

1 Copy number variation in small nucleolar RNAs regulates

2 personality behavior

3

4 Maryam Keshavarz, Rebecca Krebs, Peter Refki, Anja Guenther², Tanja M. Brückl³, Elisabeth B.
5 Binder^{3,4}, Diethard Tautz#

6

7 Max-Planck Institute for Evolutionary Biology, Plön, Germany

8

9 2: Bielefeld University, Department of Animal Behavior, Bielefeld, Germany

10

11 3: Dept. of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, Munich,
12 Germany

13

14 4: Dept. of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta GA

15

16 #corresponding author: tautz@evolbio.mpg.de

17

18

19

20 Abstract

21 Animals show behavioral traits that can collectively be called personality. We focus here on the role
22 of the Prader-Willi Syndrom gene region in regulating personality behavior. It includes two clusters of
23 tandem repeats coding for small nucleolar RNAs, SNORD115 and SNORD116. SNORD115 is
24 known to regulate splicing of the serotonin receptor *Htr2cr* and SNORD116 is predicted to interact
25 with the transcript of the chromatin regulator *Ankrd11*. We show that both snoRNA clusters display
26 major copy number variation within and between populations, as well as in an inbred mouse strain
27 and that this affects the expression of their specific target genes. Using a set of behavioral scores
28 related to personality in populations of two species of wild mice, guinea pigs and humans, we find a
29 strong correlation between the snoRNA copy number and these scores. Our results suggest that the
30 SNORD clusters are major regulators of personality and correlated traits.

31

32

33 Impact statement

34 Behavioral variation among individuals is regulated by a tandemly repetitive genetic region that can
35 generate new length variants in every generation.

36

37 **Introduction**

38 The study of consistent individual differences in behaviour, termed “animal personality”, has
39 flourished over the last decades, because it has been recognised as a major contributor to differences
40 in survival and fitness among individuals (Reale, 2007; Reale et al., 2010; Wolf and Weissing, 2012).

41 A major goal is to understand the origin of individual variation in behaviour and the mechanisms
42 generating this variation, especially since it is known to occur also in genetically isogenic strains
43 (Bierbach et al., 2017; Freund et al., 2013; Lewejohann et al., 2011; Wolf and Weissing, 2012).

44 Personality can be defined as behaviors which are consistent over time and across context (Reale,
45 2007; Wilson, 1998). Several studies have shown that personality traits have a heritable component
46 and hence, that genetics should play an important role (Dochtermann et al., 2015; Sanchez-Roige et
47 al., 2018; van Oers and Mueller, 2010). However, despite considerable efforts, the genetic pathways
48 that influence personality are largely unknown and there is so far no molecular mechanism that could
49 explain the maintenance of such variation within populations.

50 A locus that has been implicated in behavioral traits in humans is the Prader–Willi syndrome (PWS)
51 region. PWS is a neurodevelopmental disorder which leads to several abnormalities in cognitive
52 behaviors such as social communication, speech, anxiety, intellectual ability and decision making, but
53 also to metabolic syndromes and craniofacial shape changes (Cassidy et al., 2012). The region is
54 subject to imprinting, i.e. parentally biased expression of genes (Nicholls et al., 1998). The protein
55 coding genes expressed in this region include *Ube3a* and *Snprn*, of which *Ube3a* is expressed from
56 the maternally provided chromosome and *Snprn* from the paternally provided one. This arrangement
57 has specifically evolved in mammals and is generally conserved among them, including humans
58 (Zhang et al., 2014).

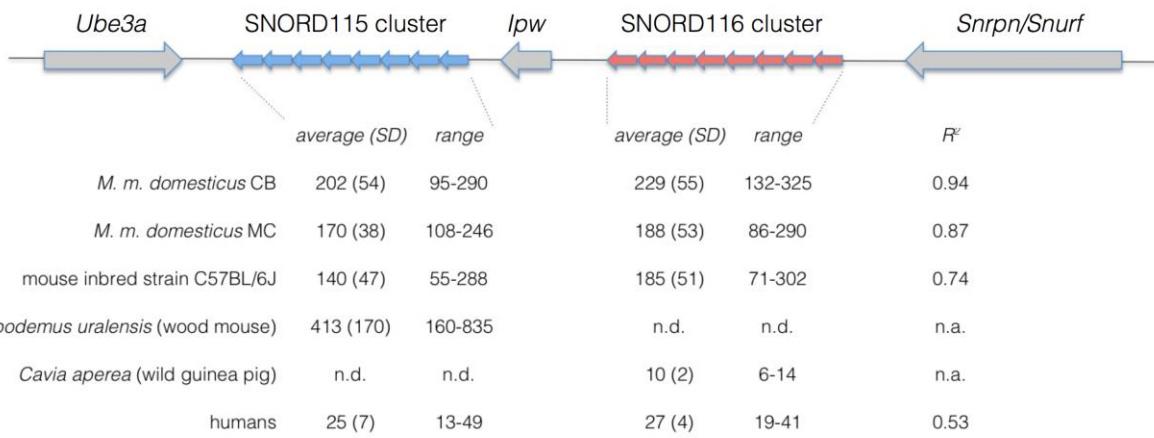
59 In mice we have identified the PWS region as one of two imprinted regions that evolve particularly
60 fast between natural populations and that could be involved in behavioral differences between them
61 (Lorenc et al., 2014). Laboratory mice mutant for genes or gene regions from the PWS affect various
62 behaviors including anxiety, activity, ultrasonic vocalization, social interaction and metabolism
63 (Cavaille, 2017; Jiang et al., 2010; Nakatani et al., 2009; Qi et al., 2016).

64 The PWS regions expresses also non-coding RNAs, especially two small nucleolar RNA (SNORD)
65 gene families which are organized in large, tandemly repeated clusters known as SNORD115 and
66 SNORD116 (Cavaille, 2017). The expression of both SNORD115 and SNORD116 is brain-specific
67 and restricted to the alleles on the paternal chromosome.

68 SNORDs are part of a large group of small, metabolically stable snoRNAs which regulate post-
69 transcriptional modification of their target genes (Kiss, 2001). snoRNAs bind via a complementary
70 antisense region to their target RNAs. The SNORD115 antisense element exhibits complementarity to
71 the alternatively spliced exon V of the serotonin receptor *Htr2cr* which is part of the serotonin

72 regulatory pathway. It has been shown in cell-culture experiments that there is a positive correlation
73 between SNORD115 expression and exon part Vb usage (Kishore and Stamm, 2006). Activation of
74 the receptor by serotonin inhibits dopamine and norepinephrine release in certain areas of the brain
75 (Alex et al., 2005). This regulates mood, anxiety, feeding, and motoneuron functions (see (Stamm et
76 al., 2017) for a recent review). SNORD116 shows a complementary sequence to *Ankrd11* exon X,
77 allowing to suggest a direct regulation (Bazeley et al., 2008). ANKRD11 is an ankyrin repeat domain-
78 containing protein that acts as a transcriptional co-factor with multiple possible target genes
79 (Gallagher et al., 2015). But this interaction has only computationally been predicted and has not yet
80 been experimentally confirmed.

81 Here we ask whether natural copy number variation in SNORD115 and SNORD116 could influence
82 behavioral traits in mice and other mammals. We used standardized tests that are mostly connected to
83 anxiety profiles, as well as comparable tests for wild guinea pigs and questionnaire-based tests for
84 humans. We find that there is indeed a strong correlation between copy numbers of the respective
85 SNORD genes and behavioral measures. Intriguingly, this is found not only for wildtype strains, but
86 also for the common laboratory inbred strain C57BL/6J. Using transcriptomic analyses, we show that
87 the predicted regulation of *Ankrd11* can indeed be observed and that the network of genes affected by
88 the copy number variation of SNORD116 can explain the behavioral and osteogenic phenotypes.
89 These observations confirm a direct causative link. Since our data suggest further that new alleles
90 with different copy numbers are generated at an exceptionally high rate, we conclude that this
91 variation could be the basis for the long sought molecular mechanism for the high variance of
92 personality traits in families and populations.


