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| Mohammad Ali Moni4?

Ovarian cancer (OC) is a common cause of death from can-
cer among women worldwide, so there is a pressing need
to identify factors influencing mortality. Much OC patient
clinical data is now publically accessible (including patient
age, cancer site stage and subtype), as are large datasets of
OC gene transcription profiles. These have enabled studies
correlating OC patient survival with clinical variables and
with gene expression but it is not well understood how these
two aspects interact to influence mortality. To study this
we integrated clinical and tissue transcriptome data from
the same patients available from the Broad Institute Cancer
Genome Atlas (TCGA) portal. We investigated OC mRNA
expression levels (relative to normal patient tissue) of 26
genes already strongly implicated in OC, assessed how their
expression in OC tissue predicts patient survival then em-
ployed Cox Proportional Hazard regression models to anal-
yse both clinical factors and transcriptomic information to
determine relative risk of death associated with each factor.
Multivariate analysis of combined data (clinical and gene
mRNA expression) found age, ovary tumour site and can-

cer stage IB significantly correlated with patient survival.

Abbreviations: OC, Ovarian Cancer; TCGA, The Broad Institute Cancer Genome Atlas.
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Univariate analysis also confirmed significant differences
in patient survival time when altered transcription levels
of KLK6, CD36, MEF2C and SCGB2A1 were evident, while
multivariate analysis that considered the 26 genes simulta-
neously revealed a significant relationship of mortality with
KLK6, CD36 and E2F 1 genes. However, analysis that consid-
ered all 26 genes with clinical variables together identified
WFDC2, E2F1, BRCA1, KLK6, SCGB2A1 and SLPI genes
as independently related to mortality in OC. This indicated
that the latter genes affect OC patient survival, i.e., provided
mechanistic and predictive information in addition to that
of the clinical traits and provide strong evidence that these
genes are critical markers of processes that underlie OC

progression and mortality.

KEYWORDS
Ovarian cancer, Clinical factors, Gene expression, Survival analysis,

RNA seq, molecular pathways

1 | INTRODUCTION

Ovarian carcinoma (OC) accounts for the great majority of cases of cancer affecting the ovaries. It is the fifth most
common cause of cancer deaths in women with an estimated 239,000 new cases and 152,000 deaths worldwide
annually (Ferlay et al. (2014)) and remains the leading cause of death from gynecologic malignancy (Seigel et al. (2014);
Gov and Arga (2017)) with five year mortality rate in the United States of 35% (Gov and Arga (2017)) in 14,000 annual
deaths (acs (2018)). Current standard treatment mainly comprises platinum-based chemotherapeutics, however the
most prevalent OC type, high grade serous carcinoma (HGSC), often shows high chemotherapy resistance as well as
greatly altered genome and transcriptome. High throughput gene and gene expression data from patient tissue is
emerging as an important research tool to identify key intrinsic factors that affect cancer behaviour with numerous
genetic mutations shown to be associated with OC development and progression. Such genes are of wide interest for
their potential prognostic power and as possible drug targets.

While tumour-associated coding gene mutations can affect both gene product function and levels, it is their gene
transcript levels that give more direct information regarding levels of their respective protein gene products. The
latter is important in determining invasiveness, metastasis establishment, immune evasion and growth at metastatic
sites, as well as indirect pathological effects (via secreted factors) on other tissues that impair health. Clearly, OC
gene expression patterns will influence patient fate and their quantification may also yield clues to important cellular
pathways underlying disease processes. Tumour tissue transcript levels determined by RNA sequencing (RNAseq ) are
thus becoming commonly used to study tumour clinical features (Moni and Lio (2014)).

Earlier work on OC has focused on influence of clinical features of the patient on outcomes (Zheng et al. (2009);
Brown and Frumovitz (2014); Moni et al. (2014); Mascarenhas et al. (2006); Zhang (2016); Moni and Lio (2014)), which

have identified significant factors such as age at diagnosis, age at menopause, disease stage and histological grade,
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tumour size, type of therapy received and family history of OC. In addition, new transcriptomic data from tumour tissue
has identified a number of potential gene expression markers for patient progression (Zhang et al. (2013); Lynch et al.
(2009); Moni and Lio’ (2017); Friedenson (2005); Tecza et al. (2015); Moni and Lio (2015)). However, generally less
studied until recently (Ahmed and Begum (2018)) is how such tumour transcript levels may interact with clinical factors
to affect cancer outcomes, which is a crucial consideration in determining how to use and interpret the transcript data.
Publicly available tumour transcript datasets are increasing in number along with clinical datasets, and this makes
feasible large scale investigations of interaction between transcript levels and clinical trait. In particular, studies on
combined datasets (containing both types of data from the same patient) can be particularly powerful tools for revealing
important features of gene function in the tumour context, and informing the clinical use of such data. We thus employed
the rich database available from The Cancer Genome Atlas (TCGA) project, a collaboration between the National Cancer
Institute (NCI) and National Human Genome Research Institute (NHGRI), and supported by the Broad Institute in order
to make available the survival, clinical, and gene expression data to analyse these either separately or in combination,
for the purpose of clarifying which type of mutual influences are important to OC patients survival as well as which
factors are potent independent predictors. We selected 26 genes of interest previously validated as important in OC or
OC models.

The influence of both clinical factors and disease marker gene expression on ovarian cancer patient survival can now

be determined using standard Cox Proportional Hazard (PH) (Cox (1992)) models for univariate analysis, multivariate
analysis (Gabriel and Glavin (1978)) and the penalized Cox PH model (Heinze and Schemper (2001)) for combined
analysis (Ahmed and Begum (2018)). Important clinical features with associations to the disease can be identified
and selected by consulting the OC literature for use in these models. In this study, Cox PH regression modelling is
employed for the analysis or post-diagnosis survival time. Clinical variables that were selected for analysis included age,
ethnicity, anatomical site of cancer, histological grade of cancer, primary tumour site and neoplasm status with tumour
were considered from the literature of OC. We focused on research work that investigated associations between gene
expression, clinical factors and survival in patients with OC. We performed univariate and multivariate analysis for
selected significant 26 genes selection through a process of literature search and evaluation, and we also ran combined
analysis for the 26 genes and clinical factors on OC patient survival. We gathered survival, clinical, and gene expression
data from TCGA separately and combined them in order to assess the joint role of genetic and clinical factors.
Our analysis followed the methodology of Xu and Moni (2015) (Xu et al. (2015)) who used Cox PH regression modelling
for the analysis of post-diagnosis survival time. We performed an analysis to identify most significant genes among
selected 26 genes as well as clinical variables, affecting patients survival in OC. To do so, we used product-limit estimator
to estimate survival function for each gene separately, then used log rank test to detect which genes differs in expression
levels significantly between altered and not altered group. Finally we performed univariate Cox hazard regression
analysis to determine each gene’s likelihood of contribution to deaths and two multivariate Cox PH regression analyses,
the first taking consideration of 26 genes simultaneously and with the second considering all 26 genes and clinical
variables to determine most significant genes and clinical variables in context of likelihood of risk of death.

