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Abstract 

People who opt to participate in scientific studies tend to be healthier, wealthier, and more 

educated than the broader population. While selection bias does not always pose a problem 

for analysing the relationships between exposures and diseases or other outcomes, it can lead 

to biased effect size estimates. Biased estimates may weaken the utility of genetic findings 

because the goal is often to make inferences in a new sample (such as in polygenic risk score 

analysis). We used data from UK Biobank and Generation Scotland and conducted 

phenotypic and genome-wide association analyses on two phenotypes that reflected mental 

health data availability: (1) whether participants were contactable by email for follow-up) and 

(2) whether participants responded to a follow-up surveys of mental health. We identified 

nine genetic loci associated with email contact and 25 loci associated with mental health 

survey completion. Both phenotypes were positively genetically correlated with higher 

educational attainment and better health and negatively genetically correlated with 

psychological distress and schizophrenia. Recontact availability and follow-up participation 

can act as further genetic filters for data on mental health phenotypes.  
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Introduction 

Selection bias in epidemiological and cohort studies occurs when characteristics of 

individuals that influence their likelihood of becoming or remaining as study participants are 

also related to exposure to risk factors or to outcomes of interest (Hernán, Hernández-Díaz, & 

Robins, 2004). Selection bias can be introduced at many stages of a study, including at 

recruitment, at follow up, during record linkage, or in non-response to questionnaires or tasks 

and has the potential to lead to misestimates of phenotypic and genetic associations (Munafò, 

Tilling, Taylor, Evans, & Davey Smith, 2018). For example, a longitudinal study of 

psychiatric traits identified several characteristics related to loss-to-follow-up including age; 

education; ancestry; geographic location; and the presence, severity, and comorbidity of 

anxiety and depression (Lamers et al., 2012). There are several methods for handling 

selection bias if and when it needs to be taken into consideration. When all variables that 

influence selection and attrition are known, then bias can potentially be reduced or eliminated 

by conditioning on known variables or including them as predictors (Gelman & Hill, 2007). 

In longitudinal studies, techniques such as inverse probability weighting, where observations 

that are similar to those that were lost to follow-up contribute proportionally more to the 

analysis, can be used to correct for selection bias (Robins, Hernán, & Brumback, 2000). In 

study designs where the goal is to establish an association between an exposure and a disease 

outcome, selection bias is not an issue as long as there is sufficient variation in exposure (Fry 

et al., 2017). 

 Initial ascertainment and recontact have been demonstrated to have a genetic basis. 

For example, individuals who had a high genetic risk of schizophrenia (calculated from 

polygenic risk scores) were less likely to complete follow-up questionnaires or attend 

additional data collection sessions (Martin et al., 2016), and genetic liability for other traits 

have similar effects (Taylor et al., 2018). Participation in large cohort studies is already 

known to have a “healthy volunteer” effect (Fry et al., 2017) so we sought to characterise the 

phenotypic and genetic correlates of participation in follow-up studies that are focused on 

assessing mental health traits. To this end, we analysed recontact and participation in two 

studies: the Mental Health Questionnaire  (MHQ) online follow-up in UK Biobank (Davis et 

al., 2018) and the Stratifying Resilience and Depression Longitudinally (STRADL) study in 

Generation Scotland (Navrady et al., 2018). We conducted phenotypic and genome-wide 

association analyses in UK Biobank to determine how participants who completed the MHQ 

differed from the rest of the sample. We also analysed factors related to whether UK Biobank 
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participants were contactable by email, as email invitations were the primary method of 

recruitment into the MHQ follow-up. We used participation in the STRADL questionnaire 

follow-up in Generation Scotland as a replication data set for genetic findings. 

 

 

 

Methods 

Samples 

UK Biobank (UKB) (Sudlow et al., 2015) is a population-based study of health in middle-

aged and older individuals (N = 502,616). Eligible participants were aged 40 to 69 and 

recruited from 22 assessment centres in the United Kingdom. UK Biobank received ethical 

approval from the Research Ethics Committee (reference 11/NW/0382). The present study 

was conducted under UK Biobank application 4844. 

Generation Scotland: Scottish Family Health Study (GS:SFHS) is a family-based 

cohort (N = 24,091) recruited through general practitioners in Scotland (Smith et al., 2012; 

Smith et al., 2006). Eligible participants were individuals aged 18 years or older who were 

able to recruit one or more family members into the study. GS:SFHS received ethical 

approval from the Tayside Research Ethics Committee (reference 05/S1401/89). 

