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ABSTRACT 
DNA methylation of various genomic regions plays an important role in regulating gene 

expression in diverse biological contexts. However, most genome-wide studies have focused on 

the effect of 1) methylation in cis, not in trans and 2) a single CpG, not the collective effects of 

multiple CpGs, on gene expression. In this study, we developed a statistical machine learning 

model, geneEXPLORER (gene expression prediction by long-range epigenetic regulation), that 

quantifies the collective effects of both cis- and trans- methylations on gene expression. By 

applying geneEXPLORER to The Cancer Genome Atlas (TCGA) breast and lung cancer data, we 

found that most genes are affected by methylations of as much as 10Mb from promoter regions 

or more, and the long-range methylation explains 50% of the variation in gene expression on 

average, far greater than cis-methylation. The highly predictive genes are related to breast 

cancer, especially oncogenes and suppressor genes. Further, the predicted gene expressions 

could predict clinical phenotypes such as breast tumor status and estrogen receptor status 

(AUC=0.999, 0.94 respectively) as accurately as the measured gene expression levels. These 

results suggest that geneEXPLORER provides a means for accurate imputation of gene 

expression, which can be further used to predict clinical phenotypes. 
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INTRODUCTION 
DNA methylation, an essential epigenetic marker, plays an important role in regulating gene 

expression (1).  Methylation within the gene promoter inhibits transcription of the gene (2,3). 

Methylation in the gene body can be positively correlated with the gene expression level (4). 

Enhancer regions are associated with low levels of CpG methylation (5).  In addition, expression 

quantitative trait methylations (eQTMs) have found associations between cis (regulating 

transcription of neighboring genes) methylation regions and gene expression (6,7). 

 In cancer, hypomethylation and hypermethylation were observed at some promoters 

(8,9). Tumor suppressor genes are inactivated by hypermethylation in promoter regions (9). While 

aberrant methylation in promoter regions mostly affects transcription in cancer, hypermethylation 

in gene body regions may not have a noticeable effect on transcription in cancer (10).  

Recent studies have examined the effect of methylation in cis enhancer regions of genes 

in cancer. Aran et al.(11) computationally found that methylation in enhancer regions regulates 

genes more strongly than methylation in promoter regions in cancer, demonstrating the 

importance of enhancer methylation. Yao et al. (12) inferred cancer-specific cis enhancers from 

methylome and transcriptome analysis in multiple cancer types. However, their studies have 

focused on the effect of methylation in cis (ex. within 1 Mb from Transcription Start Site (TSS) or 

nearby genes from a CpG site) on gene expression.  

To better understand the regulatory role of methylation, studying trans (regulating 

transcription of distant genes) regions is critical. This is because enhancers play an important role 

in dysregulation of gene expression in cancer (13), and they can be located more than few Mb 

from a gene (14). For example, a super-enhancer of the MYC gene is reported to be located 

1.47Mb from the TSS of the gene in T cell acute lymphoblastic leukemia (15).  

In addition, to fully understand the effect of distal regulatory methylation, it is important to 

consider the collective effect of multiple associated methylations on gene expression, because 

multiple enhancers regulate expression of a single gene (14,16,17). However, most statistical 

approaches are limited to testing a single probe and a single gene at a time, such as eQTMs and 

ELMER (12), making it difficult to quantify the collective effect of CpG methylation on gene 

expression.  

To address these issues, we developed geneEXPLORER (gene expression prediction 

through long-range epigenetic regulation), a statistical machine learning method. For each gene, 

geneEXPLORER identifies CpG methylations, both cis and trans, that are associated with the 

gene expression and quantifies the collective effects of multiple CpG methylations. Based on the 

associated methylation probes, geneEXPLORER builds a predictive model for gene expression. 

We predicted expression levels of ~14,000 genes using geneEXPLORER in TCGA breast cancer 

data and validated the predictions in another breast cancer cohort. We also showed the 
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applicability of geneEXPLORER method to lung cancer. To evaluate the applicability of the gene 

expressions predicted by geneEXPLORER to downstream tasks, we further predicted the breast 

cancer phenotypes, such as breast tumor or normal status, estrogen-receptor (ER) status, 5-year 

survival, and breast cancer subtypes. Since the predicted gene expression represents a 

methylation portion of the epigenetically regulated gene expression, the present study provides a 

mechanistic insight into the epigenetic regulation of gene expression and epigenetic effects on 

cancer phenotypes through gene expression.  

