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Abstract

Regulation of gene expression is an important mechanism through which genetic
variation can affect complex traits. A substantial portion of gene expression variation
can be explained by both local (c¢is) and distal (trans) genetic variation. Much progress
has been made in uncovering cis-acting expression quantitative trait loci (cis-eQTL),
but trans-eQTL have been more difficult to identify and replicate. Here we take
advantage of our ability to predict the cis component of gene expression coupled with
gene mapping methods such as PrediXcan to identify high confidence candidate
trans-acting genes and their targets. That is, we correlate the cis component of gene
expression with observed expression of genes in different chromosomes. Leveraging the
shared cis-acting regulation across tissues, we combine the evidence of association
across all available GTEx tissues and find 2356 trans-acting/target gene pairs with high
mappability scores. Reassuringly, trans-acting genes are enriched in transcription and
nucleic acid binding pathways and target genes are enriched in known transcription
factor binding sites. Interestingly, trans-acting genes are more significantly associated
with selected complex traits and diseases than target or background genes, consistent
with percolating trans effects. Our scripts and summary statistics are publicly available

for future studies of trans-acting gene regulation.
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Imputed gene associations identify replicable trans-acting genes enriched in

transcription pathways and complex traits

Introduction

Transcription is modulated by both proximal genetic variation (cis-acting), which
likely affects DNA regulatory elements near the target gene, and distal genetic variation
(trans-acting). This distal genetic variation likely affects regulation of a transcription
factor (or coactivator) that goes on to regulate a target gene, often located on a
different chromosome from the transcription factor gene. Expression quantitative trait
loci (eQTL) mapping has been successful at identifying and replicating SNPs associated
with gene expression in cis, typically meaning SNPs within 1 Mb of the target gene.
Because effect sizes are large enough, around 100 samples in the early eQTL studies was
sufficient to detect replicable associations in the reduced multiple testing space of
cis-eQTLs (Cheung et al., 2005; Myers et al., 2007; Stranger et al., 2007).

Trans-eQTLs have been more difficult to replicate because their effect sizes are
usually smaller and the multiple testing burden for testing all SNPs versus all genes can
be too large to overcome. A few studies have had some success; one that focused on
known GWAS SNPs, with a discovery cohort of 5311 individuals and a replication
cohort of 2775 individuals, identified and replicated 103 trans-eQTLs in whole blood
(Westra et al., 2013). A recent follow-up to this study examined GWAS SNPs in 31,684
individuals and found trans-eQTLs in 36% of SNPs tested (Vosa et al., 2018). Unlike
cis-eQTLs, trans-eQTLs are more likely to be tissue-specific, rather than shared across
tissues (Aguet et al., 2017; Vosa et al., 2018). However, a large fraction (52%) of
trans-eQTLs colocalize with at least one cis-eQTL signal (Vosa et al., 2018).

Here, we apply PrediXcan (Gamazon et al., 2015) and MultiXcan to map
trans-acting genes, rather than mapping trans-eQTLs (SNPs). Our method provides
directionality, that is, whether the trans-acting gene activates or represses its target
gene. We use genome-transcriptome data sets from the Framingham Heart Study (FHS)

(Joehanes et al., 2017), Depression Genes and Networks (DGN) cohort (Battle et al.,
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2014), and the Genotype-Tissue expression (GTEx) Project (Aguet et al., 2017). We
show that our approach, called trans-PrediXcan, can identify replicable trans-acting
regulator/target gene pairs. To leverage sharing of cis-eQTLs across tissues and
improve our power to detect more trans-acting effects, we combine predicted expression
across tissues in our trans-MultiXcan model and show that it increases significant
trans-acting/target gene pairs >10-fold.

Pathway analysis reveals the trans-acting genes are enriched in transcription and
nucleic acid binding pathways and target genes are enriched in known transcription
factor binding sites, indicating that our method identifies genes of expected function.
We show that trans-acting genes are more strongly associated with immune-related
traits and height than target or background genes, demonstrating that trans-acting

genes likely play a key role in the biology of complex traits.

Methods
Genome and transcriptome data

Framingham Heart Study (FHS). We obtained genotype and exon
expression array data (Joehanes et al., 2017; Zhang et al., 2015) through application to
dbGaP accession phs000007.v29.pl. Genotype imputation and gene level quantification
were performed by our group previously (Wheeler et al., 2016), leaving 4838 European
ancestry individuals with both genotypes and observed gene expression levels for
analysis. We used the Affymetrix power tools (APT) suite to perform the preprocessing
and normalization steps. First the robust multi-array analysis (RMA) protocol was
applied which consists of three steps: background correction, quantile normalization,
and summarization (Irizarry et al., 2003). The summarized expression values were then
annotated more fully using the annotation databases contained in the
huex10stprobeset.db (exon-level annotations) and huex10sttranscriptcluster.db
(gene-level annotations) R packages available from Bioconductor. The genotype data