2 | METHODS & MATERIALS

| Data

We collected the RNAseq data for this study from TCGA genome data analysis centre (http://gdac.broadinstitute.org/)
which is an interactive data system for researchers to search, upload, download, and analyse cancer genomic data

(Tomczak et al. (2015)). Since our goal was to explore a particular point of interest, survival analysis of OC on clinical
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and genetic factors, we retrieved the anonymized clinical data and RNAseq data for OC (Ovarian Serous Cystadeno
Carcinoma TCGA, Provisional) from the cBioPortal (Cerami et al. (2012)).

In Clinical dataset there are 577 cases with 87 features. Cases that had RNAseq gene expression data included 535
cases with 5689 genes. We employed six clinical factors (ethnicity, anatomical site of cancer, histological grade of
cancer, primary tumour site, and neoplasm status with tumour) along with 26 genes commonly cited as significant
factors in the OC literature (Table 1) (Adib et al. (2004); McLemore et al. (2009); SJ. (2017); tar (2014)). Using these

TABLE 1 Ovarian cancer associated significant 26 genes and their sources.
Gene Name Resource

BRCA1, BRCA2, BSCL2, http://www.cancer-genetics.org/X1003.htm
CTNNB1, ERBB2, MSH2,

MUC16, PIK3CA, KRAS,

TP53

KRAS, PIK3CA, and TP53 Mutation profile and clinical outcome of mixed endometrioid-serous endometrial

carcinomas are different from that of pure endometrioid or serous carcinomas

KLKé6, CP,SLPI,EZH2,HPN, = Predicting biomarkers for ovarian cancer using gene-expression microarrays
SCGB2A1

TLR4 The inflammatory microenvironment in epithelial ovarian cancer: a role for TLR4

and MyD88 and related proteins

WFDC2 HE4 (WFDC2) gene overexpression promotes ovarian tumor growth

RXRG, DVL1, MEF2B, Theimpacton high-grade serous ovarian cancer of obesity and lipid metabolism-
MEF2C, BSCL2, CD36, related gene expression patterns: the underestimated driving force affecting
RXRG, E2F1 and TLR4 prognosis

data we investigated a single outcome variable, namely OC-specific survival. 48 OC patient records that did not include
clinical information were excluded from this analysis. We matched patient ID in both clinical and RNAseq dataset and
identified 529 patients with data available for both. Among the clinical variables six clinical variables given above were
considered (Moorman et al. (2009); McLemore et al. (2009)). Tumour histological subtype and age at initial diagnosis
were collected from pathology reporting. OC stage was recorded according to American Joint Committee on Cancer
(AJCC) staging classification (acs (2017)). Patient survival data was taken from overall number of months of patient
survival but converted to days of survival. Normal and tumour samples were identified using the TCGA barcode; two
digits at position 14-15 of the barcode denote the sample type. Tumour type spans from 01 to 09, normal type from 10 to
19 and control samples from 20 to 29. Fold change (FC) was used as a common approach in differential gene expression
analysis between two conditions (?). For example, if gene expression read counts (determined by RNAseq) for a patient
was 60 while that of a normal patient was 30, patient gene FC was 2. FC is most suitable when the gene expression
distribution is symmetric. However, in RNAseq analyses, expression levels are modelled by the discrete counts of reads
mapped to a known gene in a reference genome. Poisson and Negative binomial distribution assumptions are taken for

Reference

$J.(2017)

Coenegract
et al.
(2015)

Adib et al.
(2004)

Li et al
(2016)

Moore
et al.
(2014)

Cuello
et al.
(2018)
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reading counts. When the abundance rate of a particular gene expression level is very low, read count distributions
modelled by the Poisson or Negative binomial are skewed to the right. Thus, as using FC as a measure of differential
expression may not be appropriate in such cases we transformed the gene expression value using a standardizing
transformation and calculated z-scores for each expression value. For the expression from RNAseq experiments, the
standard rule is to compute the relative expression of an individual gene in tumour samples using gene expression
distribution in a reference population. A reference population was considered either all diploid tumours for the gene
in question or, when available, normal adjacent tissue. The resulted value (z-score) indicates the number of standard
deviations away from the mean expression in the reference population. Here, we considered genes showing z > +1 : 96

to be differentially expressed. We computed z-scores for RNAseq data using following formula:

Expression for gene X in tumor A- Mean expression for gene X in normal
zZ =

Standard deviation of expression for gene X in reference population

We thus used the z-score values to define samples with "altered" and "normal" (unaltered) expression of a gene. We
have assumed a sample to be altered if the z-score for that sample is equal to or higher than a specific threshold value
such as z=2, as noted. We therefore define altered versus normal as follows:

z >2=> altered

z <2 =>normal

| Methods

We performed the following analysis related to survival of patients with OC. First we used product-limit estimator for
estimation of survival function, then we performed log rank test to determine whether the survival functions of two
different groups (patients with altered gene expression and patients with unaltered gene expression) exhibit statistically
significant difference and after then we used Cox Proportional Hazards (Cox PH) regression models to determine the
significance of genes, clinical factors on comparative risk of death and finally we performed functional analyses of our
most significant genes found from our analysis. We selected important clinical and demographic variables affecting
OC by literature review and similarly selected 26 genes having experimentally determined significance in context
of OC. The expression z-score for each gene was identified as being in "altered" or "normal" categories based on a
significance threshold value (z < 2) as noted in the Data section above. We performed Cox PH regression for every
gene individually known as univariate regression as well as multivariate analysis taking all 26 genes simultaneously and
finally multivariate regression on combined set of clinical and gene expression data. Survival analysis is a statistical
analysis for estimating expected duration of time until one or more events happen, such as death in cancer and failure
in mechanical systems. Normally, survival analysis is carried in three steps: determining time to event, formulating
a censoring indicator for subject inclusion in the analysis, and the time to occurrence of event. Censoring in survival
analysis is usually done in two ways, right censoring and left censoring. Right censoring occurs when a subject leaves
the study before an event occurs, or the study ends before the event has occurred. Left censoring happens when the
event of interest has already occurred before enrollment. This is very rarely encountered. Right censoring is again of
two types. First one is Type | right censoring results from completely random dropout (e.g emigration) and/or end of

study with no event occurrence and the second one, Type Il right censoring, occurs with end of study after fixed number
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of events amongst the subjects has occurred.