 
MATERIAL AND METHODS 

   
DNA methylation and RNA sequencing data from TCGA Breast cancer 
To predict gene expression from methylation data, we analyzed TCGA breast cancer data for 873 

samples, whose 450K methylation array data and Hi-Seq 2000 gene expression data were 

available. Among these samples, 788 samples are tumor and 85 samples are normal. The two 

datasets were downloaded from Xena Public Data Hubs. 

 
Pre-processing 
The values of methylation data in the data hubs are beta values. We transferred beta values to M 

values because M values are more suitable (closer to normal distribution) for linear regression. 

Among 485,577 probes, we removed 90,007 methylation probes whose values were missing in 

more than 20% of the samples. Then, we imputed 31,700 methylation probes whose missing 

rates were less than 20% using K-means clustering (R package REMP).  

For gene expression data, among 20,530 genes, we excluded 3,417 genes whose 

average expression levels are less than 1 (log2(RPKM+1)) from the prediction. Among the 

17,113 genes, TSS sites are available for 16,681 genes from UCSC genome browser. Among 

these, there was at least one probe in promoter regions for 13,982 genes. We included these 

genes in our final analysis.  

 
geneEXPLORER (gene expression prediction by long-range epigenetic regulation) 

 

In detail, for each gene, we built a linear regression model to predict gene expression 

using long-range methylation probes. 

 𝑦̂𝑔 =∑ 𝑤̂𝑘,𝑔𝑥𝑘,𝑔

𝑀𝑔

𝑘=1

 (1) 

 

where 𝑦̂𝑔 is the predicted expression of gene g, 𝑥𝑘,𝑔 is k-th methylation probe for gene g, 𝑤̂𝑘,𝑔 is 

the regression coefficient of the methylation probe, 𝑀𝑔 is the number of methylation probes within 
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a defined region (e.g. 10Mb or the entire chromosome). To estimate the weight 𝑤̂𝑘,𝑔, we used the 

elastic-net penalty (18) with α=0.5 (the combination of half Lasso and half ridge penalty) and the 

penalty was selected through cross-validation using the R package glmnet.  

Elastic-net was chosen to predict gene expression using long-range methylations for the 

following reasons. First, the elastic-net works well with a high-dimensional methylation dataset. 

Up to ~38,000 probes were included in the model while the number of samples was only 873. It is 

impossible to accurately predict gene expression using such a high dimensional data using a 

model based on regular linear regression models. Second, the elastic-net automatically selects 

important variables that are associated with a response. By utilizing the elastic-net, 

geneEXPLORER automatically selects methylation probes that are associated with gene 

expression from tens of thousands of probes and builds gene expression prediction models 

based on the probes. Third, the elastic-net works well in highly correlated datasets. Since some 

of the methylation values are highly correlated due to biological interactions, it is expected that 

the elastic-net works better than Lasso (18-20).   

 
Measuring prediction accuracy 
To measure prediction accuracy, 10-fold cross-validation (CV) was used. 9 folds of data were 

used to build a model. The model used methylation values in the remaining fold to predict gene 

expression. We repeated the procedure 10 times until all gene expressions were predicted. For 

81 patients, more than 2 samples existed for the same patient in the dataset (79 patients – 2 

samples, 2 patients – 3 samples).  We assigned the samples for the same patients to the same 

fold to avoid a bias. Prediction accuracy (R2) was measured as the squared Pearson’s correlation 

coefficient between predicted gene expression and true gene expression.  

 
Comparing prediction accuracy of different regions in a gene 
We defined a promoter region from 2000bp upstream and 0bp downstream of the transcription 

start site of a gene (21). Gene regions were obtained using R packages 

IlluminaHumanMethylation450kanno.ilmn12.hg19, which is annotated by Illumina. The gene 

regions include promoter region, 5'UTR, first exon, gene body, and 3'UTR. 

 The long-range regions refer to the regions that maximize prediction accuracy using 

geneEXPLORER. The range is from 1Mb from the promoter region to the entire chromosome on 

which the gene is located.  We fitted the elastic-net model (Eq.1) for each region and each gene. 

We showed prediction accuracy of 13,910 overlapping genes (among 13,982 genes) for which all 

the following conditions were satisfied; (a) Gene location was available in the R package (b) there 

was at least one probe in the promoter region.  

