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Abstract 87 

Phenotype information is crucial for the interpretation of genomic variants. So far it has only 88 
been accessible for bioinformatics workflows after encoding into clinical terms by expert 89 
dysmorphologists. Here, we introduce an approach, driven by artificial intelligence that uses 90 
portrait photographs for the interpretation of clinical exome data. We measured the value 91 
added by computer-assisted image analysis to the diagnostic yield on a cohort consisting of 92 
679 individuals with 105 different monogenic disorders. For each case in the cohort we 93 
compiled frontal photos, clinical features and the disease-causing mutations and simulated 94 
multiple exomes of different ethnic backgrounds. With the additional use of similarity 95 
scores from computer-assisted analysis of frontal photos, we were able to achieve a top-10-96 
accuracy rate for the disease-causing gene of 99 %. As this performance is significantly 97 
higher than without the information from facial pattern recognition, we make gestalt scores 98 
available for prioritization via an API.  99 

 100 

Rare diseases affect approximately 6% of the population, with genetic syndromes accounting for about 101 
80 %.1,2 The more than 5,000 entities represent a heterogeneous group of diseases, differing in cause, 102 
symptoms, and treatment, making diagnosis an important yet challenging healthcare issue. Due to 103 
extensive clinical variability this is true even for well characterized syndromes.1,3 104 

Worldwide, more than half a million children born per year have a rare genetic disorder that is suitable 105 
for a diagnostic workup by exome sequencing, which has an unprecedented diagnostic yield for many 106 
indications such as developmental delay.4-9 The main remaining concern for the integration of exome 107 
sequencing into clinical routine is to increase the efficiency of genetic variant interpretation. Making 108 
phenotypic information – the observable, clinical presentation – computer-readable is key in solving 109 
this problem, and in providing clinicians with a much-needed tool for diagnosing genetic syndromes.10 110 

To date, the most advanced exome prioritization algorithms combine deleteriousness scores for 111 
mutations with semantic similarity searches of the clinical description of a patient.11-15 The human 112 
phenotype ontology (HPO) with its extensive vocabulary has become the lingua franca for this 113 
purpose.16 However, semantic similarity searches presuppose that facial features can be named. A 114 
facial gestalt that is simply described in the literature as typical or characteristic of a certain disease is 115 
of little help for these approaches.  116 

Beyond language, capturing indicative patterns by deep-learning approaches has recently gained 117 
attention in assessing facial dysmorphism.17-21 Artificial neural networks are now able to quantify the 118 
similarities of patient photos to hundreds of disease entities and achieve accuracies that match or even 119 
surpass the level of dysmorphologists in certain tasks.22-25 For this reason tools such as Face2Gene are 120 
now used in addition to human expertise to guide the molecular testing and to interpret sequence 121 
variants. Here we investigate systematically whether facial image analysis can improve the evaluation 122 
of exome data and qualifies as a next-generation phenotyping technology for next-generation 123 
sequencing.26 124 

Results 125 

We first present an overview about the approach to prioritize exome data by image analysis (PEDIA); 126 
a detailed description is provided in the Methods.  127 
 128 

PEDIA classifier. For the assessment of genetic variants, different sources of evidence have to be 129 
considered, from a populational, molecular, and phenotypic level. PEDIA is a Bayesian heuristic, that 130 
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can be used to update the probability that a mutation in a gene is disease-causing, given the 131 
phenotypic information contained in a frontal photograph.  132 

To build this classifier, we first measured the similarities of the facial gestalt to 216 specific diseases in 133 
679 individuals with the convolutional neural network DeepGestalt.21 By this means, we were able to 134 
acquire scores for disorders with a single genetic etiology that quantify the PP4 criteria of the ACMG 135 
guidelines which is used for variant interpretation.27,28  136 

In addition to DeepGestalt, we computed further prediction scores that are widely used on clinical 137 
features (Phenomizer, Boqa, Feature) and genetic variants (CADD) for all individuals of the PEDIA 138 
cohort (Supplemental Table 1). 29,30,31 With this data set we trained and tested a support vector 139 
machine that can be used to prioritize the genetic variants in a VCF files from exome sequencing.  140 