In survival analysis, one is interested in estimation of survival function of samples divided into subgroups or as whole.
There are two types of estimation of it, one is non parametric in which no prior assumption of distribution of survival
time is made and other is parametric estimation in which there are some assumption along with assuming predefined
distribution of survival time. As stated above, we used non parametric technique for estimation of survival function.
There are several such techniques, we used product-limit estimator. In short product-limit (PL) estimator of the survival
function is defined as follows:

R
sty =[]~
i=1 J

Here Sth) is estimated survival function at time tj, d; is the number of events occurred at ti, and nj is the number
of subjects available at ¢;. After estimating survival function, two or more groups can be compared using log-rank
test. For example, we used Log-rank test to detect the most significant genes in the case of patient’s survival time in
altered versus unaltered groups in context of gene expression. The null hypothesis is following: Hy: Survival function for

patients with altered gene expression is not different from the patients with normal (unaltered) gene expression

H 4: Survival functions are different for these two groups. Symbolically these can be written

Ho : Saitered(t) = Snot altered(t)

Ha: sa/tered(t) # Snot altered(t)

Survival analysis methods can also be extended to assess several risk factors simultaneously similar to multiple linear
and multiple logistic regression analysis. One of the most popular regression techniques for survival analysis is Cox PH
regression, which is used to relate one or several risk factors or exposures, considered simultaneously, to survival time.
In a Cox proportional hazards regression model, the measure of effect is the hazard rate, which is the risk of failure
(i.e., the risk or probability of suffering the event of interest), given that the participant has survived up to a specific
time. Using Cox PH regression, first we performed univariate survival analysis by selecting each gene separately, then
conducted a multivariate survival analysis taking all 26 genes simultaneously and finally fit a Cox PH model on all of
selected six clinical factors and 26 genes combined, modelling the hazards of having the event under investigation
(Ovarian Serous Cystadeno carcinoma, in this case), using an undetermined baseline hazard function and an exponential
form of a set of covariates. Mathematically we can write the model as following:

h(t1X;) = ho(t)exp(B X;)

Whereas h(t|X) is the hazard function conditioned on a subject i with covariate information given as the vector x;, ho(t)
is the baseline hazard function which is independent of covariate information, and represents vector of regression
coefficients to the covariates correspondingly. We have calculated the hazard ratio (HR) based on the estimated regres-
sion coefficients from the fitted Cox PH model to determine whether a specific covariate affects patient survival. The
hazard ratio for a covariate x, can be expressed by the following simple formula exp (8,). Thus, the hazard ratio for any
covariate can be calculated by applying an exponential function to the corresponding (3,) coefficient.

Pathways and gene ontology (GO) for these genes were analysed using KEGG pathway database (http : //www.genome.jp/kegg/p



HOSSAIN AND ISLAM ET AL. 7

and enriched using (http : //amp.pharm.mssm.edu/Enrichr/enrich), a web based software tool.

3 | RESULTS AND DISCUSSION

6 clinical factors (including age) and mRNA expression data for 26 genes were employed in our analysis. All clinical
factors were categorical except age. Age distribution of patients is shown in Figure 1. Average age of the patients at the
time of their diagnoses was 59.7 years, with a range between 26 and 89 years old. The descriptive summary statistics of
these factors shown in Table 2. From Table 2, we observe that the OC stage variable has the highest number (10) of

Diagnosis Age

150
100

<=30 30 40 50 60 70 80 90 >90 NA

FIGURE 1 Distribution of Age at Onset of Diagnosis

TABLE 2 Descriptive Statistics of Clinical Predictors

Characteristics Category freq %
AMERICAN INDIAN OR ALASKA NATIVE 3 0.519931
ASIAN 20 3.466205
Race BLACK OR AFRICAN AMERICAN 34 5.892548
NATIVE HAWAIIAN OR OTHER PACIFIC ISLAI 1 0.17331
Others 27 4.679376
WHITE 492 85.26863
Bilateral 396 72.52747
Tumour_site Left 80 14.65201
Right 70 12.82051
Stage I1A 2 0.34904
Stage IB 3 0.52356
Stage IC 11 1.919721
Cancer stage Stage 1A 4  0.69808
Stage lIB 5 0.8726
Stage IIC 21 3.664921
Stage IlIA 8 1.396161
Stage IIIB 24 4.188482
Stage llIC 407 71.02967
Stage IV 88 15.35777
Omentum 3 0.519931
Anatomic_site Owvary 572 99.13345
Peritoneum owvary 2 0.34662
G1 6 1.045296
G2 69 12.02091
Histologic_grade G3 486 84.66899
G4 1 0.174216
GB 2 0.348432
GX 10 1.74216
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categories and 71.03% of all patients are of stage I1IC. The next largest group is stage IV with 15.36% cases. There are 8
categories for histology type with the highest percentage of patients (84.67%) from was G3, i.e., poorly differentiated,
while the second largest group (12.02%) of patients had moderately differentiated grade. Regarding ethnicity, most
patients (85.27%) are from the European-caucasian descent population, while African American is next largest group
with 5.89%. In the case of OC anatomical site, most (72.53%) women had bilateral cancers, while cancer patients with
left and right ovary are 14.65% and 12.82% respectively. Most women had cancer in the ovary itself (99.13%), the

remaining minor percentage of women had tumours located in omentum and/or peritoneum.

3.1 | Survival pattern for gene expression data

We have estimated survival function for altered and unaltered group for each of the 26 genes by applying product
limit (PL) estimator. We then compared estimated survival function for altered and unaltered group using log rank test.
Those genes for which there is statistically significant difference are shown below. The significant role for these genes
isindicated by their p-values in differential survival pattern when comparing their expression level in two categories
(altered and unaltered). Surprisingly p53 gene, which is known for its implication in cancer in general, has p-vlaue greater
than 0.05. From Figure 2, we can see that patients having altered expression of CD36, MEFC2, KLK6 and SCGB2A1

CD36 N 2
1.001 1.00{ e
== Normal == Normal

> == Altered > == Altered
= 0.751 = 0.751
Qo Fe]
@ ©
o) Qo
= =
S.0.50 S.0.50
© ©
> >
= £ :

0.254 e 0.251 + L
3 p=0.038 @ p = 0.034

0.001 0.001

0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Time in days Time in days
1.00 ELRS 1.00] 4 SCGB2A1
== Normal == Normal

> b Altered 2> = Altered
=075 = 0.751
Q0 Q0
(] ©
Q0 o]
=} 2
S.0.50 S.0.50
s | M i ©
> >
2 =

0.254 0.251
3 p = 0.0065 ]

0.001 0.00

0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Time in days Time in days

FIGURE 2 Survival pattern of altered and normal(non-altered) groups for CD36, MEF2C, KLK6, and SCGB2A1

genes are less likely to survive compared to the non-altered group. Note that, the red line in the graphs indicates normal

gene expression and the blue line indicates the altered gene expression group.
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3.2 | Modeling the hazard risk on the RNA-Seq data

One can measure the relative likelihood of risk of death in OC for each gene separately as well as for all genes simultane-
ously. Consequently one can determine which genes are most significant in case of survival of patients in OC. For these
purposes, Cox PH regression model is used. We considered both univariate (separately for every gene) and multivariate
(incorporating rest of the genes) for Cox PH model on each of the 26 genes. Table 3 shows the estimated Coefficients
(B), with corresponding hazard ratios (HR), and p-values from those analyses. We noted that the p-values for genes

TABLE 3 Summary of Univariate and Multivariate Cox Proportional Hazard Model for mRNA Seq data.