were then split by chromosome and pre-phased with SHAPEIT (Delaneau, Marchini, &
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Zagury, 2012) using the 1000 Genomes phase 3 panel and converted to vef format.
These files were then submitted to the Michigan Imputation Server
(https://imputationserver.sph.umich.edu/start.html) (Fuchsberger, Abecasis, & Hinds,
2015; Howie, Fuchsberger, Stephens, Marchini, & Abecasis, 2012) for imputation with
the Haplotype Reference Consortium version 1 panel (McCarthy et al., 2016).
Approximately 2.5M non-ambiguous strand SNPs with MAF > 0.05, imputation R? >
0.8 and, to match GTEx gene expression prediction models, inclusion in HapMap Phase

IT were retained for subsequent analyses.

Depression Genes and Networks (DGN). We obtained genotype and whole
blood RNA-Seq data through application to the NIMH Repository and Genomics
Resource, Study 88 (Battle et al., 2014). For all analyses, we used the HCP (hidden
covariates with prior) normalized gene-level expression data used for the trans-eQTL
analysis in Battle et al. (Battle et al., 2014) and downloaded from the NIMH
repository. Quality control and genotype imputation were performed by our group
previously (Wheeler et al., 2016), leaving 922 European ancestry individuals with both
imputed genotypes and observed gene expression levels for analysis. Briefly, the 922
individuals were unrelated (all pairwise < 0.05) and thus all included in downstream
analyses. Imputation of approximately 650K input SNPs (minor allele frequency [MAF]
> 0.05, Hardy-Weinberg Equilibrium [P > 0.05], non-ambiguous strand [no A/T or
C/G SNPs|) was performed on the Michigan Imputation Server (Fuchsberger et al.,
2015; Howie et al., 2012) with the following parameters: 1000G Phase 1 v3 Shapelt2
(no singletons) reference panel, SHAPEIT phasing, and EUR population.
Approximately 1.9M non-ambiguous strand SNPs with MAF > 0.05, imputation R? >
0.8 and, to match GTEx gene expression prediction models, inclusion in HapMap Phase

IT were retained for subsequent analyses.

Gene expression prediction models

Elastic net (alpha = 0.5) models built using GTEx V6p genome-transcriptome

data from 44 tissues (Barbeira et al., 2018) were downloaded from
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http://predictdb.org/ from the GTEx-V6p-HapMap-2016-09-08.tar.gz archive.

Mappability quality control

Genes with mappability scores less than 0.8 and gene pairs with a positive
cross-mappability k-mer count were excluded from our analysis (Saha & Battle, 2018;
Saha et al., 2017). Gene mappability is computed as the weighted average of its
exon-mappability and untranslated region (UTR)-mappability, weights being
proportional to the total length of exonic regions and UTRs, respectively. Mappability
of a k-mer is computed as 1/(number of positions k-mer maps in the genome). For
exonic regions, k = 75 and for UTRs, k = 36. Cross-mappability between two genes, A
and B, is defined as the number of gene A k-mers (75-mers from exons and 36-mers
from UTRs) whose alignment start within exonic or untranslated regions of gene B
(Saha & Battle, 2018; Saha et al., 2017).

In addition, to further guard against false positives, we retrieved RefSeq Gene
Summary descriptions from the UCSC hgFixed database on 2018-10-04 and removed
genes from our analyses with a summary that contained one or more of the following

strings: "paralog', "pseudogene’, "retro".

trans-PrediXcan

In order to map trans-acting regulators of gene expression, we implemented
trans-PrediXcan, which consists of two steps. First, we predict gene expression levels
from genotype dosages using models trained in independent cohorts to protect against
false positives that may occur by training and testing in the same cohort. As in
PrediXcan (Gamazon et al., 2015), this step gives us an estimate of genetic component
of gene expression, GReX , for each gene. In the second step, for each GReX estimate,
we calculate the correlation between GReX and the observed expression level of each
gene located on a different chromosome. As in Matrix eQTL (Shabalin, 2012), variables
were standardized to allow fast computation of the correlation and test statistic. In the
discovery phase, we predicted gene expression in the FHS cohort using each of 44 tissue

models from the GTEx Project. Significance was assessed via the Benjamini-Hochberg
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false discovery rate (FDR) method (Benjamini & Hochberg, 1995), with FDR < 0.05 in
each individual tissue declared significant. We tested discovered trans-acting/target
gene pairs for replication in the DGN cohort and declared those with P<0.05 replicated.
To estimate the expected true positive rate, we calculate 7, statistics using the qvalue
method (Aguet et al., 2017; Storey & Tibshirani, 2003). 7 is the expected true positive
rate and was estimated by selecting the gene pairs with FDR < 0.05 in FHS and
examining their P value distribution in DGN. 7, is the proportion of false positives
estimated by assuming a uniform distribution of null P values and m = 1 — mg (Storey
& Tibshirani, 2003).

