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Abstract

Recently we proposed that people represent object cat-
egories using category-consistent features (CCFs), those
features that occur both frequently and consistently across
a categorys exemplars [70]. Here we designed a Convo-
lutional Neural Network (CNN) after the primate ventral
stream (VsNet) and used it to extract CCFs from 68 cat-
egories of objects spanning a three-level category hierar-
chy. We evaluated VsNet against people searching for the
same targets from the same 68 categories. Not only did
VsNet replicate our previous report of stronger attention
guidance to subordinate-level targets, with its more pow-
erful CNN-CCFs it was able to predict attention control to
individual target categories–the more CNN-CCFs extracted
for a category, the faster gaze was directed to the target. We
also probed VsNet to determine where in its network of lay-
ers these attention control signals originate. We found that
CCFs extracted from VsNet’s V1 layer contributed most to
guiding attention to targets cued at the subordinate (e.g.,
police car) and basic (e.g., car) levels, but that guidance to
superordinate-cued (e.g., vehicle) targets was strongest us-
ing CCFs from the CIT+AIT layer. We also identified the
image patches eliciting the strongest filter responses from
areas V4 and higher and found that they depicted represen-
tative parts of an object category (e.g., advertisements ap-
pearing on top of taxi cabs). Finally, we found that VsNet
better predicted attention control than comparable CNN
models, despite having fewer convolutional filters. This
work shows that a brain-inspired CNN can predict goal-
directed attention control by extracting and using category-
consistent features.

1. Introduction

Overview

The brain’s ability to flexibly exert a top-down con-
trol over motor behavior is fundamentally important for
the achievment of visuomotor goals and the performance
of everyday tasks (Hayhoe and Ballard refs). It does this
with extreme efficiency, and at times seemingly without ef-
fort. Yet, despite being a core cognitive process affecting
much of our behavior, a neurocomputational understanding
of goal-directed attention control is still in its infancy. Ex-
isting computational models of attention control are either
relatively narrow in scope or restricted in the types of inputs
that they can accept [13, 22, 43]. Here we introduce VsNet,
a neurocomputational model of attention control designed
after the primate ventral stream of visually-responsive brain
areas.

VsNet advances existing models of attention control in
several respects. First, and most practically, it is image
computable, meaning that it can accept the same visually
complex and unlabelled imagery that floods continuously
into the primate visual system. This is essential for a model
aimed at understanding attention control in the real world,
as objects in our perceptual experience do not come with
labels telling us what and where they are. Second, VsNet
is the first convolutional neural network (CNN) model of
attention control. CNNs, one class of artifical deep neural
network, have been setting new benchmarks over diverse
domains, not the least of which is the automated (without
human input) recognition of visually-complex categories of
objects [30, 50, 56, 17]. A third and core source of Vs-
Net’s capacity to predict attention control is its extraction
of visual features from image examplars that are most rep-

1

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 20, 2018. ; https://doi.org/10.1101/473124doi: bioRxiv preprint 

https://doi.org/10.1101/473124
http://creativecommons.org/licenses/by-nc-nd/4.0/


resenetative of an object category, a topic that we discuss in
detail below. In short, VsNet harnesses the power of deep
learning to extract the category-consistent features used by
the network of brain areas controlling the goal-directed ap-
plication of attention.

However, what distinguishes VsNet the most is that it is
a brain-inspired CNN of attention control. Our approach is
neurocomputational in that, given the many ways that mod-
els of attention control could be built, we look to the rich
neuroscience literature for design inspiration and parame-
ter specification. Most broadly, VsNet is a multi-layered
deep network, making its architecture analogous to the ar-
chitecture of brain structures existing along the ventral path-
way. The brain’s retinotopic application of filters through-
out most of these ventral areas also embody a parallelized
convolution similar to unit activation across the layers of a
CNN [26, 65, 4, 18]. This parallel between a CNN and the
organization of the ventral stream has not gone unnoticed
[29], and unit activation across the layers of a CNN has even
been used to predict neural activity recorded from brain ar-
eas in response to the same image content [4, 66]. VsNet ex-
tends this work by making the architecture of its levels also
brain-inspired, each modeled after a specific brain area in
the primate ventral stream. In contrast, existing neurocom-
putational efforts have used either AlexNet [30] or one of
its feed-forward variants [72, 56, 58], which are pre-trained
CNNs designed purely to win image classification compe-
titions (e.g., the ILSVRC2012 challenge, also known as the
ImageNet dataset, [50]) without regard for the structural and
functional organization of the primate ventral visual system.
The same disregard for neurobiological constraint applies to
later generations of deep networks using different architec-
tures [17, 71, 19]. Determining how VsNet’s performance
compares to less brain-inspired CNNs is one broad aim of
our study. Another broad aim is to predict the goal-directed
allocation of overt attention as people search for categories
of objects, as discussed next.

Categorical Search and Category-Consistent Fea-
tures

CNNs have been used to predict the bottom-up alloca-
tion of attention to scenes [20, 32, 64], but they have not
been used to model the top-down control of attention. Vs-
Net is the first. We demonstrate this by predicting the de-
gree that eye movements made by human participants are
guided to targets in a categorical search task. The spatial
locations fixated via eye movements make the ideal behav-
ioral ground truth for our purpose, as an eye movement is
the most basic observable behavior widely believed to indi-
cate a shift of spatial attention [55, 40]. Categorical search
is the search for a target that is designated only by its object
category. This task can be contrasted with the more com-
mon exemplar search task, where participants are cued with

an image showing the exact object that they are to search
for. Categorical search is therefore perfect for studying the
goal directed control of attention in a quasi-realistic context,
one where perfect knowledge of a target’s appearance is not
assumed. While a historically neglected task (see [74], for
discussion), recent research has revealed several important
properties of categorical search. Most fundamentally, at-
tention can be guided to target categories, as exemplified
by the above-chance direction of initial search saccades to
target category exemplars in search arrays [67]. Subsequent
work has shown that: the strength of the control signal guid-
ing attention to categorical targets depends on the amount
of target-defining information provided in the category cue
(e.g., stronger guidance for work boot than footwear) [37],
that search is guided to distractors that are visually similar
to the target category (guidance to a hand fan when search-
ing for a butterfly) [75], that guidance improves with target
typicality (stronger guidance to an office chair than a lawn
chair) [36], and that guidance becomes weaker as targets
climb the category hierarchy (the guidance to ”race car” is
greater than the guidance to ”car”, which is greater than that
to ”vehicle”) [70]. It is this latter effect of category hierar-
chy on attention control that is the manipulation of interest
in the present study.

