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87 Abstract

88 Phenotype information is crucial for the interpretation of genomic variants. So far it has only
89 been accessible for bioinformatics workflows after encoding into clinical terms by expert
90 dysmorphologists. Here, we introduce an approach, driven by artificial intelligence that uses
91  portrait photographs for the interpretation of clinical exome data. We measured the value
92 added by computer-assisted image analysis to the diagnostic yield on a cohort consisting of
93 679 individuals with 105 different monogenic disorders. For each case in the cohort we
94  compiled frontal photos, clinical features and the disease-causing mutations and simulated
95 multiple exomes of different ethnic backgrounds. With the additional use of similarity
96 scores from computer-assisted analysis of frontal photos, we were able to achieve a top-10-
97 accuracy rate for the disease-causing gene of 99 %. As this performance is significantly
98 higher than without the information from facial pattern recognition, we make gestalt scores
99 available for prioritization via an API.

100

101 Rare diseases affect approximately 6% of the population, with genetic syndromes accounting for about
102 80 %.“?The more than 5,000 entities represent a heterogeneous group of diseases, differing in cause,
103  symptoms, and treatment, making diagnosis an important yet challenging healthcare issue. Due to
104  extensive clinical variability this is true even for well characterized syndromes.'?

105  Worldwide, more than half a million children born per year have a rare genetic disorder that is suitable
106 for a diagnostic workup by exome sequencing, which has an unprecedented diagnostic yield for many
107  indications such as developmental delay.*® The main remaining concern for the integration of exome
108 sequencing into clinical routine is to increase the efficiency of genetic variant interpretation. Making
109  phenotypic information — the observable, clinical presentation — computer-readable is key in solving
110 this problem, and in providing clinicians with a much-needed tool for diagnosing genetic syndromes.*°

111 To date, the most advanced exome prioritization algorithms combine deleteriousness scores for
112  mutations with semantic similarity searches of the clinical description of a patient.!*> The human
113  phenotype ontology (HPO) with its extensive vocabulary has become the lingua franca for this
114  purpose.’® However, semantic similarity searches presuppose that facial features can be named. A
115 facial gestalt that is simply described in the literature as typical or characteristic of a certain disease is
116  of little help for these approaches.

117 Beyond language, capturing indicative patterns by deep-learning approaches has recently gained
118  attention in assessing facial dysmorphism.'”2! Artificial neural networks are now able to quantify the
119  similarities of patient photos to hundreds of disease entities and achieve accuracies that match or even
120  surpass the level of dysmorphologists in certain tasks.???® For this reason tools such as Face2Gene are
121  now used in addition to human expertise to guide the molecular testing and to interpret sequence
122  variants. Here we investigate systematically whether facial image analysis can improve the evaluation
123  of exome data and qualifies as a next-generation phenotyping technology for next-generation
124  sequencing.?®

125 Results

126  We first present an overview about the approach to prioritize exome data by image analysis (PEDIA);
127  adetailed description is provided in the Methods.
128

129 PEDIA classifier. For the assessment of genetic variants, different sources of evidence have to be
130 considered, from a populational, molecular, and phenotypic level. PEDIA is a Bayesian heuristic, that
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131  can be used to update the probability that a mutation in a gene is disease-causing, given the
132  phenotypic information contained in a frontal photograph.

133  To build this classifier, we first measured the similarities of the facial gestalt to 216 specific diseases in
134 679 individuals with the convolutional neural network DeepGestalt.?! By this means, we were able to
135  acquire scores for disorders with a single genetic etiology that quantify the PP4 criteria of the ACMG
136  guidelines which is used for variant interpretation.?’-%

137 In addition to DeepGestalt, we computed further prediction scores that are widely used on clinical
138 features (Phenomizer, Boga, Feature) and genetic variants (CADD) for all individuals of the PEDIA
139  cohort (Supplemental Table 1). 2%3%31 With this data set we trained and tested a support vector
140  machine that can be used to prioritize the genetic variants in a VCF files from exome sequencing.

141  Gene prioritization.

142  The term next-generation sequencing (NGS) implies the interrogation of all genes in a single assay.
143  Similarly, the term next-generation phenotyping (NGP) refers to technology enabling similarity
144  searcheson alarge set of disorders based on clinical patient records and medical imaging data. In order
145  to increase the efficiency in diagnostics, we combined both approaches and benchmarked gene
146  prioritization.