93

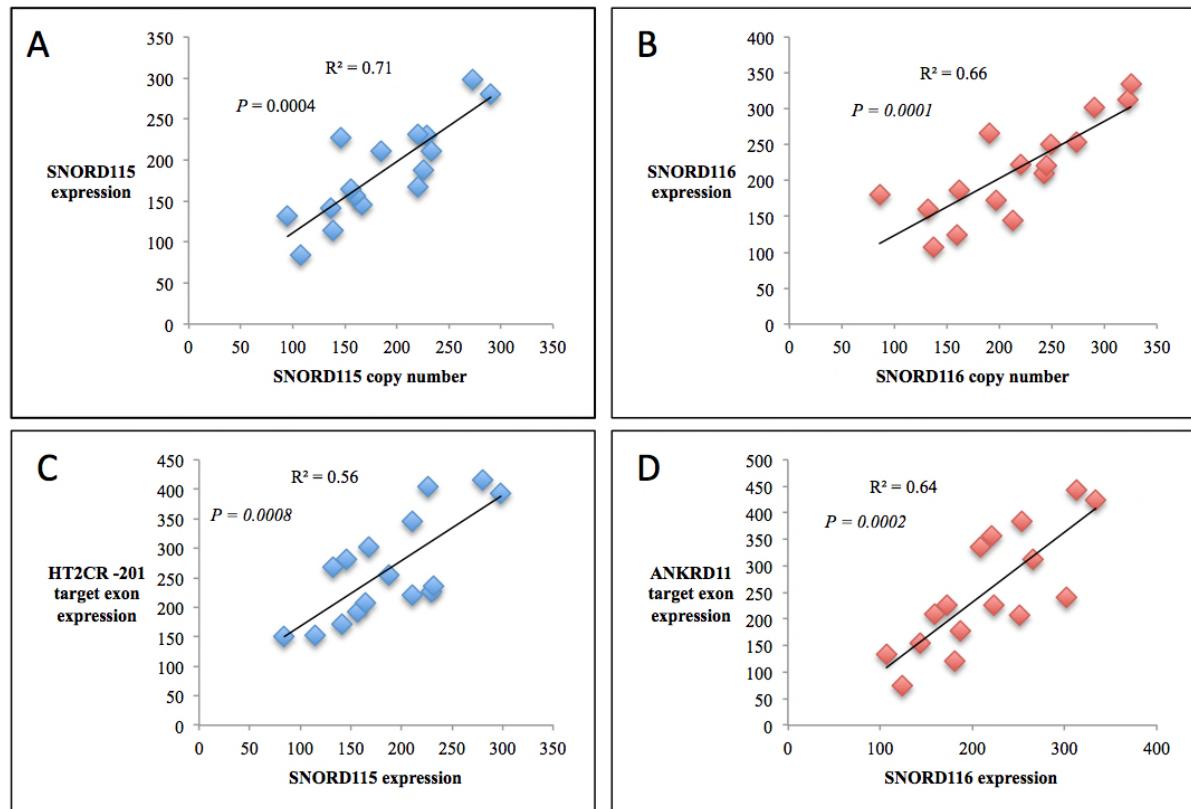
94

95 **Results**

96 Given the possible molecular links to the regulation of behavioral responses, we first analyzed copy
97 number variation within the SNORD115 and SNORD116 clusters in house mice (*M. m. domesticus*).
98 Both snoRNAs are part of a larger transcript, from which they are processed (Cavaille, 2017). The
99 repeat unit length for SNORD115 is 1.97kb, for SNORD116 2.54kb. In the mouse reference genome
100 (Waterston et al., 2002), SNORD115 is annotated with 143 copies and SNORD116 with 70 copies,
101 but with an annotation gap. To type copy number differences in this range, we used droplet digital
102 PCR, which we had previously shown to allow accurate copy number determination across a broad
103 range of CNVs in mice (Pezer et al., 2015). We tested individuals derived from two populations of *M.*
104 *m. domesticus* that were originally caught in the wild in Germany (CB) and France (MC) and were
105 kept under outbreeding conditions (Harr et al., 2016). We find an average of 202 SNORD115 copies
106 in CB animals and 170 in MC. A similar difference exists for SNORD116 copies, with 229 in CB and
107 188 in MC (Figure 1). Although there is a large variation within the populations, these differences
108 between the populations are significant (t-test; $p=0.03$ for SNORD115 and $p=0.015$ for SNORD116;
109 all data normally distributed, Shapiro-Wilk normality test $p>0.21$). Intriguingly, we observe also a
110 strong co-variation of copy number between the two SNORD clusters in both populations, with highly
111 significant correlation coefficients (Figure 1).

112

113


114 **Figure 1: Structure of the PWS region and copy numbers of snoRNAs.** The scheme depicts the
115 genes in the cluster as arrows. All are paternally expressed, only *Ube3a* is maternally expressed. Note
116 that the transcript structures are actually more complex and not yet fully resolved (Cavaille, 2017;
117 Lorenc et al., 2014). The tandem clusters coding for the SNORD115 and SNORD116 snoRNAs are
118 depicted by smaller block arrows (not drawn to size). The table below provides the measures and
119 ranges of copy numbers of the clusters in the different species analyzed in the present study. The co-
120 variation regression coefficients (R^2) between the numbers in the two clusters are listed to the right.
121 The full data are provided in Table S1.

122

123 The measured copy number variation shows a highly significant regression with the expression of the
124 respective SNORDs in the brain (Figure 2A,B), suggesting a direct relationship between copy number
125 and expression. Note that given that this locus is subject to imprinting, only the paternal copies would
126 be expressed, implying that the correlation should be below 1, even when a perfect relationship exists
127 between copy number and expression.

128

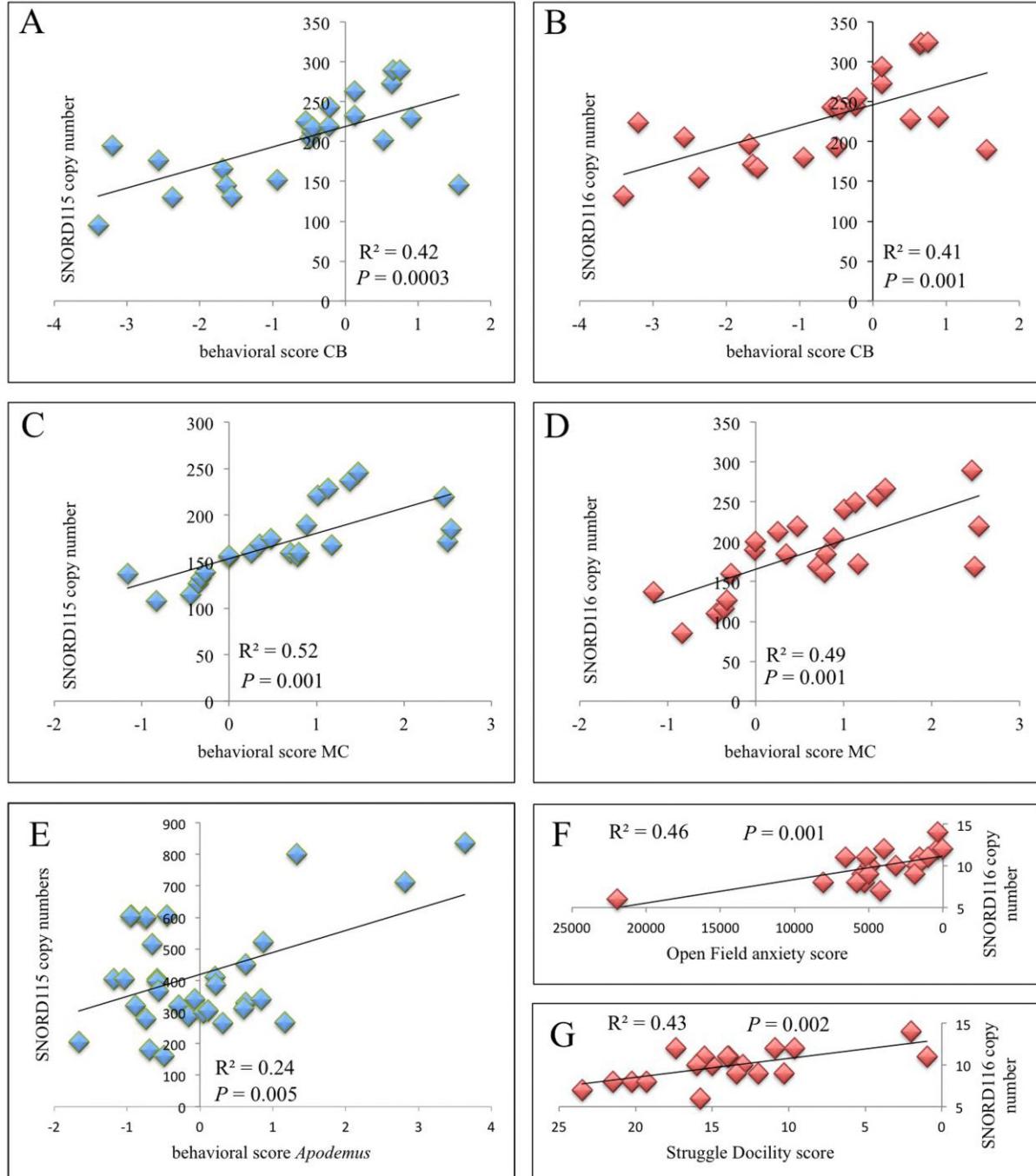
129

130

131 **Figure 2: Regression between SNORD15 (blue) and SNORD116 (red) copy numbers and**
132 **expression. A) and B) Regression with the respective RNAs. C) and D) Regression between snoRNA**
133 **expression and the splice-site regulated target RNAs. All values were determined by ddPCR in brain**
134 **RNA preparations from eight outbred animals each of the CB and MC populations. These animals**
135 **constitute a subset of the 45 animals used for overall copy number variation and were chosen to**
136 **reflect the spread of the variation. The data were combined, since tests for each population on their**
137 **own yield similar correlations. The full data are provided in Table S2.**

138

139 Further, we asked whether the target RNA expressions correlate with their respective SNORD
140 expression. The target of SNORD115 is the alternatively spliced exon V of *Htr2cr* (Kishore and
141 Stamm, 2006) and the predicted target of SNORD116 is exon X of *Ankrd11* (Bazeley et al., 2008).
142 When assaying for the expression of these exons, we find indeed a high correlation with the respective
143 SNORD expression levels and exon expression levels (Figure 2C,D). As a control, we assayed also


144 two transcript variants for each locus that should not be affected by alternative splicing. For these, we
145 find no significant regression with copy numbers of the respective SNORDs (Table S2).

146

147 *Behavioral tests*

148 To assess whether the SNORD gene copy number variation correlates also with the behavior of the
149 mice, we have employed an aggregate score consisting of three separate standard tests focusing on
150 anxiety. Anxiety is a consistent personality trait in mice (Freund et al., 2013; Lewejohann et al.,
151 2011). Details on the tests and the derivation of the overall score are provided in the Methods section.
152 In short, the development of the score consisted of separate tests (Open Field Test, Dark/Light Box
153 and Elevated Plus Maze). Single test scores were tested for repeatability over the course of the
154 experiment using intra-class correlation coefficients. Those found to be repeatable were clustered and
155 these clusters were subjected to a principle component analysis. The first principle component was
156 then used as a combined single score for anxiety-related behavior.

