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Abstract

Regulation of gene expression is an important mechanism through which genetic

variation can affect complex traits. A substantial portion of gene expression variation

can be explained by both local (cis) and distal (trans) genetic variation. Much progress

has been made in uncovering cis-acting expression quantitative trait loci (cis-eQTL),

but trans-eQTL have been more difficult to identify and replicate. Here we take

advantage of our ability to predict the cis component of gene expression coupled with

gene mapping methods such as PrediXcan to identify high confidence candidate

trans-acting genes and their targets. That is, we correlate the cis component of gene

expression with observed expression of genes in different chromosomes. Leveraging the

shared cis-acting regulation across tissues, we combine the evidence of association

across all available GTEx tissues and find 2356 trans-acting/target gene pairs with high

mappability scores. Reassuringly, trans-acting genes are enriched in transcription and

nucleic acid binding pathways and target genes are enriched in known transcription

factor binding sites. Interestingly, trans-acting genes are more significantly associated

with selected complex traits and diseases than target or background genes, consistent

with percolating trans effects. Our scripts and summary statistics are publicly available

for future studies of trans-acting gene regulation.
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Imputed gene associations identify replicable trans-acting genes enriched in

transcription pathways and complex traits

Introduction

Transcription is modulated by both proximal genetic variation (cis-acting), which

likely affects DNA regulatory elements near the target gene, and distal genetic variation

(trans-acting). This distal genetic variation likely affects regulation of a transcription

factor (or coactivator) that goes on to regulate a target gene, often located on a

different chromosome from the transcription factor gene. Expression quantitative trait

loci (eQTL) mapping has been successful at identifying and replicating SNPs associated

with gene expression in cis, typically meaning SNPs within 1 Mb of the target gene.

Because effect sizes are large enough, around 100 samples in the early eQTL studies was

sufficient to detect replicable associations in the reduced multiple testing space of

cis-eQTLs (Cheung et al., 2005; Myers et al., 2007; Stranger et al., 2007).

Trans-eQTLs have been more difficult to replicate because their effect sizes are

usually smaller and the multiple testing burden for testing all SNPs versus all genes can

be too large to overcome. A few studies have had some success; one that focused on

known GWAS SNPs, with a discovery cohort of 5311 individuals and a replication

cohort of 2775 individuals, identified and replicated 103 trans-eQTLs in whole blood

(Westra et al., 2013). A recent follow-up to this study examined GWAS SNPs in 31,684

individuals and found trans-eQTLs in 36% of SNPs tested (Vosa et al., 2018). Unlike

cis-eQTLs, trans-eQTLs are more likely to be tissue-specific, rather than shared across

tissues (Aguet et al., 2017; Vosa et al., 2018). However, a large fraction (52%) of

trans-eQTLs colocalize with at least one cis-eQTL signal (Vosa et al., 2018).

Here, we apply PrediXcan (Gamazon et al., 2015) and MultiXcan to map

trans-acting genes, rather than mapping trans-eQTLs (SNPs). Our method provides

directionality, that is, whether the trans-acting gene activates or represses its target

gene. We use genome-transcriptome data sets from the Framingham Heart Study (FHS)

(Joehanes et al., 2017), Depression Genes and Networks (DGN) cohort (Battle et al.,
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2014), and the Genotype-Tissue expression (GTEx) Project (Aguet et al., 2017). We

show that our approach, called trans-PrediXcan, can identify replicable trans-acting

regulator/target gene pairs. To leverage sharing of cis-eQTLs across tissues and

improve our power to detect more trans-acting effects, we combine predicted expression

across tissues in our trans-MultiXcan model and show that it increases significant

trans-acting/target gene pairs >10-fold.

Pathway analysis reveals the trans-acting genes are enriched in transcription and

nucleic acid binding pathways and target genes are enriched in known transcription

factor binding sites, indicating that our method identifies genes of expected function.

We show that trans-acting genes are more strongly associated with immune-related

traits and height than target or background genes, demonstrating that trans-acting

genes likely play a key role in the biology of complex traits.

Methods

Genome and transcriptome data

Framingham Heart Study (FHS). We obtained genotype and exon

expression array data (Joehanes et al., 2017; Zhang et al., 2015) through application to

dbGaP accession phs000007.v29.p1. Genotype imputation and gene level quantification

were performed by our group previously (Wheeler et al., 2016), leaving 4838 European

ancestry individuals with both genotypes and observed gene expression levels for

analysis. We used the Affymetrix power tools (APT) suite to perform the preprocessing

and normalization steps. First the robust multi-array analysis (RMA) protocol was

applied which consists of three steps: background correction, quantile normalization,

and summarization (Irizarry et al., 2003). The summarized expression values were then

annotated more fully using the annotation databases contained in the

huex10stprobeset.db (exon-level annotations) and huex10sttranscriptcluster.db

(gene-level annotations) R packages available from Bioconductor. The genotype data

were then split by chromosome and pre-phased with SHAPEIT (Delaneau, Marchini, &
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Zagury, 2012) using the 1000 Genomes phase 3 panel and converted to vcf format.