In previous work we used a generative model to predict
the strength of categorical search guidance across the subor-
dinate (e.g., taxi), basic (e.g., car), and superordinate (e.g.,
vehicle) levels of a category hierarchy [70]. Specifically,
SIFT [35] and color histogram features were extracted from
100 image exemplars of 48 object categories, and the Bag-
of-Words (BoW, [6]) method was used to put these features
into a common feature space. We then selected those fea-
tures that are visually most representative of each of these
categories, what we termed to be their Category-Consistent
Features (CCFs). Specifically, for each BOW feature we
obtained its responses to all the images of each of a cat-
egory’s exemplars, averaged these responses over the ex-
emplars, and then divided this average by the standard de-
viation in responses to obtain a feature-specific Signal-to-
Noise Ratio (SNR). A feature having a high SNR would
therefore be one that occurred both frequently and consis-
tently across a category’s exemplars. Clustering the fea-
tures’ SNRs and selecting only the highest, we obtained the
CCFs for each of the target categories. Using this BoW-
CCF model we were able to predict how behavioral per-
formance was affected by target specification at the three
levels of the category hierarchy. One effect was what we
called the ”subordinate-level advantage” in target guidance;
the time that it took gaze to first land on the target (time-
to-target) increased with movement up the hierarchy. This
result is consistent with related work showing behavioral
benefits linked to more detailed and precise visual working
memory templates [52]. We showed that a simple count
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of the number of CCFs for object categories at each level
captured almost perfectly the subordinate-level advantage
observed in categorical search; more CCFs were selected
for categories at the subordinate level than either the ba-
sic or superordinate levels. We interpreted this result as
indicating that the greater number of CCFs used to repre-
sent subordinate-level targets resulted in more detailed vi-
sual working memory templates for these target categories
that can be used in attention control. The original source
should be consulted for more details [70].

The BoW-CCF model offered the first computationally
explicit explanation for how level in a category hierarchy
affects attention control, but its predictive power in [70] was
limited to the three hierarchical levels, essentially three data
points. Moreover, in recent years deep learning methods
have largely made the once popular BoW method obsolete,
due to their significantly better performance in large scale
image classification [51, 30], as well as their rich feature
representations [47]. The present study extends our pre-
vious work in an important respect; rather than predicting
the overall effect of hierarchical level on attention control,
we now attempt to predict the level of attention control for
individual target categories across this same three-level hi-
erarchy. We tried and failed to do this using the BoW-CCF
model, but by using VsNet to extract CCFs we show that
this audacious goal is in fact attainable.

2. General Methods

Extracting CNN-CCFs

The CCF method selects representative features (may or
may not be discriminative) that appear both frequently and
consistently across the exemplars of an object category, but
the method itself is largely feature independent. In our pre-
vious work we selected CCFs from a large pool of BoW
features; in our current adaptation we select CCFs from an
even larger pool of features from a trained CNN (see Ma-
terials and Methods for details regarding model training),
where each trained filter is considered a feature and a po-
tential CCF. We hypothesize that the more powerful CNN-
CCF features will represent more meaningful visual dimen-
sions of an object category; whereas BoW-CCFs might have
coded the fact that many taxis are yellow and represented
the various intensity gradiants associated with their shape, a
CNN-CCF representation of taxis might additionally cap-
ture tires, headlights, and the signs typically mounted to
their roofs. We further hypothesize that these richer feature
representations, to the extent that they are psychologically
meaningful, will allow for better predictions of attention be-
havior.

The specific CNN-CCF selection process is illustrated in
Figure 1 for the taxi category and a hypothetical network.
Given an object category with n exemplars of size m ×m,

Figure 1. Pipeline of the CNN-CCF extraction method. A. A set
of category exemplars, in this case images of taxis, are input into a
trained CNN. B. Activation maps (or feature maps) in response to
each exemplar are obtained for every convolutional filter at each
layer. Shown are 64-cell activation maps in a hypothetical layer,
where each cell indicates a convolutional filter’s response to a
given exemplar. In this example, 64 SNRs would be computed
(12 shown) by analyzing activation map values for each of the 64
filters across the taxi exemplars. C. A two-component Gamma
mixture model is fit to the distribution of SNRs, and the cross-over
point determines the CCF selection threshold. E. Filters having
SNRs above this threshold are retained as the CCFs for a given
category; filters having below-threshold SNRs are pruned away.

and a trained CNN with L convolutional layers each con-
tainingK filters, we forward pass all exemplars through the
network to obtain an activation profile of sizem×m×n for
every convolutional filter, Y(l)

k , where l and k are indices to
the layer and filter number, respectively. Each Y

(l)
k is then

reduced to a 1 × n vector, y(l)k , by performing global sum-
pooling over each image’sm×m activation map. This pool-
ing yields the overall activation of each filter in response to
an exemplar image. Having these exemplar-specific filter
responses, we then borrow from the BoW-CCF pipeline and
compute an SNR for each filter:

SNR(l)
k =

mean(y(l)k )

std(y(l)k )
,

where the mean and standard deviation are computed
over the exemplars. Applying this equation to the activa-
tion profile from each filter produces a distribution of SNRs.
Higher SNRs would indicate stronger and more consistent
filter responses, making these filters good candidates for be-
ing CCFs. To identify these CCFs we fit a two-component
Gamma-Mixture-Model to the SNR distribution, a method
similar to Parametric Graph Partitioning [68, 69]. We use
a Gamma distribution because it has been shown to model
spiking neuron activity [34, 33], and we have observed that
it describes our CNN SNR distributions very well. The
CCFs are then defined as the filters having SNRs higher than
the crossover point of the two Gamma components. This
pipeline for extracting CNN-CCFs was applied on each con-
volutional layer independently, as filter activations have dif-
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Figure 2. The architecture of our VsNet and Deep-HMAX designs. VsNet: each blue box represents a convolutional layer, with the
corresponding ventral-pathway area labeled above. Pink circles are Depth-Concat layers that concatenate the input maps from the depth
dimension. Arrows indicate input to output direction, dashed arrows represent max-pooling layers and their kernel sizes and strides, yellow
arrows represent dimensionality reduction via 1x1 filters, and blue arrows are skip connections which is either a direct copy (dark blue),
or a dimensionality reduced copy (light blue) via 1x1 filters. Green rectangle within each layer represent a set of filters, where the number
of filters is in red, followed by the filter size and the stride size, with the corresponding receptive field (RF) size in visual angle shown in
parentheses (assuming 1◦ spans 5 pixels). Note that the design of both VsNet and Deep-HMAX has the RF sizes of the convolutional filters
in each layer to be as similar as the range of the RF size estimates in each of the five human ventral visual pathway areas. These target
RF size ranges are indicated at the bottom of each VsNet layers (please refer to Supporting Information (SI) for the details of how these
estimates are obtained). Each convolutional filter is followed by a Batch Normalization layer (BatchNorm) [21] and a Rectified Linear
activation layer (ReLU). For more detailed architecture specification, please refer to SI.

ferent ranges at different layers.

Designing and Comparing Brain-Inspired CNNs

There are many good reasons why deep neural net-
works should be designed more closely after the primate
brain. For example, network design has focused on archi-
tectures meant to improve network performance, but these
are largely ad hoc and not strongly driven by theory. Our
broad perspective is that the brain may already have found
the best model design, at least for the basic task of visual
object classification, and that we need only to consult the
voluminous work on brain organization to learn how to im-
plement this design as a deep network.