 

Recontact and participation measures 

During recruitment and baseline assessment (2006-2010), UKB participants were given the 

option of supplying an email address for receiving newsletters and invitations for online 

follow-up assessments. Of the 317,785 participants who supplied an email address, 294,738 

provided a usable one while the remaining 23,047 either provided a syntactically incorrect or 

non-existent email address or asked that their email address be withdrawn. An email address 

was not provided by 184,831 UKB participants during baseline assessment. While this 

variable is called “email access” in the UK Biobank documentation (field 20005), we refer to 

this phenotype as “email contact”. Although additional UK Biobank participants have 

subsequently provided an email address for recontact (Davis et al., 2018), here we analyse the 

baseline availability of email contact so that it can be related to other baseline factors that 

were captured contemporaneously. 

 Starting in 2016, UKB participants who had provided email contact were sent an 

invitation to an online Mental Health Questionnaire (MHQ) entitled "thoughts and feelings" 
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(Davis et al., 2018). Participants who had not started the questionnaire or had only partially 

completed it were sent reminder emails after two weeks and again after four months. 

Participants also received information about the MHQ in a postal newsletter with instructions 

on how to participate. From data supplied by UK Biobank on 12 June 2018, 157,396 

participants had completed the MHQ. Responses to the MHQ were submitted between July 

2016 and July 2017. Mean time between baseline assessment and MHQ follow-up was 7.5 

years (range 5.9–11.2 years). We refer to this phenotype as “MHQ data”.  

 In 2015, GS:SFHS participants were sent a questionnaire package by post as part of 

the Stratifying Resilience and Depression Longitudinally (STRADL) project with the aim of 

studying psychological resilience (Navrady et al., 2018). Participants were eligible for follow 

up if they had consented to recontact and if they had a Community Health Index (CHI) 

number. Of the 21,525 eligible participants, 9,618 responded to the questionnaire, from 

which we coded a “STRADL data” phenotype.  

 

Phenotype analysis 

Demographic and health differences between responders and non-responders to the STRADL 

survey have been analysed previously (Navrady et al., 2018) and found that, among other 

differences, participants who were women, non-smokers, or who had low levels of 

psychological distress were more likely to respond. We thus first conducted a similar analysis 

in UK Biobank. We ran logistic regressions for email contact and MHQ data using R 3.5.0 (R 

Development Core Team, 2018). We examined associations with age at initial assessment, 

sex, geographic region, educational qualification, smoking, alcohol consumption, number of 

diagnoses in linked electronic health records, and family history of dementia and depression.  

 We determined geographic region by grouping the assessment centres together into 

regions of England (South East, South West, East Midlands, West Midlands, North West, 

North East, and Yorkshire), Greater London, Scotland, and Wales. Education, smoking, 

drinking, and family history were assessed by means of a touchscreen interview during the 

initial assessment. We categorized educational qualifications as None, Professional, Higher 

(college or university), Secondary (A levels, O levels, GCSEs, CSEs), and Vocational (NVQ, 

HND, HNC). Smoking history had the responses 'Prefer not to answer', 'Never', 'Previous', 

and 'Current'. For alcohol drinking, participants reported their average weekly and monthly 

consumption for different drink types from which we derived a measure of average alcohol 

consumption in units per week (Clarke et al., 2017) and standardized this variable for input 

into the model. For linked hospital records, we first removed diagnoses related to pregnancy 
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(ICD-10 chapter O), congenital conditions (chapter Q), and health care provision (chapters U 

and Z). For the remaining diagnoses, we categorized them into mental health conditions and 

addictions (chapter F), injuries (chapter S, T, V, and Y), and all other diseases. We then 

counted the number of unique diagnostic codes each participant had for the three categories. 

Participants with linked hospital records who did not have any incidences of a diagnostic 

category were assigned a count of 0 while participants without linked records were set to 

missing. 

 

Genome-wide association, LD Score analysis, and replication analysis 

UK Biobank contains genotype data imputed to ~92 million variants (Bycroft et al., 2017). 

