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Abstract

Given the close relationship between protein structure and function, protein structure
searches have long played an established role in bioinformatics. Despite their maturity,
existing protein structure searches either use simplifying assumptions or compromise
between fast response times and quality of results. These limitations can prevent the
easy and efficient exploration of relationships between protein structures, which is the
norm in other areas of inquiry. We have developed RUPEE, a fast, scalable, and purely
geometric structure search combining techniques from information retrieval and big
data with a novel approach to encoding sequences of torsion angles.

Comparing our results to the output of mTM, SSM, and the CATHEDRAL
structural scan, it is clear that RUPEE has set a new bar for purely geometric big data
approaches to protein structure searches. RUPEE in top-aligned mode produces equal
or better results than the best available protein structure searches, and RUPEE in fast
mode demonstrates the fastest response times coupled with high quality results.

The RUPEE protein structure search is available at
http://www.ayoubresearch.com. Code and data are available at
https://github.com/rayoub/rupee.

Introduction 1

Proteins represent the functional end-product within the central dogma of molecular 2

biology [1]. As such, understanding protein structure is a central goal within structural 3

bioinformatics. Protein structure determination, prediction, alignment, and search all 4

serve to advance this understanding. Below, we present our approach to a fast, scalable, 5

and purely geometric protein structure search we refer to with the acronym of RUn 6

Position Encoded Encodings of residue descriptors (RUPEE). 7

Given a protein domain identifier, whole chain identifier or an uploaded PDB file, 8

RUPEE can search for matches among domains defined in SCOPe 2.07 [2], CATH 9

v4.2 [3], ECOD develop210 [4], or among whole chains defined in the PDB. RUPEE is 10

able to search either of these databases using any identifier. For instance, you can 11

search SCOPe using a CATH domain identifier. 12

RUPEE has two modes of operation, fast and top-aligned. Fast mode is significantly 13

faster than all other protein structure searches discussed below but at the expensive of 14

accuracy. Despite this, we will show that the accuracy of RUPEE in fast mode is not far 15

below that of the best available structure searches. On the other hand, the accuracy 16

and response times of RUPEE in top-aligned mode are comparable to currently 17

available protein structure searches that are commonly considered fast. 18
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RUPEE stands out as not just another protein structure search, of which there are 19

many. RUPEE is the first, to our knowledge, purely geometric protein structure search 20

to achieve results as good as the best available protein structure searches. Additionally, 21

it can be argued that the kinds of matches that RUPEE does return have more added 22

value than the current state of the art in that with equal scores it is able to return 23

results not biased toward a structure classification hierarchy such as SCOPe or sequence 24

clusters such as the PDB-90. In this regard, RUPEE makes a fundamental contribution 25

to protein structure research that lends itself to being leveraged in existing systems. It 26

also provided a path for further research activity in the direction of big data 27

representations of protein structures. 28

Besides our approach to protein structure search, we introduce a polar plot for 29

torsion angles that may have wider applicability in the study of protein structure. 30

Further, the run position encoding heuristic introduced below may have wider 31

applicability to algorithms for character sequences containing long runs of repeats. 32

We first discuss some related work to provide a context for our approach followed by 33

a description of our method. We end with a comparison of results against the 34

mTM-align structure search [5], the secondary structure matching (SSM) search [6], and 35

the CATHEDRAL structural scan [7] available at the CATH website. 36

Related work 37

Pairwise alignment involves finding a set of spatial rotations and translations for two 38

protein structures that minimizes a distance metric. Most commonly, the root mean 39

squared deviation (RMSD) between α-carbons of aligned residues is minimized. 40

The typical use case of aligning one protein structure to another does not impose 41

tight response time requirements. For this reason, pairwise alignments can focus on 42

accuracy. On the other hand, a protein structure search can involve thousands of 43

comparisons and accuracy is often balanced against speed. In this case, pairwise 44

alignment is still useful for evaluating the results of a search, and this is the approach 45

we take. 46

For pairwise alignment, Combinatorial Extensions (CE) [8] and FATCAT [9] are 47

among the most popular tools, representing rigid and flexible protein alignments, 48

respectively. CE performs a rigid alignment in order to minimize RMSD and FATCAT 49

allows for a constrained number of twists in the protein chain in order to find a more 50