VsNet is a rough first attempt to build a brain-inspired
deep neural network. This effort is ”rough” because the
neural constraints that we introduce relate only to the gross
organization of brain areas along the primate ventral visual
stream. There are far more detailed levels of system organi-
zation that might also be considered, but as a first pass we

decided to focus on only the gross network architecture. We
believe that this level would likely reveal the greatest benefit
of a brain-inspired design, with the belief that future, more
detailed brain-inspired models will only get better. Specif-
ically, we designed VsNet to reflect four widely accepted
and highly studied properties of the ventral pathway. First,
VsNet’s five convolutional layers are mapped to the five ma-
jor ventral brain structures [28, 8, 39, 27, 54]. VsNet has a
V1, a V2, a combined hV4 and LOC1/2 layer that we re-
fer to as V4-like, a PIT, and a CIT/AIT layer, with these
five convolutional layers followed by two fully-connected
classification layers. Second, the number of filters in each
of VsNet’s five convolutional layers are proportional to the
number of neurons, estimated by brain surface area [44, 10],
in the corresponding five brain structures. Third, the range
of filter sizes at each level layer are informed by the range of
receptive field sizes for visually responsive neurons in the
corresponding structures. And fourth, VsNet differs from
other strictly feedforward architectures in that it adopts a
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brain-inspired implementation of bybass connections based
on what is known about the connectivity between layers in
the primate ventral visual stream. Figure 2 and Materials
and Methods (MM) should be consulted for additional ar-
chitectural design details.

Our CNN-CCF extraction algorithm is general, and can
be applied to the filter responses from any pre-trained CNN.
This makes model comparison possible. In addition to ex-
tracting CNN-CCFs from VsNet, we used the identical al-
gorithm to extract CNN-CCFs from two other deep net-
works. One of these was AlexNet [30], a widely used
CNN also consisting of five convolutional and two fully-
connected layers. Although AlexNet’s design was not
brain-inspired, it has been used with good success in re-
cent computational neuroscience studies [26, 4, 18] and is
therefore of potential interest. More fundamentally, it will
serve as a baseline against which the more brain-inspired
networks can be compared, which is important to gauge
broadly how the inclusion of neural constraints in a CNN’s
design translates into improved prediction performance. We
also extracted CNN-CCFs from a model that we are call-
ing Deep-HMAX, a CNN version of the influential HMAX
model of object recognition [53]. HMAX was designed to
be a biologically plausible model of how the recognition
of visually complex objects might be implemented in ven-
tral brain circuitry [48, 60], but it was designed with hand-
crafted filters and therefore cannot be fairly compared to
more recent and powerful convolutional network architec-
tures. Our Deep-HMAX model keeps the basic architec-
tural design elements of HMAX intact, central among these
is the inclusion of simple and complex cell units, but re-
places the originally hand-crafted units with convolutional
layers that learn the simple and complex cell responses from
visual input, thereby making possible more direct compar-
ison to VsNet. Figure 2 shows the architecture of Deep-
HMAX, and MM should be consulted for more details.
Broadly, the model has a very different architecture than Vs-
Net, with one example being its 10 convolutional and two
fully-connected layers. This makes a comparison between
VsNet and Deep-HMAX potentially valuable as a means of
exploring the gross level of brain organization that should
be designed into artificial deep neural networks. Critically,
in our model comparison VsNet was computationally dis-
advantaged in that it used the least number of convolutional
filters to predict attention control; AlexNet has 1152 filters,
Deep-HMAX 1760, but VsNet only 726 (excluding 1x1
dimensionality-reduction filters). This conservative design
means that, to the extent that VsNet better predicts attention
control than the other models, this benefit is likely due to its
brain-inspired architecture rather than sheer computational
power.

3. Results

CNN-CCF Predicts Visual Attention Control

VsNet, AlexNet, and Deep-HMAX were trained using
ImageNet [50], then fine-tuned using the SBU-68E dataset
( https://github.com/cxy7452/CNN-CCF/tree/master/SBE-
68E/ ): an image dataset collected for this work consisting
of 48 subordinate, 16 basic, and 4 superordinate categories,
with each category having 550 image exemplars. The net-
work was fine-tuned by using training/validation splits of
500 and 50 images, respectively, per category. (see MM for
training details).

Features were extracted from the five convolutional lay-
ers of each identically-trained network using the previ-
ously described CNN-CCF feature selection method, and
the number of CNN-CCFs were determined for each model.
Recall that Yu et al. (2016) found that the number of BOW-
CCFs extracted from their model accurately predicted the
time that participants took to first fixate a target category
cued at each of the three hierarchical levels. Our first eval-
uation was therefore to see whether CNN-CCFs from the
three deep network models were as successful in predict-
ing the hierarchical level of the target category. As shown
in Figure 3A, all of the models tested were highly success-
ful in capturing the trend of increasing time-to-target with
movement up the category hierarchy in the behavioral data
from Yu and colleagues (2016; see MM for additional de-
tails about the behavioral methods and data). This demon-
stration is important in showing that the number of CCFs
is highly generalizable in its ability to predict the effect of
hierarchical level on categorical guidance; more CCFs can
be extracted for subordinate-level categories compared to
basic, and for basic-level categories compared to superor-
dinate, and these greater numbers of features form better
target templates that can more efficiently guide attention to
the categorical targets.

Capturing the behavioral guidance trend across category
levels is one thing, using CCFs to predict guidance effi-
ciency to individual categories is a different and far more
challenging goal. Our experimental logic, however, is the
same; the more CCFs that can be extracted for a target cat-
egory, the better attention should be able to guide gaze to
an unseen exemplar of that category. Across categories we
therefore predict a negative correlation between the number
of CCFs and the search time-to-target measure, with more
CCFs leading to shorter target fixation times. But recall that
each layer of a network is extracting its own CCFs, and it
is unreasonable to believe that the attention control mecha-
nism would disregard network depth and weigh all of these
features equally. Hence, our approach was to find a CCF
weighting across each network’s convolutional layers that
optimizes a correlation (Spearman’s ρ) between the num-
ber of CCFs extracted at each layer and time-to-target, our
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Figure 3. A. Human attention control (time to fixate the target) and the performance of one CCF model using Bag-of-Words (BoW) and
three CNN-CCF models: AlexNet, Deep-HMAX, and VsNet. Results are grouped by hierarchical level, and the models performances are
linearly scaled to best fit the behavior (thereby putting the models’ results in the behavioral scale). All four models are able to predict
the subordinate-level advantage in attention guidance to a categorical target. B. Performance of the four models in predicting attention
control to individual target categories within each hierarchical level, evaluated using the leave-one-out (LOO) method. Given the inverse
correlation between number of CCFs and the time needed to guide attention to a target ([70]), more negative correlations indicate better
predictions of attention control. Grey regions indicate performance ceilings in how well a model can predict attention guidance, defined
by +/− one standard deviation of the mean guidance from a ”subject model”. The subject model was also computed using LOO, only
now we found the Spearman’s ρ between n − 1 participants and the participant who was left out (the mean and standard deviation was
obtained by repeating this for all participants). The results show that a model using AlexNet to extract CCFs is unable to predict human
behavior. However, the more brain-inspired CNN-CCF models are better, with VsNet being the best and on par with a human subject model.
C. The best fitted weights by convolutional layer for each CNN-CCF model, grouped by hierarchical level. VsNet’s weight distribution
suggests that categorical guidance at both subordinate and basic levels is driven by low-level features, while guidance to superordinate-level
categories is driven by high-level features.

behavioral measure of attention control, with each network
model having its own optimized layer weights. The advan-
tage of this formulation is that it allows Spearman’s ρ to be
used directly as an objective function to optimize the layer-
wise weights, W , which we did using beam search with
random steps [62] (see MM for details).