These files were then submitted to the Michigan Imputation Server

(https://imputationserver.sph.umich.edu/start.html) (Fuchsberger, Abecasis, & Hinds,

2015; Howie, Fuchsberger, Stephens, Marchini, & Abecasis, 2012) for imputation with

the Haplotype Reference Consortium version 1 panel (McCarthy et al., 2016).

Approximately 2.5M non-ambiguous strand SNPs with MAF > 0.05, imputation R2 >

0.8 and, to match GTEx gene expression prediction models, inclusion in HapMap Phase

II were retained for subsequent analyses.

Depression Genes and Networks (DGN). We obtained genotype and whole

blood RNA-Seq data through application to the NIMH Repository and Genomics

Resource, Study 88 (Battle et al., 2014). For all analyses, we used the HCP (hidden

covariates with prior) normalized gene-level expression data used for the trans-eQTL

analysis in Battle et al. (Battle et al., 2014) and downloaded from the NIMH

repository. Quality control and genotype imputation were performed by our group

previously (Wheeler et al., 2016), leaving 922 European ancestry individuals with both

imputed genotypes and observed gene expression levels for analysis. Briefly, the 922

individuals were unrelated (all pairwise < 0.05) and thus all included in downstream

analyses. Imputation of approximately 650K input SNPs (minor allele frequency [MAF]

> 0.05, Hardy-Weinberg Equilibrium [P > 0.05], non-ambiguous strand [no A/T or

C/G SNPs]) was performed on the Michigan Imputation Server (Fuchsberger et al.,

2015; Howie et al., 2012) with the following parameters: 1000G Phase 1 v3 ShapeIt2

(no singletons) reference panel, SHAPEIT phasing, and EUR population.

Approximately 1.9M non-ambiguous strand SNPs with MAF > 0.05, imputation R2 >

0.8 and, to match GTEx gene expression prediction models, inclusion in HapMap Phase

II were retained for subsequent analyses.

Gene expression prediction models

Elastic net (alpha = 0.5) models built using GTEx V6p genome-transcriptome

data from 44 tissues (Barbeira et al., 2018) were downloaded from
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http://predictdb.org/ from the GTEx-V6p-HapMap-2016-09-08.tar.gz archive.

Mappability quality control

Genes with mappability scores less than 0.8 and gene pairs with a positive

cross-mappability k-mer count were excluded from our analysis (Saha & Battle, 2018;

Saha et al., 2017). Gene mappability is computed as the weighted average of its

exon-mappability and untranslated region (UTR)-mappability, weights being

proportional to the total length of exonic regions and UTRs, respectively. Mappability

of a k-mer is computed as 1/(number of positions k-mer maps in the genome). For

exonic regions, k = 75 and for UTRs, k = 36. Cross-mappability between two genes, A

and B, is defined as the number of gene A k-mers (75-mers from exons and 36-mers

from UTRs) whose alignment start within exonic or untranslated regions of gene B

(Saha & Battle, 2018; Saha et al., 2017).

In addition, to further guard against false positives, we retrieved RefSeq Gene

Summary descriptions from the UCSC hgFixed database on 2018-10-04 and removed

genes from our analyses with a summary that contained one or more of the following

strings: "paralog", "pseudogene", "retro".

trans-PrediXcan

In order to map trans-acting regulators of gene expression, we implemented

trans-PrediXcan, which consists of two steps. First, we predict gene expression levels

from genotype dosages using models trained in independent cohorts to protect against

false positives that may occur by training and testing in the same cohort. As in

PrediXcan (Gamazon et al., 2015), this step gives us an estimate of genetic component

of gene expression, ̂GReX, for each gene. In the second step, for each ̂GReX estimate,

we calculate the correlation between ̂GReX and the observed expression level of each

gene located on a different chromosome. As in Matrix eQTL (Shabalin, 2012), variables

were standardized to allow fast computation of the correlation and test statistic. In the

discovery phase, we predicted gene expression in the FHS cohort using each of 44 tissue

models from the GTEx Project. Significance was assessed via the Benjamini-Hochberg
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false discovery rate (FDR) method (Benjamini & Hochberg, 1995), with FDR < 0.05 in

each individual tissue declared significant. We tested discovered trans-acting/target

gene pairs for replication in the DGN cohort and declared those with P<0.05 replicated.

To estimate the expected true positive rate, we calculate π1 statistics using the qvalue

method (Aguet et al., 2017; Storey & Tibshirani, 2003). π1 is the expected true positive

rate and was estimated by selecting the gene pairs with FDR < 0.05 in FHS and

examining their P value distribution in DGN. π0 is the proportion of false positives

estimated by assuming a uniform distribution of null P values and π1 = 1 − π0 (Storey

& Tibshirani, 2003).