 
Investigation of various distances from promoter regions of genes 
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For each gene, we built elastic-net models using methylation CpG sites for various distances (1, 

2, …, 10, 20, 30, 40, 50 Mb) from the promoter region of the gene were built. The elastic-net 

model was also built using all CpG sites on the same chromosome where the gene is located. 

Prediction accuracy was evaluated using 10-fold CV R2. Then, distances were selected that 

maximized the prediction accuracy for each gene.  

 

Evaluating prediction accuracy using multiple regression based on trans eQTMs 
Since traditional multiple regression cannot handle high dimensional data (the number of samples 

< the number of probes), methylation probes were pre-screened before fitting multiple regression 

models.  For each gene, association between a gene and each methylation probe was tested 

using single linear regression models, where the covariate is a probe and the response is a gene 

(expression). Probes were tested in the entire chromosome on which the gene was located. 

Multiple-testing adjustment was performed for each gene using Bonferroni correction at 

significance level 0.05. Using the significantly associated probes, we built a multiple linear 

regression model for each gene. If the significantly associated genes were still more than the 

number of samples in a training set, a ridge regression model (22) was fitted. 10-fold CV was 

used to calculate prediction accuracy (CV R2). 

 

Testing on an independent cohort 
geneEXPLORER was trained using TCGA breast cancer data and tested on GSE39004 data.  

geneEXPLORER models were built using TCGA data for each gene, and models were selected 

that minimized CV error using 10-fold CV. Using the methylation probes from the test dataset as 

inputs of the models, gene expression was predicted for 13,027 genes. Test R2, which is squared 

Pearson’s correlation coefficient between the predicted gene expression and the observed gene 

expression of the test dataset, was calculated. 

For comparison, multiple regression models based on eQTMs were used, as in the previous 

section. We used the training data to select significant probes, using univariate tests with 

Bonferroni correction (𝛼 = 0.05) and to fit multiple regression models. Using the methylation array 

data in the test data as input to the models, gene expression was predicted using the multiple 

regression model for each gene, and test prediction accuracy was calculated. We limited long-

range distance to 10Mb from promoter regions to save computational time. 

 

Applying geneEXPLORER to lung cancer dataset 
For lung cancer data analysis, methylation probes and genes were pre-screened in the same way 

as for breast cancer (395,616 probes and 14,256 genes). The TCGA lung cancer data consist of 

856 samples (827 tumor and 29 normal), for which both 450K-based methylation data and RNA-

Seq gene expression data were available. 
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To compare prediction accuracies of gene expression of both types of cancer, test prediction 

accuracy within each dataset was measured. For each type of cancer, the dataset was divided 

into a training set (4/5 of the samples) and a test set (1/5 of the samples). The procedure was 

repeated 5 times until all gene expression data was predicted.  Test R2 was calculated using the 

squared correlation coefficient between the predicted gene expression and observed gene 

expression. The model was trained using methylation probes within 10Mb from the promoter 

regions of the genes. 

 
Predicting clinical phenotypes 
Breast cancer status and estrogen receptor (ER) status were predicted using the predicted gene 

expression. For cancer status, 788 samples were tumor cells and 85 samples were normal cells, 

among 873 samples from the TCGA breast cancer data. For ER status, 632 samples had ER-

positive status,183 samples had ER-negative status, while 58 samples had missing ER status.  

To predict the clinical phenotypes, 13,982 gene expressions were first predicted in test 

datasets in the same cohort. The data was divided into a training set (4/5 of the samples) and a 

test set (1/5 of the samples). Using the training dataset, 10 folds cross-validation (4/50 of samples 

are in each fold) was used to select a model that maximized prediction accuracy using probes 

within r10Mb from the promoter regions. By inputting methylation in the test dataset into the 

selected model, gene expression in the test dataset was predicted. The procedure was repeated 

five times until all gene expression data was predicted. 

Next, a penalized logistic regression model (elastic-net) was fitted using the 13,982 gene 

expressions as covariates, and a phenotype as a binary response, as described in the following 

equation: 

 𝑙𝑜𝑔𝑖𝑡(𝑝) = ∑ 𝛽̂𝑔𝑦̂𝑔

𝐺

𝑔=1

 (2) 

where p is the probability of a phenotype to be “Yes” (e.g. tumor/ER-positive), 𝑦̂𝑔 is the predicted 

expression of gene g, 𝛽̂𝑔 is the regression coefficient of gene g, and G is the number of predicted 

genes (13,982).  