Gene prioritization. 141 

The term next-generation sequencing (NGS) implies the interrogation of all genes in a single assay. 142 
Similarly, the term next-generation phenotyping (NGP) refers to technology enabling similarity 143 
searches on a large set of disorders based on clinical patient records and medical imaging data. In order 144 
to increase the efficiency in diagnostics, we combined both approaches and benchmarked gene 145 
prioritization.   146 

Similar to the performance readout in Gurovich et al., the identification of the disease-gene in exome 147 
data also represents a multiclass classification problem and the number of sequence variants in the 148 
coding part of the genome illustrates the complexity of the diagnostic assessment. In reference guided-149 
resequencing, about 20,000-30,000 single nucleotide variants and small indels have to be considered. 150 
Although the majority of these variants can be removed as benign polymorphisms, rare and potentially 151 
disease-causing mutations in more than 100 genes remain in a typical case with a suspected 152 
monogenic disorder. When only a deleteriousness score such as CADD is used to rank these mutations, 153 
the disease-causing gene is in the top 10 in less than 46 % of the cases of the PEDIA cohort. This 154 
performance increases to a top-10-accuracy rate of up to 88 %, when semantic similarity scores are 155 
included that are based on HPO feature annotations. These prioritization approaches also represent 156 
the current state of the art in diagnostic laboratories for single exomes.13,14 The additional information 157 
contained in frontal photos of dysmorphic cases pushes the correct disease-gene to the top-10 in more 158 
than 99 % of the cases in the PEDIA cohort and in the DeepGestalt test set (Figure 1 B). 159 

The value of a frontal photograph can exemplarily be demonstrated by a case with Coffin-Siris 160 
syndrome that is shown in Figure 2 A: The characteristic facial features are relatively mild, so the 161 
correct diagnosis is only listed as the third suggestion by DeepGestalt. Amongst all the variants 162 
encountered in an exome data set, the disease-causing gene ARID1B would only achieve rank 24, if 163 
scored by the molecular information alone. However, in synopsis with the phenotypic information, the 164 
PEDIA approach lists this gene as first candidate by far (Figure 2 C).  165 

Although the syndrome of the case shown in Figure 2 might also be molecularly confirmed by a 166 
directed single gene test in other instances where the facial gestalt is more indicative, the high 167 
phenotypic variability associated with disease-causing mutations is well-known for genes of syndromic 168 
disorders. It has been exhibited in the deciphering developmental disorders (DDD) project, that many 169 
such diagnoses were made only after exome sequencing.6 This finding is also reflected by frontal image 170 
analysis of the entire PEDIA cohort with DeepGestalt alone that achieves a top-10-accuracy rate for 171 
the disease-causing gene of around 58 %.  172 

The efficiency of a prioritization algorithm can also be measured by the area under the curve (AUC) of 173 
the disease-causing mutation versus its ranked position. The higher the AUC, the higher the diagnostic 174 
yield in a fixed amount of time that is spend on the analysis of sequence variants (Figure 3). Combining 175 
similarity scores from image analysis, phenotypic features and molecular deleteriousness achieves the 176 
best AUC on the PEDIA cohort and is therefore suited to speed up diagnostics.  177 
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The contribution from the different sources of evidence to the PEDIA score is also reflected by the 178 
relative weight of the deleteriousness of the mutation (0.44), all feature-based scores combined (0.25) 179 
and the results from image analysis by DeepGestalt (0.31) that can be derived from a linear SVM model. 180 
We therefore also conclude that the information contained in a frontal photograph of patient goes 181 
beyond, what clinical terms can capture.  182 

Discussion 183 

According to the current version of the Online Mendelian Inheritance of Man Catalog, mutations in 184 
about 4000 genes are linked to phenotypes that are often difficult to distinguish and diagnose by 185 
clinical features alone, making next-generation sequencing a key technology for their molecular 186 
confirmation. However, the size and high variability of the genome as well as the low prevalence of 187 
disease-causing variants – many of them occur de novo – explain why sequence data analysis of a single 188 
individual is still challenging and time consuming.5,6 189 