For comparison to our trans-PrediXcan method, we performed traditional

trans-eQTL analysis in FHS and DGN using Matrix eQTL (Shabalin, 2012), where

trans is defined as genes on different chromosomes from each SNP.

trans-MultiXcan

To determine if jointly modeling the genetic component of gene expression across

tissues would increase power to detect trans-acting regulators, we applied MultiXcan

(Barbeira et al., 2019) to our transcriptome cohorts. In our implementation of

MultiXcan, predicted expression from all available GTEx tissue models (up to 44) were

used as explanatory variables. To avoid multicolinearity, we use the first k principal

components of the predicted expression in our regression model for association with

observed (target) gene expression. We keep the first k principal components out of i

principal components estimated where

λmax

λi

< 30

where λi is an eigenvalue in the predicted expression covariance matrix (Barbeira et al.,

2019). A range of thresholds were previously tested and yielded similar results

(Barbeira et al., 2019). We used an F-test to quantify the significance of the joint fit.

We tested trans-acting/target gene pairs discovered in FHS (FDR < 0.05) for

replication in the DGN cohort and declared those with P < 0.05 replicated.
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eQTLGen comparison

We compared our trans-PrediXcan and trans-MultiXcan FHS results to eQTLs

discovered in eQTLGen, a blood eQTL study of 31,684 individuals (Vosa et al., 2018).

Note, eQTLGen includes the FHS cohort (n=4838) we used in our trans-PrediXcan and

trans-MultiXcan analyses, and thus it is not a completely independent cohort. To

determine the expected distribution of trans-eQTLs under the null of no association

between predicted and observed expression, we randomly sampled without replacement

the lists of predicted and observed genes to generate 1000 sets of "trans-acting/target

gene pairs", each the same size and with the same chromosome distribution as the

observed results from either trans-PrediXcan or trans-MultiXcan. We then counted how

many "trans-acting genes" in each set had an eSNP in their expression prediction model

(non-zero effect size) that targeted the same gene in eQTLGen. We compared this

distribution to the observed number of trans-acting/target gene pairs that had a

trans-eQTL in eQTLGen to obtain an empirical P value (the number of times the

permuted overlap exceeded the observed overlap divided by 1000). To calculate the

fold-enrichment of trans-eQTLs found in our top trans-PrediXcan and trans-MultiXcan

FHS gene pairs (FDR < 0.05), we determined how many gene pairs included a

matching eQTLGen trans-eQTL across all tested gene pairs.

Pathway enrichment analysis

We used FUMA (Functional mapping and annotation of genetic associations)

(Watanabe, Taskesen, Van Bochoven, & Posthuma, 2017) to test for enrichment of

biological functions in our top trans-acting and target genes. We limited our

hypergeometric enrichment tests to Reactome (MSigDB v6.1 c2), Gene Ontology (GO)

(MMSigDB v6.1 c5), transcription factor targets (MSigDB v6.1 c3), and GWAS

Catalog (e91_r2018-02-06) pathways. We required at least 5 trans-acting or target

genes to overlap with each tested pathway. For the trans-acting gene enrichment tests,

there were 182 unique trans-acting genes at FDR < 0.05 in FHS and P < 0.05 in DGN

(Table S2) and the background gene set was the 16,185 genes with a MultiXcan model.
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For the target gene enrichment tests, there were 211 unique target genes at FDR < 0.05

in FHS and P < 0.05 in DGN (Table S2) and the background gene set was the 12,445

expressed genes. Pathways with Benjamini-Hochberg FDR < 0.05 were considered

significant and reported.

We also tested the larger discovery gene sets from FHS (FDR < 0.05) for

enrichment in known transcription factors and signaling proteins. The list of

transcription factors were collected from Ravasi et al. (Ravasi et al., 2010) and signaling

proteins were genes annotated as phosphatases and kinases in Uniprot (Roy et al., 2013;

The UniProt Consortium, 2012). We used the hypergeometric test (hypergeom function

from scipy.stats Python library) to determine the significance of enrichment. Given

the size of the background gene set, M , number of genes with the property of interest in

the background, K, and the size of the selected gene set, N , the hypergeometric test

calculates the probability of observing x or more genes in the selected gene set with the

property of interest. In our setting, K is the number of genes annotated as a TF or

signaling protein and N is the size of the discovery gene sets.

trans-acting and target gene association studies with complex traits

We retrieved S-PrediXcan (summary statistic PrediXcan) results from the

gene2pheno.org database (Barbeira et al., 2018) for immune-related traits and height.

We focused on S-PrediXcan results obtained from gene expression prediction models

built using DGN whole blood because that was the largest model cohort with results

available. Because the expression prediction models were built using whole blood data,

we chose to examine blood and immune related traits available in gene2pheno.org from

UK Biobank (UKB) and a second cohort. We also examined height due to the large

cohorts available. Traits available from UKB that we analyzed include "50 standing

height" (n=500,131), "Non-cancer illness code, self-reported: asthma" (n= 382,462), and

"Non-cancer illness code, self-reported: systemic lupus erythematosis/sle" (n= 382,462).

