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Abstract

Acute myeloid leukemias (AML) are characterized by mutations of tumor suppressor and oncogenes,
involving distinct genes in adults and children. While certain mutations have been associated with the
increased risk of AML relapse, the genomic landscape of primary chemotherapy resistant AML is not
well defined. As part of the TARGET initiative, we performed whole-genome DNA and transcriptome
(RNA and miRNA) sequencing analysis of pediatric AML with failure of induction chemotherapy. We
identified at least three genetic groups of patients with induction failure, including those with NUP98
rearrangements, somatic mutations of WT1 in the absence of NUP98 mutations, and additional
recurrent variants including those in KMT2C and MLLT10. Comparison of specimens before and after
chemotherapy revealed distinct and invariant gene expression programs. While exhibiting overt therapy
resistance, these leukemias nonetheless showed diverse forms of clonal evolution upon chemotherapy
exposure. This included selection for mutant alleles of FRMDS8, DHX32, PIK3R1, SHANK3, MKLN1, as well
as persistence of WT1 and TP53 mutant clones, and elimination or contraction of FLT3, PTPN11, and
NRAS mutant clones. These findings delineate genetic mechanisms of primary chemotherapy resistance
in pediatric AML, which should inform improved approaches for its diagnosis and therapy.
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Introduction

Overall survival for children with acute myeloid leukemia (AML) remains low, due principally to
the failure to achieve durable disease remission after initial induction therapy. Failure rate of primary
induction remission therapy in pediatric AML is 10-15%, and only about a third of patients for whom
primary induction therapy fails are ultimately cured (1). Reasons for the lack of response to initial
chemotherapy in pediatric AML remain unclear, and a molecular understanding of this process is
needed.

Since the first AML genome was sequenced (2, 3), numerous genomic profiling studies have
revealed diverse disease subtypes and distinct genetic modes of disease relapse (4). For example,
whole-genome sequencing of AML specimens from adults with relapsed disease revealed broad
patterns of clonal evolution, suggesting that either founding clones gained mutations upon relapse, or
that diagnostic subclones persisted with acquisition of additional mutations after therapy (5). Analysis of
whole exome capture sequencing from matched diagnosis, remission, and relapse trios from twenty
pediatric AML cases showed that responses of specific genetic clones were associated with disease
relapse (6). Similarly, clonal persistence after induction chemotherapy was found to be associated with
disease relapse in adult AML (7).

Recent study of primary chemotherapy resistance in a cohort of 107 children and adults with
AML using targeted gene sequencing demonstrated that few patients exhibited specific individual
mutations associated with primary chemotherapy resistance and failure of induction chemotherapy (8).
In addition, at least for some patients, chemotherapy resistance is caused by the epigenetic activation of
the transcription factor MEF2C (9-10). This suggests that there are additional genetic or molecular
mechanisms mediating primary chemotherapy resistance in pediatric and adult AML. Importantly,

pediatric AML is characterized by distinct genetic mutations and genomic rearrangements, with relative
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paucity of the recurrent mutations frequently observed in adult AML (11). Thus, direct study of primary
chemotherapy resistance in pediatric AML is needed.

Here, we assembled a cohort of pediatric patients with primary chemotherapy resistance and
failure of induction chemotherapy, as part of the TARGET AML initiative. We analyzed whole-genome
DNA, mRNA, and miRNA sequence data, obtained at diagnosis and upon chemotherapy administration.
These studies revealed distinct classes of genetic mutations and their clonal evolution in chemotherapy
resistant disease, which should inform future approaches for the diagnosis, risk stratification and

therapeutic interventions for pediatric AML.

Methods

Complete methodological details are provided in the Supplementary Methods. All specimens
and clinical data were obtained from patients enrolled on biology studies and clinical trials managed
through the Children’s Oncology Group (COG protocols AAML0O531 and AAMLO3P1). Patient samples
were sequentially identified, and selected for comprehensive genomic profiling, if adequate amounts of
high-quality nucleic acids was available. Patient samples were collected as matched trios: bone marrow
aspirates pre-and post-treatment, and matched marrow fibroblasts. Details of sample preparation
protocols and clinical annotations and all primary data are available through the TARGET Data Matrix