Gene Univariate Multivariate
B HR p B HR p

BRCA1 0.354017 1.424779 0.394239| 0.54632 1.72689 0.206
BRCA2 -0.2831 0.753444 0.433864| -0.36161 0.69655 0.346
BSCL2 0.435628 1.545933 0.088898 0.2743  1.31561 0.319
CD36 051016 1.665558 0.040496| 0.58938 1.80288 0.03
CLDN3 0.072304 1.074982 0.816938| -0.25905 0.77179 0.511
cpP 0.149934 1.161758 0.617368| -0.15775 0.85407 0.681
CTNNB1 -0.2299  0.79461 0.441799| -0.24482 0.78285 0.434
DvLl 0.033112 1.033666 0.877705| 0.10329 1.10882 0.652
E2F1 -0.71242 0.490457 0.086237 -0.80081 0.41032 0.043
ERBB2 -0.02724 0.973131 0.895964( -0.15199 0.85899 0.52
EZH2 0.296206 1.344748 0.27177| 0.24816 1.28167 0.421
HPN -0.24274 0.784473 0.478554 -0.31907 0.72682 0.368
KLKG 0.65268 1.920682 0.007444 0.68866 1.99105 0.027
KRAS 0.242407 1.274313 0.154351| 0.23223 1.26141 0.19
MEF2B 0.234851  1.26472 0.370043| 0.25443 1.28973 0.36
MEF2C 0.647634 1.911014 0.037468| 0.57823  1.78287 0.081
MSH2 0.202799 1.224826 0.438784| 0.00685 1.00687 0.982
MucC16 0.210687 1.234526 0.385472| -0.31922 0.72672 0.362
PIK3CA -0.02874 0.971669 0.882595( 0.00112 1.00112 0.996
PTPRE 0.317945 1.374301 0.269824 0.1799  1.19709 0.573
RXRG 0.108327 1.114413 0.751939 0.0117  1.01177 0.974
SCGB2A1 | 0.556234 1.744092 0.046984| 0.60952 1.83954 0.09
SLPI 0.348102 1.416377 0.246372| 0.64783 1.9114 0.13
TLR4 -0.26754 0.765261 0.597417 -0.24069 0.78608 0.639
TP53 0.690348 1.994409 0.33299| 0.75636 2.1305 0.3
WFDC2 -0.23278 0.792329 0.610304 -1.03786  0.35421 0.067

CD36 and KLK6 showed that their expression profile have statistically significant association with OC patient survival
in both univariate and multivariate analyses. In contrast, genes SCGB2A and MEF2C showed significant association
only in univariate analysis, while E2F 1 showed significance only in multivariate analysis. Surprisingly, even though the
KRAS gene has previously been shown by experimentation to have a significant role in OC (Ratner et al. (2010)), we did
not find its significance in our analysis, both in univariate and multivariate analysis.

3.3 | Modeling hazard on the combined model containing both clinical and RNAseq data

We have performed multivariate Cox PH regression analysis with both clinical and RNA-Seq data simultaneously. We
have presented estimated regression coefficients in Table 4 along with hazard ratios (HR), z-values and corresponding
p-values in our combined Cox PH model. Here, n= 497, number of events (deaths)= 178 after deleting 32 observations
due to missing data values. Table 4 shows the summary of the Cox Proportional Hazard Model result. We observe
from Table 4 that if the patient’s age increases one-year, likelihood of hazard increases 1.02 times. Notably, we found
no evidence that ethnicity, histologic grade and anatomical OC site have any statistically significant association with

hazard. Surprisingly, our analysis indicates that patients with a right side ovary tumour have a higher risk of death (2.27
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TABLE 4 Summary of the Cox Proportional Hazard Model for combined mRNA seq and Clinical data

Variables B HR z p
ASIAN -7.25E-01 4.84E-01 -0.63 0.53125
BLACK OR AFRICAN AMERICAN -2.21E-01 8.02E-01 0.2 0.84011
NATIVE HAWAIIAN OR OTHER PACIFIC ISLANDER 8.92E-01 2.44E+00 0.61 0.54272
others -8.64E-01 4.21€-01 -0.73 0.46421
WHITE -1.01E+00  3.63E-01 -0.97 0.33167
age 1.83E-02 1.02E+00 2.39 0.01683
Peritoneum ovary -150E+01 __ 3.12E-07 -0.01 0.99554
G2 -1.12E+00  3.25E-01 -1.68 0.09386
G3 -7.03E-01 4.95€-01 -1.13 0.26008
G4 -1.53E+01 2.17E-07 -0.01 0.99532
GB -1.66E+01  6.47E-08 -0.01 0.99491
GX -8.81E-01 4.14€-01 -0.99 0.32328
tumour_site Left -1.51E-01 8.60E-01 -0.62 0.53261
tumour_site Right 8.22E-01 2.27E+00 3.61 0.00031
Stage IB 3.39E+00 2.95E+01 2.29 0.02185
Stage IC 1.98E+00 7.25E+00 1.49 0.1368
Stage IIA 1.81E+00 6.11E+00 1.19 0.23549
Stage IIB 1.13E+00 3.09E+00 0.75 0.4549
Stage IIC 7.81E-01 2.18E+00 0.55 0.58269
Stage IITIA 1.58E+00 4.88E+00 1.03 0.30114
stage IIIB 1.21E+00 3.36E+00 0.87 0.38526
Stage IIIC 9.13€-01 2.49E+00 0.69 0.49031
stage IV 1.22E+00 3.37E+00 0.9 0.36799
BRCAL(ATtered) 8.86E-01 2.42E+00 1.99 0.04659
BRCA2 (Altered) -1.83E-01 8.33€-01 -0.47 0.63914
BSCL2(Altered) 1.89E-01 1.21E+00 0.65 0.51884
cp36((Altered)) 4.12E-01 1.51E+00 141 0.15774
CLDN3(Altered) -5.17E-01 5.96E-01 -1.18 0.23818
cP(Altered) -3.04E-01 7.38E-01 071 0.48067
CTNNBL(Altered) -3.29€-01 7.20E-01 -0.96 0.33485
DVL1(Altered) 2.06E-01 1.23E+00 0.87 0.38563
E2F1(Altered) -1.25E+00 2.87E-01 -2.54 0.01109
ERBB2(Altered) -4.41E-02 9.57€-01 -0.18 0.86101
EZH2(Altered) 3.93E-01 1.48E+00 122 0.22244
HPN(ATtered) -5.06E-01 6.03E-01 -1.29 0.19836
KLK6 (Altered) 6.49E-01 1.91E+00 2 0.04588
KRAS (Altered) 2.66E-01 1.31E+00 138 0.16669
MEF2B(Altered) 1.51E-01 1.16E+00 0.5 0.61938
MEF2C(ATtered) 6.50E-01 1.92E+00 178 0.07519
MSH2 (Altered) 2.62E-02 1.03E+00 0.08 0.93797
Muclé(Altered) -4.55E-01 6.35E-01 -1.28 0.20122
PIK3CA(Altered) 2.16E-02 1.02E+00 0.09 0.92474
PTPRE(ATtered) 2.01E-01 1.22E+00 0.57 0.56566
RXRG(Altered) 4.36E-02 1.04E+00 0.11 0.91398
SCGB2A1(Altered) 9.09E-01 2.48E+00 2.42 0.01565
SLPI(Altered) 9.63E-01 2.62E+00 2.11 0.03523
TLR4(Altered) -4.11E-02 9.60E-01 -0.08 0.93761
TP53(ATtered) 8.94E-01 2.44E+00 115 0.24966
WFDC2 (Altered) -1.30E+00  2.72E-01 217 0.02994