Red and white blood cell count S-PrediXcan results were available from a meta-analysis

that combined the UKB and INTERVAL cohorts, n=173,480 (Astle et al., 2016). We
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also examined S-PrediXcan results for systemic lupus erythematosus from

IMMUNOBASE (n=23,210) (Bentham et al., 2015), asthma from GABRIEL

(n=26,475) (Moffatt et al., 2010), and height from GIANT (n=253,288) (Wood et al.,

2014). For each trait, we compared the observed vs. expected P value distributions via

QQ plots for three groups of genes: trans-acting genes discovered in FHS MultiXcan

(FDR < 0.05), target genes discovered in FHS MultiXcan (FDR < 0.05), and

background genes tested in MultiXcan that were not significant. In each cohort, there

were approximately 560 trans-acting genes (FHS FDR < 0.05), 700 target genes (FHS

FDR < 0.05), and 9900 background genes.

R packages

R packages used in this work include huex10stprobeset.db (MacDonald, 2015a),

huex10sttranscriptcluster.db (MacDonald, 2015b), MatrixEQTL (Shabalin, 2012),

qvalue (Bass, Storey, Dabney, & Robinson, 2017; Storey & Tibshirani, 2003), data.table

(Dowle & Srinivasan, 2017), dplyr (Wickham, Francois, Henry, & Muller, 2017), ggplot2

(Wickham, 2009), ggrepel (Slowikowski, 2017), readxl (Wickham & Bryan, 2017), and

gridExtra (Auguie, 2017).

Results

Trans-acting gene discovery and validation with trans-PrediXcan

We sought to map trans-acting and target gene pairs by applying the PrediXcan

framework to observed expression as traits and term the approach trans-PrediXcan

(Fig. 1). We excluded genes with poor genome mappability from our analyses (see

Methods). We compared trans-PrediXcan results between the discovery FHS whole

blood cohort (n = 4838) and the validation DGN whole blood cohort (n = 922). We

first used PrediXcan (Gamazon et al., 2015) to generate a matrix of predicted gene

expression from FHS genotypes using prediction models built in GTEx whole blood

(Barbeira et al., 2018). Then, we calculated the correlation between predicted and
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observed FHS whole blood gene expression. Examining the correlations of gene pairs on

different chromosomes, 55 pairs were significantly correlated in FHS, with an expected

true positive rate (π1) of 0.72 in DGN (Table 1, Fig. S1). Gene pair information and

summary statistics are shown in Table S1.

Of the 55 trans-acting/target gene pairs, 29 had a negative effect size, meaning

the trans-acting gene may be a repressor because decreased expression of the

trans-acting gene is associated with increased expression of the target gene. Conversely,

26 had a positive effect size, meaning the trans-acting gene may be an activator because

increased expression of the trans-acting gene is associated with increased expression of

the target gene. Note that the directions of effect of 69% of these gene pairs discovered

in FHS are consistent in DGN (Fig. 2). None of the trans-acting/target gene pairs we

identified also acted in the reverse direction, that is, if gene A was trans-acting to target

gene B, gene B was not also trans-acting to target gene A. Looking at all results,

beyond just the top signals, there was no correlation in effect sizes between such pairs

(P = 0.53). Therefore, our trans-PrediXcan method is not simply capturing a

co-expression network.

To compare the performance of our trans-PrediXcan approach to traditional

trans-eQTL analysis, we also examined the P-value distribution of top FHS trans-eQTLs

(FDR < 0.05) in DGN to determine the expected true positive rate. In our SNP-level

trans-eQTL analysis, π1 was 0.46, 36% lower than the trans-PrediXcan π1 of 0.72. We

also compared our results to a recent blood eQTL study in the eQTLGen cohort (Vosa

et al., 2018). Of the 55 whole blood model gene pairs we discovered in FHS, 5/55 (9%)

have at least one trans-eQTL (FDR < 0.05) shared with eQTLGen, more than expected

by chance based on the genes tested (empirical P < 0.001, Table S1). This means our

prediction model for the trans-acting gene includes a nonzero weight for the eQTLGen

eSNP and that the target gene in eQTLGen and our whole blood results is the same.

Across all 2.4×107 gene pairs tested, just 3547 (0.01%) included a shared trans-eQTL

with eQTLGen. Thus, top trans-PrediXcan gene pairs show a 900-fold enrichment

(9/0.01) of eQTLGen trans-eQTLs among whole blood model prediction SNPs
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compared to all gene pairs tested. In addition, of the 5 gene pairs with a matching

trans-eQTL in eQTLGen, all 5 also had a cis-eSNP in eQTLGen (FDR < 0.05)

targeting the trans-acting gene from our results and present in the prediction model of

the trans-acting gene. A list of these overlapping eSNPs is shown in Table S2.