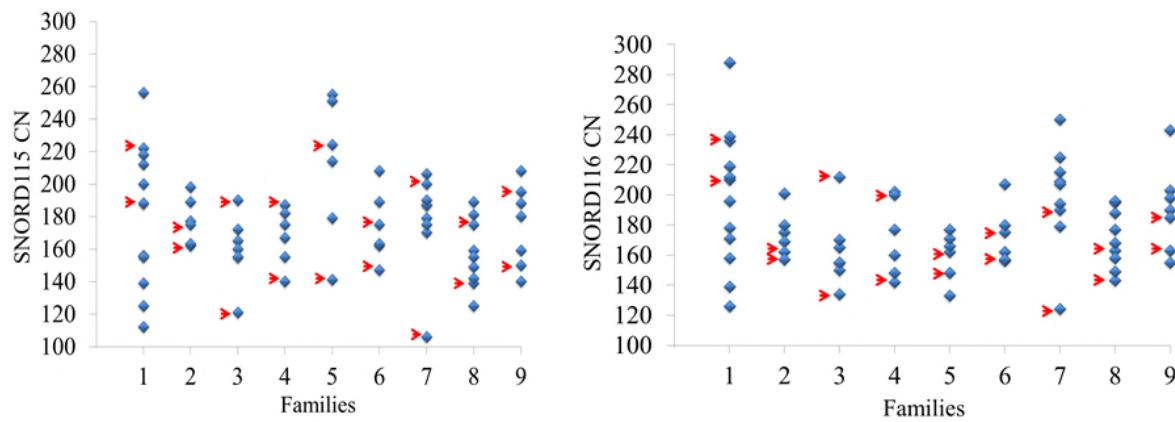
157 We find a highly significant regression between these scores and SNORD copy numbers, with
158 coefficients between 0.42-0.52 (Figure 3A-D). The results were analyzed separately for the different
159 populations, since overall copy numbers and overall behavioral scores differ between them. Still, both
160 populations show the same pattern. In each population, animals with higher copy numbers have a
161 higher relative anxiety score.

162

163 **Figure 3: Regression between snoRNA gene copy numbers and behavioral scores.** A), C), E) for
 164 SNORD115, B), D), F) and G) for SNORD116. A) and B) for the *M. m. domesticus* CB population
 165 (N=22), C) and D) for the *M. m. domesticus* MC population (N=23), E) for the wood mouse
 166 *Apodemus uralensis* (N=32), F) and G) wild guinea pig *Cavia aperea* (N=19). Note that the
 167 behavioral tests for cavies differ from the tests for the other species. Higher scores represent higher
 168 anxiety, i.e. the X-axis is reversed for better comparability. Full data in Table S1.

169

170


171

172

173 *Inheritance pattern*

174 Given the high variability of SNORD gene copy numbers in the mouse populations, one can ask
175 whether they are subject to frequent changes, such as unequal cross-over events during meiosis. Given
176 the total length of the repeat regions, this can not be directly tested, since the haplotypes can not be
177 distinguished by conventional techniques. However, we approached this question by comparing the
178 inheritance of copy numbers in nine families of the MC population. We find that the offspring shows
179 a large variation, exceeding the spread of numbers measured for the parents in 7 out of the 9 families
180 (Figure 4). Most importantly, if the alleles in the offspring would be only combinations of the parental
181 alleles, one should expect at most four allele classes in the offspring. But families with more than four
182 offspring (families 1, 7, 8 and 9) show additional allele classes for each offspring, suggesting that new
183 length alleles have been generated.

184

185

186 **Figure 4: Inheritance patterns of SNORD gene copy numbers (CN) in families.** Nine families of
187 the MC population were tested and the copy numbers were determined for each individual (blue
188 diamonds). The parental copy numbers are marked with an arrow. Note that in 7 out of the 9 families
189 the spread of copy numbers exceeds that of the parents. The correlations with the behavioral tests for
190 these animals are provided in Table S3.

191

192 Hence, the data show that at least some new haplotypes are generated in every generation. The
193 experiment shows also that new large variation is generated in each generation, in line with the
194 general observation that personality traits tend to differ between parents and offspring, as well as
195 among the offspring. To confirm that this is also the case here, we subjected all the offspring to the
196 behavioral tests described above. We find indeed a large variation, as well as the expected significant
197 regression with copy numbers (SNORD115: $R^2=0.5$, $P << 0.001$; SNORD116: $R^2 = 0.41$, $P = 0.003$)
198 (Table S3).

199 Further, we asked whether the variability could be so high that somatic variation would become
200 evident. We have therefore scored copy numbers of DNA isolated from different organs of a single

201 animal, but we did not find significant differences in this case (Table S3). While this does not rule out
202 the possibility of very high somatic variation such that every cell might be different, there is at least
203 no obvious pattern that distinguishes organs, including the brain.

204

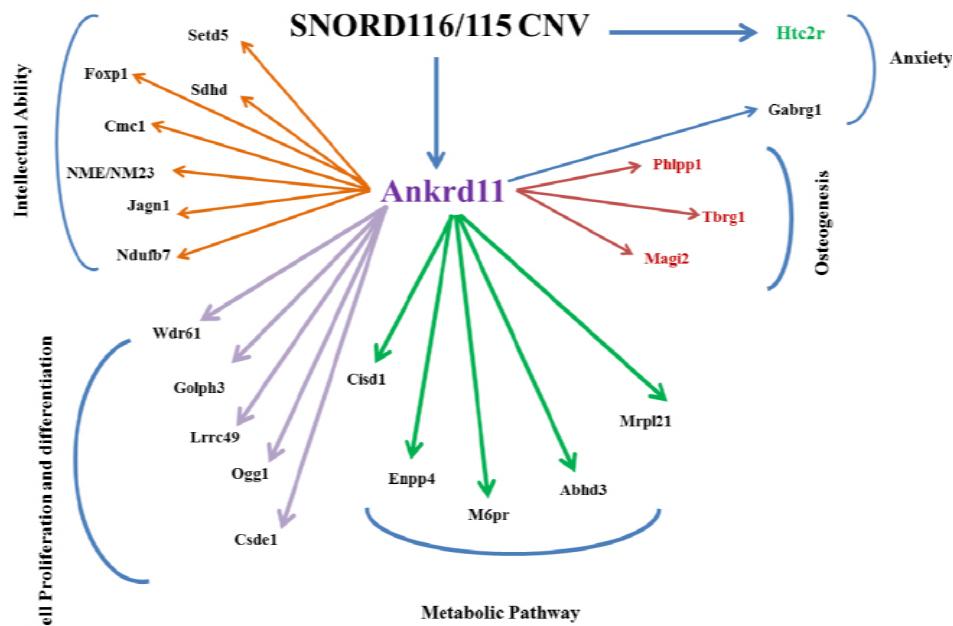
205 *Inbred strain variation*

206 It has been shown previously that personality measures can differ even between individuals in an
207 inbred strain (Freund et al., 2013; Jakovcevski et al., 2008; Lewejohann et al., 2011). Hence, we asked
208 whether inbred mice would also show copy number variability for SNORD115 and SNORD116. We
209 used the C57BL/6J mouse strain for this purpose, which is known to harbor extremely little variation
210 in the form of SNP polymorphisms (Zurita et al., 2011). We genotyped 60 individuals of both genders
211 (30 female and 30 male). We find that there is indeed a large variation of copy numbers in these
212 inbred mice, comparable to the spread seen in the outbred cohorts (Table 1). 20 mice of each sex were
213 then subjected to the behavioral tests. We found no significant difference between males and females
214 in these tests, but we could confirm the strong correlation with copy numbers (Table S1).

215

216 *Transcriptome analysis*

217 To investigate transcriptome changes in response to copy number variation of the SNORD genes, we
218 choose ten C57BL/6J individuals representing the spread of copy numbers from low to high and
219 sequenced RNA from their brains. First, we sought to confirm that the target genes would show the
220 expected correlations and the corresponding non-target transcripts of these genes would not show this.


221 The first analysis focused on *Ht2cr* as target of SNORD115. We find a high positive correlation
222 between SNORD115 copy number and total read count from the target exon in *Ht2cr-201*. As
223 expected, there was no significant correlation between SNORD115 copy number and *Ht2cr-204* and
224 *Ht2cr-206* as non-target transcripts. Similar results are observed for the SNORD116 target *Ankrd11*.
225 The target exon of *Ankrd11* shows significant correlation to SNORD116 copy number, while there
226 was no significant correlation between SNORD116 copy number and *Ankrd11-204* and *Ankrd11-207*
227 as non-target transcripts (Table S4). Hence, the RNAseq results confirm the previous observations
228 from the ddPCR experiments (see Table S2).

229 ANKRD11 is a chromatin regulator which influences the expression of downstream genes by binding
230 chromatin modifying enzymes like histone deacetylases (Neilsen et al., 2008; Zhang et al., 2004). An
231 *Ankrd11* knockout study has suggested that several hundred genes are regulated by *Ankrd11*
232 (Gallagher et al., 2015). We used a list of 635 of these target genes for a correlation analysis with the
233 *Ankrd11-202* transcript abundance. We find that more than 100 of these 635 genes showed a
234 correlation (positive or negative) to *Ankrd11-202* expression level. Around 70 percent of them are

235 down-regulated and 30 percent are up-regulated by different *Ankrd11*-202 levels, with a subunit of the
236 GABA A receptor (*Gabrg1*) showing the strongest correlation (Table S4).