(https://ocg.cancer.gov/programs/target/data-matrix). Whole-genome paired-end sequencing libraries

were prepared using the genomic 350-450bp insert Illumina library construction protocol with Biomek
FX robot (Beckman-Coulter, USA), sequenced with an average coverage of 30-fold using Illumina
HiSeq2500. Sequence files were mapped to the GRCh37 (hg19) genome, and processed to identify single
nucleotide variants (SNVs), insertions/deletions (indels), gene fusions, and structural variants. For

mRNA-sequencing, extracted RNAs was used to generate cDNAs using the SMART cDNA synthesis
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97  protocol with the SMARTScribe reverse transcriptase (Clontech) and resultant libraries were sequenced
98  with 75 bp paired reads using lllumina HiSeq2500. RNA-seq reads were aligned with STAR (version
99  2.4.2a), and genes annotated in Gencode v18 were quantified with featureCounts (v1.4.3-p1). Fusion
100 genes were detected using FusionCatcher and STAR-Fusion. Resultant variant call files (VCFs) were
101 subsequently aggregated using an integrated script, available from

102 https://github.com/kentsisresearchgroup/TargetinductionFailure. VCFs were parsed to assemble single

103 nucleotide variants, indels, copy number variation, structural variants, and gene fusions in a master
104  table, and filtered to identify high-confidence calls. Normalization and differential expression was done
105 with the Bioconductor package DESeq2. Gene set enrichment analysis was performed using GSEA v2.2.1
106  plus MSigDB v6.0. All raw sequencing data are available via dbGaP accession numbers phs000465,
107  phs000178 and phs000218, with the processed mutational and expression data published via Zenodo

108 (http://doi.org/10.5281/zenodo.1403737).

109

110  Results

111

112 Genomic landscape of pediatric induction failure AML. A total of 28 patients with primary
113 chemotherapy resistance and failure of induction chemotherapy were studied. The patients were
114 uniformly treated as part of the COG AAML0531 study, having received cytarabine, daunorubicin and
115 etoposide (ADE10+3) chemotherapy. Demographic features of the study cohort are listed in
116  Supplemental Table 1, and are representative of the entire patient cohort, enrolled as part of the
117  AAMLO531 study (12). True failure of induction chemotherapy was defined as morphologic persistence
118 of at least 5% of AML bone marrow blasts 28 or more days after therapy initiation, but prior to the
119 second course of induction chemotherapy (12). We used genomic DNA from cultured fibroblasts

120 isolated from the bone marrow as non-tumor germline DNA to identify somatically acquired mutations.
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121 Using supervised analysis based on genes currently known to have cancer predisposition potential, we
122  did not identify any apparent pathogenic germline variants in this cohort (Supplemental Table 2). For
123 whole-genome DNA sequencing, we obtained mean coverage of 39 (range 23-69). mRNA and miRNA
124  sequencing data had on average 59% and 19% mapping coverage, respectively.

125 In agreement with prior studies (11), we found that this cohort of pediatric AML with induction
126 failure had fewer of the mutations commonly observed in adult AML, including DNMT3A, TET2, IDH1/2
127 and others (13). The most commonly called alterations observed in our cohort were rearrangements of
128 NUP98, and variants in WT1, RUNX1, MLLT10, SPECC1, and KMT2C, predominantly as a result of
129  genomic rearrangements and somatic structural variants (Figure 1A). In particular, we identified NUP98-
130  NSD1 fusions, as well as a number of additional genomic rearrangements, leading to the production of
131  chimeric fusion genes, as evidenced by the combined genomic rearrangements in DNA, and the
132 presence of mRNA sequencing reads in RNA-seq data (Figure 1B). While mutations of FLT3 and KMT2C,
133  and t(8;21), inv(16) and trisomy 8 alterations were the five most common events in the analysis of an
134 unselected cohort of pediatric AML patients (11), these abnormalities were substantially depleted in our
135 induction failure cohort. The relative and unselected enrichment for NUP98-NSD1 rearrangements and
136 WT1 mutations in this induction failure cohort is consistent with the reported poor prognosis of these
137  alterations, with a reported 4-year event-free survival of less than 10% (14).