We performed QC procedures on SNPs with filters for MAF > 0.001 and INFO > 0.1. We 

removed participants who had failed genotype platform QC, who did not cluster genetically 

as White British, or who overlapped with Psychiatric Genomics Consortium MDD and 

Generation Scotland participants; and we conducted additional filtering on related individuals 

(Howard et al., 2018). This resulted in 16,367,095 variants for 371,437 individuals for 

genetic analysis. We conducted genome-wide association analyses using BGENIE v1.3 

(Bycroft et al., 2018) that coded the outcome variables as 0/1 in a linear regression. We 

covaried for age, sex, assessment centre, genotyping platform, and 20 UKB-provided 

principal components. We approximated odds ratios for the SNP effects using the 

transformation to the log-odds scale, log(OR) = 𝛽 (𝑘 (1 −  𝑘))⁄ , where k is the fraction of 

participants who were coded as 1 in the outcomes variable (email contact k = 0.6, MHQ data 

k =  0.33). We calculated SNP heritabilities on the liability scale using LD score regression 

(Bulik-Sullivan et al., 2015) and genetic correlations with 235 traits using LD Hub (Zheng et 

al., 2017). We used False Discovery Rate to correct for multiple testing when assessing the 

significance of the genetic correlations. 

 For Generation Scotland, 8,642,105 imputed variants were available for 19,994 

participants (Hall et al., 2018). Variants with MAF < 0.005 and INFO < 0.8 were excluded. 

We performed association tests on the STRADL data phenotype using the mixed linear 

model with candidate marker excluded (MLMe) approach in GCTA v1.91.1 (Yang, Zaitlen, 

Goddard, Visscher, & Price, 2014). We constructed two GRMs using a leave-one-

chromosome-out (LOCO) approach: one GRM that included all relationship coefficients and 

a second GRM that set relatedness to 0 when the relationship coefficients < 0.025 (Zaitlen et 

al., 2013). We fitted age and sex as covariates. To see if the results from the UKB phenotypes 

replicated, we looked up each independent significant SNP (or an LD proxy) in the GWAS of 
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the STRADL data phenotype and assessed whether they were significant after Bonferroni 

correction. We also calculated the LD score genetic correlation of the STRADL data 

phenotype with the UKB email and MHQ data phenotypes.  

 

Loci discovery and functional annotation 

Genomic risk loci were derived using clumping, carried out in FUnctional Mapping 

and Annotation of genetic associations (FUMA) (Watanabe, Taskesen, van Bochoven, & 

Posthuma, 2017). First, FUMA was used to identify independent significant SNPs using the 

SNP2GENE function. SNPs with a P-value of ≤ 5 ×10−8 and independent of other genome 

wide significant SNPs at r2 < 0.6 were identified from the summary GWAS statistics of the 

UKB email contact and MHQ data phenotypes. Second, using these independent significant 

SNPs, candidate SNPs were identified as all SNPs that had a MAF > 0.001 and were in LD of 

≥ r2 0.6 with at least one of the independent significant SNPs. These candidate SNPs included 

those from the UK10K/1000G and the haplotype reference consortia panel (UK Biobank 

release 1) and may not have been included in the UKB GWASs. Third, lead SNPs were 

identified using the independent significant SNPs. Lead SNPs were defined as SNPs that 

were independent from each other at r2 0.1. Finally, genomic risk loci that were 250kb or 

closer were merged to form a single locus.  

The lead SNPs identified above, and those in LD with the lead SNPs, were then 

mapped to genes using ANNOVAR and the Ensemble genes build 85. Intergenic SNPs were 

mapped to the two closest up and down stream genes which can result in them being assigned 

to multiple genes.  eQTL mapping was performed using each independent significant SNP 

and those in LD with it. Those SNP-gene pairs that were not significant (FDR ≤ 0.05) were 

omitted from the analysis. 

 

Gene-mapping 

Genetic variation in each of the independent genomic loci was mapped to genes using 

three complementary strategies. First, positional mapping was used to map SNPs to genes 

based on physical distance. SNPs within a 10kb window from the known protein genes found 

in the human reference assembly (hg19). Second, expression quantitative trait loci (eQTL) 

mapping was carried out by mapping SNPs to genes if allelic variation at the SNP was 

associated with expression levels of the gene. For eQTL mapping information on 45 tissue 

types from three data bases (GTEx, Blood eQTL browser, BIOS QTL browser) based on cis-

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 23, 2019. ; https://doi.org/10.1101/471433doi: bioRxiv preprint 

https://doi.org/10.1101/471433
http://creativecommons.org/licenses/by-nc/4.0/


QTLs where a SNPs are mapped to genes up to 1Mb away. A false discovery rate (FDR) of 

0.05 was used as a cut off to define significant eQTL associations. 