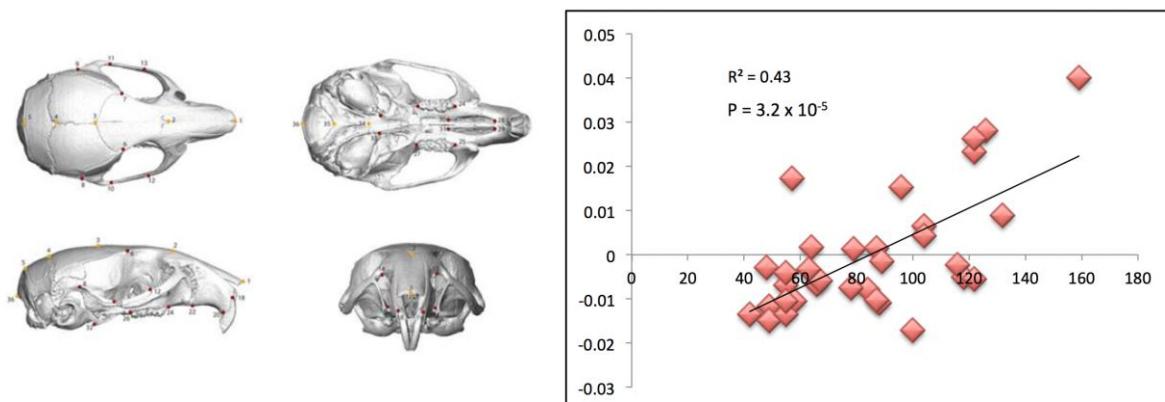
237 *Gabrg1* is known to play a crucial role in anxiety regulation in both humans and mice (Nuss, 2015;
238 Tasan et al., 2011). To gain further insights into the function of the *Ankrd11* downstream genes, gene
239 ontology (GO) and KEGG pathway enrichment analysis were performed using the DAVID online
240 tools. This revealed five different functional categories: (I): metabolic pathway (II): proliferation and
241 differentiation (III): anxiety (IV): intellectual ability formation and (V): osteogenesis (Figure 5).

242

243

244 **Figure 5: Overview and depiction of genes and processes that are influenced by SNORD115/116**
245 **copy number variations (CNV) at the transcriptional level.** SNORD115 CNV targets directly the
246 expression of the serotonin receptor *Ht2cr* and would this is known to be involved in anxiety
247 responses. SNORD116 CNV, on the other hand, has as direct target the chromatin regulator *Ankrd11*
248 and this affects a whole range of target genes. Among them is the GABA receptor *Gabrg1*, which is
249 also known to be involved in anxiety responses. Three other groups of genes regulated by *Ankrd11*
250 have effects on behavioral phenotypes as well, one group has general effects on cell differentiation
251 and development and one group on osteogenesis. The figure is drawn based on the results provided in
252 Table S4.

253


254 In humans, splice site variant mutations skipping exons IX, X and XI of *Ankrd11* cause the KGB
255 syndrome (Low et al., 2017; Sirmaci et al., 2011). This is a rare genetic disorder characterized by
256 intellectual disability, autism spectrum disorder, and craniofacial abnormalities (Ka and Kim, 2018).
257 Hence, this provides further support that the splice-site regulation of *Ankrd11* through SNORD116
258 has a direct functional relevance for behavioral traits.

259

260 *SNORD116 copy number and craniofacial features*

261 Given that one of the categories of genes affected by *Ankrd11* expression level relates to osteogenesis
262 (see above) and a previous study of a particular mutation in the *Ankrd11* gene has shown craniofacial
263 abnormalities (Barbaric et al., 2008), we tested whether SNORD116 copy number variation would
264 also have an effect on craniofacial features. We used a 3D landmarking approach to quantify
265 differences in skull shapes based on CT scans, following the procedures described in (Pallares et al.,
266 2014; Pallares et al., 2016). A principle component analysis was then used to assess the results. We
267 find that PC1, which explains 35% of the variance, correlates indeed highly significantly with
268 SNORD116 copy number (Figure 6). This suggests that not only behavioral, but also craniofacial
269 traits are influenced by copy number variation at SNORD116.

270

271

272 **Figure 6: Skull shape changes in response to SNORD116 copy number variation.** Left: depiction
273 of landmarks used for morphometric analysis, right: plot of SNORD116 copy numbers (x-axis) versus
274 PC1 values of the principal component analysis. Landmark descriptions an plot data are provided in
275 Table S5.

276

277 *Other rodents*

278 Given that the arrangement of the PWS region with the two clusters of snoRNAs is conserved
279 throughout mammals (Sato, 2017), we were interested to assess in how far one can trace the
280 correlation between copy number variation and personality traits also in other species.

281 We have first analyzed a second mouse species, the wood mouse *Apodemus uralensis*, which is
282 separated from *Mus m. domesticus* since about 10 million years and which has different ecological
283 adaptations. Still, given its general similarity to house mice, we applied the same phenotyping
284 scheme. From the currently available genomic data, we could only retrieve sufficient information for
285 the SNORD115 cluster, but this has even higher copy numbers than found in *Mus musculus* (Figure

286 1). We find indeed a significant regression with SNORD115 copy numbers and behavioral scores in
287 the wood mice as well (Figure 3E).

288 As a second, even more distant rodent, we used a cavy species, *Cavia aperea*, the wild congener of
289 domesticated guinea pigs. For this species we used two behavioral tests that can be considered to
290 reflect anxiety behavior (Guenther and Trillmich, 2015). The current genome sequence of a close
291 relative, *Cavia aperea f. porcellus*, provides only the annotation for SNORD116 repeats, hence we
292 focused our analysis on this cluster. We find a much smaller range of copy numbers than in mouse
293 (Figure 1), but still a significant regression with the anxiety scores from the two tests (Figure 3F, G).

294

295 *Humans*

296 To test a possible correlation between SNORD copy numbers and personality traits in humans, we
297 tested a subset of a cohort of 541 healthy individuals that had taken part in a study based on the
298 Tridimensional Personality Questionnaire (TPQ). From these individuals, we chose the top 48 each
299 for low and high anxiety scores and typed them for SNORD copy numbers. SNORD115 in humans is
300 represented by a single class only, while the SNORD116 family is split in three subclasses, for which
301 we designed different ddPCR assays. We find significant differences of copy numbers between the
302 two groups (Table 1) (Table S1). Particularly significant are SNORD115 and SNORD116_2. The
303 latter is the variant that is predicted to bind to *Ankrd11* exon X, while the possible target genes for the
304 other two SNORD116 variants are not yet clear. These latter ones show generally only little copy
305 number variation (Table 1). However, we note that the direction of the correlation is different between
306 rodents and humans. In humans, the relatively higher anxiety group has the smaller number of copies,
307 while it is the other way around in the three tested rodent species (see above).

308

309 **Table 1: SNORD copy numbers (mean) for humans scoring low or high on anxiety and activity**

ddPCR assay	SNORD115	SNORD116_1	SNORD116_2	SNORD116_3	all SNORD
low anxiety and activity group (SD)	28 (8.0)	6 (1.1)	16 (4.4)	8 (1.4)	57 (12.6)
high anxiety and activity group (SD)	21 (4.5)	6 (0.8)	12 (1.7)	7 (1.1)	47 (6.8)
p-value [#]	2.8×10^{-5}	0.26	7.6×10^{-5}	0.072	1.7×10^{-5}

310 [#] paired t-test, two-tailed

311

312

313

314 **Discussion**

315 Our data establish a link between behavioral scores and copy number variation at the SNORD115 and
316 SNORD116 loci within the PWS region across four species of mammals. This includes also an
317 isogenic mouse strain, which is not expected to carry many other genetic variants apart of the copy
318 number variants (Zurita et al., 2011). Further, our data show that new copy number alleles are
319 generated every generation, which provides an explanation for the high variances observed between
320 parents and offspring, as well as the low general heritability. Importantly, this observation implies
321 also that an artificial manipulation of copy numbers by engineering mouse strains would not be
322 possible, since strains with defined number could not be established. On the other hand, it is known
323 that whole deletions of parts of the PWS region including the snoRNAs lead to complex phenotypes,
324 including behavior, both in mice and humans. Further, the interaction of the snoRNAs with their
325 target genes via sequence complementarity provides a mechanistic explanation for the observed
326 regulatory effects. This, together with the consistency of the correlation across four species establishes
327 a causative link between snoRNA copy number and behavioral traits. Hence, our results establish a
328 new paradigm in the regulation of behavioral variance, namely the involvement of highly mutable
329 regulatory snoRNA clusters. We note that current association mapping protocols would not be able to
330 establish this, since they rely on a stable association with neighboring SNPs, which is not given in the
331 light of the fast generation of new copy number alleles.

332

333 *Origin of variation*

334 The high level of copy number variation in the SNORD115 and SNORD116 clusters can be ascribed
335 to their tandem repeat organization, which should facilitate unequal crossover and thus length
336 variations of the cluster. Both the family studies, as well as the observation of many alleles in the
337 otherwise isogenic strain C57BL/6J suggest an exceptional high rate of generation of new repeat
338 number variants. C57BL/6J mice were originally generated from a single pair of mice in 1921 and
339 have been kept as a well identifiable strain with very little SNP variation (Zurita et al., 2011). Still, we
340 find at least 25 copy number variants for each SNORD cluster. While the exact number of generations
341 that have passed since the founding of the strain is difficult to ascertain, it would not be more than a
342 few hundred. This suggests at minimum the generation of one new variant every few generations. Our
343 family studies suggest that this may even occur every generation, given that we find more than four
344 length variants among the offspring. Imprinted regions are known to include hotspots of meiotic
345 recombination (Paigen and Petkov, 2010) and this has also been shown for the PWS region in humans
346 (Robinson and Lalande, 1995). However, such an extreme rate of change has not been described so
347 far.

348 Another very unusual finding is the covariation of repeat numbers between the SNORD115 and
349 SNORD116 clusters. The repeat units of these clusters do not show any sequence similarity and they
350 are separated by a non-repetitive region. We are not aware of any mechanism that could explain this
351 covariation, but it is consistently found in mice and humans, for which we could obtain the respective
352 data. Given the overlapping regulation of the same behavioral pathways by the two clusters, it makes
353 sense that they should show this covariation, but how this is achieved will require further studies.

354

355 *Target pathways*

356 Our transcript analysis data in response to SNORD115 copy number variation confirm the known
357 interaction and regulation of the alternatively spliced exon Vb of the serotonin receptor *Htr2cr* through
358 this snoRNA (Kishore and Stamm, 2006). We suggest that the corresponding predicted interaction of
359 SNORD116 with *Ankrd11* may also be a direct interaction, based on our data. This can be inferred
360 from the specificity of the effect on the predicted interacting exon X, in comparison to the transcripts
361 of the locus that do not contain this exon and which do not show a dependence on copy number
362 variation.