For comparison to our trans-PrediXcan method, we performed traditional
trans-eQTL analysis in FHS and DGN using Matrix eQTL (Shabalin, 2012), where

trans is defined as genes on different chromosomes from each SNP.

trans-MultiXcan

To determine if jointly modeling the genetic component of gene expression across
tissues would increase power to detect trans-acting regulators, we applied MultiXcan
(Barbeira et al., 2019) to our transcriptome cohorts. In our implementation of
MultiXcan, predicted expression from all available GTEx tissue models (up to 44) were
used as explanatory variables. To avoid multicolinearity, we use the first k principal
components of the predicted expression in our regression model for association with
observed (target) gene expression. We keep the first k& principal components out of i

principal components estimated where

>\max
< 30
Ai

where \; is an eigenvalue in the predicted expression covariance matrix (Barbeira et al.,
2019). A range of thresholds were previously tested and yielded similar results
(Barbeira et al., 2019). We used an F-test to quantify the significance of the joint fit.
We tested trans-acting/target gene pairs discovered in FHS (FDR < 0.05) for

replication in the DGN cohort and declared those with P < 0.05 replicated.
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eQTLGen comparison

We compared our trans-PrediXcan and trans-MultiXcan FHS results to eQTLs
discovered in eQTLGen, a blood eQTL study of 31,684 individuals (Vosa et al., 2018).
Note, eQTLGen includes the FHS cohort (n=4838) we used in our trans-PrediXcan and
trans-MultiXcan analyses, and thus it is not a completely independent cohort. To
determine the expected distribution of trans-eQTLs under the null of no association
between predicted and observed expression, we randomly sampled without replacement
the lists of predicted and observed genes to generate 1000 sets of "trans-acting/target
gene pairs', each the same size and with the same chromosome distribution as the
observed results from either trans-PrediXcan or trans-MultiXcan. We then counted how
many 'trans-acting genes' in each set had an eSNP in their expression prediction model
(non-zero effect size) that targeted the same gene in eQTLGen. We compared this
distribution to the observed number of trans-acting/target gene pairs that had a
trans-eQTL in eQTLGen to obtain an empirical P value (the number of times the
permuted overlap exceeded the observed overlap divided by 1000). To calculate the
fold-enrichment of trans-eQTLs found in our top trans-PrediXcan and trans-MultiXcan
FHS gene pairs (FDR < 0.05), we determined how many gene pairs included a

matching eQTLGen trans-eQTL across all tested gene pairs.

Pathway enrichment analysis

We used FUMA (Functional mapping and annotation of genetic associations)
(Watanabe, Taskesen, Van Bochoven, & Posthuma, 2017) to test for enrichment of
biological functions in our top trans-acting and target genes. We limited our
hypergeometric enrichment tests to Reactome (MSigDB v6.1 ¢2), Gene Ontology (GO)
(MMSigDB v6.1 ¢5), transcription factor targets (MSigDB v6.1 ¢3), and GWAS
Catalog (e91_r2018-02-06) pathways. We required at least 5 trans-acting or target
genes to overlap with each tested pathway. For the trans-acting gene enrichment tests,
there were 182 unique trans-acting genes at FDR < 0.05 in FHS and P < 0.05 in DGN

(Table S2) and the background gene set was the 16,185 genes with a MultiXcan model.
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For the target gene enrichment tests, there were 211 unique target genes at FDR < 0.05
in FHS and P < 0.05 in DGN (Table S2) and the background gene set was the 12,445
expressed genes. Pathways with Benjamini-Hochberg FDR < 0.05 were considered

significant and reported.

We also tested the larger discovery gene sets from FHS (FDR < 0.05) for
enrichment in known transcription factors and signaling proteins. The list of
transcription factors were collected from Ravasi et al. (Ravasi et al., 2010) and signaling
proteins were genes annotated as phosphatases and kinases in Uniprot (Roy et al., 2013;
The UniProt Consortium, 2012). We used the hypergeometric test (hypergeom function
from scipy.stats Python library) to determine the significance of enrichment. Given
the size of the background gene set, M, number of genes with the property of interest in
the background, K, and the size of the selected gene set, N, the hypergeometric test
calculates the probability of observing x or more genes in the selected gene set with the
property of interest. In our setting, K is the number of genes annotated as a TF or

signaling protein and N is the size of the discovery gene sets.