Note that the elastic-net model automatically selects gene expression that is associated 

with the phenotype. Prediction accuracy was evaluated by area under the ROC curve (AUC) 

using 10-folds CV. 

 

 

RESULTS 
Gene expression prediction by long-range epigenetic regulation (geneEXPLORER) 
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geneEXPLORER quantifies the regulatory effects of CpG methylation on gene expression by 

exploiting long-range regulatory elements up to the entire chromosome on which the gene is 

located. Because multiple distal regulatory elements interact to regulate gene expression 

(14,16,17), geneEXPLORER is expected to make more accurate predictions of gene expression 

than the models that only use cis-elements. As gene expression is often profiled to determine 

clinical phenotypes, the predicted gene expression, therefore, can also be used to predict the 

phenotypes. The prediction accuracy of phenotypes can also indicate the collective effects of 

distal methylations on the phenotypes through gene expression regulation.  

The training procedure of geneEXPLORER is shown in Figure 1. First, given a training 

set of methylation data across samples, an elastic-net model (18) was build, geneEXPLORER, 

where covariates are long-range methylation probes within a certain distance from the promoter 

region (Lg in Figure 1B) and a response is the observed expression level of a gene (Figure 1C). 

Elastic-net was chosen because the elastic-net works well in high-dimensional methylation 

dataset and automatically selects methylation probes that are associated with gene expression.   

During the training phase, geneEXPLORER identifies methylation CpG sites that are associated 

with gene expression and estimate the weights of the identified CpG sites. Second, 

geneEXPLORER with trained weights is used to predict the gene expression using methylation in 

the test dataset. Then, we measure the prediction accuracy using R2. We repeat the procedure 

for all genes. Next, using the predicted gene expression by geneEXPLORER as an input, we 

further build elastic-net logistic regression models to predict binary clinical phenotypes (Figure 
1D). Since we use predicted genes (p=~14,000) as covariates, instead of methylation probes 

(p=~500,000), it is possible to build the prediction model without suffering due to the very large 

number of methylation probes. Through the prediction model, we could estimate the effect of 

methylation on the phenotypes through gene expression regulation.  

 

The collective effect of long-range methylation on gene expression is higher than that of 
promoter and gene region methylation on gene expression 
 

First, using 13,910 expressed genes in 873 TCGA breast cancer samples, we 

investigated how distance of methylation affects gene expression: from ±1Mb from the promoter 

region to the entire chromosome on which the gene is located (see Methods). As the associated 

methylation probes were different for each gene, we selected the distance that maximized 

prediction accuracy (CV R2) (Figure 2A, Figure S1, Figure S2). For most of the genes, long-

range methylation probes were required to predict gene expression accurately:  84% of the genes 

need methylation probes more than ±10Mb away to achieve the best prediction accuracy. 49% of 

the genes required including methylation probes more than ± 35 Mb away from the genes to 

maximize prediction accuracy (Figure 2A). Also, 31% of the genes required methylation values 
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from the entire chromosome to maximize their gene expression accuracy. This shows that most 

genes can be affected by distal regulatory elements that are located more than 10Mb from the 

promoter regions. A possible reason is that even though most enhancers are within a few Mb 

from the regulated gene (14) (also supported by Figure S1), there can be still several enhancers 

that are far away (more than 10 Mb). 

To understand the methylation effect on regulatory regions, gene expression levels were 

predicted using methylation probes in 3 different regulatory regions: 1) promoter, 2) gene, 3) long-

range regions. Gene regions include the promoter region, 5'UTR, first exon, gene body, and 

3'UTR as Illumina annotated.  

Methylation in long-range predicts gene expression far better (average CV R2=0.486) 

than methylation in either promoter (average CV R2=0.064) or gene regions (average CV R2 

=0.218) (Figure 2B). A possible reason is that the collective effects of trans-methylation can exert 

a stronger effect on gene expression than cis-methylation in the promoter or gene region, 

although individual effects of trans-methylation may be weaker than that of cis-methylation. These 

results suggest that distal methylation outside of the promoter and of the gene regions can play 

more important roles in regulating gene expression than methylation on the promoter and the 

gene regions. 