363 There are a number of mouse knockout lines that delete more or less large parts of the PWS region.
364 However, only one knockout line exists that has removed specifically one SNORD gene cluster,
365 namely SNORD116. The mice from this line show an early-onset postnatal growth deficiency, are
366 deficient in motor learning and show increased anxiety (Ding et al., 2008). A further analysis of a full
367 deletion variant of this line has revealed further effects on feeding related pathways, as well as bone
368 mineral density (Qi et al., 2016). These findings are in line with a disturbance of the multiple
369 pathways that are regulated by *Ankrd11* as a direct target gene of SNORD116.

370 Interestingly, we find that not only behavior, but also craniofacial shape is under the control of the
371 SNORD116 gene cluster copy number variation. For humans it has been suggested that there is
372 indeed a link between personality and facial characteristics (Kramer and Ward, 2010; Squier and
373 Mew, 1981), but a possible causality of these observations was left open. Our data suggest such
374 causality for mice. But given that mice are essentially nocturnal animals that communicate mostly via
375 scents and ultrasonic vocalization, it is unclear whether they would even recognize different
376 craniofacial shapes among their conspecifics. However, there could be a general osteogenic effect on
377 the whole bone system that could be of relevance for being combined with the behavioral tendency.
378 For example, bold animals might profit from stronger bone structures, in case they get more involved
379 in fights. However, this connection will need further study, especially since the SNORD116
380 expression is confined to the brain. Qi et al. (Qi et al., 2016) have suggested that a general osteogenic
381 effect may be mediated via the metabolic pathways that are regulated by *Ankrd11*.

382

383 *Implications for the genetics of personality traits*

384 Our findings can resolve a long standing controversy about the genetics and plasticity of personality
385 traits. Our data suggest that these traits are indeed genetically specified, but through a hypervariable
386 locus that would escape conventional genetic mapping approaches. Hence, it is not necessary to
387 invoke developmental or secondary epigenetic effects in explaining variance in personality traits,
388 given that there is a mechanistic pathway of modulation of target RNA expression through different
389 concentrations of snoRNAs.

390 The fact that we find significant regressions between personality scores and SNORD copy numbers
391 also in other rodents and even in humans, implies that the system is conserved throughout mammals.
392 In humans, we observed this even within a psychiatrically healthy control group, where we find that
393 extremes of personality traits for anxiety and activity are associated with significant differences in
394 copy numbers. The effects are somewhat weaker than for the rodents, but humans are evidently also
395 more subjected to environmental influences than the animals that were bred under controlled
396 conditions. Most intriguingly, however, the effect in humans is in the opposite direction, i.e. more
397 anxious individuals harbor lower copy numbers. This would suggest that the copy number variation
398 acts only as a general regulator, but the actual behavioral consequences are modified by downstream
399 pathways. The existence of such modifiers is also suggested in the comparison between the two
400 mouse populations in our study. MC mice have on average lower copy numbers than CB mice, but
401 they are overall more anxious when compared at a population level (Linnenbrink et al. unpublished
402 observations). Also the fact that a complete deletion of the SNORD116 cluster in inbred mice leads to
403 very anxious animals (Ding et al., 2008) suggests that modifiers must play a role as well. We suggest
404 that it should be possible to identify such modifiers in association studies when one controls for the
405 SNORD115 and SNORD116 copy numbers as a covariate. Because of the variation induced by these
406 snoRNAs, they may have been hidden in the background so far. In fact, it may generally become
407 necessary for behavioral studies to include the SNORD115 and SNORD116 copy numbers as
408 covariates, to reveal new patterns independent of this variation.

409

410 *Evolutionary implications*

411 One can raise the question of how and why such a hypervariable system could have evolved and how
412 it is maintained. This question has in fact been posed since a long time and there have been a number
413 of attempts to propose evolutionary models that could explain the large variability in behavioral traits.
414 These include drift effects in a neutral context (Tooby and Cosmides, 1990), mutation-selection
415 balance (Zhang and Hill, 2005) or balancing selection processes (Dingemanse and Wolf, 2010; Penke
416 and Jokela, 2016). But none of these models has taken the possibility into account that a hypervariable
417 locus could control this variation. Evidently, we need to caution that that the specific mechanism that

418 is revealed by our study is only applicable to mammals, while the question of variability of
419 personality traits is an issue across all animal taxa. Still the system found in mammals could provide a
420 guidance towards finding comparable systems also in other taxa.

421

422 **Acknowledgements**

423 We thank Chen Xie for his valuable advice with transcriptome analysis, Stefan Dennenmoser,
424 Cemalettin Bekpen and Guy Reeves for their advice on SNORDs copy number analysis, Sven Künzel
425 for sequencing, Ellen McConnell, Nicole Thomsen and Cornelia Burghardt for their great lab-related
426 support, Elke Blohm-Sievers for her help in CT scanning, the entire mouse team at MPI for
427 evolutionary biology, in particular Christine Pfeifle, Susanne Holz and Camilo Medina for taking care
428 of the mice in this study and Heike Harre and Fikri Tuğberk Kara for their help with behavioral tests
429 and brain dissection. Animals were kept according to FELASA (Federation of European Laboratory
430 Animal Science Association) guidelines, with the permit from the Veterinäramt Kreis Plön: 1401-
431 144/PLÖ-004697 and the Veterinäramt Bielefeld for cavies, respectively. The experiments involving
432 the behavioral analyses was approved and registered under V244-71173/2015 through the local
433 authorities (Ethik-Kommission beim Umwelt- und Landwirtschaftsministerium Schleswig-Holstein).
434 The animal welfare officer was informed about the sacrifice of the animals for the molecular analyses.
435 The study on humans was approved by the ethics committee of the Ludwig-Maximilians-University
436 (LMU) in Munich and written informed consent was obtained from all subjects.

437

438 **Methods**

439 *Mouse strains*

440 Wildtype mice used in this study were offspring of mice that originated from wild populations
441 sampled in the Massif Central region of France (MC) and the Cologne/Bonn region of Germany (CB)
442 in 2004 and 2005 and then held under outbreeding conditions at the Max-Planck-Institute for
443 Evolutionary Biology in Plön (see supplementary files in (Harr et al., 2016) for details). The
444 C57BL/6J inbred strain was purchased at the age of 3 weeks from Jackson Laboratory.

445 Mice were usually kept in type III cages (Bioscape, Germany) and were weaned at the age of 3 weeks.
446 Males were housed together with brothers or in individual cages. Females were housed in sister
447 groups to a maximum of 5 mice per cage. Enrichment, including wood wool, toilet paper, egg cartons
448 and a spinning wheel (Plexx, Netherland), was provided in each cage. Mice were fed standard diet
449 1324 (Altromin, Germany) and provided water ad libitum. Housing prior to experiments was at 20–
450 24°C, 50–65% humidity and on a 12:12 light-dark schedule with lights on at 7 am.

451

452 *DNA and RNA extraction*

453 All dissections were done by following standardized protocols and personal instructions. Prepared
454 tissues were immediately frozen and kept at -70 ° until DNA/RNA preparation.

455 DNA extraction was performed according to a standard salt extraction protocol. Briefly, samples were
456 lysed by using HOM buffer (80 mM EDTA, 100 mM Tris and 0.5 % SDS) with Proteinase K (0.2
457 mg/mL) for 16 hours in Thermomixer (Eppendorf, Germany) at 55°C. 500 µL sodium chloride (4.5
458 M) was added to each sample and was incubated on ice for 10 minutes. Then chloroform was added,
459 mixed and spun for 10 minutes at 10,000 rpm. The upper aqueous phase was separated, mixed well
460 with Isopropanol (0.7 volume) and spun for 10 minutes at 13,000 rpm. The pellet was washed with
461 Ethanol (70 %), air dried and dissolved in TE-buffer (10 mM Tris, 0.1 mM EDTA). DNA
462 concentration was measured on the Nano Drop 3300 Fluorospectrometer using Quant-iT dsDNA BR
463 Assay kit (Invitrogen) reagent.

464 RNA extraction was done by using Trizol reagent. 1mL Trizol per 40mg tissue was added to each
465 sample. Then the samples were lysed by Tissue lyser II (QIAGEN, Germany) at 30 Hertz for 5
466 minutes. Homogenized samples were incubated at room temperature for 5 minutes. 200µL chloroform
467 (per 1 mL TRIzol) was added to each sample, shook vigorously by hand 15 seconds, followed by 3
468 minutes incubation at room temperature and spun at 12,000g for 15 minutes at 4°C. The aqueous
469 phase was transferred to a new tube and 0.5 volumes Isopropanol was added, incubated at room
470 temperature for 10 minutes and spun at 12,000g at 4°C. The supernatant was removed and the pellet
471 was washed with 75% EtOH (made with RNase-free water). Samples were mixed by hand several
472 times and then spun at 7,500g for 5 minutes at 4°C. The supernatant was removed and the pellet dried
473 shortly at room temperature, dissolved in 200µl RNase free water and stored at -20°C for overnight.
474 An equal volume of LiCL (5M) was added to the crude RNA extract, mixed by hand and incubated
475 for one hour at -20°C. Samples were spun at 16,000g for 30 minutes. The supernatant was removed;
476 samples were washed twice with EtOH 70% and spun at 10,000 at 4°C. The pellet was dried at room
477 temperature, dissolved in RNase free water and kept for long-term storage at -70°C.

478 The quality of the RNA samples were measured with Bio-Analyzer chips and samples with RIN
479 values below 7.5 were discarded. cDNA was synthesized using the MMLV High Performance
480 Reverse Transcriptase kit according to the instructions of the supplier (epicenter, an Illumina
481 company).

