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Ovarian cancer (OC) is a common cause of death from can-
cer among women worldwide, so there is a pressing need
to identify factors influencingmortality. MuchOC patient
clinical data is now publically accessible (including patient
age, cancer site stage and subtype), as are large datasets of
OC gene transcription profiles. These have enabled studies
correlating OC patient survival with clinical variables and
with gene expression but it is notwell understood how these
two aspects interact to influence mortality. To study this
we integrated clinical and tissue transcriptome data from
the same patients available from the Broad Institute Cancer
Genome Atlas (TCGA) portal. We investigated OCmRNA
expression levels (relative to normal patient tissue) of 26
genes already strongly implicated in OC, assessed how their
expression in OC tissue predicts patient survival then em-
ployed Cox Proportional Hazard regressionmodels to anal-
yse both clinical factors and transcriptomic information to
determine relative risk of death associated with each factor.
Multivariate analysis of combined data (clinical and gene
mRNA expression) found age, ovary tumour site and can-
cer stage IB significantly correlated with patient survival.

Abbreviations:OC, Ovarian Cancer; TCGA, The Broad Institute Cancer Genome Atlas.
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Univariate analysis also confirmed significant differences
in patient survival time when altered transcription levels
of KLK6, CD36,MEF2C and SCGB2A1were evident, while
multivariate analysis that considered the 26 genes simulta-
neously revealed a significant relationship of mortality with
KLK6, CD36 and E2F1 genes. However, analysis that consid-
ered all 26 genes with clinical variables together identified
WFDC2, E2F1, BRCA1, KLK6, SCGB2A1 and SLPI genes
as independently related tomortality in OC. This indicated
that the latter genes affectOCpatient survival, i.e., provided
mechanistic and predictive information in addition to that
of the clinical traits and provide strong evidence that these
genes are critical markers of processes that underlie OC
progression andmortality.
K E YWORD S
Ovarian cancer, Clinical factors, Gene expression, Survival analysis,
RNA seq, molecular pathways

1 | INTRODUCTION
Ovarian carcinoma (OC) accounts for the great majority of cases of cancer affecting the ovaries. It is the fifth most
common cause of cancer deaths in women with an estimated 239,000 new cases and 152,000 deaths worldwide
annually (Ferlay et al. (2014)) and remains the leading cause of death from gynecologic malignancy (Seigel et al. (2014);
Gov and Arga (2017)) with five year mortality rate in the United States of 35% (Gov and Arga (2017)) in 14,000 annual
deaths (acs (2018)). Current standard treatmentmainly comprises platinum-based chemotherapeutics, however the
most prevalent OC type, high grade serous carcinoma (HGSC), often shows high chemotherapy resistance as well as
greatly altered genome and transcriptome. High throughput gene and gene expression data from patient tissue is
emerging as an important research tool to identify key intrinsic factors that affect cancer behaviour with numerous
genetic mutations shown to be associated withOC development and progression. Such genes are of wide interest for
their potential prognostic power and as possible drug targets.

While tumour-associated coding genemutations can affect both gene product function and levels, it is their gene
transcript levels that give more direct information regarding levels of their respective protein gene products. The
latter is important in determining invasiveness, metastasis establishment, immune evasion and growth atmetastatic
sites, as well as indirect pathological effects (via secreted factors) on other tissues that impair health. Clearly, OC
gene expression patterns will influence patient fate and their quantificationmay also yield clues to important cellular
pathways underlying disease processes. Tumour tissue transcript levels determined by RNA sequencing (RNAseq ) are
thus becoming commonly used to study tumour clinical features (Moni and Liò (2014)).

Earlier work onOC has focused on influence of clinical features of the patient on outcomes (Zheng et al. (2009);
Brown and Frumovitz (2014); Moni et al. (2014); Mascarenhas et al. (2006); Zhang (2016); Moni and Lio (2014)), which
have identified significant factors such as age at diagnosis, age at menopause, disease stage and histological grade,
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tumour size, type of therapy received and family history of OC. In addition, new transcriptomic data from tumour tissue
has identified a number of potential gene expressionmarkers for patient progression (Zhang et al. (2013); Lynch et al.
(2009); Moni and Lio’ (2017); Friedenson (2005); Tecza et al. (2015); Moni and Lio (2015)). However, generally less
studied until recently (Ahmed and Begum (2018)) is how such tumour transcript levels may interact with clinical factors
to affect cancer outcomes, which is a crucial consideration in determining how to use and interpret the transcript data.
Publicly available tumour transcript datasets are increasing in number along with clinical datasets, and this makes
feasible large scale investigations of interaction between transcript levels and clinical trait. In particular, studies on
combined datasets (containing both types of data from the same patient) can be particularly powerful tools for revealing
important features of gene function in the tumour context, and informing the clinical use of such data. We thus employed
the rich database available fromTheCancerGenomeAtlas (TCGA) project, a collaboration between theNational Cancer
Institute (NCI) and National Human Genome Research Institute (NHGRI), and supported by the Broad Institute in order
tomake available the survival, clinical, and gene expression data to analyse these either separately or in combination,
for the purpose of clarifying which type of mutual influences are important to OC patients survival as well as which
factors are potent independent predictors. We selected 26 genes of interest previously validated as important in OC or
OCmodels.