flexible alignment before minimizing RMSD. 51

Whereas pairwise structure alignments only depend on the sequence of α-carbon 52

coordinates, protein structure searches often introduce a further dependence on the 53

sequence order of amino acids. This approach often takes the form of clustering proteins 54

based on sequences and pre-calculating results for pairwise alignments among cluster 55

representatives. Then, these pre-calculated results are used for filtering the number of 56

structures used for comparisons against a query protein. The exact formula for 57

combining the use of representatives and pre-calculated results varies from system to 58

system. However, all systems using this approach share the same disadvantage, an 59

indirect dependence on amino acid sequences. In the absence of a reliance on sequence 60

representatives and pre-calculated results, and without sacrificing accuracy, response 61

times suffer greatly, often taking upwards of an hour for queries to complete. 62

For protein structure searches, VAST [10] and the FATCAT server [11] are among 63

the most popular. Nonetheless, these searches are slow in comparison to mTM, SSM, 64

and CATHEDRAL when pre-calculated results are not used. If given a known protein 65

domain, VAST can return structural neighbors in seconds using pre-calculated results. 66

However, if uploading a PDB file where pre-calculated results are not used, response 67

times for VAST can exceed 30 minutes. Similarly, the FATCAT server, that does not 68
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use pre-calculated results, can take over an hour to send results for a search against 69

PDB-90 representatives [12]. 70

Given the above, there remains a need for a purely geometric protein structure 71

search. For the serendipitous exploration of relations between protein structures 72

performed in the trenches, this search should be fast. Moreover, with a 10% yearly 73

growth rate of solved structures deposited in the PDB [13], this search should be 74

scalable. At a minimum, RUPEE takes a significant step in this direction as will be 75

shown below. 76

Methods 77

Broadly, we define a linear encoding of protein structure and convert this linear 78

encoding into a bag of features. Min-hashing and locality sensitive hashing (LSH), 79

techniques drawn from big data, are then applied to implement a protein structure 80

indexing method that serves as the foundation for both RUPEE operating modes, fast 81

and top-aligned. 82

Protein structure searches that use linear encodings are not unique [14–16]. The 83

novelty of our approach lies in its remarkable performance given its simplicity. 84

Additionally, elements of our approach can be isolated and found to be useful in their 85

own right. 86

Regions of Torsion Angles 87

Our first step towards a linear encoding of protein structure is to identify separable 88

regions of permissible torsion angles, but first we introduce a new plot of torsion angles 89

better suited to this effort. 90

Despite their utility and familiarity, Ramachandran plots [17] represent angular data 91

using a square plot better suited for scalar data. This leads to the unwieldy 92

arrangement where the top part of the plot is continuous with the bottom and the left is 93

continuous with the right. 94

To identify regions of torsion angles, we randomly sampled 10,000 residues from 95

high-resolution CATH s35 representatives to account for precision and redundancy, 96

respectively. A Ramachandran plot of the sampled torsions angles is shown in the left 97

plot of Fig 1. As can be seen, a single cluster of residues, consisting primarily of 98

β-strands, appears at all 4 corners of the Ramachandran plot. 99

Fig 1. Ramachandran plot (right) and polar plot (left) of randomly sampled torsion
angles

This continuity problem was partially addressed in [18] using wrapped and mirrored 100

plots. Both wrapped and mirrored plots take advantage of the sparsely populated areas 101

of the Ramachandran plot at φ = 0° and ψ = −120°. However, with larger samples of 102

torsion angles, the area at ψ = −120° becomes less sparse. The use of a polar plot 103

resolves this elegantly by only requiring one break in continuity at φ = 0°. 104

In the right plot of Fig 1, we show the same torsion angles appearing in the 105

Ramachandran plot using a polar plot. In this plot, φ corresponds to the radius r and ψ 106

corresponds to the angle θ in traditional polar plots. Notice the residues appearing at 107

the 4 corners of the Ramachandran plot now appear in one continuous region of the 108

polar plot centered at φ = ±180° and ψ = ±180°. 109
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Linear Encoding of Protein Structure 110

The polar plot described above is used to define torsion angle regions for each secondary 111

structure assignment. The eight DSSP secondary structure assignment codes defined 112

in [19] divide into three groups in which torsion angle regions are roughly the same: 113