Finally, chromatin interaction mapping was carried out to map SNPs to genes when 

there is a three-dimensional DNA-DNA interaction between the independent genomic risk 

loci with a gene region. Chromatin interactions can involve long-range interactions between 

SNPs with genes as such no genomic distance boundary is applied. Hi-C data of 14 tissue 

types was used for chromatin interaction mapping. Chromatin interactions can also span 

multiple genes, and SNPs can be located in a region that interacts with other regions also 

containing multiple genes. In order to both reduce the number of genes mapped, and to 

increase the probability that those genes mapped are biologically linked to genetic variation 

at the independent genomic loci, only genes where one region involved with the interaction 

overlapped with a predicted enhancer region in any of the 111 tissue/cell types found in the 

Roadmap Epigenomics Project (Bernstein et al., 2010), and the other region was located in a 

gene promoter region (250bp upstream and 500bp downstream of the transcription start site 

and also predicted to be a promoter region by the Roadmap Epigenomics Project) were 

included here. An FDR of 1×10−5 was used to define a significant interaction. 

 

 

 

Gene-based GWAS 

Gene-based analyses have been shown to increase the power to detect association due 

to the multiple testing burden being reduced, in addition to the effect of multiple SNPs being 

combined. Gene-based GWAS was conducted using MAGMA (de Leeuw, Mooij, Heskes, & 

Posthuma, 2015), also implemented in FUMA. Regardless of P-value, all SNPs located 

within protein coding genes were used to derive a P-value describing the association between 

genetic variation across the gene with either Email or questionnaire. The NCBI build 37 was 

used to determine the location and boundaries of 18,877 autosomal genes and linkage 

disequilibrium within and between genes was gauged using the UK Biobank 1 reference 

panel. A Bonferroni correction was applied to control for the number of genes tested.   

 

Gene-set analysis 

A competitive gene-set analysis was conducted in MAGMA to identify the biological 

systems vulnerable to perturbation by common genetic variation. Competitive testing 

examines if genes within the gene set are more strongly associated with the trait of interest 
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than genes from outside the gene set, and differs from self-contained testing by controlling 

for type 1 error rate as well as being able examine the biological relevance of the gene-set 

under investigation. 

A total of 10,894 gene-sets (sourced from Gene Ontology, Reactome, and, MSigDB) 

were examined for enrichment. To control for the 10,894 gene sets examined, a Bonferroni 

correction was applied. 

 

Results 

Phenotypic associations of email contact and mental health follow-up (MHQ) data in 

UK Biobank 

We conducted logistic regressions on email contact (valid Email address provided vs no valid 

Email address provided) and MHQ participation (those that had completed the MHQ vs those 

that had not completed the MHQ) in UK Biobank, examining the effects of age, sex, 

geographic region, educational attainment, drinking and smoking, and personal and family 

history of disease.  We retained participants with complete data for analysis, which resulted 

in N = 294,381 for email contact (176,321 have email contact, 118,060 do not) and N = 

294,381 for MHQ data (93,703 provided MHQ data, 200,678 did not). Odds ratios from the 

logistic regressions are listed in Table 1. Women in UK Biobank were less likely to have 

provided an email address for recontact but were more likely to be included in the MHQ. 

There was regional variation in email contact and MHQ data. Individuals who attended 

assessment centres in Greater London and the South West of England were the most likely to 

have provided an email address while individuals from assessment centres in the North East 

of England and Scotland were the least likely. Individuals with greater educational 

attainment, those who were not current smokers, those with a fewer number of hospital 

diagnoses, and those with a family history of dementia or severe depression were more likely 

to have email contact and to have MHQ data. 

 

Table 1. Logistic regression on email contact (N = 294,381) and MHQ data (N = 294,381). 