The influence of both clinical factors and diseasemarker gene expression on ovarian cancer patient survival can now
be determined using standard Cox Proportional Hazard (PH) (Cox (1992)) models for univariate analysis, multivariate
analysis (Gabriel and Glavin (1978)) and the penalized Cox PH model (Heinze and Schemper (2001)) for combined
analysis (Ahmed and Begum (2018)). Important clinical features with associations to the disease can be identified
and selected by consulting the OC literature for use in these models. In this study, Cox PH regression modelling is
employed for the analysis or post-diagnosis survival time. Clinical variables that were selected for analysis included age,
ethnicity, anatomical site of cancer, histological grade of cancer, primary tumour site and neoplasm status with tumour
were considered from the literature of OC.We focused on research work that investigated associations between gene
expression, clinical factors and survival in patients with OC.We performed univariate and multivariate analysis for
selected significant 26 genes selection through a process of literature search and evaluation, and we also ran combined
analysis for the 26 genes and clinical factors onOC patient survival. We gathered survival, clinical, and gene expression
data from TCGA separately and combined them in order to assess the joint role of genetic and clinical factors.
Our analysis followed themethodology of Xu andMoni (2015) (Xu et al. (2015)) who used Cox PH regressionmodelling
for the analysis of post-diagnosis survival time. We performed an analysis to identify most significant genes among
selected 26 genes aswell as clinical variables, affecting patients survival inOC. To do so, we used product-limit estimator
to estimate survival function for each gene separately, then used log rank test to detectwhich genes differs in expression
levels significantly between altered and not altered group. Finally we performed univariate Cox hazard regression
analysis to determine each gene’s likelihood of contribution to deaths and twomultivariate Cox PH regression analyses,
the first taking consideration of 26 genes simultaneously and with the second considering all 26 genes and clinical
variables to determinemost significant genes and clinical variables in context of likelihood of risk of death.

2 | METHODS & MATERIALS
| Data
We collected the RNAseq data for this study from TCGA genome data analysis centre (http://gdac.broadinstitute.org/)
which is an interactive data system for researchers to search, upload, download, and analyse cancer genomic data
(Tomczak et al. (2015)). Since our goal was to explore a particular point of interest, survival analysis of OC on clinical
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and genetic factors, we retrieved the anonymized clinical data and RNAseq data for OC (Ovarian Serous Cystadeno
Carcinoma TCGA, Provisional) from the cBioPortal (Cerami et al. (2012)).
In Clinical dataset there are 577 cases with 87 features. Cases that had RNAseq gene expression data included 535
cases with 5689 genes. We employed six clinical factors (ethnicity, anatomical site of cancer, histological grade of
cancer, primary tumour site, and neoplasm status with tumour) along with 26 genes commonly cited as significant
factors in the OC literature (Table 1) (Adib et al. (2004); McLemore et al. (2009); SJ. (2017); tar (2014)). Using these

TABLE 1 Ovarian cancer associated significant 26 genes and their sources.
GeneName Resource Reference
BRCA1, BRCA2, BSCL2,
CTNNB1, ERBB2, MSH2,
MUC16, PIK3CA, KRAS,
TP53

http://www.cancer-genetics.org/X1003.htm SJ. (2017)

KRAS, PIK3CA, and TP53 Mutation profile and clinical outcome of mixed endometrioid-serous endometrial
carcinomas are different from that of pure endometrioid or serous carcinomas

Coenegrachts
et al.
(2015)

KLK6, CP, SLPI , EZH2, HPN,
SCGB2A1

Predicting biomarkers for ovarian cancer using gene-expressionmicroarrays Adib et al.
(2004)

TLR4 The inflammatorymicroenvironment in epithelial ovarian cancer: a role for TLR4
andMyD88 and related proteins

Li et al.
(2016)

WFDC2 HE4 (WFDC2) gene overexpression promotes ovarian tumor growth Moore
et al.
(2014)

RXRG, DVL1, MEF2B,
MEF2C, BSCL2, CD36,
RXRG, E2F1 and TLR4

The impact on high-grade serous ovarian cancer of obesity and lipid metabolism-
related gene expression patterns: the underestimated driving force affecting
prognosis

Cuello
et al.
(2018)

data we investigated a single outcome variable, namely OC-specific survival. 48 OC patient records that did not include
clinical information were excluded from this analysis. Wematched patient ID in both clinical and RNAseq dataset and
identified 529 patients with data available for both. Among the clinical variables six clinical variables given above were
considered (Moorman et al. (2009); McLemore et al. (2009)). Tumour histological subtype and age at initial diagnosis
were collected from pathology reporting. OC stage was recorded according to American Joint Committee on Cancer
(AJCC) staging classification (acs (2017)). Patient survival data was taken from overall number of months of patient
survival but converted to days of survival. Normal and tumour samples were identified using the TCGA barcode; two
digits at position 14-15 of the barcode denote the sample type. Tumour type spans from01 to 09, normal type from10 to
19 and control samples from 20 to 29. Fold change (FC) was used as a common approach in differential gene expression
analysis between two conditions (?). For example, if gene expression read counts (determined by RNAseq) for a patient
was 60 while that of a normal patient was 30, patient gene FCwas 2. FC is most suitable when the gene expression
distribution is symmetric. However, in RNAseq analyses, expression levels are modelled by the discrete counts of reads
mapped to a known gene in a reference genome. Poisson andNegative binomial distribution assumptions are taken for
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reading counts. When the abundance rate of a particular gene expression level is very low, read count distributions
modelled by the Poisson or Negative binomial are skewed to the right. Thus, as using FC as ameasure of differential
expression may not be appropriate in such cases we transformed the gene expression value using a standardizing
transformation and calculated z-scores for each expression value. For the expression fromRNAseq experiments, the
standard rule is to compute the relative expression of an individual gene in tumour samples using gene expression
distribution in a reference population. A reference population was considered either all diploid tumours for the gene
in question or, when available, normal adjacent tissue. The resulted value (z-score) indicates the number of standard
deviations away from themean expression in the reference population. Here, we considered genes showing z > ±1 : 96
to be differentially expressed. We computed z-scores for RNAseq data using following formula:

z =
Expression for gene X in tumor A- Mean expression for gene X in normal

Standard deviation of expression for gene X in reference population

We thus used the z-score values to define samples with "altered" and "normal" (unaltered) expression of a gene. We
have assumed a sample to be altered if the z-score for that sample is equal to or higher than a specific threshold value
such as z=2, as noted. We therefore define altered versus normal as follows:

z ≥ 2 => al t er ed

z < 2 => normal

| Methods
Weperformed the following analysis related to survival of patients with OC. First we used product-limit estimator for
estimation of survival function, thenwe performed log rank test to determinewhether the survival functions of two
different groups (patientswith altered gene expression and patientswith unaltered gene expression) exhibit statistically
significant difference and after thenwe used Cox Proportional Hazards (Cox PH) regressionmodels to determine the
significance of genes, clinical factors on comparative risk of death and finally we performed functional analyses of our
most significant genes found from our analysis. We selected important clinical and demographic variables affecting
OC by literature review and similarly selected 26 genes having experimentally determined significance in context
of OC. The expression z-score for each gene was identified as being in "altered" or "normal" categories based on a
significance threshold value (z < 2) as noted in the Data section above. We performed Cox PH regression for every
gene individually known as univariate regression as well as multivariate analysis taking all 26 genes simultaneously and
finally multivariate regression on combined set of clinical and gene expression data. Survival analysis is a statistical
analysis for estimating expected duration of time until one ormore events happen, such as death in cancer and failure
in mechanical systems. Normally, survival analysis is carried in three steps: determining time to event, formulating
a censoring indicator for subject inclusion in the analysis, and the time to occurrence of event. Censoring in survival
analysis is usually done in twoways, right censoring and left censoring. Right censoring occurs when a subject leaves
the study before an event occurs, or the study ends before the event has occurred. Left censoring happens when the
event of interest has already occurred before enrollment. This is very rarely encountered. Right censoring is again of
two types. First one is Type I right censoring results from completely random dropout (e.g emigration) and/or end of
study with no event occurrence and the second one, Type II right censoring, occurs with end of study after fixed number
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of events amongst the subjects has occurred.
In survival analysis, one is interested in estimation of survival function of samples divided into subgroups or as whole.
There are two types of estimation of it, one is non parametric in which no prior assumption of distribution of survival
time is made and other is parametric estimation in which there are some assumption alongwith assuming predefined
distribution of survival time. As stated above, we used non parametric technique for estimation of survival function.
There are several such techniques, we used product-limit estimator. In short product-limit (PL) estimator of the survival
function is defined as follows:

S (̂t j ) =
j∏
i=1

(1 −
dj

n j
)

Here S (̂t j ) is estimated survival function at time t j , dj is the number of events occurred at t j , and n j is the number
of subjects available at t j . After estimating survival function, two or more groups can be compared using log-rank
test. For example, we used Log-rank test to detect themost significant genes in the case of patient’s survival time in
altered versus unaltered groups in context of gene expression. The null hypothesis is following: H0: Survival function for
patients with altered gene expression is not different from the patients with normal (unaltered) gene expression

HA : Survival functions are different for these two groups. Symbolically these can bewritten

H0 : Sal t er ed (t ) = Snot altered(t )

HA : Sal t er ed (t ) , Snot altered(t )

Survival analysis methods can also be extended to assess several risk factors simultaneously similar tomultiple linear
andmultiple logistic regression analysis. One of themost popular regression techniques for survival analysis is Cox PH
regression, which is used to relate one or several risk factors or exposures, considered simultaneously, to survival time.
In a Cox proportional hazards regression model, the measure of effect is the hazard rate, which is the risk of failure
(i.e., the risk or probability of suffering the event of interest), given that the participant has survived up to a specific
time. Using Cox PH regression, first we performed univariate survival analysis by selecting each gene separately, then
conducted amultivariate survival analysis taking all 26 genes simultaneously and finally fit a Cox PHmodel on all of
selected six clinical factors and 26 genes combined, modelling the hazards of having the event under investigation
(Ovarian Serous Cystadeno carcinoma, in this case), using an undetermined baseline hazard function and an exponential
form of a set of covariates. Mathematically we canwrite themodel as following:

h(t |Xi ) = h0(t )exp(βT Xi )

Whereas h(t |X ) is the hazard function conditioned on a subject i with covariate information given as the vector xi , h0(t )
is the baseline hazard function which is independent of covariate information, and represents vector of regression
coefficients to the covariates correspondingly. We have calculated the hazard ratio (HR) based on the estimated regres-
sion coefficients from the fitted Cox PHmodel to determine whether a specific covariate affects patient survival. The
hazard ratio for a covariate xr can be expressed by the following simple formula exp (βr ). Thus, the hazard ratio for any
covariate can be calculated by applying an exponential function to the corresponding (βr ) coefficient.
Pathways andgeneontology (GO) for thesegeneswereanalysedusingKEGGpathwaydatabase (ht t p : //www .genome .j p/k egg/pathway .html )



HOSSAIN AND ISLAM ET AL. 7

and enriched using (ht t p : //amp .pharm .mssm .edu/Enr i chr /enr i ch), a web based software tool.