  

Prediction comparison between geneEXPLORER and multiple regression using 
expression quantitative trait methylations (eQTMs) in TCGA breast cancer 
 
To understand the prediction performance of geneEXPLORER in comparison to a traditional 

statistical method, the prediction accuracy of geneEXPLORER in predicting gene expressions 

was compared to a multiple regression model based on trans-eQTMs. For eQTMs, probes are 

selected by univariate tests with Bonferroni correction (p-value < 0.05) for each gene using 

methylation probes in the entire chromosome on which each gene is located (see Method). With 

methylation probes in the same range, geneEXPLORER outperformed the multiple regression 

model based on eQTMs (Figure 2C). geneEXPLORER predicted 97% of the gene expressions 

(13,569 out of 13,982) better than eQTMs. A possible reason may be that multiple testing 

correction methods in eQTMs tend to be too conservative to control false positives, thus 

weakening the power to detect significant probes that are associated with a gene. Too few true 

positive probes in the multiple regression models make impossible to predict gene expressions 

better than geneEXPLORER, which automatically selects probes without statistical tests.  

 

Testing geneEXPLORER on an independent cohort 
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To show that geneEXPLORER can be used to predict gene expression in an independent cohort, 

geneEXPLORER trained in the TCGA BRCA was tested on an independent breast cancer cohort. 

This dataset consists of methylation 450K array and gene expression microarray datasets of 57 

breast tumor samples and 8 adjacent normal samples (GSE39004). The result was compared 

with that of the multiple regressions based on eQTMs for 13,027 expressed genes. We found 

that, for a majority of the genes (10,189, 78%), geneEXPLORER predicted gene expression 

better than the multiple regression based on eQTMs in the independent cohort (Figure 3), 

demonstrating its applicability to independent datasets of the same cancer type. 

 

Applicability of geneEXPLORER to another type of cancer 
To demonstrate its applicability to other types of human cancer, geneEXPLORER was applied to l

ung cancer. TCGA lung cancer data is the combination of lung adenocarcinoma and lung squamo

us cell carcinoma (n=856 samples). We trained and tested the model for each cancer type (see M

ethods). We compared R2 for breast cancer data and lung cancer data for 11,665 overlapping ge

nes (Figure 4). Lung cancer showed a similar high prediction accuracy as the breast cancer (R2 0

.441 for breast cancer and 0.428 for lung cancer). This demonstrated that geneEXPLORER can b

e applied to other cancer types to predict gene expression in the presence of methylation data. 

 

geneEXPLORER accurately predicts expression of tumor-associated genes 
We found that geneEXPLORER accurately predicts expression of multiple genes which play 

important roles in breast cancer. Examples are shown in Figure 5. Polymorphisms of GSTT1, the 

highest predicted gene, are established risk factors for breast cancer (23-25). The mutation of 

GATA3 is known to lead to luminal tumors (26). ESR1 is the estrogen-receptor gene, common in 

primary breast cancers, whose mutation is indicative of resistance to anti-estrogen therapies (27-

32). In addition, breast cancer risk–associated SNPs are enriched in the cistromes of FOXA1 

and ESR1 (33). High expression of SOX10 is observed in triple-negative and metaplastic 

breast carcinomas (34). ERBB2 is a well-known oncogene of breast cancer (35). 

In addition, we also found that geneEXPLORER predicted many oncogenes and tumor 

suppressor genes with high prediction accuracy (Table 1). This means that those genes are 

also regulated by long-range methylation. Since many abnormal enhancer activities are found in 

cancer and enhancer regions are often hypomethylated (13), the oncogenic mechanism involving 

the oncogenes and tumor suppressor genes can be associated with abnormal activities in 

methylation. The roles of these genes in breast cancer have been widely studied at the genetic or 

transcriptomic level but not as much in epigenetics. Since methylation through long-range 

interactions predicted a substantial part of gene expression, geneEXPLORER can further help to 

discover the tumorigenic role of long-range methylation in human cancer. 
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geneEXPLORER accurately predicts clinical features of human cancer based on the 
predicted gene expressions 
Since gene expression profiles often reflect clinical phenotypes (36), to determine potential 

clinical applications of geneEXPLORER, we built predictive models using the predicted gene 

expressions to predict clinical phenotypes of TCGA breast cancer data (see Methods). Based on 

the predicted expression levels of 13,982 genes, we predicted cancer status (tumor / normal), 

Estrogen Receptor (ER) status (positive / negative), 5-year survival (yes / no) and PAM50 breast 

cancer subtypes. Due to the high prediction accuracy of the breast cancer-related genes, high 

prediction accuracies of these phenotypes were expected.  