482

483 *Small RNA extraction and cDNA synthesis*

484 Total RNA which is enriched in small RNA was extracted by using the mirVana miRNA Isolation
485 Kit. The quality of the RNA was measured with BioAnalyzer chips and samples with RIN values
486 below 8 were discarded. Illumina® TruSeq® Small RNA Library Prep kit was used for small RNA
487 cDNA synthesis to be used for the ddPCR. 1 µg of total RNA which was enriched in small RNA was
488 used as input.

489

490 *RNAseq analysis*

491 Poly-A⁺ RNA was used for cDNA synthesis and Illumina library preparation by using the Truseq
492 stranded RNA HT kit. The libraries passing quality control were subjected to sequencing on an
493 Illumina NextSeq 500 sequencing system. Raw sequence reads were quality trimmed using
494 Trimmomatic (Bolger et al., 2014). The quality trimming was performed base wise, removing bases
495 below quality score of 20 (Q20), and keeping reads whose average quality was of at least Q60. Reads
496 were mapped to the mouse mm10 reference genome (Waterston et al., 2002) by using Hisat2 (Kim et
497 al., 2015). Htseq was used for counting reads overlapping with a specific feature (gene) (Anders et al.,
498 2015). Differential expression analysis was performed with the DESeq2 package (Love et al., 2014) in
499 R environment. To perform the alternatively spliced isoforms analysis, BAM files from Hisat2 were
500 used as input for SAMtools (Li et al., 2009) by using option –c for total read from each exon and
501 option –q 60 for total read of each sample. GO and KEGG pathway enrichment analyses were
502 performed using DAVID online tools (Version 6.8, <https://david-d.ncifcrf.gov/>), with the
503 classification stringency set to “medium” P value of <0.05

504

505 *Droplet digital PCR*

506 Digital PCR is a method enabling absolute quantification of DNA targets without the need to
507 construct a calibration curve as used commonly in qPCR (Zhao et al., 2016). It requires a reference to
508 calculate gene copy number and to normalize gene expression level. For the latter we used β-catenin
509 for mRNAs and SNORD66 for standardizing SNORD RNAs. SNORD 66 is a single copy gene
510 located in an intron of the eukaryotic translation initiation factor 4 and was therefore used also as
511 reference gene for copy number calculations.

512 Primers were designed with 50-70 bp amplicon length, GC content <50% and with very low potential
513 for primer dimer structure.

514

515 **Primers used in this study**

Gene name	Forward sequence 5'→3'	Reverse sequence 5'→3'
SNORD 66	GTGTCTGGGCCACTGAGAC	TTCCTCAGGTCTCAATCCA
SNORD 115	GGGCCTCAGCGTAATCCTAT	ACCCAATGTCATGAAGAAAGGTG
SNORD 116	ACCTCAGTCCGATGAGAGTG	TTCCCAGTCAAACATTCTTG
β-catenin	GGAAAAGAGCCTCAGGGCAT	CTGCCTGACGGCCAGG
Htr2c-201	ATTCGCGGACTAAGGCCATC	GAAGTCGGGTCAATTGAGCAC
HTR2C_204	CAAAATGGCACCCCTGACCTG	GCCCTGGGTTCAATATCTGTTAC
HTR2C_206	ACAGAGTTGCTTGGTGTG	TCATGCCTGACAGTGGCATAG
Ankrd11-202	TATTGCCATCGACGGAGCTG	ACCTCCTGTTAGGCAAAGGC
Ankrd11_207	GGGAAGGAGAGGGAGCAGAAC	GGGAGGATCTGTCAGTTGCTATG

Ankrd11_204	CAGGGTTCTCCTTGAGCAAGAC	TGAAATCGAGGCAGCTGGTG
-------------	------------------------	----------------------

516

517 The QX100™ Droplet Digital™ PCR System (Bio-Rad, Hercules, CA, USA) was used in this study
518 according to the manufacturer's instructions. Briefly, fluorescent PCR reactions for each sample were
519 prepared in a 23 µL volume containing 12µL 2 X EvaGreen supermixes, 200nM of each forward and
520 reverse primers, 1ng DNA or cDNA and water.

521 For tandem copy separation, sample viscosity reduction and improved template accessibility, DNA
522 digestion was done with EcoRI for SNORD115 and BamHI for SNORD116. These enzymes cut only
523 once in the repeated units. 5 units of restriction enzymes were added to each sample. Then the
524 samples were kept 20 minutes at room temperature for complete digestion.

525 Droplets were generated using a Droplet Generator (DG) with an 8-channel DG8 cartridge and
526 cartridge holder with 70 µL of DG oil/well, 20 µL of fluorescent PCR reaction mixture and a DG8
527 gasket. The prepared droplets were transferred to corresponding wells of a 96-well PCR plate
528 (Eppendorf, Germany).

529 The PCR plate was subsequently heat-sealed with pierceable foil using a PX1™ PCR plate sealer
530 (Bio-Rad) and then amplified in a LifeEco thermal cycler (Bioer, China). The thermocycling protocol
531 was: initial denaturation at 95°C for 5 min, then 40 cycles of denaturation at 95°C for 30 s, annealing
532 at 60°C for 45 s and, finally, incubation first at 4°C for 5 min and then at 90°C for 5 min. After
533 cycling, the 96-well plate was fixed into a plate holder and placed into the Droplet Reader. Droplets of
534 each sample were analyzed sequentially and fluorescent signals of each droplet were measured
535 individually by a detector. Copy numbers were calculated according to the procedures suggested by
536 BioRad.

537

538 *Behavioral Tests*

539 Behavioral tests were performed on the *M. m. domesticus* mice starting at an age of 24 weeks, on
540 C57BL/6J inbred strain at the age of 16 weeks and on the *A. uralensis* mice at the age of 18 weeks.
541 The testing included an Elevated Plus Maze, an Open Field and a Dark/Light Box test, all adapted
542 towards the use of wild mice to avoid escape. Test setups were cleaned with 30% ethanol between
543 individual tests.

544 The Elevated Plus Maze consisted of four arms, each 50 cm long and a 10x10 cm neutral area in the
545 middle. Two of the arms were made of clear Plexiglas, indicating the unsafe zone and two were made
546 of grey PVC, indicating a safe zone. The floor was made of white PVC. Mice were placed in the
547 center and the behavior of each mouse was monitored for 5 min (Holmes et al., 2000). During this
548 experiment, the time spent in the dark and light arms were measured, as well as the speed and distance
549 travelled.

550 For the Open Field test, mice were placed in a 60x60 cm arena with 60 cm high grey PVC walls and
551 they were allowed to explore it for 5 min (Reale, 2007; Wilson et al., 1994; Yuen et al., 2015). The
552 speed of the mouse, the distance travelled and time spent within 10 centimeters off the wall vs in the
553 central area were measured.

554 For the Dark/Light Box, the focal mouse was placed in a test apparatus containing a small dark shelter
555 with two exits. During the first five minutes, the time until the mouse pokes its nose out of the shelter
556 and the first time the tail is visible, was recorded. At five minutes, a set of keys was dropped next to
557 the test apparatus from 136 cm height, and the second part of the experiment began. The time it took
558 for the mouse to first look out and when the entire mouse was visible were measured. If mice did not

559 come out at all, the time was set to be 600 seconds. This test was adapted from tests in inbred mice
560 and common voles (Herde and Eccard, 2013; Young and Johnson, 1991).

561 The behavioral tests were filmed using a TSE camera (TSE system, Germany). To score the videos
562 from each test, all the videos were transferred to Videomot2 system (TSE system, Germany). Mice
563 were detected by the software in 3 points (head/center/tail base tracking) and then the software
564 automatically generates the numerical data of the time that each mouse spent at zones of interest.

565 Since personality is defined as consistent behavioral traits, we needed only those measurements which
566 were consistent over the course of the experiment. Hence, each behavioral test was repeated every 4
567 weeks for three times.

568 Statistical analysis were carried out using R 3.3.3 and R 3.3.2 . As the repeatability of a behavior is a
569 key component for the identification of personality trait, all single measurements assessed in the
570 behavioral tests were subjected to repeatability analysis. Repeatability was calculated using “rptR”
571 package (Nakagawa and Schielzeth, 2010). Normally distributed data were calculated using rpt (anova
572 based) and for count data rpt.poisGLMM was used. ID was used as a random effect in these models.

573 To determine whether individual behavioral measurements are correlated, a Spearman correlation
574 matrix was generated. P-values were corrected using the Holm method. Behaviors were clustered
575 using the protocol from (Herde and Eccard, 2013). An hierarchical cluster function was used from the
576 R package ”cluster”, specifically ”agnes”, to determine the relationship between the measurements.
577 All measurements were clustered using Manhattan clustering with complete linkage (Gyuris et al.,
578 2011; Herde and Eccard, 2013; Tremmel and Muller, 2013). Further details on the validation of the
579 statistics are provided in the thesis of Rebecca Krebs (Krebs 2018, University of Kiel).

580 The behavioral tests on the wild cavies (*Cavia aperea*) were conducted as described in (Guenther and
581 Trillmich, 2015). In short, to measure struggle docility, the animal was turned on its back and held in
582 the hand of an observer. For 30 s, the time the animal struggled to actively escape that situation was
583 recorded. To measure open field anxiety, the distance moved (cm) when individuals were exposed to
584 an open field for 20 min, was scored. The first 10 min, a shelter was present in the arena under which
585 animals could hide. For the second 10 min, this shelter was lifted out of the arena.

586

587 *Craniofacial shape analysis*

588 The morphometric analysis was performed as described previously (Pallares et al., 2015). Briefly,
589 mouse heads were scanned using a computer tomograph (micro-CT—vivaCT 40; Scanco,
590 Brüttisellen, Switzerland) at a resolution of 48 cross-sections per millimeter. Using the TINA
591 landmarking tool (Schunke et al., 2012), 36 three-dimensional landmarks were positioned in the skull.
592 The raw 3D landmark coordinates obtained in TINA tool were exported to MorphoJ (Klingenberg,
593 2011) for further morphometric analyses.