times) compared to patients with a bilateral tumour, but patients having left side and bilateral tumour exhibit same
likelihood of risk of death. Tumour stage is an important factor affecting risk of death in many cancers, and consistent
with this, we found that patients with Stage IB OC are 29.5 times more likely to die compared to stage |A, although there
was no evidence that other OC stages exerted a significant influence on the likelihood of death compared to stage IA.
We then conducted our hazard analysis using the 26 selected genes. Among these, only WFDC2, E2F 1, BRCA1, KLK6,
SCGB2A1 and SLPI expression levels showed a significant association to patient survival. Patients with altered WFDC2
and E2F 1 gene expression have respectively a 0.272 and 0.287 times lower risk of death compared to those with no
such alterations. In contrast, patients with altered BRCA1, KLK6, SCGB2A1 and SLPI expression have respectively 2.42,
1.91, 2.48 and 2.62 times higher rates of likelihood of death than those with no alteration in expression in these genes.
A Venn diagram of the significant genes summarises the relationships between altered gene expression and risk of
death identified using different methodologies and is shown in figure 3. From univariate, multivariate analysis and Cox
PH regression analysis on combined data, we found that 8 genes among the 26 studied showed significant association
with risk of death; these were KLK6, E2F1, WFDC2, BRCA1, SLPI, SCGB2A1, CD36 and MEF2C. Gene expression of
CD36 was significant in both univariate and multivariate analysis, that of E2F 1 in multivariate and combined hazard
models, and SCGB2A1 expression in both univariate and combined hazard model. Notably, KLK6 gene expression was
found significant in all of the three types of models. One gene, MEF2C, was significant only in univariate analysis and
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expression of three genes (WFDC2, BRCA1, SLPI) were significant in combined hazard model only. The latter suggest
that knowledge of these gene expression levels does not add to information from the clinical data.

WFDC2 L o
BRCA1 ' O Univariate

e ! O Combined
O Multivariate

Univariate | Combined
! | SCGB2A1 &

1

MEF2C

FIGURE 3 Venndiagram of significant genes found in univariate, multivariate and combined hazad model analysis

3.4 | Pathway and functional correlation analysis of the significant genes

We observed that twenty significant pathways including microRNAs in cancer, bladder cancer, non-small cell lung cancer,
and pancreatic cancer are associated with the significantly regulated genes for Ovarian Cancer. Genes associated with

these pathways and corresponding p-values are presented in the table (see Table 5).

We also performed the biological process ontology enrichment analysis (see table 6) of these identified significant
genes using the Enrichr software tool. We found 18 biological pathways associated with these significant genes as

shown in Table 6. We have investigated protein protein interaction network generated using STRING Szklarczyk et al.

FIGURE 4 PPl network of 26 selected genes of OC



12 HOSSAIN AND ISLAM ET AL.

TABLE 5 Pathway associated with the selected 8 significantly associated genes with the Ovarian Cancer. Twenty
two KEGG pathways were found using Enrichr for these genes. Genes associated with these pathways and
corresponding Adjusted p-values are presented in this table.

Adjusted

KEGG ID Pathways Name P-Value

Genes

E2F1, KRAS, MSH2, ERBB2, TP53, RXRG,
BRCA2, PIK3CA, CTNNB1, DVL1
hsa05223 Non-small cell lung cancer ~ 2.30E-07 E2F1, KRAS, ERBB2, TP53, RXRG, PIK3CA

hsa05200 Pathways in cancer 1.75E-07

hsa05212 Pancreatic cancer 4.91E-07 E2F1, KRAS, ERBB2, TP53, BRCA2, PIK3CA
E2F1, KRAS, ERBB2, TP53, PIK3CA,

hsa05215 Prostate cancer 2.25E-06 CTNNB1

hsa05219 Bladder cancer 1.49E-04 E2F1, KRAS, ERBB2, TP53

hsa05166 HTLV-linfection 3.87E-04 E2F1, KRAS, TP53, PIK3CA, CTNNB1, DVL1

hsa05161 Hepatitis B 4.53E-04 E2F1, KRAS, TP53, PIK3CA, TLR4

hsa05214 Glioma 5.86E-04 E2F1, KRAS, TP53, PIK3CA

hsa05206 MicroRNAs in cancer 6.34E-04 E2F1, KRAS, ERBB2, EZH2, TP53, BRCA1

hsa05218 Melanoma 7.59E-04 E2F1, KRAS, TP53, PIK3CA

hsa05220 Chronic myeloid leukemia 7.91E-04 E2F1, KRAS, TP53, PIK3CA
hsa04921 Oxytocin signaling pathway  1.10E-03 MEF2C;PIK3CA;KRAS
hsa05222 Small cell lung cancer 1.28E-03 E2F1, TP53, RXRG, PIK3CA
hsa04022 cGMP-PKG signaling pathway 1.29E-03 MEF2C;MEF2B;PIK3CA
Transcriptional misregulation

hsa05202 . 1.60E-03 MEF2C;TP53;RXRG
in cancer

hsa03460 Fanconi anemia pathway 2.15E-03 BRCA1;BRCA2

hsa03320 PPAR signaling pathway 3.61E-03 CD36;RXRG
Adipocytokine signaling

hsa04920 pathway 3.72E-03 CD36;RXRG

hsa04010 MAPK signaling pathway 4.29E-03 MEF2C;KRAS;TP53

hsa04151 PI3K-Akt signaling pathway ~ 1.07E-02 KRAS, TP53, PIK3CA, TLR4, BRCA1
hsa04110 Cell cycle 1.12E-02 E2F1;TP53

hsa04152 AMPK signaling pathway 1.12E-02 PIK3CA;CD36

(2016), a web-based visualization software resource. Most of the key genes are connected with each other through the

PPI network. However some genes are not connected with the main network.