 Consistent with the expectation, by comparing prediction accuracy between the model 

using the predicted gene expressions and the model using the observed gene expression, we 

found that virtually no difference between the predicted gene expressions and the observed gene 

expressions in predicting the phenotypes (Figure 6, Figure S5, and Table S1). Notably, gene 

expression predicted by methylation almost perfectly predicted both cancer status and ER status 

(AUC=0.999 and 0.94 respectively) (Figure 6).  
Since the predicted gene expression was the portion of gene expression regulated by 

methylation, the high prediction accuracy of the clinical features implies that long-range 

methylation plays a critical role in determining the phenotypes through regulating gene 

expressions in breast cancer. This shows that the predicted gene expression can be applied to 

help diagnose cancer phenotypes or develop personalized treatments as was the approach using 

observed gene expressions (20), even when gene expression data are not available.  

 

DISCUSSION 
In this paper, we developed a statistical machine learning model, geneEXPLORER, to quantify 

methylation effects on the gene expression. Methylation of both cis- and trans- CpG sites was 

incorporated into the statistical model and the methylation effect of not only a single CpG site but 

also the collective effects of long-range CpG sites was measured. Applying geneEXPLORER to 

the TCGA breast cancer dataset demonstrated that 1) most genes are affected by methylation 

more than 10Mb from promoter regions; 2) long-range methylation highly affect gene expression, 

far greater than the effect of methylation in the promoter regions or gene body regions; 3) 

geneEXPLORER outperformed multiple regression models based on eQTMs for the most highly 

expressed genes in TCGA breast cancer datasets as well as an independent cohort; 4) many 

highly predicted genes were related to breast cancer, such as oncogenes and tumor suppressor 

genes; 5) the predicted gene expression predicted breast cancer status and estrogen receptor 

status with almost perfect prediction accuracy, where the predicted gene expression and the 

observed gene expression predicted the phenotypes equally well.  
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 geneEXPLORER was partly motivated by Gamazon et al. (19) who predicted gene 

expression using SNPs nearby to the genes. However, their models showed a markedly lower 

prediction accuracy than geneEXPLORER (mean CV R2=0.15 vs mean CV R2=0.486). The lower 

accuracy could be due to smaller effects of SNPs as opposed to effects of methylation on gene 

expression, due to smaller genomic regions considered (1Mb from TSS), or different tissue and 

disease types. Also, Gamazon et al did not directly use the predicted gene expression levels to 

predict phenotypes. Rather, they developed a method called prediXcan to test the association 

between the predicted gene expression and several phenotypes. In this study, we used the 

predicted gene expression to predict clinical phenotypes, showing strong effects of methylation 

on phenotypes through gene expression regulation. 

 geneEXPLORER showed much better gene expression prediction accuracy compared to 

our previous model, MethylXcan (37), which only incorporated CpG sites in the gene region (from 

promoter to 3’UTR regions) to predict gene expression. In the MethylXcan study, average CV R2 

were 0.05 and 0.08 in two datasets while geneEXPLORER showed average CV R2 of 0.49 in 

TCGA breast cancer. While the difference can be partly attributed to different penalization 

methods (Lasso for MethylXcan vs. elastic net for geneEXPLORER), different tissue/diseases 

(PBMC and adipose in normal or atopic asthma patients for MethylXcan vs. breast cancer for 

geneEXPLORER), these results suggested that the major difference arises from incorporating 

long-range methylation in geneEXPLORER while MethylXcan only used gene regions, which is 

consistent with the result in Figure 2. 

 geneEXPLORER could not be tested on an independent dataset with the same platform 

on which it was trained – geneEXPLORER was trained using RNA-seq data but it was tested 

using gene expression array data (Figure 3). The reason is publicly available datasets with 450K 

methylation array and RNA sequencing in breast cancer were not available with sufficient sample 

size. Since only a dataset with 450K methylation array and gene expression array for breast 

cancer patients (GSE39004) was found, geneEXPLORER on this dataset was tested. This 

showed worse prediction accuracy than when it was tested within the RNA-seq data (RNA-seq: 

R2=0.444 vs microarray: R2=0.263; Figure S3), maybe due to the difference between array data 

and sequencing data, in addition to fitting bias between the training set and the test set.  