trans-acting and target gene association studies with complex traits

We retrieved S-PrediXcan (summary statistic PrediXcan) results from the
gene2pheno.org database (Barbeira et al., 2018) for immune-related traits and height.
We focused on S-PrediXcan results obtained from gene expression prediction models
built using DGN whole blood because that was the largest model cohort with results
available. Because the expression prediction models were built using whole blood data,
we chose to examine blood and immune related traits available in gene2pheno.org from
UK Biobank (UKB) and a second cohort. We also examined height due to the large
cohorts available. Traits available from UKB that we analyzed include '50 standing
height' (n=>500,131), "Non-cancer illness code, self-reported: asthma" (n= 382,462), and
"Non-cancer illness code, self-reported: systemic lupus erythematosis/sle" (n= 382,462).
Red and white blood cell count S-PrediXcan results were available from a meta-analysis

that combined the UKB and INTERVAL cohorts, n=173,480 (Astle et al., 2016). We
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also examined S-PrediXcan results for systemic lupus erythematosus from
IMMUNOBASE (n=23,210) (Bentham et al., 2015), asthma from GABRIEL
(n=26,475) (Moffatt et al., 2010), and height from GIANT (n=253,288) (Wood et al.,
2014). For each trait, we compared the observed vs. expected P value distributions via
QQ plots for three groups of genes: trans-acting genes discovered in FHS MultiXcan
(FDR < 0.05), target genes discovered in FHS MultiXcan (FDR < 0.05), and
background genes tested in MultiXcan that were not significant. In each cohort, there
were approximately 560 trans-acting genes (FHS FDR < 0.05), 700 target genes (FHS
FDR < 0.05), and 9900 background genes.

R packages

R packages used in this work include huex10stprobeset.db (MacDonald, 2015a),
huex10sttranscriptcluster.db (MacDonald, 2015b), Matrix EQTL (Shabalin, 2012),
qvalue (Bass, Storey, Dabney, & Robinson, 2017; Storey & Tibshirani, 2003), data.table
(Dowle & Srinivasan, 2017), dplyr (Wickham, Francois, Henry, & Muller, 2017), ggplot2
(Wickham, 2009), ggrepel (Slowikowski, 2017), readx] (Wickham & Bryan, 2017), and
gridExtra (Auguie, 2017).

Results
Trans-acting gene discovery and validation with trans-PrediXcan

We sought to map trans-acting and target gene pairs by applying the PrediXcan
framework to observed expression as traits and term the approach trans-PrediXcan
(Fig. 1). We excluded genes with poor genome mappability from our analyses (see
Methods). We compared trans-PrediXcan results between the discovery FHS whole
blood cohort (n = 4838) and the validation DGN whole blood cohort (n = 922). We
first used PrediXcan (Gamazon et al., 2015) to generate a matrix of predicted gene
expression from FHS genotypes using prediction models built in GTEx whole blood

(Barbeira et al., 2018). Then, we calculated the correlation between predicted and
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observed FHS whole blood gene expression. Examining the correlations of gene pairs on
different chromosomes, 55 pairs were significantly correlated in FHS, with an expected
true positive rate (m) of 0.72 in DGN (Table 1, Fig. S1). Gene pair information and

summary statistics are shown in Table S1.

Of the 55 trans-acting/target gene pairs, 29 had a negative effect size, meaning
the trans-acting gene may be a repressor because decreased expression of the
trans-acting gene is associated with increased expression of the target gene. Conversely,
26 had a positive effect size, meaning the trans-acting gene may be an activator because
increased expression of the trans-acting gene is associated with increased expression of
the target gene. Note that the directions of effect of 69% of these gene pairs discovered
in FHS are consistent in DGN (Fig. 2). None of the trans-acting/target gene pairs we
identified also acted in the reverse direction, that is, if gene A was trans-acting to target
gene B, gene B was not also trans-acting to target gene A. Looking at all results,
beyond just the top signals, there was no correlation in effect sizes between such pairs
(P = 0.53). Therefore, our trans-PrediXcan method is not simply capturing a

co-expression network.

To compare the performance of our trans-PrediXcan approach to traditional
trans-eQTL analysis, we also examined the P-value distribution of top FHS trans-eQTLs
(FDR < 0.05) in DGN to determine the expected true positive rate. In our SNP-level
trans-eQTL analysis, m was 0.46, 36% lower than the trans-PrediXcan m; of 0.72. We
also compared our results to a recent blood eQTL study in the eQTLGen cohort (Vosa
et al., 2018). Of the 55 whole blood model gene pairs we discovered in FHS, 5/55 (9%)
have at least one trans-eQTL (FDR < 0.05) shared with eQTLGen, more than expected
by chance based on the genes tested (empirical P < 0.001, Table S1). This means our
prediction model for the trans-acting gene includes a nonzero weight for the eQTLGen
eSNP and that the target gene in eQTLGen and our whole blood results is the same.
Across all 2.4x107 gene pairs tested, just 3547 (0.01%) included a shared trans-eQTL
with eQTLGen. Thus, top trans-PrediXcan gene pairs show a 900-fold enrichment
(9/0.01) of eQTLGen trans-eQTLs among whole blood model prediction SNPs
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compared to all gene pairs tested. In addition, of the 5 gene pairs with a matching
trans-eQTL in eQTLGen, all 5 also had a cis-eSNP in eQTLGen (FDR < 0.05)
targeting the trans-acting gene from our results and present in the prediction model of

the trans-acting gene. A list of these overlapping eSNPs is shown in Table S2.

