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Abstract

Given the close relationship between protein structure and function, protein structure
searches have long played an established role in bioinformatics. Despite their maturity,
existing protein structure searches either use simplifying assumptions or compromise
between fast response times and quality of results. These limitations can prevent the
easy and efficient exploration of relationships between protein structures, which is the
norm in other areas of inquiry. We have developed RUPEE, a fast, scalable, and purely
geometric structure search combining techniques from information retrieval and big
data with a novel approach to encoding sequences of torsion angles.

Comparing our results to the output of mTM, SSM, and the CATHEDRAL
structural scan, it is clear that RUPEE has set a new bar for purely geometric big data
approaches to protein structure searches. RUPEE in top-aligned mode produces equal
or better results than the best available protein structure searches, and RUPEE in fast
mode demonstrates the fastest response times coupled with high quality results.

The RUPEE protein structure search is available at
http://www.ayoubresearch.com. Code and data are available at
https://github.com/rayoub/rupee.

Introduction

Proteins represent the functional end-product within the central dogma of molecular
biology [1]. As such, understanding protein structure is a central goal within structural
bioinformatics. Protein structure determination, prediction, alignment, and search all
serve to advance this understanding. Below, we present our approach to a fast, scalable,
and purely geometric protein structure search we refer to with the acronym of RUn
Position Encoded Encodings of residue descriptors (RUPEE).

Given a protein domain identifier, whole chain identifier or an uploaded PDB file,
RUPEE can search for matches among domains defined in SCOPe 2.07 [2], CATH
v4.2 [3], ECOD develop210 [4], or among whole chains defined in the PDB. RUPEE is
able to search either of these databases using any identifier. For instance, you can
search SCOPe using a CATH domain identifier.

RUPEE has two modes of operation, fast and top-aligned. Fast mode is significantly
faster than all other protein structure searches discussed below but at the expensive of
accuracy. Despite this, we will show that the accuracy of RUPEE in fast mode is not far
below that of the best available structure searches. On the other hand, the accuracy
and response times of RUPEE in top-aligned mode are comparable to currently
available protein structure searches that are commonly considered fast.
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RUPEE stands out as not just another protein structure search, of which there are
many. RUPEE is the first, to our knowledge, purely geometric protein structure search
to achieve results as good as the best available protein structure searches. Additionally,
it can be argued that the kinds of matches that RUPEE does return have more added
value than the current state of the art in that with equal scores it is able to return
results not biased toward a structure classification hierarchy such as SCOPe or sequence
clusters such as the PDB-90. In this regard, RUPEE makes a fundamental contribution
to protein structure research that lends itself to being leveraged in existing systems. It
also provided a path for further research activity in the direction of big data
representations of protein structures.

Besides our approach to protein structure search, we introduce a polar plot for
torsion angles that may have wider applicability in the study of protein structure.
Further, the run position encoding heuristic introduced below may have wider
applicability to algorithms for character sequences containing long runs of repeats.

We first discuss some related work to provide a context for our approach followed by
a description of our method. We end with a comparison of results against the
mTM-align structure search [5], the secondary structure matching (SSM) search [6], and
the CATHEDRAL structural scan [7] available at the CATH website.

Related work

Pairwise alignment involves finding a set of spatial rotations and translations for two
protein structures that minimizes a distance metric. Most commonly, the root mean
squared deviation (RMSD) between a-carbons of aligned residues is minimized.

The typical use case of aligning one protein structure to another does not impose
tight response time requirements. For this reason, pairwise alignments can focus on
accuracy. On the other hand, a protein structure search can involve thousands of
comparisons and accuracy is often balanced against speed. In this case, pairwise
alignment is still useful for evaluating the results of a search, and this is the approach
we take.

For pairwise alignment, Combinatorial Extensions (CE) [8] and FATCAT [9] are
among the most popular tools, representing rigid and flexible protein alignments,
respectively. CE performs a rigid alignment in order to minimize RMSD and FATCAT
allows for a constrained number of twists in the protein chain in order to find a more
flexible alignment before minimizing RMSD.