We showed the applicability of geneEXPLORER in another cancer type, lung cancer 

(Figure 4). The model was trained in lung cancer and tested in the same cancer type. The 

prediction accuracy of gene expression was as high as that in breast cancer. This implies that 

geneEXPLORER method can be applied to any kind of cancer. However, one caution is that the 

model should be trained in a cancer-specific manner as we showed in Figure S4 since 

enhancers are cancer-specific (13).  

 The scope of this study was limited to predicting gene expression and not 

identifying/discovering regulatory elements such as enhancers. However, since geneEXPLORER 
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selects CpG sites that are associated with gene expressions, the selected CpG sites could be in 

enhancer or insulator regions. Therefore, geneEXPLORER may be further developed to identify 

regulatory regions with stability selection approaches (20).  

 In conclusion, we developed geneEXPLORER, which identified methylation probes that 

regulate gene expression using cis- and trans-methylation. To the best of our knowledge, 

geneEXPLORER is one of the first to estimate the collective cis- and trans-effects of methylation 

on gene expression. Using geneEXPLORER, we found that the collective trans-effects are 

greater than cis-effects of methylation. geneEXPLORER predicted about half of gene expression 

variations on average, which was far more accurate than the estimation using genetic variants 

from Gamazon et al. (19). In addition, the predicted epigenetically regulated gene expression 

successfully predicted cancer phenotypes such as cancer and ER receptor status as accurate as 

the observed gene expressions. Given these results, future application of geneEXPLORER can 

be 1) imputation of gene expression for other cancer types or other diseases, 2) discovery of 

regulatory elements, and 3) diagnosis of disease and prediction of phenotypes.     

 
Supplementary Data are available at NAR online. 
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USCS genome browser https://genome.ucsc.edu/ 

TCGA breast cancer data from UCSC XENA 

https://xenabrowser.net/datapages/?cohort=TCGA%20Breast%20Cancer%20(BRCA)&removeHu

b=https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A443 

TCGA lung cancer data from UCSC XENA 
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Gene expression omnibus GSE39004 dataset  
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Figure 1. GeneEXPLORER modeling: (A) Several methylation probes are associated with gene 
expression, and they can be located far from the gene due to chromatin looping structure. (B) 
Straightened genome upstream and downstream 𝐿𝑔Mb from the promoter region of the gene g. 
There are Mg numbers of probes in the range. (C) Predicting gene expression from the methylation 
probes. Methylation data to predict the expression of gene, g consist of n samples and Mg probes. 
The shaded columns are an example of probes that are associated with gene expression. Our model, 
geneEXPLORER, identifies the associated probes and estimates the weights of them. Gene 
expression of g is predicted by summing the weighted methylation values. The procedure is repeated 
for each gene. (D) Application of geneEXPLORER: Predicting phenotypes from the predicted gene 
expression. After predicting gene expression on the entire genome, we estimated the effects of the 
predicted regulated gene expression on several binary phenotypes (see Methods). 
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Figure 2. Prediction power comparisons using cross-validation (CV) (A) Distance (from 
the promoter region) of probes (Lg in  

The collective effect of B) that maximized prediction accuracy for each gene and the 
cumulative frequency of the distances and the percentage. The distance was selected from 
±1Mb from promoter regions to the entire chromosome on which the gene is located.  (B) 
Gene expression prediction power (CV-R2) by region using TCGA breast cancer data: the 
predictive models were developed based on methylation probes in 1) the promoter, 2) the 
gene, and 3) long-range regions. We plotted 13,910 genes for which at least one probe is 
included in the promoter region of the gene. The three lines in the violin plots indicate 25%, 
50%, and 75% percent quantiles, respectively. (C) Prediction power (CV R2) comparison: 
geneEXPLORER vs. multiple regression based on expression quantitative trait methylations 
(eQTMs) using the entire chromosome. Data points are 13,982 genes. The blue line is y=x. 
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Figure 3. Prediction accuracy on an independent breast cancer cohort (GSE39004). Using 
the prediction model trained on TCGA breast cancer, prediction accuracy tested on 
GSE39004 data was compared between geneEXPLORER and a multiple regression based 
on eQTMs.  Methylation probes in ±10Mb from the promoter regions were used for 13,027 
genes. 
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Figure 4. Boxplot of test R2 for TCGA breast and lung cancer data. geneEXPLORER for 
TCGA lung cancer data demonstrated a similarly good prediction accuracy as for TCGA 
breast cancer. The result was shown for overlapping 11,665 genes. 
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Figure 5. Examples of highly predicted genes that are associated with Breast cancer. 
The genes were predicted by geneEXPLORER using TCGA breast cancer data. R2 is Cross-
validation prediction accuracy. 
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Figure 6. ROC curve for predicting clinical phenotypes using the gene expression 
predicted by geneEXPLORER (predicted) vs. observed gene expressions (observed): 
the predicted gene expression predicts the phenotypes as good as the observed gene 
expressions with perfect prediction accuracy.  
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Table 1. Best predicted 20 oncogenes and 20 tumor suppressor genes by geneEXPLORER 