Multi-tissue prediction improves trans-acting gene discovery and validation

To leverage tissue sharing of cis-eQTLs, we used a multivariable regression
approach called MultiXcan, which accounts for correlation among predicted expression
levels across 44 GTEx tissues (Barbeira et al., 2019). Notice that even though we seek
to detect trans regulation, the instruments we are using, i.e. predicted expression, are
based on cis regulation. Thus, it makes sense to combine information across tissues to
obtain the best local predictor of gene expression. To address multicolinearity issues,
MultiXcan uses principal component analysis to reduce the number of independent
variables to those with the largest variation (Barbeira et al., 2019). When we applied
trans-MultiXcan to the FHS data, the number of trans-acting/target gene pairs
increased dramatically (Fig. 3). At FDR < 0.05, there were 2,356 trans-acting gene
pairs discovered in FHS using the multi-tissue method, while only 55 pairs were
discovered with the GTEx whole blood predictors alone (Table 1). We could test 1,902
of these multi-tissue gene pairs for replication in DGN and found 535 of them were
significant at P < 0.05 (blue in Fig. 4). Although the expected true positive rate was
lower with the MultiXcan model (7, = 0.49) than with the single tissue model
(m1 = 0.72), the absolute number of replicate gene pairs was much higher (Table 1, Fig.
S1). Thus, the number of genes that replicated in both cohorts was 20 times higher in
the multi-tissue model compared to the whole blood model (Table 1). Similarly, for gene
pairs tested in both models, the adjusted R? was consistently higher in the multi-tissue
model than the whole blood model across gene pairs (Fig. S2). Summary statistics of

the 2,356 gene pairs discovered in the trans-MultiXcan are available in Table S3.

Of the MultiXcan gene pairs we found, 728/2356 (31%) replicated in the blood

eQTLGen cohort. That is, 31% of MultiXcan gene pairs have at least one trans-eQTL
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shared with eQTLGen, more than expected by chance based on the genes tested
(empirical P < 0.001, Table S3). This means that at least one tissue’s prediction model
for the trans-acting gene includes a nonzero weight for the eQTLGen eSNP and that
the target gene in eQTLGen and our multi-tissue results is the same. Across all 2x108
gene pairs tested, 168,893 (0.08%) included a shared trans-eQTL with eQTLGen. Thus,
top trans-MultiXcan gene pairs show an approximately 400-fold enrichment (31/0.08) of
eQTLGen trans-eQTLs among prediction SNPs compared to all gene pairs tested.
trans-eQTLs with eSNPs in our MultiXcan trans-acting gene models with the same
target genes are shown in Table S4. In addition, of these 728 gene pairs with a
matching trans-eQTL in eQTLGen, 283 (39%) also had a cis-eSNP in eQTLGen (FDR
< 0.05) targeting the trans-acting gene from our results and present in the prediction

model of the trans-acting gene in at least one tissue.

Master trans-acting genes associate with many targets

Points that form vertical lines in Figure 4 are indicative of potential master
regulators, i.e. genes that regulate many downstream target genes. We defined master
regulators as trans-acting genes that associate with 50 or more target genes. In our
MultiXcan analysis, we discovered three potential master regulator loci, which are
labeled in Figure 4. The most likely master regulator we identified with MultiXcan is
ARHGEFS3 on chromosome 3. ARHGEF3 associated with 53 target genes in FHS
(FDR < 0.05) and 45/51 tested replicated in DGN (P < 0.05). Also, SNPs in
ARHGEFS3 have previously been identified as trans-eQTLs with multiple target genes.
ARHGEFS encodes a ubiquitously expressed guanine nucleotide exchange factor.
Multiple GWAS and functional studies in model organisms have implicated the gene in
platelet formation (Astle et al., 2016; Gieger et al., 2011; Schramm et al., 2014; Yao et
al., 2017; Zhang et al., 2014). Similarly, SNPs at the chromosome 17 locus we identified
have also been identified as trans-eQTLs (Kirsten et al., 2015) and one study showed
the the trans effects are mediated by cis effects on AP2B1 expression (Yao et al., 2017).

AP2B1 encodes a subunit of the adaptor protein complex 2 and GWAS have implicated
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it in red blood cell and platelet traits (Astle et al., 2016).

trans-acting genes are enriched in transcription factor pathways

We tested replicated trans-acting genes for enrichment in Reactome (MSigDB v6.1
c2), Gene Ontology (GO, MSigDB v6.1 ¢5), transcription factor targets (MSigDB v6.1
c3), and GWAS Catalog (€91 r2018-02-06) pathways using FUMA (Watanabe et al.,
2017). In our MultiXcan analysis, there were 174 unique trans-acting genes at FDR <
0.05 in FHS and P < 0.05 in DGN (Table S2). We required at least 5 trans-acting genes
to overlap with each tested pathway. The background gene set used in the enrichment
test were the 15,432 genes with a MultiXcan model. All pathways with FDR < 0.05 are

shown in Table 2 and their gene overlap lists are available in Table S5.