Whereas pairwise structure alignments only depend on the sequence of a-carbon
coordinates, protein structure searches often introduce a further dependence on the
sequence order of amino acids. This approach often takes the form of clustering proteins
based on sequences and pre-calculating results for pairwise alignments among cluster
representatives. Then, these pre-calculated results are used for filtering the number of
structures used for comparisons against a query protein. The exact formula for
combining the use of representatives and pre-calculated results varies from system to
system. However, all systems using this approach share the same disadvantage, an
indirect dependence on amino acid sequences. In the absence of a reliance on sequence
representatives and pre-calculated results, and without sacrificing accuracy, response
times suffer greatly, often taking upwards of an hour for queries to complete.

For protein structure searches, VAST [10] and the FATCAT server [11] are among
the most popular. Nonetheless, these searches are slow in comparison to mTM, SSM,
and CATHEDRAL when pre-calculated results are not used. If given a known protein
domain, VAST can return structural neighbors in seconds using pre-calculated results.
However, if uploading a PDB file where pre-calculated results are not used, response
times for VAST can exceed 30 minutes. Similarly, the FATCAT server, that does not
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use pre-calculated results, can take over an hour to send results for a search against
PDB-90 representatives [12].

Given the above, there remains a need for a purely geometric protein structure
search. For the serendipitous exploration of relations between protein structures
performed in the trenches, this search should be fast. Moreover, with a 10% yearly
growth rate of solved structures deposited in the PDB [13], this search should be
scalable. At a minimum, RUPEE takes a significant step in this direction as will be
shown below.

Methods

Broadly, we define a linear encoding of protein structure and convert this linear
encoding into a bag of features. Min-hashing and locality sensitive hashing (LSH),
techniques drawn from big data, are then applied to implement a protein structure
indexing method that serves as the foundation for both RUPEE operating modes, fast
and top-aligned.

Protein structure searches that use linear encodings are not unique [14-16]. The
novelty of our approach lies in its remarkable performance given its simplicity.
Additionally, elements of our approach can be isolated and found to be useful in their
own right.

Regions of Torsion Angles

Our first step towards a linear encoding of protein structure is to identify separable
regions of permissible torsion angles, but first we introduce a new plot of torsion angles
better suited to this effort.

Despite their utility and familiarity, Ramachandran plots [17] represent angular data
using a square plot better suited for scalar data. This leads to the unwieldy
arrangement where the top part of the plot is continuous with the bottom and the left is
continuous with the right.

To identify regions of torsion angles, we randomly sampled 10,000 residues from
high-resolution CATH s35 representatives to account for precision and redundancy,
respectively. A Ramachandran plot of the sampled torsions angles is shown in the left
plot of Fig 1. As can be seen, a single cluster of residues, consisting primarily of
[B-strands, appears at all 4 corners of the Ramachandran plot.

Fig 1. Ramachandran plot (right) and polar plot (left) of randomly sampled torsion
angles

This continuity problem was partially addressed in [18] using wrapped and mirrored
plots. Both wrapped and mirrored plots take advantage of the sparsely populated areas
of the Ramachandran plot at ¢ = 0° and ¢ = —120°. However, with larger samples of
torsion angles, the area at ¢p = —120° becomes less sparse. The use of a polar plot
resolves this elegantly by only requiring one break in continuity at ¢ = 0°.