‘G’,‘H’,‘I’, and ‘T’ corresponding to 310-helix, α-helix, π-helix, and turn, respectively; ‘E’ 114

and ‘B’ corresponding to β-strand and β-bridge, respectively; and ‘S’ and ‘C’ 115

corresponding to bend and coil, respectively. 116

Polar plots for each group of DSSP assignment codes along with defined region and 117

descriptor designations are shown in Fig 2, with the exception of turns and bridges, 118

which receive descriptors 11 and 12, respectively. For each polar plot, there are 119

well-defined continuous regions of torsion angles that remain continuous in the plots. 120

The only exception is found in the bends and coil plot at ψ = 60° between φ = −180° 121

and φ = 0°. 122

Fig 2. Polar plots of randomly sampled torsion angles with designated descriptors for
region and DSSP code combinations

As an example of our linear encoding, we apply our method to the β-turn-β motif
shown in Fig 3. The corresponding sequence of residue descriptors is shown below.

[ 5, 5, 5, 5, 5, 5, 7, 5, 11, 11, 5, 5, 5, 5, 5, 5 ] (1)

Fig 3. β-turn-β motif from CATH domain 1nycA00

Bag representation of protein structure 123

Once a linear encoding for a protein structure is obtained, it needs to be further 124

transformed into a representation suitable for fast and scalable similarity comparisons 125

to other structures. The processing of text documents within Information Retrieval (IR) 126

has long been used to satisfy these requirements using bag representations. There are 127

two distinct categories of representations for documents, syntactic and semantic, and 128

much of the research applying IR to protein structure search has focused on the 129

latter [20–22]. 130

We have adapted the syntactic approach to document similarity, often referred to as 131

shingling [23], to our linear encoding of protein structure. We transform a linear 132

sequence of descriptors into a multiset of shingles consisting of 3 consecutive descriptors. 133

The overlap between shingles ensures some of the order information within the original 134

sequence is preserved in the bag. 135

The length of a shingle is chosen to balance false positives, in the case of shorter 136

shingles, against false negatives, in the case of longer shingles. In [24], we used 4 137

consecutive descriptors for our shingles. With the additions discussed in the Operating 138

modes section below, we have found RUPEE is more tolerant of false positives and so 139

accordingly we have cast a wider net by decreasing the shingle length to 3. 140

By shingling, we obtain a multiset of ordered lists from an ordered list of numbers.
As an example, the sequence in (1) is transformed into the following bag of shingles.

{ [5, 5, 5], [5, 5, 5], [5, 5, 5], [5, 5, 5], [5, 5, 7]

[5, 7, 5], [7, 5, 11], [5, 11, 11], [11, 11, 5], [11, 5, 5]

[5, 5, 5], [5, 5, 5], [5, 5, 5], [5, 5, 5] }
(2)
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Next, each shingle s is hashed to an integer as shown in (3). The hash function used
is a simplification of the hash function used in the Rabin-Karp algorithm [25]. The
prime number 13 is used as the base since it is large enough to spread the descriptor
values out in hash space without collisions.

shash = s1 × 132 + s2 × 13 + s3 (3)

Subsequently, the multiset in (2) becomes the following bag of integers.

{ 915, 915, 915, 915, 917, 941, 1259

999, 2007, 1929, 915, 915, 915, 915 }
(4)

This final step completes the transformation of an ordered list of descriptors to a 141

multiset of integers that still retains some of the order information present in the 142

original list. 143

Notice in (4) the value 915, corresponding to the shingle [5, 5, 5], occurs frequently 144

indicating the presence of β-strands. Since most proteins are dominated by regular 145

secondary structure, the abundance of shingles for β-strands as well as the three types 146

of helices, end up dominating comparisons. Moreover, since shingles are limited in 147

length, this situation allows for structures with many short β-strands to match 148

structures with fewer long β-strands. The same situation applies to helices. 149

To address this lack of specificity, we introduce a heuristic we call run position
encoding (RPE). To distinguish between short and long runs, thereby increasing the
specificity of the shingles, we add a factor of 105 to each shingle hash as a function of
the first residue’s position in a run i.