138

139 Three genetic subtypes of pediatric AML with primary chemotherapy resistance. Although
140  diverse mutations were observed in our cohort, unsupervised hierarchical clustering was unable to
141  segregate the observed cohort into distinct classes. Therefore, we divided the patients into three groups
142 based on the most common recurrent mutations (Figure 2A). Group 1 (6 patients) was defined by the
143 presence of NUP98 rearrangements, and additional mutations including WT1, ELF1, and FRMDS8. No

144  specimens exhibited chromosomal monosomies or complex karyotypes. Although FLT3 mutations are


https://doi.org/10.1101/475376
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/475376; this version posted November 26, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

145  often observed in NUP98-NSD1 leukemias, group 1 did not appear to have FLT3 mutations. The
146  association of NUP98 rearrangements with WT1 mutations in AML induction failure may be due to the
147 functional interaction between these two factors, since patients with both alterations are known to
148 have a much worse prognosis than either alone (11, 14, 15). In addition, we observed an association of
149 NUP98 rearrangements with deletions of the ETS transcription factor ELF1 and copy number gain of the
150 gene encoding cell adhesion signaling factor FRMDS8, both of which have also been observed in myeloid
151 malignancies (16, 17). This association may involve similar cooperating interactions that presumably
152 cause intrinsic chemotherapy resistance. We also identified gain of MYC in two patients from group 1, in
153  agreement with prior finding of activating MYC mutations in association with NUP98-NSD1 AML (18).
154 Group 2 (11 patients) was defined by the presence of WT1 mutations without apparent NUP98
155 rearrangements, and also involves additional mutations including tyrosine kinase domain (TKD, SNV) and
156  internal tandem duplication (ITD, indel) in FLT3, and various other copy number changes and genomic
157 rearrangements. We observed both missense and nonsense WT1 mutations, consistent with previous
158 reports in AML (19, 20, 21). In addition, group 2 included cases with copy number alterations involving
159  the BCL11B, AKT1, and ARID1B loci, among others (Figure 2A), as well as one patient specimen PATISD
160  with monosomy 7 (Supplemental Table 1). BCL11B is a known tumor suppressor gene mutated in
161 refractory forms of T-cell acute lymphoblastic leukemias (T-ALL) (19), including a subtype that may share
162  common origins with refractory AML (20). In addition, both BCL11B and ARID1B are components of the
163 SWI/SNF/BAF chromatin remodeling complex that is disrupted in diverse human cancers (22).

164 Group 3 (11 patients) was defined by the apparent absence of NUP98 rearrangements and WT1
165 mutations, and instead includes leukemias with mutations of KMT2C and MLLT10 (Figure 2A). KMT2C is
166  the tumor suppressor gene that encodes the MLL3 chromatin remodeling factor, that is also inactivated
167 in myeloid malignancies as a result of losses of chromosome 7q (23). Similarly, MLLT10 is frequently

168 rearranged as part of KMT2A/MLL1 and other chromosomal translocations in acute leukemias, including
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169 refractory forms of T-ALL in particular (24) (25). Given the involvement of additional genes and loci
170  recurrently mutated or rearranged in this cohort of patients, it is probable that additional subtypes of
171 chemotherapy resistant disease exist.

172 Intriguingly, while only one patient in group 1 remained alive at 6 years after therapy, and three
173 patients remained alive in group 2, five survivors were observed in group 3. Though the size of this
174  cohort is not powered sufficiently to detect statistically significant differences in survival (log-rank p =
175 0.39, 0.70, and 0.55 for group 1 vs 2, 1 vs 3, and 2 vs 3 respectively), these results suggest that the
176 apparent diversity of genetic subtypes of induction failure may also be associated with variable clinical
177 outcomes.

178 Using mRNA sequencing, we analyzed gene expression programs associated with the primary
179  chemotherapy resistant AML, as assessed using gene set enrichment analysis in diagnostic samples
180  (Figure 2B). Unsupervised hierarchical clustering of gene expression profiles did not segregate with the
181 genetically defined groups (Supplemental Figure 1). This suggests that diverse genetic subtypes of
182 induction failure AML may engage common gene expression programs. This notion is consistent with the
183 recent study implicating epigenetic signaling by the transcription factor MEF2C in AML chemotherapy
184  resistance (9).

185 Lastly, we surveyed microRNA expression in diagnostic samples from this cohort, with the most
186 highly expressed miRNAs listed in Supplemental Table 3. We observed that miR-21 was highly expressed
187 among all 3 subgroups of induction failure patients, consistent with its reported association with inferior
188  clinical outcomes (26). Similarly, we observed high levels of expression of miR-10a, particularly in group
189 1. miR-10a upregulation has been reported in NPMI-mutant AML with associated MDM4
190 downregulation, potentially interfering with TP53 signaling (27). We also found high expression of miR-
191 103 in group 1 patients, which has been reported to downregulate RAD51, leading to dysregulated DNA

192 damage response (28). In addition, we found upregulation of miR-181a in groups 2 and 3, which has
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193 been reported to be overexpressed and mediate ATM downregulation in AML cell lines (29). In all, these
194  findings are consistent with the proposed mechanisms of regulation of chemotherapy response by
195 miRNAs in AML (30).