The guidelines for variant classification in the laboratory follow a qualitative heuristic that combines 190 
distinct types of evidence (functional, population, phenotype, etc.) and is compatible with Bayesian 191 
statistics.32 The advantage of such a framework is that continuous evidence types can be integrated 192 
into the classification system. While in silico predictions about a variant’s pathogenicity have a 193 
relatively long history in bioinformatics and machine learning, the quantification of phenotypic raw 194 
data with systems of artificial intelligence just began. Analogous to a score for the deleteriousness of 195 
a gene variant, one can include the phenotypic similarity to a distinct syndrome caused by mutations 196 
in the respective gene. 197 

We analyzed this approach in the PEDIA cohort, consisting of 679 cases and covering 105 distinct 198 
disorders mapping to 181 disease-genes. Among these disorders were 73 phenotypes for which the 199 
performance of facial image analysis alone has recently been evaluated.21 Although the top-10-200 
accuracies for gestalt- and PEDIA-scoring cannot be compared directly, both approaches operate on a 201 
similar order of phenotypes and genes, respectively. Adding suitable molecular information to 260 202 
cases from the DeepGestalt publication test set increased the correct disease-gene in the top 10 to 203 
about 99%, from 90% with only the phenotypic information. Considering only molecular information 204 
and clinical features, but without the results from image analysis, the correct disease gene would have 205 
only been placed in the top 10 in 62%. The genetic background, which might correspond to a different 206 
number of variant calls or higher load of deleterious mutations, had negligible influence on the 207 
performance. 208 

The performance for the entire PEDIA cohort is comparable to the DeepGestalt test set. However, 209 
there are three important lessons learned from specific subgroups or cases achieving lower PEDIA 210 
ranks: 1) Although the convolutional neural network used for image analysis has been pretrained on 211 
real-world uncontrolled 2D images, patient photographs that were true frontal, of high resolution, 212 
with good lightening and contrast, and few artifacts such as glasses performed better. 2) Particularly 213 
rare diseases, or recently described disorders, for which the classifier’s representation is based on a 214 
smaller training set, show a lower performance, even if experienced dysmorphologists would consider 215 
them highly distinguishable.24,34 3) Molecular pathway diseases, modeled as a single class, can be 216 
biased towards the prevailing gene if there is substructure in the phenotypic series, meaning there 217 
actually are gene-specific differences in the gestalt and complete heterogeneity is simply an 218 
approximation.25 This applies also to microdeletion syndromes that can be caused by single gene 219 
mutations, such as Smith-Magenis syndrome, or any clinical presentation of a phenotype that is 220 
considered atypical.  221 

The only way to overcome the biases of semantic similarity metrics as well as AI-driven image analysis 222 
that are due to limited cohort sizes, is sharing of the phenotypic data sets.  223 
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In conclusion, the PEDIA study documents that exome variant interpretation benefits from computer-224 
assisted image analysis of facial photographs, particularly if dysmorphism has been stated in the 225 
clinical notes. By including similarity scores from DeepGestalt, we improved the top-10-accuracy rate 226 
considerably. AI-driven pattern recognition of frontal facial patient photographs is an example of next-227 
generation phenotyping technology with proven clinical value in the interpretation of next-generation 228 
sequencing data. 229 

As deep-learning advances in the assessment of other medical imaging data, it will be interesting to 230 
study how these classifiers affect variant interpretation separately and in aggregate.35,36    231 

Data and Code Availability 232 
PEDIA is freely available for academic use at https://pedia-study.org and the source code is available 233 
at https://github.com/PEDIA-Charite. 234 
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Materials and Methods 350 