runfactor(i) =

{
i if i < bl/2c
l − i− 1 otherwise

(5)

where i is zero-based and l is the length of the run. Multiplying by 105 places the run 150

factor as the left-most digit in the hash to avoid interference with the digits provided by 151

the hash in (3). This placement is also convenient for visual inspection, since the run 152

factor is isolated as the left-most digit. 153

The run factors for the sequence in (1) are

[ 0, 1, 2, 2, 1, 0, 0, 0, 0, 0, 0, 1, 2, 2, 1, 0 ]. (6)

Applied to the bag of integers in (4) gives

{ 00915, 10915, 20915, 20915, 10917, 00941, 01259

00999, 02007, 01929, 00915, 10915, 20915, 20915 }
(7)

where the leading zero run factors are shown for clarity. 154

This pyramidal approach preserves matches at the boundaries between secondary 155

structure runs and loops that would not otherwise be preserved in the presence of 156

differences in run lengths of one or more. 157

Now that we have a representation of a protein structure as a bag of integers,
similarity between any two structures a and b is defined as the Jaccard similarity [26]
for multisets,

J(a, b) =

∑
imin(ai, bi)∑
imax(ai, bi)

, (8)

where i ranges over all possible shingle hashes si and ai and bi give the counts of shingle 158

hash si in structures a and b, respectively. 159
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Min-hashing and LSH 160

In IR, the bag of shingles representation of documents is used in the near dupe 161

clustering of documents [27]. One application of near dupe clustering is in the review 162

stage of Electronic-Discovery [28], which is the most expensive stage in a discovery 163

process. Often millions of documents must be examined by a staff of attorneys to make 164

a reasonable effort at providing all documents relevant to the discovery request. 165

Grouping documents into near dupe clusters and assigning all documents within a 166

cluster to a single reviewer reduces duplication of effort. 167

In the case of near dupe clustering, each document must be compared to every other 168

document in the collection, taking quadratic time. For this task, min-hashing [29] and 169

locality sensitive hashing (LSH) [30] can be combined to reduce this to subquadratic 170

time. Although we do not near dupe cluster domains, we can still leverage the 171

techniques of min-hashing and LSH to speed up protein structure search by a large 172

constant factor. 173

Min-hashing is used to randomly select items from a set of items by repeatedly 174

randomly hashing the items, sorting the hashes into a list, and then selecting the 175

minimum item in each permuted list. If the same random permutation of items is 176

performed on each set of items in a collection, the key result is that the probability of 177

matching min-hashes is equal to the Jaccard similarity [29]. In order to approximate the 178

Jaccard similarity for a given pair of sets, a sufficient number of min-hashes must be 179

obtained. 180

In our case, the items are bags of shingle hashes for protein structures from which 181

we obtain 99 min-hashes as described in [31]. Given the key result above, the Jaccard 182

similarity can now be approximated by the proportion of matching min-hashes. 183

Next, we use the LSH banding technique as described in [31]. The key result of the 184

banding technique is that if any band positions are a match for a given pair of 185

structures, the probability that a specific similarity threshold has been met can be 186

calculated. We use 33 bands of 3-min-hashes where the probability of a Jaccard 187

similarity of 60% or greater is approximately 99%. Banding allows the problem of 188

finding similar items to be parallelized across bands since all that is needed for a match 189

is a single band match. 190

Together, min-hashing and LSH provide the foundation for both operating modes of 191

RUPEE, fast and top-aligned. 192

Operating modes 193

RUPEE provides two modes, fast and top-aligned. Each operating mode builds on the 194

results provided by the min-hashing and LSH system described above. When a 195

structure search is executed in either mode, a number of concurrent tasks are executed 196

corresponding to the number of bands used for LSH. These concurrent tasks identify 197

candidate matches based on a single band match and then validate the matches based 198

on a comparison of min-hashes. 199

In fast mode, the top 8,000 matches are obtained along with the original gram 200

sequences defined for the structures. A further validation is done by performing a 201

longest common subsequence (LCS) analysis of the matched gram sequences and 202

adjusting the Jaccard similarity scores accordingly. This step accounts for possible gram 203

matches among pairs of structures that are out of order since the min-hashing and LSH 204

techniques themselves do not consider the order of the gram matches. The final step of 205

fast mode is to sort the matches based on the adjusted scores and return the results. 206