196

197 Diverse models of clonal evolution by induction chemotherapy. We reasoned that exposure to
198 chemotherapy would lead to selection of genetic clones with mutations conferring chemotherapy
199 resistance, and contraction of clones that are susceptible to ADE chemotherapy. Thus, we compared the
200 prevalence of mutations among different patients in specimens collected before and after induction
201 chemotherapy (Figure 3). We found numerous genomic rearrangements and mutations that were
202  significantly increased in prevalence upon induction chemotherapy exposure. For example, we observed
203  that gains of the FRMDS8 locus were present in 7 of 28 (25%) patients at diagnosis, as compared to 20 of
204 28 (71%) patients post-chemotherapy (two-tailed Fisher’s exact test p = 1.1e-3). This suggests that
205 genomic rearrangement involving FRMDS8 or linked genes may contribute to chemotherapy resistance.
206  FRMDS8 encodes a plasma membrane-associated FERM domain that can contribute to Wnt signaling and
207 processing of transmembrane precursors of inflammatory cytokines (31, 32). In addition, increased
208 FRMDS8 gene expression was found to be a marker of poor prognosis in adult AML (33).

209 Mutations and rearrangements of various additional genes with functions in cell adhesion and
210 signaling, including FANK1, PIK3R1, SHANK3, and MKLN1, also appear to be selected upon
211 chemotherapy exposure, suggesting that they may also contribute to therapy resistance. In contrast,
212 mutations of FLT3 exhibited significant depletion upon chemotherapy administration (Figure 3A).
213 Aberrant activation of FLT3 kinase signaling is a known oncogenic event in AML pathogenesis,
214  contributing to the enhanced proliferation and survival of AML cells, and is associated with inferior
215 prognosis when present at sufficiently high allelic frequencies (34-38). Its relative depletion by

216  chemotherapy in AML induction failure suggests that its subclonal evolution in and of itself does not
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217  cause chemotherapy resistance. Rather, its activation in combination with specific other pathogenic
218  events as part of distinct clones, such as those with mutations of WT1 or NUP98 rearrangements or
219 others (6, 38), may cause resistance to chemotherapy.

220 In addition to the marked changes in overall clonal architecture associated with induction
221 chemotherapy, we also observed multiple modes of clonal evolution within individual leukemias. In
222 general, induction chemotherapy induced a relative contraction of the AML cell population, as
223 evidenced by the reduction of the apparent variant allele frequencies (VAF) of mutant genes (mean 0.40
224  versus 0.28 for pre- and post-chemotherapy, respectively, Bonferroni adjusted t-test p = 2.6e-4). While
225 VAF contraction was common to most mutations, closer examination of individual patients revealed
226  distinct potential modes of clonal evolution (Figure 4). For example, specimen PASFHK exhibited
227 significant expansion of the WT1;PTCH1,ZNF785-mutant clone, and elimination of the FLT3;SERPIN2-
228  mutant subclones, upon chemotherapy exposure (Figure 4A). This is consistent with the prior reports of
229 elimination of FLT3-mutant subclones upon AML relapse (5), supporting the proposal that activated FLT3
230 contributes to chemotherapy resistance only when present with specific cooperating mutations, such as
231 WT1. For specimen PATJMY, we observed evolution of a new loss-of-function nonsense mutation of
232 CHMP6, which emerged either upon chemotherapy exposure or was selected as a pre-existing subclone,
233 present at less than 2% fraction at diagnosis, given the 50-fold sequencing coverage for CHMP6 (Figure
234 4B). Reduced CHMP6 gene expression has been associated with inferior survival of elderly AML patients
235 (39), and its function in endosomal cell surface receptor recycling may contribute to chemotherapy
236  resistance (40). In agreement with prior reports (7), specimen PASTZK exhibited subclonal evolution of
237  mutant TP53 at diagnosis, which led to its clonal expansion in combination with clonal PHF6 mutation
238  upon chemotherapy administration, in contrast to mutation of NRAS which remained subclonal (Figure
239  4C). Finally, specimen PARXYR exhibited relative contraction of the WT1;PTPN11-mutant subclone, and

240 relative expansion of the GPR137B-mutant subclone that additionally acquired a CD82 mutation (Figure

10
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241  4D). Other leukemias showed similar subclonal composition pre- and post-treatment, such as for
242  specimen PARBTV, which demonstrated the likely pathogenic IDH2 R172K (VAF 0.58 pre and 0.45 post)
243 and H3F3A K27M mutations (0.46 pre and 0.54 post). These findings demonstrate distinct modes of
244  clonal selection upon chemotherapy exposure, which are expected to inform future targeting of specific
245 molecular mechanisms to overcome or block chemotherapy resistance.