3 | RESULTS AND DISCUSSION

6 clinical factors (including age) and mRNA expression data for 26 genes were employed in our analysis. All clinical
factors were categorical except age. Age distribution of patients is shown in Figure 1. Average age of the patients at the
time of their diagnoses was 59.7 years, with a range between 26 and 89 years old. The descriptive summary statistics of
these factors shown in Table 2. From Table 2, we observe that theOC stage variable has the highest number (10) of

Diagnosis Age

<=30 30 40 50 60 70 80 90 >90 NA
0

50

100

150

F IGURE 1 Distribution of Age at Onset of Diagnosis

TABLE 2 Descriptive Statistics of Clinical Predictors
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categories and 71.03% of all patients are of stage IIIC. The next largest group is stage IV with 15.36% cases. There are 8
categories for histology type with the highest percentage of patients (84.67%) fromwas G3, i.e., poorly differentiated,
while the second largest group (12.02%) of patients hadmoderately differentiated grade. Regarding ethnicity, most
patients (85.27%) are from the European-caucasian descent population, while African American is next largest group
with 5.89%. In the case of OC anatomical site, most (72.53%) women had bilateral cancers, while cancer patients with
left and right ovary are 14.65% and 12.82% respectively. Most women had cancer in the ovary itself (99.13%), the
remainingminor percentage of women had tumours located in omentum and/or peritoneum.

3.1 | Survival pattern for gene expression data

We have estimated survival function for altered and unaltered group for each of the 26 genes by applying product
limit (PL) estimator. We then compared estimated survival function for altered and unaltered group using log rank test.
Those genes for which there is statistically significant difference are shown below. The significant role for these genes
is indicated by their p-values in differential survival pattern when comparing their expression level in two categories
(altered and unaltered). Surprisingly p53 gene, which is known for its implication in cancer in general, has p-vlaue greater
than 0.05. From Figure 2, we can see that patients having altered expression of CD36,MEFC2, KLK6 and SCGB2A1

F IGURE 2 Survival pattern of altered and normal(non-altered) groups for CD36,MEF2C, KLK6, and SCGB2A1

genes are less likely to survive compared to the non-altered group. Note that, the red line in the graphs indicates normal
gene expression and the blue line indicates the altered gene expression group.
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3.2 | Modeling the hazard risk on the RNA-Seq data
One canmeasure the relative likelihood of risk of death in OC for each gene separately as well as for all genes simultane-
ously. Consequently one can determine which genes aremost significant in case of survival of patients in OC. For these
purposes, Cox PH regressionmodel is used. We considered both univariate (separately for every gene) andmultivariate
(incorporating rest of the genes) for Cox PHmodel on each of the 26 genes. Table 3 shows the estimated Coefficients
(β ), with corresponding hazard ratios (HR), and p-values from those analyses. We noted that the p-values for genes

TABLE 3 Summary of Univariate andMultivariate Cox Proportional HazardModel for mRNA Seq data.

CD36 and KLK6 showed that their expression profile have statistically significant association with OC patient survival
in both univariate andmultivariate analyses. In contrast, genes SCGB2A andMEF2C showed significant association
only in univariate analysis, while E2F1 showed significance only in multivariate analysis. Surprisingly, even though the
KRAS gene has previously been shown by experimentation to have a significant role in OC (Ratner et al. (2010)), we did
not find its significance in our analysis, both in univariate andmultivariate analysis.

3.3 | Modeling hazard on the combinedmodel containing both clinical and RNAseq data
Wehave performedmultivariate Cox PH regression analysis with both clinical and RNA-Seq data simultaneously. We
have presented estimated regression coefficients in Table 4 along with hazard ratios (HR), z-values and corresponding
p-values in our combined Cox PHmodel. Here, n= 497, number of events (deaths)= 178 after deleting 32 observations
due to missing data values. Table 4 shows the summary of the Cox Proportional Hazard Model result. We observe
from Table 4 that if the patient’s age increases one-year, likelihood of hazard increases 1.02 times. Notably, we found
no evidence that ethnicity, histologic grade and anatomical OC site have any statistically significant association with
hazard. Surprisingly, our analysis indicates that patients with a right side ovary tumour have a higher risk of death (2.27
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TABLE 4 Summary of the Cox Proportional HazardModel for combinedmRNA seq and Clinical data

Variables β HR z p

ASIAN -7.25E-01 4.84E-01 -0.63 0.53125
BLACK OR AFRICAN AMERICAN -2.21E-01 8.02E-01 -0.2 0.84011

NATIVE HAWAIIAN OR OTHER PACIFIC ISLANDER 8.92E-01 2.44E+00 0.61 0.54272
Others -8.64E-01 4.21E-01 -0.73 0.46421
WHITE -1.01E+00 3.63E-01 -0.97 0.33167
age 1.83E-02 1.02E+00 2.39 0.01683

Peritoneum ovary -1.50E+01 3.12E-07 -0.01 0.99554
G2 -1.12E+00 3.25E-01 -1.68 0.09386
G3 -7.03E-01 4.95E-01 -1.13 0.26008
G4 -1.53E+01 2.17E-07 -0.01 0.99532
GB -1.66E+01 6.47E-08 -0.01 0.99491
GX -8.81E-01 4.14E-01 -0.99 0.32328

tumour_site Left -1.51E-01 8.60E-01 -0.62 0.53261
tumour_site Right 8.22E-01 2.27E+00 3.61 0.00031