Top-aligned is an additional step following fast mode. First, unoptimized CE 207

alignments are performed on the top 2,000 matches obtained from fast mode. Then 208

optimized CE alignments are performed on the top 400 matches and these are finally 209
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returned sorted either by RMSD or TM-Score. Top-aligned is a simple layer following 210

fast mode that establishes RUPEE fast mode as an effective filtering method that 211

contains in its top 2,000 results enough good matches to compete with the best 212

available structure searches. 213

Results 214

Protein structure searches can be evaluated using pairwise alignment scores or by 215

comparison of results against the hierarchy of a protein structure classification database. 216

The RMSD of aligned residues is widely used in evaluations but is not perfectly suited 217

to full-length comparisons between structures since distances between unaligned 218

residues are not factored into the score. On the other hand, the TM-score [32] takes all 219

residues into account. Among protein structure classification databases for which 220

corresponding structure searches exist, SCOPe [2] and CATH [3] are the most popular. 221

For our results, we have created 3 benchmarks, scop d360, scop d62, and cath d99, 222

for pairwise evaluations to mTM, SSM, and CATHEDRAL, respectively. scop d360 is 223

derived from the d500 benchmark used in [5] filtered for domains in SCOPe 2.07 for 224

which mTM returns 100 or more results. Similarly, scop d62 is derived from the d500 225

benchmark filtered for domains defined in SCOP 1.73 for which SSM returns 50 or more 226

results. In keeping with our description of RUPEE in [24], the cath d99 benchmark 227

contains 99 superfamily representatives from the top 100 most diverse superfamilies 228

defined in CATH v4.2 for which CATHEDRAL returns results in less than 12 hours. 229

We perform pairwise evaluations to ensure the fairness of our comparisons. First, for 230

domain searches, SSM is working with the SCOP 1.73 database, so accordingly we 231

operate RUPEE on SCOP 1.73 domains to ensure RUPEE does not have more domains 232

to work with for scoring and precision evaluations. Second, mTM is updated to work 233

with SCOPe 2.07 domain definitions but still retains domains from 2.06 that have since 234

been redefined either through mergers or splits in 2.07. On the other hand, 235

CATHEDRAL presents no such challenges but still requires a separate benchmark since 236

it is working with a distinct hierarchy, CATH v4.2. 237

All benchmark definitions can be found in S1 Benchmarks. 238

Scoring 239

Fig 4 shows average cumulative values for each ranked result averaged over all searches. 240

Both RMSD and TM-score values are shown, provided as outputs from optimized CE 241

pairwise alignments. A TM-score above 0.5 is a good predictor for whether or not two 242

domains are in the same fold [33]. TM-scores greater than 0.17 are considered 243

potentially meaningful whereas TM-scores less than 0.17 are considered to be due to 244

random alignment [32]. 245

Fig 4. Scoring from CE pairwise alignments for RUPEE fast, RUPEE top-aligned
sorted by TM-Score, and RUPEE top-aligned sorted by RMSD

A figure similar to Fig 4 but using FATCAT for pairwise comparisons can be found 246

in S2 Fig. The same relative relationships hold with only small variations. 247

RUPEE fast, top-aligned sorted by RMSD, and top-aligned sorted by TM-Score, 248

perform better than SSM and CATHEDRAL. The scoring in the cath d99 benchmark 249

comparisons are notably lower than for the other two benchmarks. This is expected 250

since CATHEDRAL only returns CATH s35 representatives. Likewise, for this 251

comparison RUPEE is filtered for s35 representatives to match. Given that the cath d99 252
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benchmark is evaluated against representatives, there are fewer highly similar structures 253

returned in the results. 254

In our evaluation, mTM faired better than SSM and CATHEDRAL. mTM also 255

performed better than RUPEE fast, although RUPEE fast is still within 0.08 TM-Score 256

points of mTM at the 100th result, which is notable considering its speed. 257

For TM-Score, RUPEE top-aligned and mTM are nearly identical with RUPEE 258

slightly better for ranks less than 50 and mTM better for ranks greater than 50. For 259