Figure 3B shows these category-specific predictions of
guidance efficiency at each hierarchy for the four tested
CCF models. Note that prediction success is indicated by
higher negative correlations, plotted upward on the y-axis.
Predictions from the BoW-CCF model were poor for sub-
ordinate and basic level categories and significantly worse
than those from VsNet and Deep-HMAX. A very good pre-
diction was obtained at the superordinate level, but given
that there were only four categories at this level a high cor-
relation might simply have resulted from chance. Interest-
ingly, the number of CNN-CCFs extracted from the widely-
used AlexNet model failed entirely in predicting attention
guidance to individual target categories. This result drives
home the fact that not all CCN models are equal; if the goal
is to predict human behavior, CNNs should be modeled af-
ter the brain. Of the two evaluated brain-inspired CNNs,
prediction success from Deep-HMAX was not reliably dif-
ferent from VsNet at the subordinate level (p = 0.059), sig-
nificantly lower than VsNet at the basic level (p < 0.001),
and non-existent at the superordinate level, while VsNet’s
predictions remained very good. Indeed, for individual cat-
egories at all three hierarchical levels, VsNet’s predictions
were well within the performance ceilings (gray regions)

computed by having n-1 participants predict the behavior of
the participant left out. This means that VsNet’s predictions
were as good as can be expected given variability in the par-
ticipant behavior, and it is the only model of the four tested
for which this was consistently the case. Collectively, these
results suggest that not all brain-inspired CNNs are created
equal; a CNN designed after the ventral visual pathway is
preferred over the architecture of Deep-HMAX.

CNNs have been criticized as being ”black boxes”; they
perform well but the reason for their success defies un-
derstanding. We prefer to think of CCNs as ”transpar-
ent boxes” (a term borrowed from Aude Oliva, personal
communication on May, 2017; see also [1]), ones that we
can probe and peer into in attempts to decipher how they
work. As one example, Figure 3C plots the optimized layer
weights (W ), grouped by level in the category hierarchy,
for each of the three CNN models tested. VsNet shows very
similar weight distributions for subordinate and basic-level
targets, one clearly dominated by early features in its pre-
dictions of attention control. However, for superordinate
category targets the CCFs learned by its CIT+AIT layer
were the most predictive. Speculatively, this suggests that
lower-level features may be driving attention control when
relatively clear visual properties of the target can be inferred
(e.g., object edges/rigidness/shapes and colors, depending
on the category), but that higher-level features must be used
for superordinate-level targets that do not have clearly rep-
resentative visual properties. In contrast to this reasonable
layer weighting, the optimized weightings for Deep-HMAX
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across its 10 layers seemed more erratic (although perhaps
suggesting the emergence of a pattern similar to VsNet),
and the optimized layer weights from AlexNet were uninter-
pretable since they produced low correlations. Once again,
the brain-inspired design of the CNN appears to matter.

CNN-CCF Visualization

Another example of VsNet being a transparent box is
that it is possible to peer inside to see what patterns in im-
ages its CCFs were coding–the representative visual fea-
tures of an object category. The CCFs for a given category
can be visualized by finding the regions in input images
that best activate a given CCF (a particular convolutional
filter). Specifically, we first forward-pass an image of a
category exemplar through VsNet to obtain the maximally-
responsive locations in a feature map for the CCF of in-
terest, and then probe backwards from the filters most ac-
tivated location to the pixels in the image that was caus-
ing this maximal response [72] (see SI for the detailed al-
gorithm). Figure 4A visualizes the image regions eliciting
the five largest responses from CCFs, based on sorting their
SNR scores, at each of VsNet’s layers for one exemplar im-
age from the taxi category. Striking is the fact that these
maximaly-active CCFs seem in some cases to be represent-
ing object parts that are specific to typical taxis, such as
the signs attached to the roofs, but also parts that are more
broadly representative of cars, such as wheels, windows,
and side mirrors. This observation also nicely illustrates the
generative nature of CCFs; they code the features that are
common to a category (rooftop advertisements and wheels
in the case of taxis) regardless of whether they are discrimi-
native (police and race cars also have wheels, but only taxis
have rootop signs).

The aggregated locations of maximally-active CNN-
CCFs can also be used to detect categories of objects. This
is because these CCFs will be broadly capturing the differ-
ent parts of an object category, at different scales, making it
possible to detect the presence of a target object in an image
simply by detecting its constituent parts (CCFs). As quali-
tative examples, Figure 4B shows images depicting the ob-
ject categories of shirt, folding chair, and speedboat, paired
with the combined activation maps from CCFs extracted for
those categories. None of these images were part of VsNet’s
training set. Note that the CCFs for the shirt category pre-
cisely differentiate that object from the categorical siblings
of jacket and pants, and that the CCFs for the category of
folding chair are clearly coding the chair’s legs, which hap-
pens to be a part that discriminates that subordinate-level
category from other chairs. The speedboat example is in-
teresting in that it dramatically illustrates the difference be-
tween bottom-up saliency and top-down goal-directed at-
tention control; CCFs activate strongly to the small boat but
almost not at all to its far more salient white wake. What

Figure 4. A. The CNN-CCF visualization of the taxi cab category.
The visualized patches are the top 5 CCFs based on their SNR of
each convolutional layer in VsNet on an example taxi image. The
CCFs are showing some clear parts that are indicative of a typi-
cal taxi, which includes tires, headlights, windows, and the taxi
sign. B. examples of CNN-CCF as object detectors. The heat
maps are the combined activations of the given category’s CNN-
CCFs, where the brighter the more activations. Categories from
left to right: shirt (basic), folding chair (subordinate), and speed-
boat (subordinate).

is significant about this demonstration is that this precise
object localization was accomplished simply by combining
the CCF activation maps without any additional processing
costs.