In the right plot of Fig 1, we show the same torsion angles appearing in the
Ramachandran plot using a polar plot. In this plot, ¢ corresponds to the radius r and
corresponds to the angle 6 in traditional polar plots. Notice the residues appearing at
the 4 corners of the Ramachandran plot now appear in one continuous region of the
polar plot centered at ¢ = £180° and ¥ = +180°.
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Linear Encoding of Protein Structure 10
The polar plot described above is used to define torsion angle regions for each secondary i
structure assignment. The eight DSSP secondary structure assignment codes defined 112
in [19] divide into three groups in which torsion angle regions are roughly the same: 13
‘G’,'H’,'T’, and ‘T’ corresponding to 31¢-helix, a-helix, m-helix, and turn, respectively; ‘E’ 11
and ‘B’ corresponding to S-strand and $-bridge, respectively; and ‘S’ and ‘C’ 115
corresponding to bend and coil, respectively. 116

Polar plots for each group of DSSP assignment codes along with defined region and  ur
descriptor designations are shown in Fig 2, with the exception of turns and bridges, 118
which receive descriptors 11 and 12, respectively. For each polar plot, there are 119
well-defined continuous regions of torsion angles that remain continuous in the plots. 120
The only exception is found in the bends and coil plot at ¢ = 60° between ¢ = —180° 121
and ¢ =0°. 122

Fig 2. Polar plots of randomly sampled torsion angles with designated descriptors for
region and DSSP code combinations

As an example of our linear encoding, we apply our method to the S-turn-g motif
shown in Fig 3. The corresponding sequence of residue descriptors is shown below.

[5,5,5,5,5,5,7,5,11,11,5,5,5,5,5,5] (1)

Fig 3. S-turn-g motif from CATH domain 1nycA00

Bag representation of protein structure 123

Once a linear encoding for a protein structure is obtained, it needs to be further 124
transformed into a representation suitable for fast and scalable similarity comparisons 12
to other structures. The processing of text documents within Information Retrieval (IR) 1s
has long been used to satisfy these requirements using bag representations. There are 1

two distinct categories of representations for documents, syntactic and semantic, and 128
much of the research applying IR to protein structure search has focused on the 129
latter [20722]. 130

We have adapted the syntactic approach to document similarity, often referred to as 1
shingling [23], to our linear encoding of protein structure. We transform a linear 132

sequence of descriptors into a multiset of shingles consisting of 3 consecutive descriptors. 1z
The overlap between shingles ensures some of the order information within the original 13

sequence is preserved in the bag. 135
The length of a shingle is chosen to balance false positives, in the case of shorter 136
shingles, against false negatives, in the case of longer shingles. In [24], we used 4 137

consecutive descriptors for our shingles. With the additions discussed in the Operating 13

modes section below, we have found RUPEE is more tolerant of false positives and so 1

accordingly we have cast a wider net by decreasing the shingle length to 3. 140
By shingling, we obtain a multiset of ordered lists from an ordered list of numbers.

As an example, the sequence in (1) is transformed into the following bag of shingles.

{[5,5,51,[5,5,5], [5,5,5],[5,5,5], 5,5, 7]

[5,7,5],[7,5,11], [5,11,11], [11,11, 5], [11, 5, 5] (2)
[5,5,5],[5,5,5], 5,5, 5], [5,5,5] }
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Next, each shingle s is hashed to an integer as shown in (3). The hash function used
is a simplification of the hash function used in the Rabin-Karp algorithm [25]. The
prime number 13 is used as the base since it is large enough to spread the descriptor
values out in hash space without collisions.

Shash = 81 X 13% + 59 X 13 + s3 (3)
Subsequently, the multiset in (2) becomes the following bag of integers.

{915,915,915,915,917, 941, 1259
999, 2007, 1929, 915,915,915, 915 }

This final step completes the transformation of an ordered list of descriptors to a
multiset of integers that still retains some of the order information present in the
original list.

Notice in (4) the value 915, corresponding to the shingle [5, 5, 5], occurs frequently
indicating the presence of S-strands. Since most proteins are dominated by regular
secondary structure, the abundance of shingles for S-strands as well as the three types
of helices, end up dominating comparisons. Moreover, since shingles are limited in
length, this situation allows for structures with many short §-strands to match
structures with fewer long S-strands. The same situation applies to helices.

To address this lack of specificity, we introduce a heuristic we call run position
encoding (RPE). To distinguish between short and long runs, thereby increasing the
specificity of the shingles, we add a factor of 10° to each shingle hash as a function of
the first residue’s position in a run 7.