4 | DISCUSSION

We used univariate, multivariate Cox PH ratio analysis using mMRNA expression data, estimating the survival curve using
product limit procedure and determining whether there is any statistically significant difference between the altered
and un-altered groups using log rank test for each gene. This identified four significant genes (CD36, KLK6, MEFC2 and
SCGB2A1) in univariate, three (KLK6, CD36 and E2F1) in multivariate and six genes(WFDC2, E2F1, BRCA1, KLK6,
SCGB2A1 and SLPI) in combined analysis.

KLK6 gene was found significant in all three anlaysis. It is a member of kallikrein-related peptidase family and found to
be frequently dysregulated in OC and responsible for modulation of tumor growth, migration, invasion, and resistance to
chemotherapy (Ahmed et al. (2016)). Previously KLK6 was shown to be associated with aggressiveness of ovarian cancer
(Seiz et al. (2012); Ahmed et al. (2016)). Members of kallikrein-related peptidase family were found to be significant
biomarker in prostate, breast, ovary, and testis cancer (Diamandis and Yousef (2002)). Angiogenesis, regulation of cell
proliferation, regulation of cell cycle process are all significantly associated with OC (Lu and Lu (2017)). KLKé is involved
in regulation of cell differentiation, tissue regeneration and hormone metabolic processes (UniProtKB) and thus is a

promising candidate OC biomarker.
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TABLE 6 Gene Ontolgy terms with underlying Biological pathways associated with 8 significant genes in context of
the Ovarian Cancer along. Eighteen Gene Ontology terms along with biological pathways,found significantly associated
with these significant genes with adjusted p-values shown in this table.

GO Term Pathways Adjusted P- Genes
value
positive regulation of macromolecule MEF2C;HPN;E2F1;KRAS;C
i 4 37E-07
60:001060 metabolic process 63780 D36;BRCAL;TLR4;TP53
GO:0043406 po§|t}ve regulation of MAP kinase 8.97E.05 MEF2C, KRAS, ERBB2,
activity EZH2
GO:000B63) | Mrinsic apoptotic signaling pathway o e oo |vioy aF1.8RCATTPS3
in response to DNA damage
DNAd ignal
GO:0006978 A i 333603 | BRCALTPS3

transduction by p53 class mediator
G0:0097193 intrinsic apoptotic signaling pathway |5.09E-03 E2F1;BRCAL;TPS3

positive regulation of biosynthetic

G0:0009891 6.08E-03  CD36;TLR4
process

(0:1904645 response to amyloid-heta 6.59E-03 CD36;TLRA

GO:0002755 I\{IyDB?B-dependent toll-like receptor 773603 CD36,TLRA
signaling pathway

G0:0072332 intrinsic apoptotic signaling pathway 124602 MEF2C:CLON3

by pS3 class mediator
G0:0006310 DNA recombination 1.77€-02 MEF2C;,CTNNB1; BRCA1
positive regulation of sequence-
G0:0051091 specific DNA binding transcription 1.89E-02 BRCA1;BRCA2
factor activity
G0:0060070 canonical Wnt signaling pathway 2.56E-02 E2F1;CTNNB1;TP53
G0:0000165 MAPK cascade 3.23E-02 ERBB2;CD36;EZH2
positive regulation of cellular

G0:0031325 . 0.04 DVLI1;E2F1;TP53
metabolic process

Goooo716y  |ramsmembrane receptor protein oy o) | gpeng rps3
tyrosine kinase signaling pathway

Goomgo1y  "eatoovte growthfactorreceptor 0 )y EracERBB2,CTNNEL
signaling pathway

G0:0042982 amyloid precursor protein metabolic A68E0) BRCAL

process

(G0:0034142 toll-like receptor 4 signaling pathway ~ 4.94E-02 MEF2C

CD36is clearly implicated not only in OC, but in development of other cancers (Jia et al. (2018)). From KEGG pathway
analysis, this gene is found actively involved in Adipocytokine signaling pathway, PPAR signalling pathway, and AMPK
signaling pathways. In other studies it found to be a significant gene affecting survival of patient of ovarian cancer
(Ladanyi et al. (2018); Cuello et al. (2018)).

SCGB2A1 (Secretoglobin Family 2A Member 1) is a top differentially expressed gene in all grades of OC (Bellone et al.
(2013); Fischer et al. (2014)). In addition this gene has been significantly associated with breast cancer (Zafrakas et al.
(2006)) and Hypotrichosis (Tanahashi et al. (2014)).

E2F is a family of transcription factors that is recognized to regulate the expression of genes essential for a wide
range of cellular functions, including cell cycle progression, DNA repair, DNA replication, differentiation, proliferation,
and apoptosis. E2F1 is the most classic member of the E2F family. This gene exhibits a complex role in tumor devel-
opment regulation. It was shown that E2F 1 is associated with ovarian carcinoma (Zhan et al. (2016)) and a promising

candidate for drug target in ovarian carcinoma. From the KEGG pathway analysis, it was found that this gene is actively
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involved in non-small cell lung cancer, Chronic myeloid leukemia, Cell cycle pathways. E2F1 have MicroRNAs (miRNAs)
binding site which is illustrated to have significant association with cancer (Katz et al. (2015); Zhao et al. (2013)). Muta-
tions in BRCA1 and BRCA2 is experimentally implicated in OC Sowter and Ashworth (2005). The PI3BK/AKT/mTOR
pathway is activated in approximately 70% of ovarian cancer cases (Gasparri et al. (2017)). From KEGG pathway analysis,
BRCA1 was found to be involved in PISBK/AKT/mTOR pathway.