  Email contact MHQ data 

 
Variable OR (SE) P OR (SE) P 

 
Age 0.98 (0.001) 3.91 × 10-281 1.00 (0.001) 0.231 

Sex Female 1 — 1 — 

 
Male 1.12 (0.010) 4.89 × 10-37 0.90 (0.009) 1.10 × 10-32 

Region East Midlands 1 — 1 — 

 
Greater London 1.79 (0.042) 7.59 × 10-188 1.14 (0.020) 3.78 × 10-11 
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North East 0.49 (0.010) 1.47 × 10-258 0.88 (0.018) 2.00 × 10-9 

 
North West 0.81 (0.014) 8.28 × 10-29 0.84 (0.015) 4.05 × 10-19 

 
Scotland 0.43 (0.010) < 2.23 × 10-308 0.85 (0.017) 6.61 × 10-14 

 
South East 0.86 (0.018) 9.78 × 10-14 1.15 (0.025) 3.02 × 10-11 

 
South West 1.13 (0.026) 3.36 × 10-9 1.08 (0.023) 3.39 × 10-4 

 
Wales 0.59 (0.016) 1.52 × 10-106 0.84 (0.019) 1.40 × 10-12 

 
West Midlands 0.63 (0.013) 4.66 × 10-119 0.83 (0.017) 2.69 × 10-19 

 
Yorkshire 1.00 (0.021) 0.86  0.94 (0.018) 1.85 × 10-4 

Qualifications None 1 — 1 — 

 
Prefer not to answer 1.01 (0.047) 0.870 0.76 (0.050) 1.78 × 10-5 

 
Higher 4.28 (0.056) < 2.23 × 10-308 4.42 (0.071) < 2.23 × 10-308 

 
Secondary 2.66 (0.029) < 2.23 × 10-308 2.61 (0.043) < 2.23 × 10-308 

 
Vocational 2.06 (0.038) < 2.23 × 10-308 2.07 (0.047) 5.13 × 10-241 

 
Professional 2.52 (0.045) < 2.23 × 10-308 2.70 (0.063) < 2.23 × 10-308 

Smoking Prefer not to answer 1 — 1 — 

 
Never 1.44 (0.107) 2.32 × 10-6 1.56 (0.144) 1.18 × 10-6 

 
Previous 1.63 (0.121) 1.28 × 10-10 1.64 (0.151) 6.62 × 10-8 

 
Current 0.98 (0.074) 0.639 1.07 (0.101) 0.444 

Alcohol Units/week (SD) 1.04 (0.005) 4.99 × 10-18 1.02 (0.004) 4.27 × 10-6 

Diagnoses Yes vs No      

 
Mental disorder 0.71 (0.020) 3.58 × 10-39 0.66 (0.022) 1.13 × 10-32 

 
Injury 0.92 (0.009) 2.21 × 10-23 0.91 (0.009) 2.37 × 10-24 

 
Other disease 0.97 (0.002) 7.63 × 10-99 0.93 (0.002) 2.90 × 10-286 

Family history Yes vs 

No      

 
Alzheimer's/dementia 1.17 (0.013) 3.68 × 10-41 1.21 (0.016) 5.81 × 10-60 

 
Severe depression 1.05 (0.012) 2.61 × 10-5 1.12 (0.013) 8.32 × 10-23 

 

 

Genome-wide association analysis of email contact and MHQ data in UK Biobank 

After filtering UK Biobank individuals to a White British, unrelated sample, the sample size 

was N = 371,417 for the GWAS of email contact and N = 371,428 for the GWAS of MHQ 

data. After clumping, there were nine loci (P ≤ 5 ×10−8 ) for email contact (Figure 1, Table 2, 

and Supplementary Table S1) and 25 for MHQ participation (Figure 2, Table 3, and 

Supplementary Table S11). The GC was 1.29 for email contact and 1.37 for MHQ data. 

 

Figure 1. Manhattan plot of email contact in UK Biobank.  
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Table 2. Top lead SNPs associated with email contact in UK Biobank (A1= effect allele, 

Freq. = frequency of A1 allele). 