147  Similar to the performance readout in Gurovich et al., the identification of the disease-gene in exome
148  data also represents a multiclass classification problem and the number of sequence variants in the
149  coding part of the genome illustrates the complexity of the diagnostic assessment. In reference guided-
150 resequencing, about 20,000-30,000 single nucleotide variants and small indels have to be considered.
151  Although the majority of these variants can be removed as benign polymorphisms, rare and potentially
152  disease-causing mutations in more than 100 genes remain in a typical case with a suspected
153 monogenic disorder. When only a deleteriousness score such as CADD is used to rank these mutations,
154  the disease-causing gene is in the top 10 in less than 46 % of the cases of the PEDIA cohort. This
155 performance increases to a top-10-accuracy rate of up to 88 %, when semantic similarity scores are
156 included that are based on HPO feature annotations. These prioritization approaches also represent
157  the current state of the art in diagnostic laboratories for single exomes.*** The additional information
158 contained in frontal photos of dysmorphic cases pushes the correct disease-gene to the top-10 in more
159  than 99 % of the cases in the PEDIA cohort and in the DeepGestalt test set (Figure 1 B).

160  The value of a frontal photograph can exemplarily be demonstrated by a case with Coffin-Siris
161  syndrome that is shown in Figure 2 A: The characteristic facial features are relatively mild, so the
162  correct diagnosis is only listed as the third suggestion by DeepGestalt. Amongst all the variants
163  encountered in an exome data set, the disease-causing gene ARID1B would only achieve rank 24, if
164  scored by the molecular information alone. However, in synopsis with the phenotypic information, the
165  PEDIA approach lists this gene as first candidate by far (Figure 2 C).

166  Although the syndrome of the case shown in Figure 2 might also be molecularly confirmed by a
167  directed single gene test in other instances where the facial gestalt is more indicative, the high
168  phenotypic variability associated with disease-causing mutations is well-known for genes of syndromic
169  disorders. It has been exhibited in the deciphering developmental disorders (DDD) project, that many
170  such diagnoses were made only after exome sequencing.® This finding is also reflected by frontal image
171  analysis of the entire PEDIA cohort with DeepGestalt alone that achieves a top-10-accuracy rate for
172  the disease-causing gene of around 58 %.

173  The efficiency of a prioritization algorithm can also be measured by the area under the curve (AUC) of
174  the disease-causing mutation versus its ranked position. The higher the AUC, the higher the diagnostic
175  vyieldin a fixed amount of time that is spend on the analysis of sequence variants (Figure 3). Combining
176  similarity scores from image analysis, phenotypic features and molecular deleteriousness achieves the
177  best AUC on the PEDIA cohort and is therefore suited to speed up diagnostics.
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178  The contribution from the different sources of evidence to the PEDIA score is also reflected by the
179  relative weight of the deleteriousness of the mutation (0.44), all feature-based scores combined (0.25)
180 andtheresults from image analysis by DeepGestalt (0.31) that can be derived from a linear SVM model.
181  We therefore also conclude that the information contained in a frontal photograph of patient goes
182  beyond, what clinical terms can capture.

183 Discussion

184  According to the current version of the Online Mendelian Inheritance of Man Catalog, mutations in
185  about 4000 genes are linked to phenotypes that are often difficult to distinguish and diagnose by
186 clinical features alone, making next-generation sequencing a key technology for their molecular
187  confirmation. However, the size and high variability of the genome as well as the low prevalence of
188  disease-causing variants — many of them occur de novo — explain why sequence data analysis of a single
189 individual is still challenging and time consuming.>®

190 The guidelines for variant classification in the laboratory follow a qualitative heuristic that combines
191  distinct types of evidence (functional, population, phenotype, etc.) and is compatible with Bayesian
192  statistics.3? The advantage of such a framework is that continuous evidence types can be integrated
193 into the classification system. While in silico predictions about a variant’s pathogenicity have a
194  relatively long history in bioinformatics and machine learning, the quantification of phenotypic raw
195  data with systems of artificial intelligence just began. Analogous to a score for the deleteriousness of
196 agene variant, one can include the phenotypic similarity to a distinct syndrome caused by mutations
197  inthe respective gene.

198  We analyzed this approach in the PEDIA cohort, consisting of 679 cases and covering 105 distinct
199  disorders mapping to 181 disease-genes. Among these disorders were 73 phenotypes for which the
200 performance of facial image analysis alone has recently been evaluated.?! Although the top-10-
201  accuracies for gestalt- and PEDIA-scoring cannot be compared directly, both approaches operate on a
202  similar order of phenotypes and genes, respectively. Adding suitable molecular information to 260
203  cases from the DeepGestalt publication test set increased the correct disease-gene in the top 10 to
204  about 99%, from 90% with only the phenotypic information. Considering only molecular information
205  andclinical features, but without the results from image analysis, the correct disease gene would have
206  only been placed in the top 10 in 62%. The genetic background, which might correspond to a different
207  number of variant calls or higher load of deleterious mutations, had negligible influence on the
208  performance.