RMSD, RUPEE top-aligned does perform better than mTM but this can most likely be 260

attributed to the fact that mTM only sorts by TM-Score. If mTM sorted by RMSD we 261

suspect the results again would be nearly identical. Nevertheless, it is worth noting that 262

the initial LSH and min-hashing technique does not explicitly bias results towards one 263

particular measure. 264

Precision 265

Fig 5 shows precision (i.e. positive predictive value or PPV) averaged over all searches, 266

where positive results are defined as domains with the same classification for the 267

indicated hierarchy level as the query domain. A plot of recall is unnecessary since Fig 5 268

provides precision at specific ranks for identical sets of searches. Hence, recall curves 269

have the same relative relationships as those shown for precision. 270

Fig 5. Precision for RUPEE fast, RUPEE top-aligned sorted by TM-Score, and
RUPEE top-aligned sorted by RMSD

We should expect a structure search to have reasonable precision with respect to the 271

hierarchy levels of the structure classification it is searching. However, it is not clear 272

how to define reasonable. On the other hand, if precision is too high, the search 273

provides little value beyond that provided by the structure classification hierarchy it is 274

searching. Towards the extreme end of high precision, it would be sufficient for a search 275

to return the best match and from there refer to the hierarchy for additional results. 276

Similar to the scoring evaluations above, RUPEE fast and top-aligned, sorted by 277

both RMSD and TM-Score, show higher precision than SSM and CATHEDRAL with 278

the exception of RUPEE top-aligned sorted by RMSD for ranks lower than 10 compared 279

against SSM. 280

Again, mTM faired better than SSM and CATHEDRAL. Notably, mTM also shows 281

clearly higher precision than RUPEE top-aligned, sorted by both RMSD and TM-Score. 282

In the absence of Fig 4, one may be led to regard this as a negative result. However, to 283

the contrary, in the presence of Fig 4, where it is shown that RUPEE and mTM have 284

almost identical scoring, this result is remarkable. This disparity suggest that RUPEE is 285

better able to find significantly similar matches not necessarily aligned with the SCOPe 286

hierarchy. In fact, since the initial min-hashing and LSH technique used by RUPEE 287

check for similarity to all available structures, no structure is able to hide behind a 288

sequence based cluster representative. So this result is in keeping with how RUPEE is 289

intended to work and how it is described above. 290

Response Times 291

Fig 6 shows response times in seconds for the scop d62 and cath d99 benchmarks. Here, 292

we are able to show RUPEE fast and top-aligned, mTM and SSM on the same plot 293

because scop d62 is a subset of the scop d360 benchmark. Both plots are shown with a 294

logarithmic scale in order to include all outliers while still being able to view the overall 295

trends in response times. Loess regression curves are also provided to further highlight 296

the overall trends. 297
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Fig 6. Response times for RUPEE fast and RUPEE top-aligned. The response times
for RUPEE top-aligned are dominated by pairwise structure alignments and do not
depend on the sort order.

In all cases, RUPEE fast is considerably faster than all other searches. It is also 298

clear that fast mode is not as sensitive to increasing residue counts in contrast to 299

CATHEDRAL and RUPEE top-aligned. Response times for SSM are not affected by 300

residue counts at all and always returns results in less than 100 seconds but this is at 301

the expense of performance as shown in Fig 4. 302

In the left plot of Fig 6, it is shown that RUPEE top-aligned is faster than mTM for 303

residue counts below 200, but then response times for RUPEE increase beyond that of 304

mTM. Down the stretch, mTM provides increasingly better response times than 305

RUPEE, while RUPEE is still able to provide reasonable response times. The right plot 306

of Fig 6 shows RUPEE top-aligned is significantly faster than CATHEDRAL for all 307

residue counts. 308

The trend of increasing response times for RUPEE top-aligned is a direct result of 309

the pairwise structure comparisons that are performed on the top 2,000 results provided 310

by RUPEE fast mode. 311

Response times to a large degree are a measure of the amount of resources available 312

to an application. In the case of RUPEE, our response times were gathered from 313

RUPEE running on a fairly old laptop with a 2nd generation Intel® Core™ i7-2720QM 314

Quad-Core CPU and 8 GB of memory. With more resources the response times of 315

RUPEE can be further improved since pairwise alignments can be run in parallel. For 316

mTM, SSM, and CATHEDRAL, we gathered response times by automating their 317

respective web sites using the Selenium WebDriver API. 318

Discussion 319

As shown above, a purely geometric big data approach to protein structure search can 320

compete with the best available protein structure searches. Nonetheless, there remain 321

avenues for further improvement and investigation. 322

While our min-hashing and LSH scheme does allow for some flexibility in the size of 323

matched protein structures, it is not specifically designed for containment searches. 324