Large-Scale Image Classification

Prior to extracting CCFs from the three CNN models,
the networks must be trained to learn an initial set of fea-
tures. This initial training, and later validation, was done
using ImageNet [50] following standard training procedures
(see MM for additional details and subsequent fine-tuning).
Although not directly within this study’s question of fo-
cus (goal-directed attention control), initial training results
are an important indicator of how different network archi-
tectures grossly affect learned feature quality and network
classification performance. Given their ready availability,
we therefore discuss these results briefly here. Another mo-
tivation for raising this topic is that in our opinion VsNet
produced interesting behavior, which we think might also
be of interest to readers doing large-scale object classifica-
tion.

Table 1 summarizes model performance on the valida-
tion set of the ImageNet dataset. Classification accuracies
for all models were high, with validation errors indicating
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ImageNet AlexNet Deep-HMAX VsNet
Top-1 Accuracy 57.7% 59.6% 61.5%
Top-5 Accuracy 80.6% 82.4% 83.9%

Table 1. Top-1 and top-5 validation accuracies for the three CNN
models on the ImageNet dataset [50]. The overall high accura-
cies indicate the low likelihood of overfitting. Note that network
performance improved with the degree of brain inspiration in its
design.

that the networks were successfully trained. However, Vs-
Net achieved the lowest errors while AlexNet achieved the
highest errors. This is an interesting finding because Vs-
Net’s design was engineered after the ventral stream of vi-
sual brain areas, and was not designed or optimized for clas-
sification accuracy. Yet, it outperformed a model that was
optimized for classification, AlexNet, by what is considered
a significant margin in the computer vision literature. More-
over, although deeper CNN architectures generally outper-
form shallower networks [56], in VsNet we found an excep-
tion to this rule. While Deep-HMAX, the deepest network
of the three, outperformed AlexNet in classification accu-
racy, it was less accurate than the shallower VsNet.

Also notable is the fact that VsNet achieved the highest
accuracies despite having fewer convolutional filters com-
pared to Deep-HMAX and AlexNet (726, 1760, 1152 fil-
ters, respectively, excluding 1x1 dimensionality-reduction
filters). Similar to network depth, the number of non-1x1
convolutional filters correlates highly with network perfor-
mance in the computer vision literature (AlexNet [30] <
VGG [56] < GoogLeNet [58] < ResNet [17]). VsNet
is an example of a DNN outperforming networks having
many more convolutional filters. This reversal of trend sug-
gests that VsNet was able to learn better representations us-
ing fewer filters, with this greater convolutional kernel ef-
ficiency (Figure 5) pointing to a meaningful benefit of its
brain-inspired design. Lesioning of VsNet to isolate the
contributions of individual design decisions will be a direc-
tion of future work.

4. Discussion
This study is the first to use a CNN to predict a goal-

directed behavior, in our case the guidance of gaze during
search. More specifically, we showed that an artificial deep
neural network, one whose design is broadly informed by
the architecture of the primate ventral visual stream, out-
performed a less brain-inspired model (Deep-HMAX) and a
popular yet brain-uninspired model (AlexNet) in predicting
the control of attention to individual categories of common
objects selected from a three-level category hierarchy.

Computationally, this demonstration is significant in two
respects. First, VsNet outpredicted AlexNet, which had
58% more learnable filters, and Deep-HMAX which had

Figure 5. Plotted is a measure of the efficiency of a convolutional
kernel, defined as accuracy per convolutional filter. VsNet was
found to have the highest convolutional kernel efficiency, followed
by AlexNet. Deep-HMAX was the least efficient network, possi-
bly due to its long parallel branches learning redundant features.

142% more. This is rarely observed, with the more common
relationship being an increase in prediction success with
the number of convolutional filters (AlexNet [30] < VGG
[56] < GoogLeNet [58] < ResNet [17]). To our knowl-
edge, this is the first time that a deep network with sig-
nificantly fewer convolutional filters outperformed a more
powerful network having many more. Second, given that
deeper CNN architectures generally outperform shallower
architectures [56], we were surprised that Deep-HMAX, a
10-layer CNN, did not compare more favorably to VsNet,
a network half its depth. We speculate that this might be
due to Deep-HMAX’s long parallel branches (forming af-
ter its V2 layer) creating a redundancy in the filters that are
learned, in contrast to VsNet that uses short bypass connec-
tions to route lower-level information far more directly to
higher-layers. Determining the specific sources of VsNet’s
success, and the reasons why alternative brain-inspired de-
signs fail, will be an important direction for future work.
For now we can simply conclude that VsNet, a compara-
tively simple network in terms of its number of learnable
filters, is learning representations of the target categories
that yield superior predictions of human attention control in
this search task. While a remarkable finding in one sense,
in another it is not. If one assumes that the primate brain
has already found a design and parameter specification to
efficiently control the attentional routing of visual inputs
through a (ventral) network of layers, it makes sense that
a model’s predictive success might improve as its architec-
ture becomes more like that of the brain.

The present work also extends our previous work on
category-consistent features. We show that CCFs (genera-
tive and representative features of an object category) can be
learned and extracted from CNNs, and that these more pow-
erful CNN-CFFs successfully predict the degree that atten-
tion is guided to target categories. This is a potentially im-
pactful finding, and in future work we will use CNN-CFFs
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to predict attention control in contexts other than visual
search. Moreover, we showed that VsNet predicts guidance
efficiency to individual target categories, and that its CNN-
CCFs segregated reasonably across its layers, with lower-
layers learning CCFs for subordinate and basic-level cate-
gories and higher-layers learning CCFs for more abstract
categories. This generalization across categories demon-
strates model robustness, and bodes well for the prospect
of using the increasingly rich CNN-CCF feature represen-
tations to predict increasingly complex visual target cate-
gories.

Far from being a black box, VsNet hints at how search
guidance and classification processes may interact across
the layers of a deep network. A clue comes from the promis-
ing object localization made possible by projecting CNN-
CCF activation from higher layers back to lower layers. Via
this post-training backtracking method, the rich higher-level
representations necessary for good classification reveal the
spatial locations of lower-level target features coded by ear-
lier visual areas, thereby delineating the object in space
and creating the opportunity to bias that region for selec-
tive routing. Under this framework, guidance and classi-
fication are inextricably linked; better classification leads
to stronger guidance, which in turn leads to better classi-
fication. We believe that understanding the role of object
classification is essential to understanding attention control,
as perhaps the greatest role of attention control is to make
better classifications, mediated by an intelligent routing of
visual inputs through the ventral stream.

5. Materials and Methods

Behavioral Data Collection

Behavioral data were obtained from [70], and were col-
lected using the SBU-68 dataset. This dataset consisted
of crossly-cropped images of 68 object categories that
were distributed across three levels of a category hierar-
chy. There were 48 subordinate-level categories that were
grouped into 16 basic-level categories that were grouped
into 4 superordinate-level categories. Stony Brook Uni-
versity undergraduates (n=26) participated in a categorical
search task. On each trial a text cue designating the tar-
get category was displayed for 2,500 ms, followed by a 500
ms central fixation cross and then a six-item search display.
Distractors were from random non-target categories and
on target-present trials the target was selected from on of
the 48 subordinate-level categories. Participants responded
present or absent as quickly as possible while maintaining
accuracy, and there were 144 target-present and 144 target-
absent trials presented in random order. For each target-
present trial, a participant’s goal-directed attentional guid-
ance was measured as the time taken to first fixate the cued
target. Please refer to [70] for full details of the behavioral

stimuli and procedure.