Stage IB 3.39E+00 2.95E+01 2.29 0.02185
Stage IC 1.98E+00 7.25E+00 1.49 0.1368
Stage IIA 1.81E+00 6.11E+00 1.19 0.23549
Stage IIB 1.13E+00 3.09E+00 0.75 0.4549
Stage IIC 7.81E-01 2.18E+00 0.55 0.58269
Stage IIIA 1.58E+00 4.88E+00 1.03 0.30114
Stage IIIB 1.21E+00 3.36E+00 0.87 0.38526
Stage IIIC 9.13E-01 2.49E+00 0.69 0.49031
Stage IV 1.22E+00 3.37E+00 0.9 0.36799

BRCA1(Altered) 8.86E-01 2.42E+00 1.99 0.04659
BRCA2(Altered) -1.83E-01 8.33E-01 -0.47 0.63914
BSCL2(Altered) 1.89E-01 1.21E+00 0.65 0.51884
CD36((Altered)) 4.12E-01 1.51E+00 1.41 0.15774
CLDN3(Altered) -5.17E-01 5.96E-01 -1.18 0.23818
CP(Altered) -3.04E-01 7.38E-01 -0.71 0.48067

CTNNB1(Altered) -3.29E-01 7.20E-01 -0.96 0.33485
DVL1(Altered) 2.06E-01 1.23E+00 0.87 0.38563
E2F1(Altered) -1.25E+00 2.87E-01 -2.54 0.01109
ERBB2(Altered) -4.41E-02 9.57E-01 -0.18 0.86101
EZH2(Altered) 3.93E-01 1.48E+00 1.22 0.22244
HPN(Altered) -5.06E-01 6.03E-01 -1.29 0.19836
KLK6(Altered) 6.49E-01 1.91E+00 2 0.04588
KRAS(Altered) 2.66E-01 1.31E+00 1.38 0.16669
MEF2B(Altered) 1.51E-01 1.16E+00 0.5 0.61938
MEF2C(Altered) 6.50E-01 1.92E+00 1.78 0.07519
MSH2(Altered) 2.62E-02 1.03E+00 0.08 0.93797
MUC16(Altered) -4.55E-01 6.35E-01 -1.28 0.20122
PIK3CA(Altered) 2.16E-02 1.02E+00 0.09 0.92474
PTPRE(Altered) 2.01E-01 1.22E+00 0.57 0.56566
RXRG(Altered) 4.36E-02 1.04E+00 0.11 0.91398

SCGB2A1(Altered) 9.09E-01 2.48E+00 2.42 0.01565
SLPI(Altered) 9.63E-01 2.62E+00 2.11 0.03523
TLR4(Altered) -4.11E-02 9.60E-01 -0.08 0.93761
TP53(Altered) 8.94E-01 2.44E+00 1.15 0.24966
WFDC2(Altered) -1.30E+00 2.72E-01 -2.17 0.02994

times) compared to patients with a bilateral tumour, but patients having left side and bilateral tumour exhibit same
likelihood of risk of death. Tumour stage is an important factor affecting risk of death inmany cancers, and consistent
with this, we found that patients with Stage IBOC are 29.5 timesmore likely to die compared to stage IA, although there
was no evidence that other OC stages exerted a significant influence on the likelihood of death compared to stage IA.
We then conducted our hazard analysis using the 26 selected genes. Among these, onlyWFDC2, E2F1, BRCA1, KLK6,
SCGB2A1 and SLPI expression levels showed a significant association to patient survival. Patients with alteredWFDC2
and E2F1 gene expression have respectively a 0.272 and 0.287 times lower risk of death compared to thosewith no
such alterations. In contrast, patients with altered BRCA1, KLK6, SCGB2A1 and SLPI expression have respectively 2.42,
1.91, 2.48 and 2.62 times higher rates of likelihood of death than those with no alteration in expression in these genes.
A Venn diagram of the significant genes summarises the relationships between altered gene expression and risk of
death identified using different methodologies and is shown in figure 3. From univariate, multivariate analysis and Cox
PH regression analysis on combined data, we found that 8 genes among the 26 studied showed significant association
with risk of death; thesewere KLK6, E2F1,WFDC2, BRCA1, SLPI, SCGB2A1, CD36 andMEF2C. Gene expression of
CD36was significant in both univariate andmultivariate analysis, that of E2F1 inmultivariate and combined hazard
models, and SCGB2A1 expression in both univariate and combined hazardmodel. Notably, KLK6 gene expression was
found significant in all of the three types of models. One gene,MEF2C, was significant only in univariate analysis and
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expression of three genes (WFDC2, BRCA1, SLPI) were significant in combined hazardmodel only. The latter suggest
that knowledge of these gene expression levels does not add to information from the clinical data.

F IGURE 3 Venn diagram of significant genes found in univariate, multivariate and combined hazadmodel analysis

3.4 | Pathway and functional correlation analysis of the significant genes

Weobserved that twenty significant pathways includingmicroRNAs in cancer, bladder cancer, non-small cell lung cancer,
and pancreatic cancer are associated with the significantly regulated genes for Ovarian Cancer. Genes associated with
these pathways and corresponding p-values are presented in the table (see Table 5 ).