Multi-tissue prediction improves trans-acting gene discovery and validation

To leverage tissue sharing of cis-eQTLs, we used a multivariable regression

approach called MultiXcan, which accounts for correlation among predicted expression

levels across 44 GTEx tissues (Barbeira et al., 2019). Notice that even though we seek

to detect trans regulation, the instruments we are using, i.e. predicted expression, are

based on cis regulation. Thus, it makes sense to combine information across tissues to

obtain the best local predictor of gene expression. To address multicolinearity issues,

MultiXcan uses principal component analysis to reduce the number of independent

variables to those with the largest variation (Barbeira et al., 2019). When we applied

trans-MultiXcan to the FHS data, the number of trans-acting/target gene pairs

increased dramatically (Fig. 3). At FDR < 0.05, there were 2,356 trans-acting gene

pairs discovered in FHS using the multi-tissue method, while only 55 pairs were

discovered with the GTEx whole blood predictors alone (Table 1). We could test 1,902

of these multi-tissue gene pairs for replication in DGN and found 535 of them were

significant at P < 0.05 (blue in Fig. 4). Although the expected true positive rate was

lower with the MultiXcan model (π1 = 0.49) than with the single tissue model

(π1 = 0.72), the absolute number of replicate gene pairs was much higher (Table 1, Fig.

S1). Thus, the number of genes that replicated in both cohorts was 20 times higher in

the multi-tissue model compared to the whole blood model (Table 1). Similarly, for gene

pairs tested in both models, the adjusted R2 was consistently higher in the multi-tissue

model than the whole blood model across gene pairs (Fig. S2). Summary statistics of

the 2,356 gene pairs discovered in the trans-MultiXcan are available in Table S3.

Of the MultiXcan gene pairs we found, 728/2356 (31%) replicated in the blood

eQTLGen cohort. That is, 31% of MultiXcan gene pairs have at least one trans-eQTL
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shared with eQTLGen, more than expected by chance based on the genes tested

(empirical P < 0.001, Table S3). This means that at least one tissue’s prediction model

for the trans-acting gene includes a nonzero weight for the eQTLGen eSNP and that

the target gene in eQTLGen and our multi-tissue results is the same. Across all 2×108

gene pairs tested, 168,893 (0.08%) included a shared trans-eQTL with eQTLGen. Thus,

top trans-MultiXcan gene pairs show an approximately 400-fold enrichment (31/0.08) of

eQTLGen trans-eQTLs among prediction SNPs compared to all gene pairs tested.

trans-eQTLs with eSNPs in our MultiXcan trans-acting gene models with the same

target genes are shown in Table S4. In addition, of these 728 gene pairs with a

matching trans-eQTL in eQTLGen, 283 (39%) also had a cis-eSNP in eQTLGen (FDR

< 0.05) targeting the trans-acting gene from our results and present in the prediction

model of the trans-acting gene in at least one tissue.

Master trans-acting genes associate with many targets

Points that form vertical lines in Figure 4 are indicative of potential master

regulators, i.e. genes that regulate many downstream target genes. We defined master

regulators as trans-acting genes that associate with 50 or more target genes. In our

MultiXcan analysis, we discovered three potential master regulator loci, which are

labeled in Figure 4. The most likely master regulator we identified with MultiXcan is

ARHGEF3 on chromosome 3. ARHGEF3 associated with 53 target genes in FHS

(FDR < 0.05) and 45/51 tested replicated in DGN (P < 0.05). Also, SNPs in

ARHGEF3 have previously been identified as trans-eQTLs with multiple target genes.

ARHGEF3 encodes a ubiquitously expressed guanine nucleotide exchange factor.

Multiple GWAS and functional studies in model organisms have implicated the gene in

platelet formation (Astle et al., 2016; Gieger et al., 2011; Schramm et al., 2014; Yao et

al., 2017; Zhang et al., 2014). Similarly, SNPs at the chromosome 17 locus we identified

have also been identified as trans-eQTLs (Kirsten et al., 2015) and one study showed

the the trans effects are mediated by cis effects on AP2B1 expression (Yao et al., 2017).

AP2B1 encodes a subunit of the adaptor protein complex 2 and GWAS have implicated
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it in red blood cell and platelet traits (Astle et al., 2016).

trans-acting genes are enriched in transcription factor pathways

We tested replicated trans-acting genes for enrichment in Reactome (MSigDB v6.1

c2), Gene Ontology (GO, MSigDB v6.1 c5), transcription factor targets (MSigDB v6.1

c3), and GWAS Catalog (e91_r2018-02-06) pathways using FUMA (Watanabe et al.,

2017). In our MultiXcan analysis, there were 174 unique trans-acting genes at FDR <

0.05 in FHS and P < 0.05 in DGN (Table S2). We required at least 5 trans-acting genes

to overlap with each tested pathway. The background gene set used in the enrichment

test were the 15,432 genes with a MultiXcan model. All pathways with FDR < 0.05 are

shown in Table 2 and their gene overlap lists are available in Table S5.