The top two most significant pathways were the GO nucleic acid binding
transcription factor activity pathway and the reactome generic transcription pathway
(Table 2). The trans-acting genes in each pathway are spread across multiple
chromosomes as shown in Figure S3. PLAGL1, which encodes a C2H2 zinc finger
protein that functions as a suppressor of cell growth, is a notable trans-acting gene in
the GO nucleic acid binding transcription factor activity pathway. Of the four PLAGLI
target genes discovered in FHS, three replicated in DGN (Table S2). One notable gene
in the reactome generic transcription pathway is MED2/. In our MultiXcan analysis,
MED2 targeted 13 genes in FHS (FDR < 0.05) and 8/12 replicated in DGN (P <
0.05, Table S2). MED2/ encodes mediator complex subunit 24. The mediator complex
is a transcriptional coactivator complex required for the expression of almost all genes.
The mediator complex is recruited by transcriptional activators or nuclear receptors to
induce gene expression, possibly by interacting with RNA polymerase II and promoting
the formation of a transcriptional pre-initiation complex (Gustafsson & Samuelsson,
2001).

We also found a significant enrichment of transcription factors from Ravasi et al.
(Ravasi et al., 2010) in the 766 unique trans-acting genes discovered in FHS with FDR

< 0.05 (hypergeometric test P = 9.56x1073). However, the same trans-acting genes
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were not enriched in signaling proteins (P = 0.71).

Target genes are enriched in transcription factor binding sites

We tested MultiXcan replicated target genes for enrichment in the same pathways
tested in the trans-acting gene analysis. There were 201 unique target genes at FDR <
0.05 in FHS and P < 0.05 in DGN (Table S2). While just eight pathways were enriched
in trans-acting genes, 118 pathways were enriched in the target genes (Table S5). Two
of these 118 target gene enriched pathways were transcription factor binding sites
(Table 3). No binding motifs were enriched in the trans-acting genes. Additional
pathways enriched in target genes included several platelet activation and immune
response pathways (Table S5). Target genes were spread across multiple chromosomes
(Fig. S4). The target genes were not enriched for reactome generic transcription or GO
nucleic acid binding transcription factor activity pathways. The 945 unique target genes
discovered in FHS with FDR <0.05 were also not enriched for transcription factors
(hypergeometric test P = 0.98) or signaling proteins (P = 0.46) from Ravasi et al.
(Ravasi et al., 2010).

Trans-acting genes are more likely to associate with complex traits

Trans-acting genes may drive complex trait inheritance, which has been
formalized in the omnigenic model (Boyle et al., 2017; Liu, Li, & Pritchard, 2018). If
true, we hypothesized that the trans-acting genes we discovered using our
trans-MultiXcan model should be more significantly associated with complex traits
than both their targets and other background genes. We focused on immune related
complex traits because our observed gene expression data in FHS and DGN are from
whole blood. We also used height as a representative complex trait because of the large
sample sizes available.

Using height and immune related phenotypes from the UK Biobank and other
large consortia (see Methods) as representative complex traits, we compared PrediXcan
results among three classes of gene: trans-acting, target, and background genes.

trans-acting and target genes were those discovered in our FHS MultiXcan analysis
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(FDR < 0.05). Background genes are those tested in MultiXcan, but not found
significant. We examined QQ plots of PrediXcan results for each class in two large
studies of height, red and white blood cell counts, two studies of systemic lupus
erythematosus, and two studies of asthma. For each trait, we found that trans-acting
gene associations are more significant than background gene associations (Fig. 5).
Though attenuated in comparison to trans-acting genes, target genes are also more

significant than background genes for several traits (Fig. 5).

Discussion

We apply the PrediXcan framework to gene expression as a trait (trans-PrediXcan
approach) to identify trans-acting genes that potentially regulate target genes on other
chromosomes. We identify replicable predicted gene expression and observed gene
expression correlations between genes on different chromosomes. Compared to
trans-eQTL studies performed in the same cohorts, our trans-PrediXcan model shows a
higher replication rate for discovered associations. For example, using the GTEx whole
blood prediction model we show the expected true positive rate is 0.72 (Table 1). When
we performed a traditional trans-eQTL study and examined the P-value distribution of
top FHS eQTLs (FDR < 0.05) in DGN, the true positive rate was only 0.46. In an
independent analysis of the same data, only 4% of eQTLs discovered in FHS replicated
in DGN (Joehanes et al., 2017).