We also performed the biological process ontology enrichment analysis (see table 6) of these identified significant
genes using the Enrichr software tool. We found 18 biological pathways associated with these significant genes as
shown in Table 6. We have investigated protein protein interaction network generated using STRING Szklarczyk et al.

F IGURE 4 PPI network of 26 selected genes of OC
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TABLE 5 Pathway associated with the selected 8 significantly associated genes with theOvarian Cancer. Twenty
two KEGG pathways were found using Enrichr for these genes. Genes associated with these pathways and
corresponding Adjusted p-values are presented in this table.

KEGG ID Pathways Name
Adjusted 
P-Value

Genes

hsa05200 Pathways in cancer 1.75E-07
E2F1, KRAS, MSH2, ERBB2, TP53, RXRG, 
BRCA2, PIK3CA, CTNNB1, DVL1

hsa05223 Non-small cell lung cancer 2.30E-07 E2F1, KRAS, ERBB2, TP53, RXRG, PIK3CA

hsa05212 Pancreatic cancer 4.91E-07 E2F1, KRAS, ERBB2, TP53, BRCA2, PIK3CA

hsa05215 Prostate cancer 2.25E-06
E2F1, KRAS, ERBB2, TP53, PIK3CA, 
CTNNB1

hsa05219 Bladder cancer 1.49E-04 E2F1, KRAS, ERBB2, TP53

hsa05166 HTLV-I infection 3.87E-04 E2F1, KRAS, TP53, PIK3CA, CTNNB1, DVL1
hsa05161 Hepatitis B 4.53E-04 E2F1, KRAS, TP53, PIK3CA, TLR4
hsa05214 Glioma 5.86E-04 E2F1, KRAS, TP53, PIK3CA
hsa05206 MicroRNAs in cancer 6.34E-04 E2F1, KRAS, ERBB2, EZH2, TP53, BRCA1
hsa05218 Melanoma 7.59E-04 E2F1, KRAS, TP53, PIK3CA
hsa05220 Chronic myeloid leukemia 7.91E-04 E2F1, KRAS, TP53, PIK3CA
hsa04921 Oxytocin signaling pathway 1.10E-03 MEF2C;PIK3CA;KRAS
hsa05222 Small cell lung cancer 1.28E-03 E2F1, TP53, RXRG, PIK3CA
hsa04022 cGMP-PKG signaling pathway 1.29E-03 MEF2C;MEF2B;PIK3CA

hsa05202
Transcriptional misregulation 
in cancer

1.60E-03 MEF2C;TP53;RXRG

hsa03460 Fanconi anemia pathway 2.15E-03 BRCA1;BRCA2
hsa03320 PPAR signaling pathway 3.61E-03 CD36;RXRG

hsa04920
Adipocytokine signaling 
pathway 3.72E-03 CD36;RXRG

hsa04010 MAPK signaling pathway 4.29E-03 MEF2C;KRAS;TP53
hsa04151 PI3K-Akt signaling pathway 1.07E-02 KRAS, TP53, PIK3CA, TLR4, BRCA1
hsa04110 Cell cycle 1.12E-02 E2F1;TP53
hsa04152 AMPK signaling pathway 1.12E-02 PIK3CA;CD36

(2016), a web-based visualization software resource. Most of the key genes are connected with each other through the
PPI network. However some genes are not connected with themain network.

4 | DISCUSSION

Weused univariate, multivariate Cox PH ratio analysis using mRNA expression data, estimating the survival curve using
product limit procedure and determining whether there is any statistically significant difference between the altered
and un-altered groups using log rank test for each gene. This identified four significant genes (CD36, KLK6,MEFC2 and
SCGB2A1) in univariate, three (KLK6, CD36 and E2F1) in multivariate and six genes(WFDC2, E2F1, BRCA1, KLK6,
SCGB2A1 and SLPI) in combined analysis.
KLK6 genewas found significant in all three anlaysis. It is a member of kallikrein-related peptidase family and found to
be frequently dysregulated inOCand responsible formodulation of tumor growth,migration, invasion, and resistance to
chemotherapy (Ahmed et al. (2016)). Previously KLK6was shown to be associatedwith aggressiveness of ovarian cancer
(Seiz et al. (2012); Ahmed et al. (2016)). Members of kallikrein-related peptidase family were found to be significant
biomarker in prostate, breast, ovary, and testis cancer (Diamandis and Yousef (2002)). Angiogenesis, regulation of cell
proliferation, regulation of cell cycle process are all significantly associatedwithOC (Lu and Lu (2017)). KLK6 is involved
in regulation of cell differentiation, tissue regeneration and hormonemetabolic processes (UniProtKB) and thus is a
promising candidate OC biomarker.
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TABLE 6 GeneOntolgy terms with underlying Biological pathways associated with 8 significant genes in context of
the Ovarian Cancer along. Eighteen GeneOntology terms along with biological pathways,found significantly associated
with these significant genes with adjusted p-values shown in this table.

CD36 is clearly implicated not only in OC, but in development of other cancers (Jia et al. (2018)). FromKEGG pathway
analysis, this gene is found actively involved in Adipocytokine signaling pathway, PPAR signalling pathway, and AMPK
signaling pathways. In other studies it found to be a significant gene affecting survival of patient of ovarian cancer
(Ladanyi et al. (2018); Cuello et al. (2018)).
SCGB2A1 (Secretoglobin Family 2AMember 1) is a top differentially expressed gene in all grades of OC (Bellone et al.
(2013); Fischer et al. (2014)). In addition this gene has been significantly associated with breast cancer (Zafrakas et al.
(2006)) and Hypotrichosis (Tanahashi et al. (2014)).