The top two most significant pathways were the GO nucleic acid binding

transcription factor activity pathway and the reactome generic transcription pathway

(Table 2). The trans-acting genes in each pathway are spread across multiple

chromosomes as shown in Figure S3. PLAGL1, which encodes a C2H2 zinc finger

protein that functions as a suppressor of cell growth, is a notable trans-acting gene in

the GO nucleic acid binding transcription factor activity pathway. Of the four PLAGL1

target genes discovered in FHS, three replicated in DGN (Table S2). One notable gene

in the reactome generic transcription pathway is MED24. In our MultiXcan analysis,

MED24 targeted 13 genes in FHS (FDR < 0.05) and 8/12 replicated in DGN (P <

0.05, Table S2). MED24 encodes mediator complex subunit 24. The mediator complex

is a transcriptional coactivator complex required for the expression of almost all genes.

The mediator complex is recruited by transcriptional activators or nuclear receptors to

induce gene expression, possibly by interacting with RNA polymerase II and promoting

the formation of a transcriptional pre-initiation complex (Gustafsson & Samuelsson,

2001).

We also found a significant enrichment of transcription factors from Ravasi et al.

(Ravasi et al., 2010) in the 766 unique trans-acting genes discovered in FHS with FDR

< 0.05 (hypergeometric test P = 9.56×10−3). However, the same trans-acting genes
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were not enriched in signaling proteins (P = 0.71).

Target genes are enriched in transcription factor binding sites

We tested MultiXcan replicated target genes for enrichment in the same pathways

tested in the trans-acting gene analysis. There were 201 unique target genes at FDR <

0.05 in FHS and P < 0.05 in DGN (Table S2). While just eight pathways were enriched

in trans-acting genes, 118 pathways were enriched in the target genes (Table S5). Two

of these 118 target gene enriched pathways were transcription factor binding sites

(Table 3). No binding motifs were enriched in the trans-acting genes. Additional

pathways enriched in target genes included several platelet activation and immune

response pathways (Table S5). Target genes were spread across multiple chromosomes

(Fig. S4). The target genes were not enriched for reactome generic transcription or GO

nucleic acid binding transcription factor activity pathways. The 945 unique target genes

discovered in FHS with FDR <0.05 were also not enriched for transcription factors

(hypergeometric test P = 0.98) or signaling proteins (P = 0.46) from Ravasi et al.

(Ravasi et al., 2010).

Trans-acting genes are more likely to associate with complex traits

Trans-acting genes may drive complex trait inheritance, which has been

formalized in the omnigenic model (Boyle et al., 2017; Liu, Li, & Pritchard, 2018). If

true, we hypothesized that the trans-acting genes we discovered using our

trans-MultiXcan model should be more significantly associated with complex traits

than both their targets and other background genes. We focused on immune related

complex traits because our observed gene expression data in FHS and DGN are from

whole blood. We also used height as a representative complex trait because of the large

sample sizes available.

Using height and immune related phenotypes from the UK Biobank and other

large consortia (see Methods) as representative complex traits, we compared PrediXcan

results among three classes of gene: trans-acting, target, and background genes.

trans-acting and target genes were those discovered in our FHS MultiXcan analysis
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(FDR < 0.05). Background genes are those tested in MultiXcan, but not found

significant. We examined QQ plots of PrediXcan results for each class in two large

studies of height, red and white blood cell counts, two studies of systemic lupus

erythematosus, and two studies of asthma. For each trait, we found that trans-acting

gene associations are more significant than background gene associations (Fig. 5).

Though attenuated in comparison to trans-acting genes, target genes are also more

significant than background genes for several traits (Fig. 5).

Discussion

We apply the PrediXcan framework to gene expression as a trait (trans-PrediXcan

approach) to identify trans-acting genes that potentially regulate target genes on other

chromosomes. We identify replicable predicted gene expression and observed gene

expression correlations between genes on different chromosomes. Compared to

trans-eQTL studies performed in the same cohorts, our trans-PrediXcan model shows a

higher replication rate for discovered associations. For example, using the GTEx whole

blood prediction model we show the expected true positive rate is 0.72 (Table 1). When

we performed a traditional trans-eQTL study and examined the P-value distribution of

top FHS eQTLs (FDR < 0.05) in DGN, the true positive rate was only 0.46. In an

independent analysis of the same data, only 4% of eQTLs discovered in FHS replicated

in DGN (Joehanes et al., 2017).

In contrast to our results, a recent study concluded trans-eQTLs have limited

influence on complex trait biology (Yap et al., 2018). However, the authors mention

limited power in their analyses and found most of the trans-eQTLs examined were not

also cis-eQTLs for nearby genes (Yap et al., 2018). To combat lack of power, others

have used cis-mediation analysis to identify trans-eQTLs (Yang et al., 2017; Yao et al.,

2017). Similar to our approach, a mechanism is built in to significant associations found

via cis-mediation studies: the cis-acting locus causes variable expression of the local

gene, which in turn leads to variable expression of its target gene on a different

chromosome. Unlike cis-mediation analysis, our trans-PrediXcan approach allows
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multiple SNPs to work together to affect expression of the trans-acting gene and thus

may reveal additional associations. A similar method, developed in parallel to ours,

combines cis-region SNPs using a cross-validation BLUP to identify trans-acting genes

within one eQTL cohort (Liu, Mefford, et al., 2018). Our findings have the advantage of

discovery in a larger cohort, multiple tissue integration, and replication in an

independent cohort.