Previous studies have found that the MEF2C gene expression is reduced in most patients with stage Il serous
ovarian cance (Kim et al. (2010)). MEF2C is a transcription factor involved signalling pathways associated with OC
(Estrella et al. (2014)) but is also implicated in mental retardation, autosomal Dominant 20 and arrhythmogenic right
ventricular dysplasia diseases. Among its related pathways are NFAT and Cardiac Hypertrophy and Organelle biogenesis
and maintenance (GeneCards). Gene Ontology (GO) annotations related to this gene include DNA binding transcription
factor activity and protein heterodimerization activity (GeneCards). From KEGG pathways, we found that this gene
is actively involved in Oxytocin signaling pathway inhibition of which decreases the risk of ovarian cancer in SKOV3
cells (Ji et al. (2018)), cGMP-PKG signaling pathway, Transcriptional misregulation in cancer, and MAPK signaling
pathways. Previously, it was shown that the cyclic GMP (cGMP)/protein kinase G type-I (PKG-1) signaling pathway plays
an important role in preventing spontaneous apoptosis as well as promoting cell proliferation in some types of cancer
cells, including OC (Wong et al. (2012)).

5 | CONCLUSIONS

In this study, survival analysis of 577 OC patients revealed that out of 26 genes chosen for their previously idedntified
involvment in OC, altered transcript levels of eight of these predicted reduced OC survival. Using product limit or
Kaplan-Meier analyses, we found a significant difference in survival time between altered and non-altered genes. In
cases of CD36, E2F1, KLK6, SCGB2A1 and MEF2C genes, patients with these altered expression of these five genes had
significantly lower survival time than patients with non-alteration of these four genes. When taking consideration of
mutual effect of all selected 26 genes in multivariate analysis, CD36, E2F 1 and KLKé6 exhibited significant influence
on survival of OC, suggesting that they may explain any survival alteration predicted by SCGB2A1 and MEF2c levels.
KLK6 was notable for its high statistical significance in the Kaplan-Meier survival analysis, making this gene of particular
interest, at least in this OC patient cohort. When we extended our analysis to evaluate which clinical factors and genes
play dominant roles in determining survival time in OC patient, and considering interaction between clinical variables
and genes, six genes including KLK6, E2F1, SCGB2A1, WFDC2, BRCA1 and SLP1 were found to be the genes having
most influence on survival, i.e., their influence was independent of clinical features so would be useful to use in patient
survival prediction. Again, KLK6 seems the most promising candidate for further investigation since it is significant in all
three types of analysis we performed. It may be a candidate for therapeutic drug discovery itself or it may point the way
to a crucial cell pathway that influences patient survival

Among the clinical variables, patient age, tumour site and cancer stage status are associated with significantly more risk
of death withing 5 years in OC. In addition, we found that patients with right site tumour in ovary had more risk of death.

Our approach can be used in case of other types of cancers to identify key genetic and clinical factors in patient survival.
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Variables B HR z p
ASIAN -7.25E-01 4.84E-01 -0.63 0.53125
BLACK OR AFRICAN AMERICAN -2.21E-01 8.02E-01 -0.2 0.84011
NATIVE HAWAIIAN OR OTHER PACIFIC ISLANDER 8.92E-01 2.44E+00 0.61 0.54272
others -8.64E-01 4.21E-01 -0.73 0.46421
WHITE -1.01E+00 3.63E-01 -0.97 0.33167
age 1.83E-02 1.02E+00 2.39 0.01683
Peritoneum ovary -1.50E+01 3.12E-07 -0.01 0.99554
G2 -1.12E+00 3.25E-01 -1.68 0.09386
G3 -7.03E-01 4.95E-01 -1.13 0.26008
G4 -1.53E+01 2.17E-07 -0.01 0.99532
GB -1.66E+01 6.47E-08 -0.01 0.99491
GX -8.81E-01 4.14E-01 -0.99 0.32328
tumour_site Left -1.51E-01 8.60E-01 -0.62 0.53261
tumour_site Right 8.22E-01 2.27E+00 3.61 0.00031
Stage IB 3.39E+00 2.95E+01 2.29 0.02185
Stage IC 1.98E+00 7.25E+00 1.49 0.1368
Stage IIA 1.81E+00 6.11E+00 1.19 0.23549
Stage IIB 1.13E+00 3.09E+00 0.75 0.4549
Stage IIC 7.81E-01 2.18E+00 0.55 0.58269
Stage IIIA 1.58E+00 4.88E+00 1.03 0.30114
Stage IIIB 1.21E+00 3.36E+00 0.87 0.38526
Stage IIIC 9.13E-01 2.49E+00 0.69 0.49031
Stage IV 1.22E+00 3.37E+00 0.9 0.36799
BRCAL(ATtered) 8.86E-01 2.42E+00 1.99 0.04659
BRCA2 (Altered) -1.83E-01 8.33E-01 -0.47 0.63914
BSCL2 (ATtered) 1.89E-01 1.21E+00 0.65 0.51884
cD36((Altered)) 4.12E-01 1.51E+00 1.41 0.15774
CLDN3(Altered) -5.17E-01 5.96E-01 -1.18 0.23818
cP(Altered) -3.04E-01 7.38E-01 -0.71 0.48067
CTNNB1(Altered) -3.29E-01 7.20E-01 -0.96 0.33485
DVL1(Altered) 2.06E-01 1.23E+00 0.87 0.38563
E2F1(ATltered) -1.25E+00 2.87E-01 -2.54 0.01109
ERBB2 (Altered) -4.41E-02 9.57E-01 -0.18 0.86101
EzZH2 (Altered) 3.93E-01 1.48E+00 1.22 0.22244
HPN(ATtered) -5.06E-01 6.03E-01 -1.29 0.19836
KLK6 (Altered) 6.49E-01 1.91E+00 2 0.04588
KRAS (Altered) 2.66E-01 1.31E+00 1.38 0.16669
MEF2B(Altered) 1.51E-01 1.16E+00 0.5 0.61938
MEF2C(Altered) 6.50E-01 1.92E+00 1.78 0.07519
MSH2 (Altered) 2.62E-02 1.03E+00 0.08 0.93797
Mucle (Altered) -4.55E-01 6.35E-01 -1.28 0.20122
PIK3CA(Altered) 2.16E-02 1.02E+00 0.09 0.92474
PTPRE(ATtered) 2.01E-01 1.22E+00 0.57 0.56566
RXRG(Altered) 4.36E-02 1.04E+00 0.11 0.91398
SCGB2A1(Altered) 9.09E-01 2.48E+00 2.42 0.01565
SLPI(Altered) 9.63E-01 2.62E+00 2.11 0.03523
TLR4(Altered) -4.11E-02 9.60E-01 -0.08 0.93761
TP53(Altered) 8.94E-01 2.44E+00 1.15 0.24966
WFDC2 (Altered) -1.30E+00 2.72E-01 -2.17 0.02994
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positive regulation of macromolecule MEF2C;HPN;E2F1;KRAS;C
G0:0010604 6.37E-07
- metabolic process D36;BRCA1;TLR4;TP53

intrinsic apoptotic signaling pathway 9.44E

G0:0008630 -05 MSH2;E2F1;BRCALITPS3

in response to DNA damage

G0:0097193 intrinsic apoptotic signaling pathway |5.09E-03 E2F1;BRCAL;TP53

(G0:1904645 response to amyloid-beta 6.59E-03 CD36,;TLR4

GO:007233p | Mtrinsic apoptotic signaling pathway |, 5 e o) |yieracicipng
by p53 class mediator

positive regulation of sequence-
(G0:0051091 specific DNA binding transcription BRCA1;BRCA2
factor activi