209  The performance for the entire PEDIA cohort is comparable to the DeepGestalt test set. However,
210  there are three important lessons learned from specific subgroups or cases achieving lower PEDIA
211  ranks: 1) Although the convolutional neural network used for image analysis has been pretrained on
212 real-world uncontrolled 2D images, patient photographs that were true frontal, of high resolution,
213  with good lightening and contrast, and few artifacts such as glasses performed better. 2) Particularly
214 rare diseases, or recently described disorders, for which the classifier’s representation is based on a
215  smaller training set, show a lower performance, even if experienced dysmorphologists would consider
216  them highly distinguishable.?*3* 3) Molecular pathway diseases, modeled as a single class, can be
217  biased towards the prevailing gene if there is substructure in the phenotypic series, meaning there
218  actually are gene-specific differences in the gestalt and complete heterogeneity is simply an
219  approximation.”® This applies also to microdeletion syndromes that can be caused by single gene
220  mutations, such as Smith-Magenis syndrome, or any clinical presentation of a phenotype that is
221  considered atypical.

222 The only way to overcome the biases of semantic similarity metrics as well as Al-driven image analysis
223 that are due to limited cohort sizes, is sharing of the phenotypic data sets.
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224  In conclusion, the PEDIA study documents that exome variant interpretation benefits from computer-
225  assisted image analysis of facial photographs, particularly if dysmorphism has been stated in the
226  clinical notes. By including similarity scores from DeepGestalt, we improved the top-10-accuracy rate
227  considerably. Al-driven pattern recognition of frontal facial patient photographs is an example of next-
228  generation phenotyping technology with proven clinical value in the interpretation of next-generation
229  sequencing data.

230  As deep-learning advances in the assessment of other medical imaging data, it will be interesting to
231  study how these classifiers affect variant interpretation separately and in aggregate.>>3¢

232  Data and Code Availability
233 PEDIA is freely available for academic use at https://pedia-study.org and the source code is available
234 at https://github.com/PEDIA-Charite.
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3s0 Materials and Methods

351  Patients

352  We compiled a cohort of 679 patients with a Mendelian disorder to evaluate Prioritization of Exome
353  Data by Image Analysis (PEDIA). For all cases in this cohort frontal facial photographs were available
354  for analysis and clinical features were documented in HPO terminology.’® The diagnoses of all
355 individuals have previously been confirmed molecularly and are suitable for analysis by exome
356  sequencing. In total, the cohort covers 105 different monogenic syndromes that are linked to 181
357  different genes. Of the individuals in this cohort, 375 were published and 309 have not been previously
358 reported (see Supplementary Appendix).

359  The study was approved by the ethics committees of the Charité - Universitdtsmedizin Berlin and of
360 the University of Bonn Medical Center. Written informed consent was provided by the patients or their
361  guardians.

362 In addition to PEDIA data set, we analyzed a subset of the DeepGestalt study comprising all 260 cases
363  of the publication set with monogenic syndromes which diagnosable by exome sequencing.?!

364

365  Data Preparation

366  The facial images were analyzed with DeepGestalt (FDNA), a deep convolutional neural network that
367  was trained on more than 17,000 patient images.”* The results of this analysis are gestalt scores
368  quantifying the similarity to 216 different rare phenotypes per individual. Although DeepGestalt is built
369 as a framework that aims to learn from every additional case, we excluded all data of the PEDIA cohort
370  fromthe model for benchmarking purposes in a similar manner as described in the original publication.
371 In addition to the image analysis, we performed semantic similarity searches with the annotated HPO
372  terms by Feature Match (FDNA), Phenomizer and BOQA.*3°

373  Wefiltered all sequence variants as described by Wright et al. and scored the remaining mutations for
374  deleteriousness with CADD.>3? If no exome data was available, we spiked the disease-causing
375 mutation into the exome data of a healthy individual from the 1000 Genomes Project.?® This exome
376  simulation was applied to the entire PEDIA cohort to assess the influence of the genetic background
377  onthe performance of our scoring approach.

378 For the variants remaining after filtering, we derived the similarity scores from image analysis and
379  semantic similarity searches that were based on HPO feature annotations for the syndromes
380 associated with the respective genes. If there were several syndromes linked to a single gene, the
381 highest gestalt and feature scores were selected. Case data is represented as table with a variable
382  number of lines representing genes and five columns for the different scores (Figure 1 B). All five scores
383  with per line as well as the Boolean label disease gene “true” or “false” were used to train a classifier
384  thatyields a single value per gene, the PEDIA score, that can be used for prioritization (Figure 1 C). A
385  detailed description of preprocessing and filtering, as well as all the annotated data, can be found in
386  our code repository.