When predictive models built in 44 different tissues are combined with MultiXcan,

we increase the number of trans-acting gene pairs identified in FHS and replicated in

DGN 20-fold compared to single-tissue models (Table 1). In the recent release of

eQTLGen, the largest trans-eQTL study to date, 52% of trans-eQTL signals colocalize

with at least one cis-eQTL signal (Vosa et al., 2018). As currently implemented, our

trans-PrediXcan method will only find gene pairs that have cis-acting regulation of the

predicted (trans-acting) gene. The SNPs used to predict expression of each gene are all

within 1Mb of the gene, i.e. in cis. Previous work has shown that cis-eQTLs are often

shared across many tissues (Aguet et al., 2017). Thus, we show combining cis-acting

effects across tissues as "replicate experiments" increases our power to detect

trans-acting associations. For example, if there is a cis-acting effect that is common

across most tissues but the trans-acting effect occurs in one specific tissue, MultiXcan

will be able to identify the trans-acting effect even if we do not have a prediction model

in the causal tissue. Our choice to use PC regression is a conservative approach,

discarding less informative components of expression variation at the cost of slightly

reduced power. This "denoising" property may limit our ability to detect tissue-specific

effects, which may be revealed in future studies with larger sample sizes and prediction

modeling approaches that include distal genetic variation. Another limitation is that

our approach can detect false positives due to linkage disequilibrium and thus

colocalization and functional studies are required to reveal the causal trans-acting

regulator of gene expression.

We found trans-acting genes discovered in our MultiXcan analysis were enriched

in transcription pathways and thus previously known to function in transcription

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 26, 2019. ; https://doi.org/10.1101/471748doi: bioRxiv preprint 

https://doi.org/10.1101/471748
http://creativecommons.org/licenses/by-nd/4.0/


trans-PrediXcan 18

regulation. Master regulators revealed by MultiXcan, ARHGEF3 and AP2B1, were also

previously known (Kirsten et al., 2015; Yao et al., 2017). Our transcriptome association

scan presented here integrates gene expression prediction models from multiple tissues

and replicates results in an independent cohort. Encouragingly, the trans-acting and

target genes we identify are enriched in transcription and transcription factor pathways.

Using asthma, lupus, blood cell counts, and height as representative complex

traits, trans-acting gene associations with these traits are more significant than target

and background gene associations in multiple cohorts. This suggests percolating effects

of trans-acting genes through target genes. We make our scripts and summary statistics

available for future studies of trans-acting gene regulation at

https://github.com/WheelerLab/trans-PrediXcan.
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S1 Figure

trans-acting/target gene pairs meeting significance in FHS (FDR < 0.05) were tested

for replication in DGN. Shown are the p-value distributions of these gene pairs in DGN

along with π1 diagnosis plots for the whole blood and multi-tissue models.
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S2 Figure

The

percent variance explained by trans-acting genes is higher in the multi-tissue model

than the single tissue whole blood model. Adjusted R2 values from the multi-tissue

model (y-axis) are compared to the adjusted R2 values from the single tissue model

(x-axis) for trans-acting/target gene pairs tested in both models.
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trans-acting genes discovered and replicated with MultiXcan are enriched in

transcription pathways. Shown are the MultiXcan replicated (FHS FDR <0.05 and
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DGN P <0.05) results plotted by chromosomal position. The size of the point is

proportional to -log10 p-value. Trans-acting genes in the title pathway are labeled in

blue.

S4 Figure
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TF binding site: PAX8_B

Target genes discovered and replicated with MultiXcan are enriched in transcription

factor binding site pathways. Shown are the MultiXcan replicated (FHS FDR <0.05

and DGN P <0.05) results plotted by chromosomal position. The size of the point is

proportional to -log10 p-value. Gene pairs with the target gene containing the title

binding site are labeled in red (trans-acting gene:target gene).

S1 Table

trans-PrediXcan whole blood model results in FHS (FDR < 0.05) and DGN.

S2 Table

eQTLGen (Vosa et al., 2018) replication of FHS trans-PrediXcan whole blood

model gene pairs (FDR < 0.05).

S3 Table

trans-MultiXcan results in FHS (FDR < 0.05) and DGN.
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S4 Table

eQTLGen (Vosa et al., 2018) replication of FHS trans-MultiXcan whole blood

model gene pairs (FDR < 0.05).

S5 Table

FUMA gene set enrichment results of replicated (FHS FDR < 0.05 and DGN P <

0.05) trans-acting and target genes.
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Table 1

Trans-acting and target gene pair counts and replication rates across GTEx

tissue models.