G0:0000165 MAPK cascade 3.23E-02 ERBB2;CD36;EZH2
GO:0007169 | IranSmembrane receptorprotein | o)p o) |ppeag ps3
rosine kinase signaling pathwa
amyloid precursor protein metabolic
G0:0042982 4.68E-02 BRCA1




KEGG ID

hsa05200
hsa05223

hsa05212

hsa05215
hsa05219

hsa05166
hsa05161
hsa05214
hsa05206
hsa05218
hsa05220
hsa04921
hsa05222
hsa04022

hsa05202

hsa03460
hsa03320

hsa04920
hsa04010
hsa04151
hsa04110
hsa04152

Pathways Name

Pathways in cancer

Non-small cell lung cancer
Pancreatic cancer

Prostate cancer
Bladder cancer

HTLV-I infection

Hepatitis B

Glioma

MicroRNAs in cancer
Melanoma

Chronic myeloid leukemia
Oxytocin signaling pathway
Small cell lung cancer

Adjusted
P-Value

1.75E-07
2.30E-07

4.91E-07

2.25E-06
1.49E-04

3.87E-04
4.53E-04
5.86E-04
6.34E-04
7.59E-04
7.91E-04
1.10E-03
1.28E-03

cGMP-PKG signaling pathway 1.29E-03

Transcriptional misregulation

in cancer

Fanconi anemia pathway
PPAR signaling pathway
Adipocytokine signaling
pathway

MAPK signaling pathway
PI3K-Akt signaling pathway
Cell cycle

AMPK signaling pathway

1.60E-03

2.15E-03
3.61E-03

3.72E-03
4.29E-03
1.07E-02
1.12E-02
1.12E-02

Genes

E2F1, KRAS, MSH2, ERBB2, TP53, RXRG,
BRCA2, PIK3CA, CTNNB1, DVL1
E2F1, KRAS, ERBB2, TP53, RXRG, PIK3CA

E2F1, KRAS, ERBB2, TP53, BRCA2, PIK3CA
E2F1, KRAS, ERBB2, TP53, PIK3CA,
CTNNB1

E2F1, KRAS, ERBB2, TP53

E2F1, KRAS, TP53, PIK3CA, CTNNB1, DVL1
E2F1, KRAS, TP53, PIK3CA, TLR4

E2F1, KRAS, TP53, PIK3CA

E2F1, KRAS, ERBB2, EZH2, TP53, BRCA1l
E2F1, KRAS, TP53, PIK3CA

E2F1, KRAS, TP53, PIK3CA
MEF2C;PIK3CA;KRAS

E2F1, TP53, RXRG, PIK3CA
MEF2C;MEF2B;PIK3CA

MEF2C;TP53;RXRG

BRCA1;BRCA2
CD36;RXRG

CD36;RXRG

MEF2C;KRAS;TP53

KRAS, TP53, PIK3CA, TLR4, BRCA1
E2F1;TP53

PIK3CA;CD36



Characteristics Category freq %
AMERICAN INDIAN OR ALASEA NATIVE 3 0.519931
ASIAN 20 3.466205
Race BLACK OR AFRICAN AMERICAN 34 5.892548
NATIVE HAWAIIAN OR OTHER PACIFIC ISLAI 1 0.17331
Others 27 4.679376
WHITE 492 85.26863
Bilateral 396 72.52747
Tumour_site Left 80 14.65201
Right F0 12.82051
Stage 1A 2 0.34904
Stage |IB 3 0.52356
Stage IC 11 1.919721
Cancer stage Stage llA 4 0.69808
Stage 1B 5 0.8726
Stage IIC 21 3.664921
Stage Il1A 8 1.396161
Stage |IIB 24 A 188482
Stage lIIC 407 71.02967
Stage IV 88 15.35777
Omentum 3 0519931
Anatomic_site Owvary 572 9913345
Peritoneum ovary 2  0.34662
G1 6 1.045296
G2 69 12.02091
Histologic_grade G3 486 B84.66899
G4 1 0.174216
GB 2 0.348432
GX 10 1.74216
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Gene Univariate Multivariate
B HR p B HR p

BRCA1 0.254017 1.424779 0.394239] 0.54632 1.72689 0.206
BRCAZ2 -0.2831 0.753444 0.433864| -0.36161 0.69655 0.346
BSCL2 0.435628 1.545933 0.088898 0.2743 1.31561 0.319
CD36 0.51016 1.665558 0.04049%96] 0.58938 1.80288 0.03
CLDN3 0.072304 1.074982 0.816938] -0.25905 0.77179 0.511
CcP 0.149934 1.1617538 0.617368] -0.15775 0.85407 0.681
CTNNBE1 -0.2299 0.79461 0.441799| -0.24482 (0.78285 0.434
DVL1 0.033112 1.0336660 0.877705] 0.10329 1.10882 0.652
E2F1 -0.71242 0.490457 0.086237] -0.89081 0.41032 0.043
ERBB2 -0.02724 0.973131 0.895964| -0.15199 (0.85899 0.52
EZH2 0.296206 1.344748 0.27177] 0.24816 1.28167 0.421
HPN -0.24274 0.784473 0.478554| -0.31907 0.72682 0.368
KLKG 0.65268 1.920682 0.007444| 0.68866 1.99105 0.027
KRAS 0.242407 1.274313 0.154351] 0.23223 1.26141 0.19
MEF2B 0.234851 1.26472 0.370043] 0.25443 1.28973 0.36
MEF2C 0.647634 1.911014 0.037468| 0.57823 1.78287 0.081
MSH2 0.202799 1.224826 0.438784] 0.00685 1.00687 0.982
MUC16 0.210687 1.234526 0.385472| -0.31922 0.72672 0.362
PIK3CA -0.02874 0.971669 0.882595| 0.00112 1.00112 0.996
PTPRE 0.217945 1.374301 0.269824 0.1799 1.19709 0.573
RXRG 0.108327 1.114413 0.751939 0.0117 1.01177 0.974
SCGB2A1 0.556234 1.744092 0.046984| 0.60952 1.83954 0.09
SLPI 0.348102 1.416377 0.246372] 0.64783 1.9114 0.13
TLR4 -0.26754 0.765261 0.597417] -0.24069 0.78608 0.639
TP53 0.690348 1.994409 0.33299] 0.75636 2.1305 0.3
WFDC2 -0.23278 0.792329 0.610304] -1.03786 0.35421 0.067
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