In contrast to our results, a recent study concluded trans-eQTLs have limited
influence on complex trait biology (Yap et al., 2018). However, the authors mention
limited power in their analyses and found most of the trans-eQTLs examined were not
also cis-eQTLs for nearby genes (Yap et al., 2018). To combat lack of power, others
have used cis-mediation analysis to identify trans-eQTLs (Yang et al., 2017; Yao et al.,
2017). Similar to our approach, a mechanism is built in to significant associations found
via cis-mediation studies: the cis-acting locus causes variable expression of the local
gene, which in turn leads to variable expression of its target gene on a different

chromosome. Unlike cis-mediation analysis, our trans-PrediXcan approach allows
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multiple SNPs to work together to affect expression of the trans-acting gene and thus
may reveal additional associations. A similar method, developed in parallel to ours,
combines cis-region SNPs using a cross-validation BLUP to identify trans-acting genes
within one eQTL cohort (Liu, Mefford, et al., 2018). Our findings have the advantage of
discovery in a larger cohort, multiple tissue integration, and replication in an

independent cohort.

When predictive models built in 44 different tissues are combined with MultiXcan,
we increase the number of trans-acting gene pairs identified in FHS and replicated in
DGN 20-fold compared to single-tissue models (Table 1). In the recent release of
eQTLGen, the largest trans-eQTL study to date, 52% of trans-eQTL signals colocalize
with at least one cis-eQTL signal (Vosa et al., 2018). As currently implemented, our
trans-PrediXcan method will only find gene pairs that have cis-acting regulation of the
predicted (trans-acting) gene. The SNPs used to predict expression of each gene are all
within 1Mb of the gene, i.e. in cis. Previous work has shown that cis-eQTLs are often
shared across many tissues (Aguet et al., 2017). Thus, we show combining cis-acting
effects across tissues as "replicate experiments" increases our power to detect
trans-acting associations. For example, if there is a cis-acting effect that is common
across most tissues but the trans-acting effect occurs in one specific tissue, MultiXcan
will be able to identify the trans-acting effect even if we do not have a prediction model
in the causal tissue. Our choice to use PC regression is a conservative approach,
discarding less informative components of expression variation at the cost of slightly
reduced power. This "denoising" property may limit our ability to detect tissue-specific
effects, which may be revealed in future studies with larger sample sizes and prediction
modeling approaches that include distal genetic variation. Another limitation is that
our approach can detect false positives due to linkage disequilibrium and thus
colocalization and functional studies are required to reveal the causal trans-acting

regulator of gene expression.

We found trans-acting genes discovered in our MultiXcan analysis were enriched

in transcription pathways and thus previously known to function in transcription
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regulation. Master regulators revealed by MultiXcan, ARHGEF3 and AP2B1, were also
previously known (Kirsten et al., 2015; Yao et al., 2017). Our transcriptome association
scan presented here integrates gene expression prediction models from multiple tissues
and replicates results in an independent cohort. Encouragingly, the trans-acting and
target genes we identify are enriched in transcription and transcription factor pathways.

Using asthma, lupus, blood cell counts, and height as representative complex
traits, trans-acting gene associations with these traits are more significant than target
and background gene associations in multiple cohorts. This suggests percolating effects
of trans-acting genes through target genes. We make our scripts and summary statistics
available for future studies of trans-acting gene regulation at

https://github.com/WheelerLab/trans-PrediXcan.
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trans-acting/target gene pairs meeting significance in FHS (FDR < 0.05) were tested
for replication in DGN. Shown are the p-value distributions of these gene pairs in DGN

along with m diagnosis plots for the whole blood and multi-tissue models.
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trans-acting genes discovered and replicated with MultiXcan are enriched in

transcription pathways. Shown are the MultiXcan replicated (FHS FDR <0.05 and
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DGN P <0.05) results plotted by chromosomal position. The size of the point is

proportional to -log;, p-value. Trans-acting genes in the title pathway are labeled in

blue.
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Target genes discovered and replicated with MultiXcan are enriched in transcription
factor binding site pathways. Shown are the MultiXcan replicated (FHS FDR <0.05
and DGN P <0.05) results plotted by chromosomal position. The size of the point is
proportional to -log;, p-value. Gene pairs with the target gene containing the title

binding site are labeled in red (trans-acting gene:target gene).

S1 Table

trans-PrediXcan whole blood model results in FHS (FDR < 0.05) and DGN.

S2 Table

eQTLGen (Vosa et al., 2018) replication of FHS trans-PrediXcan whole blood

model gene pairs (FDR < 0.05).

S3 Table

trans-MultiXcan results in FHS (FDR < 0.05) and DGN.
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S4 Table

eQTLGen (Vosa et al., 2018) replication of FHS trans-MultiXcan whole blood
model gene pairs (FDR < 0.05).

S5 Table

FUMA gene set enrichment results of replicated (FHS FDR < 0.05 and DGN P <

0.05) trans-acting and target genes.
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Table 1

Trans-acting and target gene pair counts and replication rates across GTEx

tissue models.