E2F is a family of transcription factors that is recognized to regulate the expression of genes essential for a wide
range of cellular functions, including cell cycle progression, DNA repair, DNA replication, differentiation, proliferation,
and apoptosis. E2F1 is the most classic member of the E2F family. This gene exhibits a complex role in tumor devel-
opment regulation. It was shown that E2F1 is associatedwith ovarian carcinoma (Zhan et al. (2016)) and a promising
candidate for drug target in ovarian carcinoma. From the KEGG pathway analysis, it was found that this gene is actively
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involved in non-small cell lung cancer, Chronic myeloid leukemia, Cell cycle pathways. E2F1 haveMicroRNAs (miRNAs)
binding site which is illustrated to have significant association with cancer (Katz et al. (2015); Zhao et al. (2013)). Muta-
tions in BRCA1 and BRCA2 is experimentally implicated in OC Sowter and Ashworth (2005). The PI3K/AKT/mTOR
pathway is activated in approximately 70%of ovarian cancer cases (Gasparri et al. (2017)). FromKEGGpathway analysis,
BRCA1was found to be involved in PI3K/AKT/mTOR pathway.

Previous studies have found that the MEF2C gene expression is reduced in most patients with stage III serous
ovarian cance (Kim et al. (2010)). MEF2C is a transcription factor involved signalling pathways associated with OC
(Estrella et al. (2014)) but is also implicated inmental retardation, autosomal Dominant 20 and arrhythmogenic right
ventricular dysplasia diseases. Among its related pathways areNFATandCardiacHypertrophy andOrganelle biogenesis
andmaintenance (GeneCards). GeneOntology (GO) annotations related to this gene include DNA binding transcription
factor activity and protein heterodimerization activity (GeneCards). FromKEGG pathways, we found that this gene
is actively involved inOxytocin signaling pathway inhibition of which decreases the risk of ovarian cancer in SKOV3
cells (Ji et al. (2018)), cGMP-PKG signaling pathway, Transcriptional misregulation in cancer, and MAPK signaling
pathways. Previously, it was shown that the cyclic GMP (cGMP)/protein kinase G type-I (PKG-I) signaling pathway plays
an important role in preventing spontaneous apoptosis as well as promoting cell proliferation in some types of cancer
cells, includingOC (Wong et al. (2012)).

5 | CONCLUSIONS
In this study, survival analysis of 577OC patients revealed that out of 26 genes chosen for their previously idedntified
involvment in OC, altered transcript levels of eight of these predicted reduced OC survival. Using product limit or
Kaplan-Meier analyses, we found a significant difference in survival time between altered and non-altered genes. In
cases of CD36, E2F1, KLK6, SCGB2A1 andMEF2C genes, patients with these altered expression of these five genes had
significantly lower survival time than patients with non-alteration of these four genes. When taking consideration of
mutual effect of all selected 26 genes in multivariate analysis, CD36, E2F1 and KLK6 exhibited significant influence
on survival of OC, suggesting that theymay explain any survival alteration predicted by SCGB2A1 andMEF2c levels.
KLK6was notable for its high statistical significance in the Kaplan-Meier survival analysis, making this gene of particular
interest, at least in this OC patient cohort. Whenwe extended our analysis to evaluate which clinical factors and genes
play dominant roles in determining survival time in OC patient, and considering interaction between clinical variables
and genes, six genes including KLK6, E2F1, SCGB2A1,WFDC2, BRCA1 and SLP1were found to be the genes having
most influence on survival, i.e., their influence was independent of clinical features so would be useful to use in patient
survival prediction. Again, KLK6 seems themost promising candidate for further investigation since it is significant in all
three types of analysis we performed. It may be a candidate for therapeutic drug discovery itself or it may point the way
to a crucial cell pathway that influences patient survival
Among the clinical variables, patient age, tumour site and cancer stage status are associated with significantly more risk
of death withing 5 years in OC. In addition, we found that patients with right site tumour in ovary hadmore risk of death.
Our approach can be used in case of other types of cancers to identify key genetic and clinical factors in patient survival.
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Variables β HR z p

ASIAN -7.25E-01 4.84E-01 -0.63 0.53125
BLACK OR AFRICAN AMERICAN -2.21E-01 8.02E-01 -0.2 0.84011

NATIVE HAWAIIAN OR OTHER PACIFIC ISLANDER 8.92E-01 2.44E+00 0.61 0.54272
Others -8.64E-01 4.21E-01 -0.73 0.46421
WHITE -1.01E+00 3.63E-01 -0.97 0.33167
age 1.83E-02 1.02E+00 2.39 0.01683

Peritoneum ovary -1.50E+01 3.12E-07 -0.01 0.99554
G2 -1.12E+00 3.25E-01 -1.68 0.09386
G3 -7.03E-01 4.95E-01 -1.13 0.26008
G4 -1.53E+01 2.17E-07 -0.01 0.99532
GB -1.66E+01 6.47E-08 -0.01 0.99491
GX -8.81E-01 4.14E-01 -0.99 0.32328

tumour_site Left -1.51E-01 8.60E-01 -0.62 0.53261
tumour_site Right 8.22E-01 2.27E+00 3.61 0.00031