However, the initial min-hashing and LSH search does operate fast enough, within 325

seconds, that it does present the possibility of executing multiple searches within the 326

context of a single query. With more resources, we can distribute min-hash and band 327

data across multiple compute units, with each data set representing a subset of chopped 328

structure representations. With a 75% overlap of these subsets, RUPEE searches 329

effectively become containment searches. 330

We have tried the overlapping subset idea and have found it to be effective. 331

However, on a single compute unit, the time required is more than we are willing to 332

accept for this first iteration of RUPEE. 333

One possible drawback of RUPEE is that in both fast and top-aligned modes, it only 334

returns the top 400 results. Again, with more resources, this number can be increased, 335

but there still remains a need for some kind of cut-off. Nonetheless, in most search tools, 336

having to looking past the first few hundred results usually indicates an ineffective 337

search strategy. To this end, RUPEE provides filters that can be used for traversing 338

structure space more efficiently. For SCOPe, CATH, and ECOD you can instruct the 339

search to only return domains that differ from the query structure at a chosen hierarchy 340

level classification. Additionally, for CATH you can filter results based on hierarchy 341

level representatives. Since RUPEE does not rely on sequence clusters, these kinds of 342
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filters are easy to implement, do not reduce the number of returned results, and allow 343

for the discovery of unexpected structural similarities across classification hierarchies. 344

One area that stands out for possible improvement is our longest common 345

subsequence (LCS) scoring adjustment to the results initially returned by RUPEE. 346

While the LCS step has been shown to be effective, it is notable for its simplicity. A 347

more complex step of validating the sequence of gram matches can take a form similar 348

to the path extension algorithm used by CE. In this case, sequences of matches would 349

only be extended when the difference of interresidue distances between gram pairs 350

already in the sequence and a candidate pair to be added to the sequence fall below 351

some threshold. 352

On the other hand, it would be interesting to see where further analysis of the initial 353

results returned by RUPEE before LCS and any sort of order enforcement beyond that 354

of the grams themselves could lead. For instance, topological permutations such as 355

circular permutations, segment-swapping and changing secondary structures within 356

homologous proteins are not uncommon [34]. The initial RUPEE min-hashing and LSH 357

algorithm provides candidate matches along with matched grams. With some thought, 358

an algorithm similar to FATCAT can be developed allowing for permutations in 359

addition to twists. 360

As can be observed from considering Fig 4 and Fig 5 together, there are good 361

domain matches aligned with the SCOPe hierarchy that mTM is able to find that 362

RUPEE does not. Conversely, there are good domain matches not aligned with the 363

SCOPe hierarchy that RUPEE finds and mTM does not. A comprehensive listing of 364

these difference may find interesting similarities not previously known. 365

Conclusion 366

With the growth rate of solved structures deposited in the PDB, the need for a fast and 367

scalable structure search is growing. Using run position encoded shingles of residue 368

descriptors combined with min-hashing and LSH, we have shown that RUPEE fast is 369

able to provide good results in seconds running on an Quad-Core laptop. Currently, 370

RUPEE fast is the fastest available protein structure search providing the demonstrated 371

level of accuracy. For RUPEE top-aligned, we have shown that a purely geometric big 372

data approach to protein structure search is able to produce results equal to or better 373

than the current state of the art protein structure searches that variously depend on 374

clustered sequences or protein structure classification hierarchies. Moreover, we have 375

shown evidence that suggests the results from RUPEE top-aligned provide more added 376

value by discovering high scoring protein structure matches not necessarily aligned with 377

a particular protein structure classification hierarchy or hiding behind cluster 378

representatives. The ability for RUPEE to quickly examine all structures among 379

hundreds of thousands sets it apart as a tool that can be used for discovering previously 380

undetected structural similarities. 381

Supporting information 382

S1 Benchmarks. Domains included in benchmarks used for evaluation. 383

S2 Fig. Scoring from FATCAT pairwise alignments. 384

S3 Methods Addendum. Run factors for shingles instead of descriptors. 385
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