Patients 351 
We compiled a cohort of 679 patients with a Mendelian disorder to evaluate Prioritization of Exome 352 
Data by Image Analysis (PEDIA). For all cases in this cohort frontal facial photographs were available 353 
for analysis and clinical features were documented in HPO terminology.16 The diagnoses of all 354 
individuals have previously been confirmed molecularly and are suitable for analysis by exome 355 
sequencing. In total, the cohort covers 105 different monogenic syndromes that are linked to 181 356 
different genes. Of the individuals in this cohort, 375 were published and 309 have not been previously 357 
reported (see Supplementary Appendix). 358 
The study was approved by the ethics committees of the Charité - Universitätsmedizin Berlin and of 359 
the University of Bonn Medical Center. Written informed consent was provided by the patients or their 360 
guardians.  361 
In addition to PEDIA data set, we analyzed a subset of the DeepGestalt study comprising all 260 cases 362 
of the publication set with monogenic syndromes which diagnosable by exome sequencing.21 363 
 364 
Data Preparation 365 
The facial images were analyzed with DeepGestalt (FDNA), a deep convolutional neural network that 366 
was trained on more than 17,000 patient images.21 The results of this analysis are gestalt scores 367 
quantifying the similarity to 216 different rare phenotypes per individual. Although DeepGestalt is built 368 
as a framework that aims to learn from every additional case, we excluded all data of the PEDIA cohort 369 
from the model for benchmarking purposes in a similar manner as described in the original publication. 370 
In addition to the image analysis, we performed semantic similarity searches with the annotated HPO 371 
terms by Feature Match (FDNA), Phenomizer and BOQA.29,30  372 
We filtered all sequence variants as described by Wright et al. and scored the remaining mutations for 373 
deleteriousness with CADD.31,32 If no exome data was available, we spiked the disease-causing 374 
mutation into the exome data of a healthy individual from the 1000 Genomes Project.33 This exome 375 
simulation was applied to the entire PEDIA cohort to assess the influence of the genetic background 376 
on the performance of our scoring approach. 377 
For the variants remaining after filtering, we derived the similarity scores from image analysis and 378 
semantic similarity searches that were based on HPO feature annotations for the syndromes 379 
associated with the respective genes. If there were several syndromes linked to a single gene, the 380 
highest gestalt and feature scores were selected. Case data is represented as table with a variable 381 
number of lines representing genes and five columns for the different scores (Figure 1 B). All five scores 382 
with per line as well as the Boolean label disease gene “true” or “false” were used to train a classifier 383 
that yields a single value per gene, the PEDIA score, that can be used for prioritization (Figure 1 C). A 384 
detailed description of preprocessing and filtering, as well as all the annotated data, can be found in 385 
our code repository.  386 

Gene prioritization 387 
We used a support vector machine (SVM) to prioritize the disease-causing gene in each patient. First, 388 
we split the PEDIA cohort into a training and a test set. We used a linear kernel on the five scores to 389 
train the SVM and selected the hyperparameter C in the range from 2-6 to 212 by performing internal 390 
5-fold cross-validation on the training set. The C with highest top-1 accuracy was selected for training 391 
linear SVM. We further benchmarked the performance of each case in the test set with this model. 392 
The distance of each gene to the hyperplane - defined as the PEDIA score - was used to rank the genes 393 
for the case. If the disease-causing gene was at the first position, we called it a top 1 match, or if it was 394 
amongst the first ten genes, we called it a top 10 match.  395 