) ifi < |l/2]
l—17—1 otherwise

runfactor(i) = { (5)

where i is zero-based and [ is the length of the run. Multiplying by 10° places the run
factor as the left-most digit in the hash to avoid interference with the digits provided by
the hash in (3). This placement is also convenient for visual inspection, since the run
factor is isolated as the left-most digit.

The run factors for the sequence in (1) are

[0,1,2,2,1,0,0,0,0,0,0,1,2,2,1,0]. (6)
Applied to the bag of integers in (4) gives

{00915, 10915, 20915, 20915, 10917, 00941, 01259

7
00999, 02007, 01929, 00915, 10915, 20915, 20915 } @

where the leading zero run factors are shown for clarity.

This pyramidal approach preserves matches at the boundaries between secondary
structure runs and loops that would not otherwise be preserved in the presence of
differences in run lengths of one or more.

Now that we have a representation of a protein structure as a bag of integers,
similarity between any two structures a and b is defined as the Jaccard similarity [26]
for multisets,

> min(a;, b;)
>, max(a;,b;)’

where ¢ ranges over all possible shingle hashes s; and a; and b; give the counts of shingle
hash s; in structures a and b, respectively.

J(a,b) = (8)
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Min-hashing and LSH

In IR, the bag of shingles representation of documents is used in the near dupe
clustering of documents [27]. One application of near dupe clustering is in the review
stage of Electronic-Discovery [28], which is the most expensive stage in a discovery
process. Often millions of documents must be examined by a staff of attorneys to make
a reasonable effort at providing all documents relevant to the discovery request.
Grouping documents into near dupe clusters and assigning all documents within a
cluster to a single reviewer reduces duplication of effort.

In the case of near dupe clustering, each document must be compared to every other
document in the collection, taking quadratic time. For this task, min-hashing [29] and
locality sensitive hashing (LSH) [30] can be combined to reduce this to subquadratic
time. Although we do not near dupe cluster domains, we can still leverage the
techniques of min-hashing and LSH to speed up protein structure search by a large
constant factor.

Min-hashing is used to randomly select items from a set of items by repeatedly
randomly hashing the items, sorting the hashes into a list, and then selecting the
minimum item in each permuted list. If the same random permutation of items is
performed on each set of items in a collection, the key result is that the probability of
matching min-hashes is equal to the Jaccard similarity [29]. In order to approximate the
Jaccard similarity for a given pair of sets, a sufficient number of min-hashes must be
obtained.

In our case, the items are bags of shingle hashes for protein structures from which
we obtain 99 min-hashes as described in [31]. Given the key result above, the Jaccard
similarity can now be approximated by the proportion of matching min-hashes.

Next, we use the LSH banding technique as described in [31]. The key result of the
banding technique is that if any band positions are a match for a given pair of
structures, the probability that a specific similarity threshold has been met can be
calculated. We use 33 bands of 3-min-hashes where the probability of a Jaccard
similarity of 60% or greater is approximately 99%. Banding allows the problem of
finding similar items to be parallelized across bands since all that is needed for a match
is a single band match.

Together, min-hashing and LSH provide the foundation for both operating modes of
RUPEE, fast and top-aligned.

Operating modes

RUPEE provides two modes, fast and top-aligned. Each operating mode builds on the
results provided by the min-hashing and LSH system described above. When a
structure search is executed in either mode, a number of concurrent tasks are executed
corresponding to the number of bands used for LSH. These concurrent tasks identify
candidate matches based on a single band match and then validate the matches based
on a comparison of min-hashes.

In fast mode, the top 8,000 matches are obtained along with the original gram
sequences defined for the structures. A further validation is done by performing a
longest common subsequence (LCS) analysis of the matched gram sequences and
adjusting the Jaccard similarity scores accordingly. This step accounts for possible gram
matches among pairs of structures that are out of order since the min-hashing and LSH
techniques themselves do not consider the order of the gram matches. The final step of
fast mode is to sort the matches based on the adjusted scores and return the results.