Model FHS FDR<0.05 FHS Tested DGN P<0.05 DGN Tested DGN π1

Multi-Tissue

(MultiXcan)

2356 2.0E+08 535 1902 0.49

Whole Blood

(PrediXcan)

55 2.4E+07 26 54 0.72

FHS = Framingham Heart Study whole blood cohort, DGN = Depression Genes and

Networks whole blood cohort, P = p-value, FDR = Benjamini-Hochberg false discovery

rate, π1 = expected true positive rate.
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Table 2

Replicated trans-acting genes (MultiXcan FDR < 0.05 in FHS and P < 0.05

in DGN) are enriched in transcription and GWAS pathways.

Source GeneSet N n P-value adjusted P

GO molecular functions GO nucleic acid binding

transcription factor activity

1000 33 6.40e-09 5.76e-06

Reactome Reactome generic transcrip-

tion pathway

292 15 2.18e-07 1.47e-04

GWAS catalog Reticulocyte count 138 10 4.80e-07 1.47e-04

GWAS catalog Reticulocyte fraction of red

cells

147 9 6.76e-06 2.75e-03

GWAS catalog White blood cell count 152 8 5.90e-05 1.57e-02

GWAS catalog Neuroticism 134 7 1.44e-04 2.20e-02

GWAS catalog Platelet count 228 9 2.78e-04 3.40e-02

GWAS catalog Crohn’s disease 525 15 3.19e-04 3.54e-02

FHS = Framingham Heart Study, DGN = Depression Genes and Networks cohort, N =

number of genes in GeneSet tested for trans-acting effects, n = number of replicated

genes in GeneSet, P-value = FUMA (Watanabe et al., 2017) enrichment P, adjusted P

= enrichment Benjamini-Hochberg false discovery rate
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Table 3

Replicated target genes (MultiXcan FDR < 0.05 in FHS and P < 0.05 in

DGN) are enriched in transcription factor (TF) binding sites in the regions

spanning up to 4 kb around their transcription starting sites (MSigDB v6.1

c3).

TF binding site N n P-value adjusted P

WGGAATGY_TEF1_Q6 247 14 2.23e-05 1.37e-02

PAX8_B 68 6 1.56e-04 4.79e-02

FHS = Framingham Heart Study, DGN = Depression Genes and Networks cohort, N =

number of genes in GeneSet tested for target gene effects, n = number of replicated

genes in GeneSet, P-value = FUMA (Watanabe et al., 2017) enrichment P, adjusted P

= enrichment Benjamini-Hochberg false discovery rate
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Figure 1 . Overview of approach to detect and characterize trans-acting genes. First, in

our Whole Blood Model, we predict mRNA expression levels from cis region eQTLs,

using weights trained in a single tissue (GTEx whole blood). These predicted

expression levels (trans-acting genes) are tested for association with observed expression

on different chromosomes (target genes). Second, in our Multi-Tissue Model, we use

predicted mRNA expression levels from multiple tissues in a multiple regression to

detect trans-acting genes and their targets. Third, we compare models and test

significant trans-acting and target genes for enrichment in pathways or in GWAS traits.
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Figure 2 . Comparison between FHS and DGN results using the GTEx whole blood

prediction models. Results of trans-acting gene pairs with FDR < 0.05 in the discovery

cohort (FHS) are shown for both FHS (x-axis) and the validation cohort DGN (y-axis).

The t-statistics from the linear models testing predicted trans-acting expression for

association with observed target gene expression are plotted.
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Figure 3 . Multi-Tissue trans-MultiXcan finds more trans-acting gene pairs than a single

tissue trans-PrediXcan (Whole Blood) model. Quantile-quantile plots show an increase

in signal in the Multi-Tissue model compared to the Whole Blood model. -log10

p-values are capped at 30 for ease of viewing. The 1e6 most significant P values in each

model are plotted to manage file size.
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Figure 4 . Trans-acting/target gene pairs discovered using MultiXcan in FHS. Each

point corresponds to one gene pair (FHS FDR < 0.05) positioned by chromosomal

location of the trans-acting gene (x-axis) and target gene (y-axis). Size of the point is

proportional to the -log10 p-value in FHS. Gene pairs that replicated in DGN

MultiXcan (P < 0.05) are colored blue. Master trans-acting loci with greater than 50

target genes are labeled.
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Figure 5 . Complex trait associated genes are enriched for trans-acting genes.

Quantile-quantile plots of S-PrediXcan results for each labeled trait show an increase in

signal for trans-acting genes (FHS MultiXcan FDR < 0.05) compared to target genes

(FHS MultiXcan FDR < 0.05) and background (tested in MultiXcan, but not

significant) genes. When present, -log10 p-values greater than 30 are capped at 30 for

ease of viewing. RBC = red blood cell, WBC = white blood cell, SLE = systemic lupus

erythematosus.
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