VsNet Design

VsNet is brain-inspired in three key respects: the num-
ber of filters at each convolutional layer is proportional to
the estimated number of neurons in the corresponding brain
structure, the sizes of filters at each layer are proportional
to neuron receptive field sizes in corresponding structures,
and the gross connectivity between its layers is informed by
connectivity in the primate ventral visual stream. Each of
these brain-inspired constraints will be discussed in more
detail. With respect to VsNet’s broad mapping of convo-
lutional layers to brain structures, it’s mappings between
layer1 and V1 and layer2 and V2 are relatively noncontro-
versial. However, we wanted VsNet’s third convolutional
layer to map to V4, a macaque brain area, and identifying a
homolog to V4 in humans is less straightforward. A struc-
ture has been identified as ”human V4” (hv4), and neurons
in this structure are organized retinotopically [38, 11, 3]
like macaque V4, but their feature selectivities are some-
what different. Macaque V4 neurons are selective to color,
shape, and boundary conformation [7, 45, 5], whereas neu-
rons in hV4 respond mainly to just color and occupy a pro-
portionally much smaller cortical surface area [38, 3, 31].
For humans, shape and boundary and other object-related
processing likely occurs in lateral occipital areas 1 and 2
(LO1/2) [31]. LO1/2 is also retinotopically organized and
is anatomically adjacent to hV4 [10]. In an effort to ob-
tain a sufficiently large number of learnable mid-level fea-
tures, we therefore map VsNet’s third convolutional layer to
a combination of hV4 and LO1/2, referred to here as ”V4-
like”. We intended VsNet’s deeper layers to map to IT, and
decisions had to be made about these mappings as well. To
keep congruence with the monkey neurophysiology litera-
ture, we specifically wanted to identify human homologs
to macaque TEO and TE. For VsNet’s fourth layer we set-
tled on a structure anterior to hV4, termed ”human TEO” in
[24, 25, 2] and PIT elsewhere [44], and for its fifth layer we
chose central and anterior inferotemporal cortex (CIT+AIT)
[46], roughly macaque TE.

Ventral Stream Surface Areas

The numbers of convolutional filters in VsNet’s layers were
based on estimates of human brain surface areas in the
mapped structures. Specifically, V1, V2 and V4-like sur-
face areas were estimated to be 2323 mm2, 2102 mm2,
and 2322 mm2, respectively [31]. For PIT and CIT+AIT,
we estimated their surface areas to be approximately 9 times
larger than the surface areas in the corresponding macaque
structures (TEO and TE, respectively) [44], based on re-
ported differences in cortical size between macaque and hu-
man [10]. This resulted in an estimate of PIT having a sur-
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face area of 3510 mm2, and of CIT+AIT having a surface
area of 3420 mm2. Having these surface area estimates,
one approach might make proportional allocations of con-
volutional filters at each layer, but this would ignore the
fact that some of these structure have a retinotopic orga-
nization. Retinotopy requires that the receptive fields (RFs)
of neurons having similar selectivities are tiled across the
visual field in order to obtain location-specific information,
and this duplication of neurons is a major factor determin-
ing the surface area of some brain structures. CNNs have
no retinotopy, their filters are convolved with a visual input
rather than duplicated and tiled over an image. To equate
the two, we derive a duplication factor that estimates the la-
tent number of uniquely selective neurons within each brain
structure, and then make the number of convolutional filters
in the corresponding layer proportional to this estimate. In
doing this we make a simple assumption. If the average
RF size for a neuron type in a ventral stream structure is
as large as the entire visual field, then there would be no
need for the retinotopic duplication of this type of neuron
for the purpose of capturing information from across the
visual field. This would lead to a duplication factor of 1.
However, if in this example the average RF size for neu-
ron type covers only a quarter of the visual field, then there
would minimally need to be four neurons of this type orga-
nized retinotopically to cover the entire visual field. This
would lead to a duplication factor of 4. More generally, the
following formulas were used to calculate the duplication
factor for a given ventral stream structure and to determine
the number of convolutional filters in VsNet’s correspond-
ing layer:

# filters ∝ surface area
duplication

, duplication = log(
visual area

RF-size
),

where both the area of the visual field and neuron RF size
are expressed in degrees squared. We take the log of these
values’ proportion in order to scale down the increase in
the numbers of filters from lower to higher layers so as
to stay within hardware constraints. For the current im-
plementation, 1◦ of visual angle equaled 5 pixels, making
the 224 × 224 pixel input images subtend approximately
45◦ × 45◦ of visual area. For each ventral stream area, we
then take the average RF size at 5.5◦ eccentricity to be rep-
resentative of neuron RF sizes in that structure (i.e., we cur-
rently do not capture here the foveal-to-peripheral increase
in RF sizes, but see below). Doing these calculations, we
obtained the representative RF size estimates of 1◦, 3◦, 5◦,
7◦, and 12◦ for V1, V2, V4-like, PIT, and CIT+AIT, re-
spectively (see also [28]). Finally, using these values in the
duplication factor calculation, and setting the total number
of filters in the first convolutional layer (V1) to 64 (to be di-
rectly comparable to AlexNet), we obtain the final VsNet ar-
chitecture consisting of 64, 82, 110, 198, and 272 filters for

its 5 convolutional layers, excluding 1x1 dimensionality-
reduction filters (see Figure 2).