Top-aligned is an additional step following fast mode. First, unoptimized CE
alignments are performed on the top 2,000 matches obtained from fast mode. Then
optimized CE alignments are performed on the top 400 matches and these are finally
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returned sorted either by RMSD or TM-Score. Top-aligned is a simple layer following
fast mode that establishes RUPEE fast mode as an effective filtering method that
contains in its top 2,000 results enough good matches to compete with the best
available structure searches.

Results

Protein structure searches can be evaluated using pairwise alignment scores or by

comparison of results against the hierarchy of a protein structure classification database.

The RMSD of aligned residues is widely used in evaluations but is not perfectly suited
to full-length comparisons between structures since distances between unaligned
residues are not factored into the score. On the other hand, the TM-score [32] takes all
residues into account. Among protein structure classification databases for which

corresponding structure searches exist, SCOPe [2] and CATH [3] are the most popular.

For our results, we have created 3 benchmarks, scop_d360, scop_d62, and cath_d99,
for pairwise evaluations to mTM, SSM, and CATHEDRAL, respectively. scop-d360 is
derived from the d500 benchmark used in [5] filtered for domains in SCOPe 2.07 for
which mTM returns 100 or more results. Similarly, scop_d62 is derived from the d500
benchmark filtered for domains defined in SCOP 1.73 for which SSM returns 50 or more
results. In keeping with our description of RUPEE in [24], the cath_d99 benchmark
contains 99 superfamily representatives from the top 100 most diverse superfamilies
defined in CATH v4.2 for which CATHEDRAL returns results in less than 12 hours.

We perform pairwise evaluations to ensure the fairness of our comparisons. First, for
domain searches, SSM is working with the SCOP 1.73 database, so accordingly we
operate RUPEE on SCOP 1.73 domains to ensure RUPEE does not have more domains
to work with for scoring and precision evaluations. Second, mTM is updated to work
with SCOPe 2.07 domain definitions but still retains domains from 2.06 that have since
been redefined either through mergers or splits in 2.07. On the other hand,
CATHEDRAL presents no such challenges but still requires a separate benchmark since
it is working with a distinct hierarchy, CATH v4.2.

All benchmark definitions can be found in S1 Benchmarks.

Scoring

Fig 4 shows average cumulative values for each ranked result averaged over all searches.

Both RMSD and TM-score values are shown, provided as outputs from optimized CE
pairwise alignments. A TM-score above 0.5 is a good predictor for whether or not two
domains are in the same fold [33]. TM-scores greater than 0.17 are considered
potentially meaningful whereas TM-scores less than 0.17 are considered to be due to
random alignment [32].

Fig 4. Scoring from CE pairwise alignments for RUPEE fast, RUPEE top-aligned
sorted by TM-Score, and RUPEE top-aligned sorted by RMSD

A figure similar to Fig 4 but using FATCAT for pairwise comparisons can be found
in S2 Fig. The same relative relationships hold with only small variations.

RUPEE fast, top-aligned sorted by RMSD, and top-aligned sorted by TM-Score,
perform better than SSM and CATHEDRAL. The scoring in the cath_d99 benchmark
comparisons are notably lower than for the other two benchmarks. This is expected
since CATHEDRAL only returns CATH s35 representatives. Likewise, for this
comparison RUPEE is filtered for s35 representatives to match. Given that the cath_d99
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benchmark is evaluated against representatives, there are fewer highly similar structures
returned in the results.

In our evaluation, mTM faired better than SSM and CATHEDRAL. mTM also
performed better than RUPEE fast, although RUPEE fast is still within 0.08 TM-Score
points of mTM at the 100" result, which is notable considering its speed.

For TM-Score, RUPEE top-aligned and mTM are nearly identical with RUPEE
slightly better for ranks less than 50 and mTM better for ranks greater than 50. For
RMSD, RUPEE top-aligned does perform better than mTM but this can most likely be
attributed to the fact that mTM only sorts by TM-Score. If mTM sorted by RMSD we
suspect the results again would be nearly identical. Nevertheless, it is worth noting that
the initial LSH and min-hashing technique does not explicitly bias results towards one
particular measure.