594 The symmetric component of the skull was obtained following (Klingenberg et al., 2002). In short, a
595 mirror image of the landmark configuration of each individual was generated, and a full GPA was
596 performed with the original and mirror configurations. Again, the resulting configurations were
597 averaged to obtain the symmetric component of shape variation. The new landmark coordinates
598 generated by the GPA are called “Procrustes coordinates”.

599 Shape features were computed in MorphoJ principal components (PCs) from the n x 3k covariance
600 matrix of Procrustes coordinates, where n is the number of samples and k is the number of landmarks;

601 3k represents the number of Procrustes coordinates. PC loadings computed in this analysis are defined
602 as morphological score in this study.

603

604 *Human cohort and evaluation of personality traits.*

605 541 healthy controls were randomly selected from the Munich registry of residents and interviewed
606 for the presence of DSM-IV anxiety, affective, somatoform, eating, alcohol dependence, drug abuse
607 or dependence, disorders using a modified version of the Munich Composite International Diagnostic
608 Interview (Wittchen and Pfister, 1997) at the MPIP. Only individuals negative for the above-named
609 disorders were included in the context of a large study on the genetics of major depression using
610 EDTA blood as the source for DNA (see (Heck et al., 2009) for more detail). Five hundred and
611 fortyone individuals also completed the Tridimensional Personality Questionnaire (TPQ), a validated
612 personality measure (Weyers et al., 1995). To match the behavioral assessments in mice, single items
613 of the TPQ reflecting anxiety and activity were used to select individuals on the extremes of this
614 distribution. Individuals can score from 0 to 6 on the activity and anxiety scale, respectively and their
615 sum was used to identify the extreme groups, while matching for age and sex. The high anxiety and
616 activity group (N = 48) had a mean additive score of 7.35 (SD 1.04). The low anxiety and activity
617 group (N = 48) had a mean additive score of 0.73 (SD 0.49). The mean age of the high anxiety group
618 was 42.3 year and 41.6 years for the low anxiety group with 33.3% and 62.5% females, respectively.
619

620 **Literature**

621 Alex, K.D., Yavanian, G.J., McFarlane, H.G., Pluto, C.P., and Pehek, E.A. (2005). Modulation of
622 dopamine release by striatal 5-HT2C receptors. *Synapse* 55, 242-251.

623 Anders, S., Pyl, P.T., and Huber, W. (2015). HTSeq-a Python framework to work with high-throughput
624 sequencing data. *Bioinformatics* 31, 166-169.

625 Barbaric, I., Perry, M.J., Dear, T.N., Da Costa, A.R., Salopek, D., Marusic, A., Hough, T., Wells, S.,
626 Hunter, A.J., Cheeseman, M., *et al.* (2008). An ENU-induced mutation in the Ankrd11 gene
627 results in an osteopenia-like phenotype in the mouse mutant Yoda. *Physiological Genomics*
628 32, 311-321.

629 Bazeley, P.S., Shepelev, V., Talebizadeh, Z., Butler, M.G., Fedorova, L., Filatov, V., and Fedorov, A.
630 (2008). snoTARGET shows that human orphan snoRNA targets locate close to alternative splice
631 junctions. *Gene* 408, 172-179.

632 Bierbach, D., Laskowski, K.L., and Wolf, M. (2017). Behavioural individuality in clonal fish arises
633 despite near-identical rearing conditions. *Nature Communications* 8.

634 Bolger, A.M., Lohse, M., and Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina
635 sequence data. *Bioinformatics* 30, 2114-2120.

636 Cassidy, S.B., Schwartz, S., Miller, J.L., and Driscoll, D.J. (2012). Prader-Willi syndrome. *Genetics in*
637 *Medicine* 14, 10-26.

638 Cavaille, J. (2017). Box C/D small nucleolar RNA genes and the Prader-Willi syndrome: a complex
639 interplay. *Wiley Interdisciplinary Reviews-Rna* 8.

640 Ding, F., Li, H.H., Zhang, S.W., Solomon, N.M., Camper, S.A., Cohen, P., and Francke, U. (2008).
641 SnoRNA Snord116 (Pwcr1/MBII-85) Deletion Causes Growth Deficiency and Hyperphagia in
642 Mice. *Plos One* 3.

643 Dingemanse, N.J., and Wolf, M. (2010). Recent models for adaptive personality differences: a review.
644 *Philosophical Transactions of the Royal Society B-Biological Sciences* 365, 3947-3958.

645 Dochtermann, N.A., Schwab, T., and Sih, A. (2015). The contribution of additive genetic variation to
646 personality variation: heritability of personality. *Proceedings of the Royal Society B-Biological*
647 *Sciences* 282.

648 Freund, J., Brandmaier, A.M., Lewejohann, L., Kirste, I., Kitzler, M., Kruger, A., Sachser, N.,
649 Lindenberger, U., and Kempermann, G. (2013). Emergence of Individuality in Genetically
650 Identical Mice. *Science* 340, 756-759.

651 Gallagher, D., Voronova, A., Zander, M.A., Cancino, G.I., Bramall, A., Krause, M.P., Abad, C., Tekin,
652 M., Neilsen, P.M., Callen, D.F., *et al.* (2015). Ankrd11 Is a Chromatin Regulator Involved in
653 Autism that Is Essential for Neural Development. *Developmental Cell* 32, 31-42.

654 Guenther, A., and Trillmich, F. (2015). Within-litter differences in personality and physiology relate to
655 size differences among siblings in cavies. *Physiology & Behavior* 145, 22-28.

656 Gyuris, E., Fero, O., Tartally, A., and Barta, Z. (2011). Individual behaviour in firebugs (*Pyrrhocoris*
657 *apterus*). *Proceedings of the Royal Society B-Biological Sciences* 278, 628-633.

658 Harr, B., Karakoc, E., Neme, R., Teschke, M., Pfeifle, C., Pezer, Z., Babiker, H., Linnenbrink, M.,
659 Montero, I., Scavetta, R., *et al.* (2016). Genomic resources for wild populations of the house
660 mouse, *Mus musculus* and its close relative *Mus spretus*. *Scientific Data* 3.

661 Heck, A., Lieb, R., Ellgas, A., Pfister, H., Lucae, S., Erhardt, A., Himmerich, H., Horstmann, S., Kloiber,
662 S., Ripke, S., *et al.* (2009). Polymorphisms in the Angiotensin-Converting Enzyme Gene Region
663 Predict Coping Styles in Healthy Adults and Depressed Patients. *American Journal of Medical*
664 *Genetics Part B-Neuropsychiatric Genetics* 150B, 104-114.

665 Herde, A., and Eccard, J.A. (2013). Consistency in boldness, activity and exploration at different
666 stages of life. *Bmc Ecology* 13.

667 Holmes, A., Parmigiani, S., Ferrari, P.F., Palanza, P., and Rodgers, R.J. (2000). Behavioral profile of
668 wild mice in the elevated plus-maze test for anxiety. *Physiology & Behavior* 71, 509-516.

669 Jakovcevski, M., Schachner, M., and Morellini, F. (2008). Individual variability in the stress response
670 of C57BL/6J male mice correlates with trait anxiety. *Genes Brain and Behavior* 7, 235-243.

671 Jiang, Y.H., Pan, Y.Z., Zhu, L., Landa, L., Yoo, J., Spencer, C., Lorenzo, I., Brilliant, M., Noebels, J., and
672 Beaudet, A.L. (2010). Altered Ultrasonic Vocalization and Impaired Learning and Memory in
673 Angelman Syndrome Mouse Model with a Large Maternal Deletion from Ube3a to Gabrb3.
674 Plos One 5.

675 Ka, M.H., and Kim, W.Y. (2018). ANKRD11 associated with intellectual disability and autism regulates
676 dendrite differentiation via the BDNF/TrkB signaling pathway. Neurobiology of Disease 111,
677 138-152.

678 Kim, D., Landmead, B., and Salzberg, S.L. (2015). HISAT: a fast spliced aligner with low memory
679 requirements. Nature Methods 12, 357-U121.

680 Kishore, S., and Stamm, S. (2006). The snoRNA HBII-52 regulates alternative splicing of the serotonin
681 receptor 2C. Science 311, 230-232.

682 Kiss, T. (2001). Small nucleolar RNA-guided post-transcriptional modification of cellular RNAs. Embo
683 Journal 20, 3617-3622.

684 Klingenberg, C.P. (2011). MorphoJ: an integrated software package for geometric morphometrics.
685 Molecular Ecology Resources 11, 353-357.

686 Klingenberg, C.P., Barluenga, M., and Meyer, A. (2002). Shape analysis of symmetric structures:
687 Quantifying variation among individuals and asymmetry. Evolution 56, 1909-1920.

688 Kramer, R.S.S., and Ward, R. (2010). Internal facial features are signals of personality and health.
689 Quarterly Journal of Experimental Psychology 63, 2273-2287.

690 Lewejohann, L., Zipser, B., and Sachser, N. (2011). "Personality" in Laboratory Mice Used for
691 Biomedical Research: A Way of Understanding Variability? Developmental Psychobiology 53,
692 624-630.

693 Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, R.,
694 and Genome Project Data, P. (2009). The Sequence Alignment/Map format and SAMtools.
695 Bioinformatics 25, 2078-2079.

696 Lorenc, A., Linnenbrink, M., Montero, I., Schilhabel, M.B., and Tautz, D. (2014). Genetic
697 Differentiation of Hypothalamus Parentally Biased Transcripts in Populations of the House
698 Mouse Implicate the Prader-Willi Syndrome Imprinted Region as a Possible Source of
699 Behavioral Divergence. Molecular Biology and Evolution 31, 3240-3249.

700 Love, M.I., Huber, W., and Anders, S. (2014). Moderated estimation of fold change and dispersion for
701 RNA-seq data with DESeq2. Genome Biology 15.

702 Low, K.J., Hills, A., Williams, M., Duff-Farrier, C., McKee, S., and Smithson, S.F. (2017). A splice-site
703 variant in ANKRD11 associated with classical KBG syndrome. American Journal of Medical
704 Genetics Part A 173, 2844-2846.