To evaluate the accuracy, we conducted a 10-fold cross-validation, that is, we split 679 cases into 10 396 
groups to minimize overfitting. For the 260 cases from the DeepGestalt publication test set, where 397 
exome diagnostics would be applicable, we randomly selected a patient from the PEDIA cohort with 398 
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the same diagnosis and replaced the entire gestalt scores per case. Thus, we were also able to analyze 399 
the influence of another large collection of patient images in the exome prioritization. In total, all 400 
experiments were conducted ten times and the achieved top-1 and top-10-accuracies were averaged. 401 
All training data as well as the classifier are available at https://github.com/PEDIA-Charite and 402 
https://pedia-study.org  403 
 404 
Performance evaluation in a classification task 405 
Both, DeepGestalt and PEDIA are approaches to solve multiclass classification problems (MCPs), the 406 
first tool operating on phenotypes and the second on genes. The difficulty of the task is characterized 407 
by the number of classes and the distinguishability of the different entities. For both MCPs the 408 
maximum number of classes can be estimated from Online Mendelian Inheritance in Man catalog, that 409 
is currently listing around 500 distinct disorders with facial abnormalities and 700 corresponding genes 410 
with disease-causing mutations (Figure 1 A).  411 
Learning a phenotype in a neural network requires a certain number of unrelated cases. By the end of 412 
2017, DeepGestalt could distinguish between 216 different entities. Due to more training data, 60 new 413 
disorders were added in the last six months and the number is expected to increase further on. 414 
The performance of a prioritization tool can be assessed by the proportion of cases in a test set for 415 
which the correct diagnosis or disease-gene is placed at the first position or amongst the first ten 416 
suggestions (top-1 and top-10-accuracy). The composition of the test set has an influence on the 417 
accuracy because some disease phenotypes are easier to recognize and some gene mutations are 418 
more readily identified as deleterious. The setup of the PEDIA cohort, which is comprehensively 419 
documented in the Supplementary Appendix, therefore aims at emulating the whole spectrum of cases 420 
that could currently be analyzed with DeepGestalt and diagnosed by exome sequencing.  421 
 422 

423 
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 424 
Figure 1: A) Schematic Increase of Mendelian phenotypes with facial abnormalities and associated genes listed in the 425 
encyclopedia of Online Mendelian Inheritance in Man over time. B) The next-generation phenotyping tool DeepGestalt could 426 
be used to differentiate between 216 disorders in the end of 2017 and achieved a top-10-accuracy rate of 90 %. The subset 427 
of Mendelian phenotypes that are suitable for a diagnostic workup by exome sequencing corresponds to 290 genes and in 428 
the PEDIA cohort a top-1-accuracy of 98 % was achieved. 429 

430 
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 431 
 432 

Figure 2: Prioritization of Exome Data by Image Analysis. A) Clinical features, facial photograph and disease-causing 433 
mutation of one individual of the PEDIA cohort. In total the cohort consists of 679 cases with monogenic disorders that are 434 
suitable for a diagnostic workup by exome sequencing. B) Clinical features, images and exome variants were evaluated 435 
separately and integrated to a single score by a machine learning approach. C) The disease-causing gene of the case 436 
depicted in A achieves the highest PEDIA score and molecularly confirms the diagnosis of Coffin-Siris syndrome. Other genes 437 
associated with similar phenotypes such as Nicolaides-Baraitser syndrome, achieved also scores for gestalt but not for 438 
variant deleteriousness. This figure has been adapted for bioRxiv by removing the patient photo. The original version with a 439 
patient photo is available on request. Also see https://pedia-study.org    440 

441 
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 442 
Figure 3: Area under the curve for different disease-gene prioritization approaches. For each case the exome variants are 443 
ordered according to four different scoring approaches, solely by a molecular deleteriousness score (C), by score from image 444 
analysis (DeepGestalt), by a combination of a molecular deleteriousness score and a clinical feature based semantic 445 
similarity score (P+C), or the PEDIA score that includes all three levels of evidence. The sensitivity of the prioritization 446 
approach depends on the number of genes that are considered in an ordered list. The top 10 accuracy rates of of Figure 1B 447 
correspond to the intersect of the curves for PEDIA and DeepGestalt at maximum rank 101. Note that for benchmarking 448 
DeepGestalt on the gene level, syndrome similarity scores first have to be mapped to the gene level, resulting in a lower 449 
performance compared to the readout on a phenotype level, due to heterogeneity. The area under the curve is largest for 450 
PEDIA scoring. When e.g. the first ten candidate genes are considered, the syndromic similarity quantified by image analysis 451 
increases the sensitivity by about 20 % compared to P+C. 452 
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