Precision

Fig 5 shows precision (i.e. positive predictive value or PPV) averaged over all searches,
where positive results are defined as domains with the same classification for the
indicated hierarchy level as the query domain. A plot of recall is unnecessary since Fig 5
provides precision at specific ranks for identical sets of searches. Hence, recall curves
have the same relative relationships as those shown for precision.

Fig 5. Precision for RUPEE fast, RUPEE top-aligned sorted by TM-Score, and
RUPEE top-aligned sorted by RMSD

We should expect a structure search to have reasonable precision with respect to the
hierarchy levels of the structure classification it is searching. However, it is not clear
how to define reasonable. On the other hand, if precision is too high, the search
provides little value beyond that provided by the structure classification hierarchy it is
searching. Towards the extreme end of high precision, it would be sufficient for a search
to return the best match and from there refer to the hierarchy for additional results.

Similar to the scoring evaluations above, RUPEE fast and top-aligned, sorted by
both RMSD and TM-Score, show higher precision than SSM and CATHEDRAL with
the exception of RUPEE top-aligned sorted by RMSD for ranks lower than 10 compared
against SSM.

Again, mTM faired better than SSM and CATHEDRAL. Notably, mTM also shows
clearly higher precision than RUPEE top-aligned, sorted by both RMSD and TM-Score.
In the absence of Fig 4, one may be led to regard this as a negative result. However, to
the contrary, in the presence of Fig 4, where it is shown that RUPEE and mTM have
almost identical scoring, this result is remarkable. This disparity suggest that RUPEE is
better able to find significantly similar matches not necessarily aligned with the SCOPe
hierarchy. In fact, since the initial min-hashing and LSH technique used by RUPEE
check for similarity to all available structures, no structure is able to hide behind a
sequence based cluster representative. So this result is in keeping with how RUPEE is
intended to work and how it is described above.

Response Times

Fig 6 shows response times in seconds for the scop_d62 and cath_d99 benchmarks. Here,
we are able to show RUPEE fast and top-aligned, mTM and SSM on the same plot
because scop-d62 is a subset of the scop-d360 benchmark. Both plots are shown with a
logarithmic scale in order to include all outliers while still being able to view the overall
trends in response times. Loess regression curves are also provided to further highlight
the overall trends.
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Fig 6. Response times for RUPEE fast and RUPEE top-aligned. The response times
for RUPEE top-aligned are dominated by pairwise structure alignments and do not
depend on the sort order.

In all cases, RUPEE fast is considerably faster than all other searches. It is also
clear that fast mode is not as sensitive to increasing residue counts in contrast to
CATHEDRAL and RUPEE top-aligned. Response times for SSM are not affected by
residue counts at all and always returns results in less than 100 seconds but this is at
the expense of performance as shown in Fig 4.

In the left plot of Fig 6, it is shown that RUPEE top-aligned is faster than mTM for
residue counts below 200, but then response times for RUPEE increase beyond that of
mTM. Down the stretch, mTM provides increasingly better response times than
RUPEE, while RUPEE is still able to provide reasonable response times. The right plot
of Fig 6 shows RUPEE top-aligned is significantly faster than CATHEDRAL for all
residue counts.

The trend of increasing response times for RUPEE top-aligned is a direct result of
the pairwise structure comparisons that are performed on the top 2,000 results provided
by RUPEE fast mode.

Response times to a large degree are a measure of the amount of resources available
to an application. In the case of RUPEE, our response times were gathered from
RUPEE running on a fairly old laptop with a 2nd generation Intel®) Core™ i7-2720QM
Quad-Core CPU and 8 GB of memory. With more resources the response times of
RUPEE can be further improved since pairwise alignments can be run in parallel. For
mTM, SSM, and CATHEDRAL, we gathered response times by automating their
respective web sites using the Selenium WebDriver API.