Receptive Field Size

In primates, the RFs of visually-responsive neurons in-
crease in size with distance along the ventral stream; neu-
rons in structures early in this pathway have small RFs,
those in later structures have larger RFs [12, 28]. More-
over, within visual structures preserving retinotopy (V1 to
V4) cortical magnification causes neurons coding the cen-
tral visual field to have relatively small RFs, and neurons
coding increasingly periphery locations to have increasingly
larger RFs [9, 63, 12, 15]. VsNet was designed to grossly
capture both of these properties. However, this latter rela-
tionship between RF size and visual eccentricity is difficult
to implement in a CNN, where most models have filters of
only a single size within each of their convolutional layers
(i.e., [30, 72, 56, 17], with the exception of the Inception
Module from [58]). This is because the convolutional fil-
ters in a CNN were specifically designed to not operate at
specific image locations (shared weights), making the mod-
eling of a changing retinotopy difficult. To approximate the
variability in RF sizes due to scaling with eccentricity, we
used parallel sets of 3x3, 5x5, and 7x7 pixel convolutional
filters in each of VsNet’s layers (except for layers 3 and
4, which used only 3x3 and 5x5 filters). These sizes were
chosen so as to approximate the range of RF sizes within
corresponding structures, as estimated in [57, 25, 49, 15].
Assuming that 5 screen pixels correspond to 1 degree of
visual angle, the 224x224 pixel ImageNet images used for
training subtended a visual angle of 45◦. More importantly,
a 3x3 filter In VsNet’s V1 layer spanned 0.6◦, a 5x5 fil-
ter spanned 1◦, and a 7x7 filter spanned 1.4◦. This range
of RF sizes (0.6◦ to 1.4◦) maps closely onto the range of
RF sizes in V1 (0.25◦ to about 2◦). These filters convolve
with the input and then output feature maps that we con-
catenate in depth, such that the convolutional filters at the
next higher layer (V2) receives responses from filters hav-
ing three dfferent sizes. For example, stacking layer 2’s 3x3
filters on top of layer 1’s 3x3, 5x5, and 7x7 filters, results in
layer 2’s 3x3 filters having RF sizes of 1.4◦, 1.8◦, and 2.2◦,
respectively (the parenthetical values listed in Figure 2 for
VsNet’s 3x3 V2 filters). Doing this for the 5x5 and 7x7
filters produced a range of sizes again corresponding well
to the range of RF sizes observed in V2 neurons (Figure
2). A similar procedure was followed for VsNet’s V4-like
layer, which produced similarly good estimates of neuron
RF sizes. Over VsNet’s first three layers, the filters at each
higher layer therefore had, not only larger RFs, but also a
broader range of RF sizes. For VsNet’s PIT and CIT+AIT
layers, the same numbers of filters were allocated in the
parallel sets, reflecting the relaxation of a retinotopic or-
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ganization in the corresponding ventral structures. Notice
that GoogLeNet’s Inception Module [58] also has this sim-
ilar parallel-filter architecture, but it was not designed to be
consistent to the primate visual cortex.

Bypass Connections

In addition to the feed-forward projections that connect
each ventral stream area with the next higher level along
the pathway, good evidence also exists for connections that
skip or bypass neighboring ventral structures [41, 23, 28].
VsNet captures both types of ventral stream connectivity,
although it considered only a first-pass attempt to do so;
capturing the minutia of this brain connectivity is currently
beyond its scope. The direct connections are already em-
bedded in its feed-forward design, so the focus here will be
on detailing its bypass connections. Major bypass connec-
tions exist from V2 to TEO [41, 59] and from V4 to TE [59],
with a weaker bypass connection known to exist between
V1’s foveal region to V4 [41, 14, 61]. These three bypass
connections were designed into VsNet. We added a weak
bypass connection from layer 1 (V1) to layer 3 (V4-like), a
full bypass from layer 2 (V2) to layer 4 (PIT), and another
full bypass from layer 3 (V4-like) to layer 5 (CIT+AIT). We
implemented these bypass connections by concatenating in
the depth dimension of the output from the lower layer to
the target layer’s input. Note that this concatenation method
is different from the summation method used by ResNet
[17], but is conceptually similar to the Inception Module
design used by GoogLeNet [58]. Following [58], we also
use 1x1 filters before each of VsNet’s convolutional layers
(except layer 1, where they are not needed) for dimension-
ality reduction and memory conservation (yellow arrows in
Figure 2). We chose this concatenation method in order to
give VsNet maximum flexibility in how bypassed informa-
tion is best combined with information at the target layer,
which we believe is preferable to assuming that the cortex
simply sums this information. Specifically, a full bypass
was implemented by concatenating in the depth dimension
a complete copy of the source layer’s output feature map to
the end of the target layer’s input map. We implemented
a weak bypass similarly, but now the source layer’s output
map was depth-reduced (dimensionality reduced by half via
1 × 1 convolutional filters) before being concatenated with
the target layer’s input feature map. Please refer to Table
XXX for the detailed description of VsNet’s architecture.

ImageNet Training

VsNet, AlexNet, and Deep-HMAX were trained using
ImageNet. All training and validation images were re-
sized to have the shortest side be 256 pixels while keeping
the original aspect ratio, and the standard data augmenta-
tion methods of random crops (224×224) and random hor-

izontal flips were employed. Center crops were used to
compute validation accuracies at the end of each training
epoch. The training batch-size for AlexNet, Deep-HMAX,
and VsNet was 128, 64, and 60, respectively. Each net-
work was trained using 4-threads with image data stored
on a solid-state drive (SSD), and 60 training epochs took
roughly 2 to 4 days to complete using a 2.93 Ghz Intel
Xeon x3470 processor with 32 Gb of memory and a single
Titan X GPU. Networks were implemented using Torch7,
and the method from [16] was used for parameter initial-
izations. Following ImageNet training, networks were fine
tuned using the SBU-68E dataset, an expanded version of
the SBU-68 dataset. The original SBU-68 dataset contained
contained 4,800 images of objects, which were grouped
into 100 exemplars from each of 48 subordinate-level cat-
egories [70]. These images were further combined hier-
archically to create an additional 16 basic-level categories
and 4 superordinate-level categories, yielding 68 categories
in total. The expanded SBU-68E dataset built on the ear-
lier dataset by exploiting Google, Yahoo, and Bing image
searches to obtain 1,500 exemplars from each of the same
48 subordinate-level categories, thereby making it suitable
for deep network training. GIST descriptors [42] were used
to meticulously remove image duplicates, followed by a
manual pruning of the images to ensure that those with in-
correct class labels were removed and that the retained im-
ages were well-cropped around the labeled object. These
exclusion criteria yielded 500 training and 50 validation im-
ages per category, for a total of 24,000 training and 2,400
validation images in the expanded set. All images were re-
sized such that the shortest side was 256 pixels wide while
retaining the original aspect ratio. See SI for more details
on multi-task fine-tuning of the networks.
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Supporting Information
Randomized beam search with Spearman’s ρ

A basic problem is encountered when comparing CNN-
CCFs extracted from a deep network to behavioral re-
sponses; because there are a different number of filters in
each convolutional layer, how do we weight the CNN-CCFs
extracted across these different layers when predicting be-
havior? Using VsNet to better illustrate the problem, it ex-
tracts a number of CNN-CCFs at each of its five convolu-
tional layers (e.g., 5, 10, 12, 3, 7) for each of the 48 subordi-
nate target object categories (e.g., ”police car”). However,
our behavioral measure of attention control is median time-
to-target, a single value observed from each participant for
each target category. To correlate the two we must there-
fore convert a predicted vector of size 48 × 5 (number of
CNN-CCFs extracted per layer for each of 48 categories
at the subordinate level) to a 48 × 1 vector of median be-
havioral guidance times (one measure for each of 48 cate-
gories). One method of doing this would be to simply sum
CNN-CCFs across the five network layers, but this would
make the questionable assumption that the brain treats the
contribution of all layers equally when controlling attention
guidance. Another method would be to use a linear model
of the form y =