246

247  Discussion

248

249 Our study defines the genomic landscape of pediatric AML with primary chemotherapy
250  resistance and failure of induction remission therapy. Importantly, primary chemotherapy resistant
251 pediatric AML involves multiple distinct genetic mechanisms. Most notably, we found substantial
252 prevalence of structural rearrangements, at least some of which are associated with the expression of
253 chimeric fusion genes. In particular, we observed at least three distinct genetic groups of patients with
254 induction failure, including those with NUP98 rearrangements, somatic mutations of WT1, ELF1, KMT2C,
255 MLLT10, and additional recurrent gene mutations, fusions, and structural rearrangements, some of
256  which have been observed in other malignancies. Given the known technical challenges with the
257 detection of genomic rearrangements and gene fusions (41), it is possible that additional pathogenic
258 structural variants or chimeric gene fusions may contribute to AML and primary chemotherapy
259 resistance.

260 In our prior study of primary chemotherapy resistance, we identified individual mutations of
261  ASXL1, SETBP1 and RELN to be significantly enriched in a subset of pediatric AML with primary induction
262 failure (8). Insofar as ASXL1 and WT1 mutations are mutually exclusive in both pediatric and adult AML,
263 the prevalence of WT1 mutations and absence of apparent ASXL1 mutations in our current cohort

264  suggests that additional genetic mechanisms of primary chemotherapy resistance likely exist. Our results

11
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265  also suggest that varied genetic mechanisms of chemotherapy resistance may converge on coherent
266  gene expression programs, at least insofar as they cannot be statistically decomposed using matrix
267  factorization used as part of this gene set enrichment analysis.

268 Importantly, our study identified distinct combinations of mutations that appear to be
269 associated with primary chemotherapy resistance. In particular, we observed an association between
270 NUP98-NSD1 fusions and mutations of WT1, ELF1 and FRMDS, suggesting possible cooperativity in their
271 pathogenic functions. Similarly, we observed an association between WT1 mutations and
272 rearrangements of BCL11B and ARID1B loci, both of which encode components of the SWI/SNF/BAF
273 chromatin remodeling complex. Notably, BCL11B is recurrently mutated in refractory forms of T-ALL,
274  which may share common origins with subsets of AML (20). Evidently, these combinatorial mechanisms
275 in pediatric AML are distinguished from other mechanisms of chemotherapy resistance, such as
276 inactivation of TP53 in adult AML (7).

277 Our study identified additional mutations associated with pediatric primary chemotherapy
278 resistance. This includes loss-of-function mutations of KMT2C, which encodes a component of the MLL3
279 chromatin remodeling complex, potentially similar to the deletions of chromosome 7q observed in high-
280 risk AML that involve this locus and have been found to confer susceptibility to epigenetic therapies
281 (23). We also observed deletions of MLLT10, which is recurrently rearranged as gene fusions in subsets
282  of T-ALL. Insofar as MLLT10 is a cofactor of the DOT1L methyltransferase, this may be associated with
283 the susceptibility to emerging DOT1L methyltransferase inhibitors such as pinometostat (EPZ-5686),
284  which will need to be tested in future studies. Additional mutations associated with primary
285  chemotherapy resistance may be found in larger studies. For instance, the presence of likely pathogenic
286 IDH2 R172K and H3K27M K27M mutations in one specimen in our cohort suggests additional potential
287 mechanisms of chemotherapy resistance (42-45), which may confer susceptibility to emerging therapies

288  such as the IDH inhibitor enasidenib (AG-221) for example.