Stage IB 3.39E+00 2.95E+01 2.29 0.02185
Stage IC 1.98E+00 7.25E+00 1.49 0.1368
Stage IIA 1.81E+00 6.11E+00 1.19 0.23549
Stage IIB 1.13E+00 3.09E+00 0.75 0.4549
Stage IIC 7.81E-01 2.18E+00 0.55 0.58269
Stage IIIA 1.58E+00 4.88E+00 1.03 0.30114
Stage IIIB 1.21E+00 3.36E+00 0.87 0.38526
Stage IIIC 9.13E-01 2.49E+00 0.69 0.49031
Stage IV 1.22E+00 3.37E+00 0.9 0.36799

BRCA1(Altered) 8.86E-01 2.42E+00 1.99 0.04659
BRCA2(Altered) -1.83E-01 8.33E-01 -0.47 0.63914
BSCL2(Altered) 1.89E-01 1.21E+00 0.65 0.51884
CD36((Altered)) 4.12E-01 1.51E+00 1.41 0.15774
CLDN3(Altered) -5.17E-01 5.96E-01 -1.18 0.23818
CP(Altered) -3.04E-01 7.38E-01 -0.71 0.48067

CTNNB1(Altered) -3.29E-01 7.20E-01 -0.96 0.33485
DVL1(Altered) 2.06E-01 1.23E+00 0.87 0.38563
E2F1(Altered) -1.25E+00 2.87E-01 -2.54 0.01109
ERBB2(Altered) -4.41E-02 9.57E-01 -0.18 0.86101
EZH2(Altered) 3.93E-01 1.48E+00 1.22 0.22244
HPN(Altered) -5.06E-01 6.03E-01 -1.29 0.19836
KLK6(Altered) 6.49E-01 1.91E+00 2 0.04588
KRAS(Altered) 2.66E-01 1.31E+00 1.38 0.16669
MEF2B(Altered) 1.51E-01 1.16E+00 0.5 0.61938
MEF2C(Altered) 6.50E-01 1.92E+00 1.78 0.07519
MSH2(Altered) 2.62E-02 1.03E+00 0.08 0.93797
MUC16(Altered) -4.55E-01 6.35E-01 -1.28 0.20122
PIK3CA(Altered) 2.16E-02 1.02E+00 0.09 0.92474
PTPRE(Altered) 2.01E-01 1.22E+00 0.57 0.56566
RXRG(Altered) 4.36E-02 1.04E+00 0.11 0.91398

SCGB2A1(Altered) 9.09E-01 2.48E+00 2.42 0.01565
SLPI(Altered) 9.63E-01 2.62E+00 2.11 0.03523
TLR4(Altered) -4.11E-02 9.60E-01 -0.08 0.93761
TP53(Altered) 8.94E-01 2.44E+00 1.15 0.24966
WFDC2(Altered) -1.30E+00 2.72E-01 -2.17 0.02994
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KEGG ID Pathways Name
Adjusted 
P-Value

Genes

hsa05200 Pathways in cancer 1.75E-07
E2F1, KRAS, MSH2, ERBB2, TP53, RXRG, 
BRCA2, PIK3CA, CTNNB1, DVL1

hsa05223 Non-small cell lung cancer 2.30E-07 E2F1, KRAS, ERBB2, TP53, RXRG, PIK3CA

hsa05212 Pancreatic cancer 4.91E-07 E2F1, KRAS, ERBB2, TP53, BRCA2, PIK3CA

hsa05215 Prostate cancer 2.25E-06
E2F1, KRAS, ERBB2, TP53, PIK3CA, 
CTNNB1

hsa05219 Bladder cancer 1.49E-04 E2F1, KRAS, ERBB2, TP53

hsa05166 HTLV-I infection 3.87E-04 E2F1, KRAS, TP53, PIK3CA, CTNNB1, DVL1
hsa05161 Hepatitis B 4.53E-04 E2F1, KRAS, TP53, PIK3CA, TLR4
hsa05214 Glioma 5.86E-04 E2F1, KRAS, TP53, PIK3CA
hsa05206 MicroRNAs in cancer 6.34E-04 E2F1, KRAS, ERBB2, EZH2, TP53, BRCA1
hsa05218 Melanoma 7.59E-04 E2F1, KRAS, TP53, PIK3CA
hsa05220 Chronic myeloid leukemia 7.91E-04 E2F1, KRAS, TP53, PIK3CA
hsa04921 Oxytocin signaling pathway 1.10E-03 MEF2C;PIK3CA;KRAS
hsa05222 Small cell lung cancer 1.28E-03 E2F1, TP53, RXRG, PIK3CA
hsa04022 cGMP-PKG signaling pathway 1.29E-03 MEF2C;MEF2B;PIK3CA

hsa05202
Transcriptional misregulation 
in cancer

1.60E-03 MEF2C;TP53;RXRG

hsa03460 Fanconi anemia pathway 2.15E-03 BRCA1;BRCA2
hsa03320 PPAR signaling pathway 3.61E-03 CD36;RXRG

hsa04920
Adipocytokine signaling 
pathway 3.72E-03 CD36;RXRG

hsa04010 MAPK signaling pathway 4.29E-03 MEF2C;KRAS;TP53
hsa04151 PI3K-Akt signaling pathway 1.07E-02 KRAS, TP53, PIK3CA, TLR4, BRCA1
hsa04110 Cell cycle 1.12E-02 E2F1;TP53
hsa04152 AMPK signaling pathway 1.12E-02 PIK3CA;CD36