387  Gene prioritization

388  We used a support vector machine (SVM) to prioritize the disease-causing gene in each patient. First,
389  we split the PEDIA cohort into a training and a test set. We used a linear kernel on the five scores to
390 train the SVM and selected the hyperparameter C in the range from 2 to 2*2 by performing internal
391  5-fold cross-validation on the training set. The C with highest top-1 accuracy was selected for training
392 linear SVM. We further benchmarked the performance of each case in the test set with this model.
393  The distance of each gene to the hyperplane - defined as the PEDIA score - was used to rank the genes
394  forthe case. If the disease-causing gene was at the first position, we called it a top 1 match, or if it was
395  amongst the first ten genes, we called it a top 10 match.

396 To evaluate the accuracy, we conducted a 10-fold cross-validation, that is, we split 679 cases into 10
397  groups to minimize overfitting. For the 260 cases from the DeepGestalt publication test set, where
398 exome diagnostics would be applicable, we randomly selected a patient from the PEDIA cohort with
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399 the same diagnosis and replaced the entire gestalt scores per case. Thus, we were also able to analyze
400 the influence of another large collection of patient images in the exome prioritization. In total, all
401  experiments were conducted ten times and the achieved top-1 and top-10-accuracies were averaged.
402  All training data as well as the classifier are available at https://github.com/PEDIA-Charite and
403  https://pedia-study.org

404

405 Performance evaluation in a classification task

406  Both, DeepGestalt and PEDIA are approaches to solve multiclass classification problems (MCPs), the
407  first tool operating on phenotypes and the second on genes. The difficulty of the task is characterized
408 by the number of classes and the distinguishability of the different entities. For both MCPs the
409 maximum number of classes can be estimated from Online Mendelian Inheritance in Man catalog, that
410  iscurrently listing around 500 distinct disorders with facial abnormalities and 700 corresponding genes
411  with disease-causing mutations (Figure 1 A).

412 Learning a phenotype in a neural network requires a certain number of unrelated cases. By the end of
413 2017, DeepGestalt could distinguish between 216 different entities. Due to more training data, 60 new
414  disorders were added in the last six months and the number is expected to increase further on.

415 The performance of a prioritization tool can be assessed by the proportion of cases in a test set for
416  which the correct diagnosis or disease-gene is placed at the first position or amongst the first ten
417  suggestions (top-1 and top-10-accuracy). The composition of the test set has an influence on the
418  accuracy because some disease phenotypes are easier to recognize and some gene mutations are
419  more readily identified as deleterious. The setup of the PEDIA cohort, which is comprehensively
420  documented in the Supplementary Appendix, therefore aims at emulating the whole spectrum of cases
421  that could currently be analyzed with DeepGestalt and diagnosed by exome sequencing.

422

423
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Figure 1: A) Schematic Increase of Mendelian phenotypes with facial abnormalities and associated genes listed in the
encyclopedia of Online Mendelian Inheritance in Man over time. B) The next-generation phenotyping tool DeepGestalt could
be used to differentiate between 216 disorders in the end of 2017 and achieved a top-10-accuracy rate of 90 %. The subset
of Mendelian phenotypes that are suitable for a diagnostic workup by exome sequencing corresponds to 290 genes and in
the PEDIA cohort a top-1-accuracy of 98 % was achieved.
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Figure 2: Prioritization of Exome Data by Image Analysis. A) Clinical features, facial photograph and disease-causing
mutation of one individual of the PEDIA cohort. In total the cohort consists of 679 cases with monogenic disorders that are
suitable for a diagnostic workup by exome sequencing. B) Clinical features, images and exome variants were evaluated
separately and integrated to a single score by a machine learning approach. C) The disease-causing gene of the case
depicted in A achieves the highest PEDIA score and molecularly confirms the diagnosis of Coffin-Siris syndrome. Other genes
associated with similar phenotypes such as Nicolaides-Baraitser syndrome, achieved also scores for gestalt but not for
variant deleteriousness. This figure has been adapted for bioRxiv by removing the patient photo. The original version with a
patient photo is available on request. Also see https.//pedia-study.org
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Figure 3: Area under the curve for different disease-gene prioritization approaches. For each case the exome variants are
ordered according to four different scoring approaches, solely by a molecular deleteriousness score (C), by score from image
analysis (DeepGestalt), by a combination of a molecular deleteriousness score and a clinical feature based semantic
similarity score (P+C), or the PEDIA score that includes all three levels of evidence. The sensitivity of the prioritization
approach depends on the number of genes that are considered in an ordered list. The top 10 accuracy rates of of Figure 1B
correspond to the intersect of the curves for PEDIA and DeepGestalt at maximum rank 10*. Note that for benchmarking
DeepGestalt on the gene level, syndrome similarity scores first have to be mapped to the gene level, resulting in a lower
performance compared to the readout on a phenotype level, due to heterogeneity. The area under the curve is largest for
PEDIA scoring. When e.g. the first ten candidate genes are considered, the syndromic similarity quantified by image analysis
increases the sensitivity by about 20 % compared to P+C.
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