12


https://doi.org/10.1101/475376
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/475376; this version posted November 26, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

289 Our findings also suggest that the diversity of genetic chemotherapy resistance mechanisms
290  may be associated with variable outcomes of intense combination chemotherapy in AML. Importantly,
291 increase in the apparent prevalence and allelic frequency of genetic clones with mutations of FRMDS,
292 FANK1, PIK3R1, WT1 and others indicate that these alleles, in cooperation with NUP98-NSD1 and other
293 initiating mutations, may directly cause chemotherapy resistance. In contrast, subclonal mutations of
294  FLT3, PTPN11 and NRAS were reduced or eliminated by chemotherapy, suggesting that these secondary
295 mutations in and of themselves do not cause chemoresistance. Indeed, subclonal mutations of FLT3 or
296 NRAS were not significantly associated with primary chemotherapy resistance in our prior study (8).
297 Diverse genetic mechanisms of chemotherapy resistance may be associated with clonal evolution (5, 6),
298  as also evidenced by our findings (Figures 3 and 4). On the other hand, common gene expression
299  programs may be associated with shared molecular dependencies, substantiating the development of
300 targeted therapies, as recently evidenced by molecular therapy of MEF2C in chemotherapy resistant
301  AML (46).

302 In all, our study demonstrates that primary chemotherapy resistance and failure of induction
303 chemotherapy in pediatric AML is associated with multiple genetic mechanisms, and exhibits diverse
304  clonal dynamics, dependent on distinct combinations of mutations. Future functional studies will be
305 needed to assess the mechanisms of cooperativity among the observed chemotherapy-associated
306 mutations and their specific pharmacologic targeting. Similarly, additional studies will be needed to
307 define the prognostic significance of the observed chemotherapy-associated mutations. This is expected
308 to delineate molecular mechanisms of primary chemotherapy resistance in pediatric AML, which should

309 inform improved approaches for its diagnosis and therapy.

310
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470

471  FIGURE LEGENDS

472

473 Figure 1: Recurrently mutated genes in pediatric induction failure AML identified by whole-genome
474  and RNA sequencing analysis. (a) Top 20 most commonly called mutated genes, with the mutation type
475 indicated by color, observed at diagnosis, enumerated by the number of total calls, independent of
476 patient assignment. (b) Circos plot of high-confidence gene fusions, identified from combined analysis of
477 RNA and whole-genome sequencing data, observed at diagnosis. All variants are tabulated as fusions for
478 calls from RNA-seq, structural variants when called from whole-genome sequencing, and both when
479 both the fusion and supporting genomic structural variants match.

480 Figure 2: Three groups of pediatric induction failure AML identified by whole-genome and RNA
481 sequencing analysis. (a) Tile plot of recurrently mutated genes and gene expression profiles by patient,
482  showing three disease groups, as labeled, with each row listing the mutant gene, and each column
483 representing an individual patient specimen: Group 1, defined by NUP98 alterations (patients with
484  NUP98-NSD1 fusions except patient 1 with NUP98 gain); Group 2, defined by WT1 mutations, and Group
485 3, defined by the apparent absence of NUP98 or WT1 mutations. (b) Gene set enrichment analysis
486  (GSEA) of the three patient groups, listing significantly enriched (red) and downregulated (blue) gene
487 sets, as a function of their normalized enrichment.

488 Figure 3: Clonal selection upon chemotherapy treatment. Tile plot showing recurrently mutated genes
489  with changes in apparent allele frequencies upon induction chemotherapy. For FLT3 mutations, TKD
490 mutations are listed as SNVs, and ITDs as indel mutations.

491

492 Figure 4: Mutant allele frequencies suggest diverse modes of clonal evolution upon chemotherapy
493  exposure. Variant allele frequencies (VAF) in four specimens with WT1 mutant clones are represented
494  as the height of color-coded clones, with full height of allele frequency axis corresponding to a mutant
495  allele frequency of 1. Simplest models of clonal architecture are shown, with additional models possible.
496 Each hypothesized subclone is represented by a different color. (a) Specimen PASFHK in Group 2, largest
497 VAF at diagnosis was 0.96 for WT1 R430P; largest VAF at induction failure was 0.38 for WT1 R430P. (b)
498 Specimen PATJMY in Group 1, largest VAF at diagnosis was 0.53 for WT1 S381, largest VAF at induction
499  failure was 0.47 for CHMP6 E108stop. (c) Specimen PASTZK in Group 2, largest VAF at diagnosis was 0.77
500 for PHF6 R370stop, largest VAF at induction failure was 0.37 for TP53 R273C. (d) Specimen PARXYR in
501 Group 1, largest VAF at diagnosis was 0.57 for RBAK V708I, largest VAF at induction failure was 0.43 for
502 GPR137B T182M.

503
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