∑
wixi, where y ∈ R and each wi denotes

a weight attached to the number of CNN-CCFs extracted at
the ith network layer. Such linear models are usually op-
timized using least squares to best fit a target vector, but
the traditional least-squares method cannot be optimized
to minimize correlation loss, as Spearman’s ρ is the met-
ric that we use to evaluate the CNN-CCF prediction quality
to human guidance performances. Broadly, our goal is to
find a set of weights that produces the highest Spearman’s
ρ between the predicted vector, Y, and our measure of at-
tention control, Y′. Specifically, we want to find a set of
non-negative weights across a network’s layers such that the
guidance prediction yi of the ith category is of the form:

yi =

K∑
k=1

wkxi,k s.t. w ≥ 0,

K∑
k=1

wk = 1, (1)

where xi,k is the number of CCFs extracted from the kth

layer of category i, and wk ∈ W is the weighted contri-
bution of the kth layer, where K = 5 for AlexNet and Vs-
Net, and K = 10 for Deep-HMAX. We then want to eval-
uate the model’s output, prediction vector Y, and the target
vector, median time-to-target Y′, so as to find a correlation
between the inverse number of CCFs (1/Y) and guidance
efficiency that optimizes Spearman’s ρ.

To find this optimized Spearman’s ρ, and therefore the
best W for each network, we use the Randomized Beam

Search (RBS) method from [62]. The procedure is as fol-
lows. We first randomly initialize wis to non-negative val-
ues that sum to one, then compute an initial goodness-of-fit
using this W and Spearman’s ρ. Following this initializa-
tion, RBS iterates through four operations: (1) an i is ran-
domly selected and a new non-negative value for wi ran-
domly generated, followed by re-normalization of W so
that W sums to one, (2) a new goodness-of-fit is computed
using the new W, (3) if this new W results in a better fit
(higher Spearman’s ρ), keep the new W, else, revert back
to the previous W, and (4) repeat steps 1-3. In the current
implementation, we performed 300 of these iterations for
each fit, and performed 200 fits to find the best W. In pilot-
ing we found that this method converges usually within 200
iterations. We are therefore confident that our use of 300 it-
erations with 200 repetitions resulted in a highly optimized
W.

Our goal is not just to fit data, but rather to determine
how well an optimized weighting of CNN-CCF number
across the convolutional layers of each network can predict
attention control to a category goal. To do this, we obtained
for each network its predicted Y over the n categories using
a series of leave-one-out jacknife operations. For a given
network, its W was fitted using n − 1 categories in order
to obtain its highest correlation with participants’ median
time-to-target, and then this optimized W was used to pre-
dict a y for the held-out category as specified in Equation
1. We repeated this procedure n times to obtain a complete
prediction vector of Y over all tested categories, and then
repeated this ten times to obtain a variance in order to eval-
uate the robustness of each model’s predictions.

CNN-CCF Feature Visualization

In order to visualize the regions in an image that a CNN-
CFF feature (a convolutional filter) best responds to, a cor-
respondence between that filter and those pixels in an image
must be established. Here we detail the non-trivial sequence
of steps needed to make this correspondence.

The process begins by forwarding an image into a net-
work and obtaining the feature map for the given convolu-
tional filter that we wish to visualize. The largest 95% of
values on this feature map are retained and the rest are set
to zero. Broadly, the remaining steps involve working back-
wards (backtracking) through the series of convolutions that
produced this pattern of feature map activation at a given
network layer, to the specific pixels in the input image. To
do this, we needed to perform inverse operations for sev-
eral computations (convolution, max pooling, ReLU, etc.),
not all of which are perfectly reversible. The resulting vi-
sualizations are therefore only approximations of the filter-
specific network activations. Nevertheless, we see this as a
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useful tool for probing the ”black box” and generating hy-
potheses to test in new experiments.

The specific steps in backtracking are as follows. (1) We
perform flipped convolution [72, 73], meaning we flip the
filters vertically and horizontally and convolve the feature
map to get its input. (2) Inverse max pooling. During the
feed-forward processing we record the the locations of the
values that are taken during max pooling (the ”switches”)
[72, 73], making possible the inverse operation of restoring
the values to their original positions and setting the other
values to zero. (3) ReLU. The inverse of a ReLU operation
is also a ReLU operation [72, 73]. (4) Inverse batch nor-
malization. Having recorded the mean and standard devia-
tion of the feature maps processed by each filter, the inverse
operation of batch normalization involves multiplying each
filter’s feature map by the map’s standard deviation and then
adding the mean. (5) Inverse average pooling with stride s.
This operation involves upsampling the image by a factor
of s, and then filling the upsampled image locations with
nearest values from the downsampled image. (6) Inverse
concatenation (detachment). Concatenation is used at mul-
tiple places in VsNet’s design, with one of these being in its
bypass connections. For example, in the V2 bypass connec-
tion, the output of V1 layer is concatenated with the input to
the V4-like layer. Reversing this operation requires detach-
ing the data volume into 2 parts, one backtracked through
the bypass over V2 and the other backtracked through V2.
(7) Inverse branching. Using another example, the input to
V2 is convolved by different numbers of filters of different
sizes (3x3, 5x5 and 7x7 pixels) into 3 separate branches; to
invert this operation these outputs must be summed over the
3 branches using flipped convolution [72, 73].

Using these inverse operations, we backtrack from the
feature map generated by a target CNN-CCF filter to obtain
the corresponding network input, what we refer to as the
projected image. We then take the absolute values in the
projected image at the input layer, sum these over the RGB
channels, and normalize the summed values into [0,1] to
obtain a heat map. Mapping the heat map onto the original
image highlights the region in the original image that best
activated the target kernel (Figure 4B).

Fine Tuning the Networks

The SBU-68E dataset is hierarchical, and as such has
multiple class labels for each category exemplar (i.e. a
”passenger airplane” is also an ”airplane” at the basic level
and a ”vehicle” at the superordinate level). We therefore
fine-tuned the networks using a multi-task learning regime.
We first replaced the single classification layer with three
branches of newly initialized fully-connected classification
layers, each corresponding to the 48 subordinate, 16 ba-
sic, and 4 superordinate output classes used in [70]. In
doing this we used the same softmax layer and negative

log-likelihood cross-entropy loss methods, but the backpro-
pogation of loss down each of the three branches was given
weights of 0.7, 0.24, and 0.06, respectively. These weights
correspond to the proportion of object categories at each
classification branch. Fine-tuning was performed using the
same training settings as was used for the ImageNet pre-
training, except for there being just 25 epochs and a reduced
learning rate. Also different from pre-training, fine-tuning
took just 3 hours to finish for all three networks, with all net-
works converging extremely well. Analyses revealed that
top-1 errors were low, and that differences in errors across
the models were small and likely not meaningful (less than
10% top-1 error for all networks at all three hierarchies).
This is evidence that the fine-tuning was successful, and
that the models generalized nearly perfectly to SBU-68E’s
unseen validation set without any apparent over-fitting.
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