Model FHS FDR<0.05 FHS Tested DGN P<0.05 DGN Tested DGN m
Multi-Tissue 2356 2.0E4-08 935 1902 0.49
(MultiXcan)
Whole Blood 25 2.4E407 26 o4 0.72
(PrediXcan)

FHS = Framingham Heart Study whole blood cohort, DGN = Depression Genes and
Networks whole blood cohort, P = p-value, FDR = Benjamini-Hochberg false discovery

rate, m; = expected true positive rate.
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Table 2
Replicated trans-acting genes (MultiXcan FDR < 0.05 in FHS and P < 0.05

in DGN) are enriched in transcription and GWAS pathways.

Source GeneSet N n P-value adjusted P

GO molecular functions GO nucleic acid binding 1000 33 6.40e-09 5.76e-06
transcription factor activity
Reactome Reactome generic transcrip- 292 15  2.18e-07 1.47e-04

tion pathway

GWAS catalog Reticulocyte count 138 10 4.80e-07 1.47e-04

GWAS catalog Reticulocyte fraction of red 147 9 6.76e-06 2.75e-03
cells

GWAS catalog White blood cell count 152 8 5.90e-05 1.57e-02

GWAS catalog Neuroticism 134 7 1.44e-04 2.20e-02

GWAS catalog Platelet count 228 9 2.78e-04 3.40e-02

GWAS catalog Crohn’s disease 525 15 3.19e-04 3.54e-02

FHS = Framingham Heart Study, DGN = Depression Genes and Networks cohort, N =
number of genes in GeneSet tested for trans-acting effects, n = number of replicated
genes in GeneSet, P-value = FUMA (Watanabe et al., 2017) enrichment P, adjusted P

= enrichment Benjamini-Hochberg false discovery rate
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Table 3

Replicated target genes (MultiXcan FDR < 0.05 in FHS and P < 0.05 in
DGN) are enriched in transcription factor (TF) binding sites in the regions
spanning up to 4 kb around their transcription starting sites (MSigDB v6.1
c3).

TF binding site N n P-value adjusted P

WGGAATGY_TEF1_Q6 247 14 2.23e-05 1.37e-02
PAX8 B 68 6 1.56e-04 4.79e-02

FHS = Framingham Heart Study, DGN = Depression Genes and Networks cohort, N =
number of genes in GeneSet tested for target gene effects, n = number of replicated
genes in GeneSet, P-value = FUMA (Watanabe et al., 2017) enrichment P, adjusted P

= enrichment Benjamini-Hochberg false discovery rate
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Figure 1. Overview of approach to detect and characterize trans-acting genes. First, in
our Whole Blood Model, we predict mRNA expression levels from cis region eQTLs,
using weights trained in a single tissue (GTEx whole blood). These predicted
expression levels (trans-acting genes) are tested for association with observed expression
on different chromosomes (target genes). Second, in our Multi-Tissue Model, we use
predicted mRNA expression levels from multiple tissues in a multiple regression to
detect trans-acting genes and their targets. Third, we compare models and test

significant trans-acting and target genes for enrichment in pathways or in GWAS traits.
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Figure 2. Comparison between FHS and DGN results using the GTEx whole blood
prediction models. Results of trans-acting gene pairs with FDR < 0.05 in the discovery
cohort (FHS) are shown for both FHS (x-axis) and the validation cohort DGN (y-axis).
The t-statistics from the linear models testing predicted trans-acting expression for

association with observed target gene expression are plotted.
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Figure 3. Multi-Tissue trans-MultiXcan finds more trans-acting gene pairs than a single
tissue trans-PrediXcan (Whole Blood) model. Quantile-quantile plots show an increase
in signal in the Multi-Tissue model compared to the Whole Blood model. -log;,

p-values are capped at 30 for ease of viewing. The 1e6 most significant P values in each

model are plotted to manage file size.
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Figure j. Trans-acting/target gene pairs discovered using MultiXcan in FHS. Each
point corresponds to one gene pair (FHS FDR < 0.05) positioned by chromosomal
location of the trans-acting gene (x-axis) and target gene (y-axis). Size of the point is
proportional to the -log;y p-value in FHS. Gene pairs that replicated in DGN
MultiXcan (P < 0.05) are colored blue. Master trans-acting loci with greater than 50

target genes are labeled.
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Figure 5. Complex trait associated genes are enriched for trans-acting genes.

Quantile-quantile plots of S-PrediXcan results for each labeled trait show an increase in

signal for trans-acting genes (FHS MultiXcan FDR < 0.05) compared to target genes

(FHS MultiXcan FDR < 0.05) and background (tested in MultiXcan, but not

significant) genes. When present, -log;, p-values greater than 30 are capped at 30 for

ease of viewing. RBC = red blood cell, WBC = white blood cell, SLE = systemic lupus

erythematosus.
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