705 Nakagawa, S., and Schielzeth, H. (2010). Repeatability for Gaussian and non-Gaussian data: a
706 practical guide for biologists. Biological Reviews 85, 935-956.

707 Nakatani, J., Tamada, K., Hatanaka, F., Ise, S., Ohta, H., Inoue, K., Tomonaga, S., Watanabe, Y., Chung,
708 Y.J., Banerjee, R., et al. (2009). Abnormal Behavior in a Chromosome-Engineered Mouse
709 Model for Human 15q11-13 Duplication Seen in Autism. Cell 137, 1235-1246.

710 Neilsen, P.M., Cheney, K.M., Li, C.W., Chen, J.D., Cawrse, J.E., Schulz, R.B., Powell, J.A., Kumar, R.,
711 and Callen, D.F. (2008). Identification of ANKRD11 as a p53 coactivator. Journal of Cell Science
712 121, 3541-3552.

713 Nicholls, R.D., Saitoh, S., and Horsthemke, B. (1998). Imprinting in Prader-Willi and Angelman
714 syndromes. Trends in Genetics 14, 194-200.

715 Nuss, P. (2015). Anxiety disorders and GABA neurotransmission: a disturbance of modulation.
716 Neuropsychiatric Disease and Treatment 11, 165-175.

717 Paigen, K., and Petkov, P. (2010). Mammalian recombination hot spots: properties, control and
718 evolution. Nature Reviews Genetics 11, 221-233.

719 Pallares, L.F., Carbonetto, P., Gopalakrishnan, S., Parker, C.C., Ackert-Bicknell, C.L., Palmer, A.A., and
720 Tautz, D. (2015). Mapping of Craniofacial Traits in Outbred Mice Identifies Major
721 Developmental Genes Involved in Shape Determination. Plos Genetics 11.

722 Pallares, L.F., Harr, B., Turner, L.M., and Tautz, D. (2014). Use of a natural hybrid zone for
723 genomewide association mapping of craniofacial traits in the house mouse. *Molecular Ecology*
724 23, 5756-5770.

725 Pallares, L.F., Turner, L.M., and Tautz, D. (2016). Craniofacial shape transition across the house
726 mouse hybrid zone: implications for the genetic architecture and evolution of between-
727 species differences. *Development Genes and Evolution* 226, 173-186.

728 Penke, L., and Jokela, M. (2016). The evolutionary genetics of personality revisited. *Current Opinion*
729 in *Psychology* 7, 104-109.

730 Pezer, Z., Harr, B., Teschke, M., Babiker, H., and Tautz, D. (2015). Divergence patterns of genic copy
731 number variation in natural populations of the house mouse (*Mus musculus domesticus*)
732 reveal three conserved genes with major population-specific expansions. *Genome Research*
733 25, 1114-1124.

734 Qi, Y., Purtell, L., Fu, M., Lee, N.J., Aepler, J., Zhang, L., Loh, K., Enriquez, R.F., Baldock, P.A.,
735 Zolotukhin, S., *et al.* (2016). Snord116 is critical in the regulation of food intake and body
736 weight. *Scientific Reports* 6.

737 Reale, D. (2007). What do we really know about selection on personality? *European Journal of*
738 *Personality* 21, 618-620.

739 Reale, D., Dingemanse, N.J., Kazem, A.J.N., and Wright, J. (2010). Evolutionary and ecological
740 approaches to the study of personality. *Philosophical Transactions of the Royal Society B-*
741 *Biological Sciences* 365, 3937-3946.

742 Robinson, W.P., and Lalande, M. (1995). SEX-SPECIFIC MEIOTIC RECOMBINATION IN THE PRADER-
743 WILLI/ANGELMAN SYNDROME IMPRINTED REGION. *Human Molecular Genetics* 4, 801-806.

744 Sanchez-Roige, S., Gray, J.C., MacKillop, J., Chen, C.H., and Palmer, A.A. (2018). The genetics of
745 human personality. *Genes Brain and Behavior* 17.

746 Sato, M. (2017). Early Origin and Evolution of the Angelman Syndrome Ubiquitin Ligase Gene Ube3a.
747 *Frontiers in Cellular Neuroscience* 11.

748 Schunke, A.C., Bromiley, P.A., Tautz, D., and Thacker, N.A. (2012). TINA manual landmarking tool:
749 software for the precise digitization of 3D landmarks. *Frontiers in Zoology* 9.

750 Sirmaci, A., Spiliopoulos, M., Brancati, F., Powell, E., Duman, D., Abrams, A., Bademci, G., Agolini, E.,
751 Guo, S.R., Konuk, B., *et al.* (2011). Mutations in ANKRD11 Cause KBG Syndrome, Characterized
752 by Intellectual Disability, Skeletal Malformations, and Macrodontia. *American Journal of*
753 *Human Genetics* 89, 289-294.

754 Squier, R.W., and Mew, J.R.C. (1981). THE RELATIONSHIP BETWEEN FACIAL STRUCTURE AND
755 PERSONALITY-CHARACTERISTICS. *British Journal of Social Psychology* 20, 151-160.

756 Stamm, S., Gruber, S.B., Rabchevsky, A.G., and Emeson, R.B. (2017). The activity of the serotonin
757 receptor 2C is regulated by alternative splicing. *Human Genetics* 136, 1079-1091.

758 Tasan, R.O., Bukovac, A., Peterschmitt, Y.N., Sartori, S.B., Landgraf, R., Singewald, N., and Sperk, G.
759 (2011). ALTERED GABA TRANSMISSION IN A MOUSE MODEL OF INCREASED TRAIT ANXIETY.
760 *Neuroscience* 183, 71-80.

761 Tooby, J., and Cosmides, L. (1990). ON THE UNIVERSALITY OF HUMAN-NATURE AND THE
762 UNIQUENESS OF THE INDIVIDUAL - THE ROLE OF GENETICS AND ADAPTATION. *Journal of*
763 *Personality* 58, 17-67.

764 Tremmel, M., and Muller, C. (2013). Insect personality depends on environmental conditions.
765 *Behavioral Ecology* 24, 386-392.

766 van Oers, K., and Mueller, J.C. (2010). Evolutionary genomics of animal personality. *Philosophical*
767 *Transactions of the Royal Society B-Biological Sciences* 365, 3991-4000.

768 Waterston, R.H., Lindblad-Toh, K., Birney, E., Rogers, J., Abril, J.F., Agarwal, P., Agarwala, R.,
769 Ainscough, R., Alexandersson, M., An, P., *et al.* (2002). Initial sequencing and comparative
770 analysis of the mouse genome. *Nature* 420, 520-562.

771 Weyers, P., Krebs, H., and Janke, W. (1995). RELIABILITY AND CONSTRUCT-VALIDITY OF THE GERMAN
772 VERSION OF CLONINGERS TRIDIMENSIONAL PERSONALITY QUESTIONNAIRE. *Personality and*
773 *Individual Differences* 19, 853-861.

774 Wilson, D.S. (1998). Adaptive individual differences within single populations. *Philosophical*
775 *Transactions of the Royal Society of London Series B-Biological Sciences* 353, 199-205.

776 Wilson, D.S., Clark, A.B., Coleman, K., and Dearstyne, T. (1994). SHYNESS AND BOLDNESS IN
777 HUMANS AND OTHER ANIMALS. *Trends in Ecology & Evolution* 9, 442-446.

778 Wittchen, H.U., and Pfister, H. (1997). DIA-X-Interview. *Instruktionsmanual zur Durchführung*
779 *vonDIA-X-Interviews*. In (Swets & Zeitlinger, Frankfurt).

780 Wolf, M., and Weissing, F.J. (2012). Animal personalities: consequences for ecology and evolution.
781 *Trends in Ecology & Evolution* 27, 452-461.

782 Young, R., and Johnson, D.N. (1991). A FULLY AUTOMATED LIGHT DARK APPARATUS USEFUL FOR
783 COMPARING ANXIOLYTIC AGENTS. *Pharmacology Biochemistry and Behavior* 40, 739-743.

784 Yuen, C.H., Pillay, N., Heinrichs, M., Schoepf, I., and Schradin, C. (2015). Personality does not
785 constrain social and behavioural flexibility in African striped mice. *Behavioral Ecology and*
786 *Sociobiology* 69, 1237-1249.

787 Zhang, A.H., Yeung, P.L., Li, C.W., Tsai, S.C., Dinh, G.K., Wu, X.Y., Li, H., and Chen, J.D. (2004).
788 Identification of a novel family of ankyrin repeats containing cofactors for p160 nuclear
789 receptor coactivators. *Journal of Biological Chemistry* 279, 33799-33805.

790 Zhang, X.S., and Hill, W.G. (2005). Genetic variability under mutation selection balance. *Trends in*
791 *Ecology & Evolution* 20, 468-470.

792 Zhang, Y.J., Yang, J.H., Shi, Q.S., Zheng, L.L., Liu, J., Zhou, H., Zhang, H., and Qu, L.H. (2014). Rapid
793 Birth-and-Death Evolution of Imprinted snoRNAs in the Prader-Willi Syndrome Locus:
794 Implications for Neural Development in Euarchontoglires. *Plos One* 9.

795 Zhao, Y., Xia, Q.Y., Yin, Y.P., and Wang, Z.K. (2016). Comparison of Droplet Digital PCR and
796 Quantitative PCR Assays for Quantitative Detection of *Xanthomonas citri* Subsp *citri*. *Plos One*
797 11.

798 Zurita, E., Chagoyen, M., Cantero, M., Alonso, R., Gonzalez-Neira, A., Lopez-Jimenez, A., Lopez-
799 Moreno, J.A., Landel, C.P., Benitez, J., Pazos, F., *et al.* (2011). Genetic polymorphisms among
800 C57BL/6 mouse inbred strains. *Transgenic Research* 20, 481-489.

801

802