Discussion

As shown above, a purely geometric big data approach to protein structure search can
compete with the best available protein structure searches. Nonetheless, there remain
avenues for further improvement and investigation.

While our min-hashing and LSH scheme does allow for some flexibility in the size of
matched protein structures, it is not specifically designed for containment searches.
However, the initial min-hashing and LSH search does operate fast enough, within
seconds, that it does present the possibility of executing multiple searches within the
context of a single query. With more resources, we can distribute min-hash and band
data across multiple compute units, with each data set representing a subset of chopped
structure representations. With a 75% overlap of these subsets, RUPEE searches
effectively become containment searches.

We have tried the overlapping subset idea and have found it to be effective.
However, on a single compute unit, the time required is more than we are willing to
accept for this first iteration of RUPEE.

One possible drawback of RUPEE is that in both fast and top-aligned modes, it only
returns the top 400 results. Again, with more resources, this number can be increased,
but there still remains a need for some kind of cut-off. Nonetheless, in most search tools,
having to looking past the first few hundred results usually indicates an ineffective
search strategy. To this end, RUPEE provides filters that can be used for traversing
structure space more efficiently. For SCOPe, CATH, and ECOD you can instruct the
search to only return domains that differ from the query structure at a chosen hierarchy
level classification. Additionally, for CATH you can filter results based on hierarchy
level representatives. Since RUPEE does not rely on sequence clusters, these kinds of
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filters are easy to implement, do not reduce the number of returned results, and allow
for the discovery of unexpected structural similarities across classification hierarchies.

One area that stands out for possible improvement is our longest common
subsequence (LCS) scoring adjustment to the results initially returned by RUPEE.
While the LCS step has been shown to be effective, it is notable for its simplicity. A
more complex step of validating the sequence of gram matches can take a form similar
to the path extension algorithm used by CE. In this case, sequences of matches would
only be extended when the difference of interresidue distances between gram pairs
already in the sequence and a candidate pair to be added to the sequence fall below
some threshold.

On the other hand, it would be interesting to see where further analysis of the initial
results returned by RUPEE before LCS and any sort of order enforcement beyond that
of the grams themselves could lead. For instance, topological permutations such as
circular permutations, segment-swapping and changing secondary structures within
homologous proteins are not uncommon [34]. The initial RUPEE min-hashing and LSH
algorithm provides candidate matches along with matched grams. With some thought,
an algorithm similar to FATCAT can be developed allowing for permutations in
addition to twists.

As can be observed from considering Fig 4 and Fig 5 together, there are good
domain matches aligned with the SCOPe hierarchy that mTM is able to find that
RUPEE does not. Conversely, there are good domain matches not aligned with the
SCOPe hierarchy that RUPEE finds and mTM does not. A comprehensive listing of
these difference may find interesting similarities not previously known.

Conclusion

With the growth rate of solved structures deposited in the PDB, the need for a fast and
scalable structure search is growing. Using run position encoded shingles of residue
descriptors combined with min-hashing and LSH, we have shown that RUPEE fast is
able to provide good results in seconds running on an Quad-Core laptop. Currently,
RUPEE fast is the fastest available protein structure search providing the demonstrated
level of accuracy. For RUPEE top-aligned, we have shown that a purely geometric big
data approach to protein structure search is able to produce results equal to or better
than the current state of the art protein structure searches that variously depend on
clustered sequences or protein structure classification hierarchies. Moreover, we have
shown evidence that suggests the results from RUPEE top-aligned provide more added
value by discovering high scoring protein structure matches not necessarily aligned with
a particular protein structure classification hierarchy or hiding behind cluster
representatives. The ability for RUPEE to quickly examine all structures among
hundreds of thousands sets it apart as a tool that can be used for discovering previously
undetected structural similarities.

Supporting information

S1 Benchmarks. Domains included in benchmarks used for evaluation.
S2 Fig. Scoring from FATCAT pairwise alignments.

S3 Methods Addendum. Run factors for shingles instead of descriptors.
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