Gene Full name Chr. Distance2 CV R2 

(a) Oncogene1 

ERBB2 erb-b2 receptor tyrosine kinase 2 chr17 23 0.835 

VANGL2 VANGL planar cell polarity protein 2 chr1 entire 0.831 

BCL2 BCL2, apoptosis regulator chr18 50 0.792 

CACNA1H calcium voltage-gated channel subunit alpha1 H chr16 10 0.775 

ETV6 ETS variant 6 chr12 entire 0.755 

CHRD chordin chr3 24 0.743 

NTN4 netrin 4 chr12 entire 0.737 

EZH2 

enhancer of zeste 2 polycomb repressive complex 2 

subunit chr7 entire 0.736 

STK32B serine/threonine kinase 32B chr4 entire 0.734 

MFGE8 milk fat globule-EGF factor 8 protein chr15 40 0.728 

ERBB3 erb-b2 receptor tyrosine kinase 3 chr12 entire 0.721 

SELP selectin P chr1 entire 0.72 

TCF7 transcription factor 7 (T-cell specific, HMG-box) chr5 40 0.715 

BAMBI BMP and activin membrane bound inhibitor chr10 12 0.711 

SLC9A9 solute carrier family 9 member A9 chr3 entire 0.71 

PLK2 polo like kinase 2 chr5 17 0.696 

HLA-DRA major histocompatibility complex, class II, DR alpha chr6 33 0.693 

STIL SCL/TAL1 interrupting locus chr1 19 0.693 

VIM vimentin chr10 entire 0.686 

GJB3 gap junction protein beta 3 chr1 33 0.685 

(b) Tumor suppressor genes1 

GATA3 GATA binding protein 3 chr10 entire 0.87 

FOXA1 forkhead box A1 chr14 28 0.863 

TBC1D10C TBC1 domain family member 10C chr11 22 0.813 

BIN2 bridging integrator 2 chr12 50 0.755 

INTS4 integrator complex subunit 4 chr11 7 0.754 

EOMES eomesodermin chr3 entire 0.748 

WWP1 WW domain containing E3 ubiquitin protein ligase 1 chr8 entire 0.745 

TBX3 T-box 3 chr12 6 0.74 

ADAM33 ADAM metallopeptidase domain 33 chr20 34 0.733 

DACH1 dachshund family transcription factor 1 chr13 50 0.727 

ZFP36L2 ZFP36 ring finger protein like 2 chr2 19 0.726 

TGFBR2 transforming growth factor beta receptor 2 chr3 36 0.724 

RNF43 ring finger protein 43 chr17 22 0.723 

B3GNT5 

UDP-GlcNAc:betaGal beta-1,3-N-

acetylglucosaminyltransferase 5 chr3 7 0.718 

LIMCH1 LIM and calponin homology domains 1 chr4 35 0.711 

RAD21 RAD21 cohesin complex component chr8 9 0.711 

MXRA8 matrix remodeling associated 8 chr1 entire 0.706 

TTK TTK protein kinase chr6 50 0.702 

HDAC2 histone deacetylase 2 chr6 50 0.701 

MARCKSL1 MARCKS like 1 chr1 entire 0.697 
1 Oncogene and tumor suppressor genes were identified using TUSON algorithm (38) using the same method as Park et al.(39) . 
2 Distance refers to the distance (Mb) from TSS to maximize prediction accuracy. Entire refers to the entire chromosome on which 
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the gene is located. CV R2 is the squared correlation between the predicted expression and the observed expression using 10-fold 

cross validation 
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