.67
Arm fat-free mass (left) 0.42 0.05 355 1.84E-12 3.14E-05 1.92E-01 0.32 0.53
Tr /medication code: carbi I 3.60 0.46 9 2.41E-12 5.21E-01 1.05E-01 2.70 4.50
Trunk fat-free mass 0.39 0.05 406 2.32E-11 2.46E-06 5.75E-02 0.29 0.48
Trunk predicted mass 0.38 0.05 406 4.10E-11 9.09E-06 5.13E-02 0.28 0.48
Qualifications: None of the above 0.99 0.14 64 2.03E-10 6.18E-01 3.35E-02 0.72 1.26
Tr /medication code: warfarin 4.29 0.61 7 1.40E-09 5.66E-40 4.26E-01 3.09 5.49
Prospective memory result 1.46 0.23 2 5.33E-08 4.61E-01 NA 1.02 1.90
Long: ding illness disability or infirmity 1.25 0.20 14 8.13E-08 2.17E-01 4.46E-01 0.87 1.63
Diagnoses - main ICD10: 183 Varicose veins of lower extremities 1.90 0.31 16 2.36E-07 1.91E-01 5.04E-01 1.30 2.50
Eicosapentaenoate (EPA; 20:5n3) 1.10 0.18 1 3.14E-07 NA NA 0.75 1.45
Non-cancer illness code self-reported: varicose veins 3.40 0.56 2 5.13E-07 4.42E-01 NA 2.31 4.49
Stearid (18:4n3) 1.09 0.18 1 1.22E-06 NA NA 0.73 1.45
Taking other prescription medications 1.17 0.20 10 1.36E-06 4.83E-01 4.40E-01 0.79 1.55
Comparative height size at age 10 0.30 0.05 364 1.93E-06 1.56E-05 1.08E-01 0.20 0.40
Arachid (20:4n6) 0.91 0.16 1 2.08E-06 NA NA 0.61 1.22
Obesity class 2 0.17 0.03 11 2.79E-06 5.45E-01 6.86E-01 0.11 0.22
Non-cancer illness code self-reported: mania/bipolar disorder/manic depression 3.95 0.69 1 5.18E-06 NA NA 2.60 5.30
Overweight 0.28 0.05 14 3.07E-05 3.44E-01 1.71E-01 0.18 0.38
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b| Bidirectional MR of DVT on traits founds significant in our main MR
Table 2 4 ; .
analysis. Method: Inverse variance weighted (IVW).

Outcome No. SNP Beta P-value Bonferroni
Treatment/medication code: warfarin 9 0.29 0.02 3.81E-32 1.79E-30
Stearidonate (18:4n3) 5 1.35 0.50 6.78E-03 3.19E-01
Prospective memory result 9 0.40 0.17 1.64E-02 7.71E-01
Arachidonate (20:4n6) 5 0.24 0.30 2.73E-02 1.00E+00
Eicosapentaenoate (EPA; 20:5n3) 5 0.58 0.44 2.86E-02 1.00E+00
Obesity class 2 5 1.20 2.53 4.12E-02 1.00E+00
Overweight 5 -0.46 1.17 4.69E-02 1.00E+00
Non-cancer illness code self-reported: varicose veins 9 0.02 0.01 4.71E-02 1.00E+00
Treatment/medication code: carbimazole 9 0.00 0.01 8.84E-02 1.00E+00
Body mass index (BMI) 9 0.03 0.40 9.53E-02 1.00E+00
Weight 9 0.22 0.25 9.89E-02 1.00E+00
Overall health rating 9 0.27 0.16 1.87E-01 1.00E+00
Long-standing illness disability or infirmity 9 0.19 0.10 1.91E-01 1.00E+00
Body fat percentage 9 0.04 0.37 2.06E-01 1.00E+00
Whole body fat mass 9 0.13 0.36 2.38E-01 1.00E+00
Whole body fat-free mass 9 0.20 0.32 3.62E-01 1.00E+00
Whole body water mass 9 0.20 0.32 3.80E-01 1.00E+00
Basal metabolic rate 9 0.21 0.28 3.89E-01 1.00E+00
Leg fat percentage (right) 9 -0.25 0.28 3.96E-01 1.00E+00
Leg fat mass (right) 9 -0.04 0.29 4,15E-01 1.00E+00
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