Chr SNP Location (Bp) A1/A2 Freq. OR (S.E.) P-value 

1 rs632180 234,758,181 T/C 0.70 0.973 (0.005) 2.0 × 10-8 

2 rs7597665 34,420,702 C/T 0.29 1.031 (0.005) 1.1 × 10-9 

2 rs1455343 199,519,691 T/G 0.38 0.974 (0.005) 2.2 × 10-8 

3 rs73078357 48,695,834 C/T 0.12 1.038 (0.0066) 4.5 × 10-8 

3 rs111488606 49,864,924 CA/C 0.44 0.973 (0.005) 2.3 × 10-8 

5 rs6452788 87,712,913 A/G 0.24 1.032 (0.0054) 2.9 × 10-9 

5 rs4976602 167,843,998 A/G 0.11 0.96 (0.0069) 2.7 × 10-8 

6 rs1487441 98,553,894 A/G 0.49 1.031 (0.0047) 9.5 × 10-12 

18 rs1788784 21,159,630 G/A 0.66 1.031 (0.0042) 1.3 × 10-10 

 

Figure 2. Manhattan plot of data available in MHQ follow-up 

 

 

 

Table 3. Top lead SNPs associated with MHQ data (A1= effect allele, Freq. = frequency of 

A1 allele. 

Chr SNP Location (Bp) A1/A2 Freq. OR (S.E.) P-value 
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1 rs7542974 72,544,704 A/G 0.25 1.032 (0.0053) 3.8 × 10-8 

1 rs485929 74,678,285 G/A 0.39 1.028 (0.0048) 3.7 × 10-8 

1 rs532246 84,411,238 G/A 0.74 0.968 (0.0051) 7.0 × 10-9 

1 rs2789111 243,346,404 C/T 0.38 0.968 (0.0054) 1.5 × 10-10 

2 rs35028061 49,479,987 GT/G 0.38 1.029 (0.005) 1.9 × 10-8 

3 rs9917656 48,581,513 C/T 0.30 1.03 (0.0056) 3.2 × 10-8 

3 rs13082026 52,962,681 T/C 0.44 0.972 (0.005) 2.4 × 10-8 

4 rs57692580 106,214,476 A/T 0.39 0.973 (0.0046) 2.8 × 10-8 

5 rs34635 60,513,501 G/A 0.42 0.972 (0.0045) 1.2 × 10-8 

5 rs146681214 133,867,867 AC/A 0.18 1.039 (0.0065) 3.6 × 10-9 

5 rs2336897 167,050,276 T/C 0.69 1.031 (0.0061) 5.2 × 10-9 

6 rs3993747 31,580,507 G/A 0.35 0.969 (0.0044) 9.5 × 10-10 

6 rs59732267 98,432,302 CA/C 0.52 0.972 (0.0047) 2.5 × 10-8 

8 rs28716319 83,269,854 G/A 0.28 1.031 (0.0057) 2.7 × 10-8 

8 rs13262595 143,316,970 G/A 0.56 1.03 (0.005) 1.0 × 10-9 

9 rs6474966 15,757,537 A/G 0.46 1.028 (0.0049) 2.8 × 10-8 

9 rs11793831 23,362,311 T/G 0.42 1.027 (0.0053) 4.3 × 10-8 

11 rs1984389 31,740,989 C/A 0.54 0.973 (0.0046) 2.4 × 10-8 

11 rs10791143 131,278,676 G/A 0.62 1.034 (0.0046) 1.5 × 10-11 

16 rs4616299 7,657,432 G/A 0.40 0.972 (0.005) 1.2 × 10-8 

17 rs56058331 56,427,128 A/G 0.42 1.029 (0.0047) 1.0 × 10-8 

18 rs1261078 52,866,791 G/A 0.05 0.927 (0.0107) 5.6 × 10-12 

19 rs34232444 4,965,404 C/T 0.35 1.029 (0.0057) 2.5 × 10-8 

19 rs3746187 18,279,816 G/A 0.40 0.968 (0.0049) 9.8 × 10-11 

19 rs429358 45,411,941 C/T 0.15 0.942 (0.0067) 4.6 × 10-19 

 

 

Loci discovery and annotation of the Email contact and MHQ phenotypes 

The nine loci associated with email contact were found to contain an 

overrepresentation of SNPs found in ncRNA intronic regions (57.5%), as well as SNPs found 

in intronic regions (28.4%) (Figure 3 and Supplementary Table S1). Evidence was also found 

that these loci contained regulatory regions of the genome, indicated by 32.0% of the SNPs in 

the genomic loci having RegulomeDB (RDB) less than 2, indicating that genetic variation in 

these loci is likely to affect gene expression. Finally, 77.6% of the SNPs within the 

independent genomic loci had a minimum chromatin state of < 8. This is further evidence 

that these loci are located in an open chromatin state, providing more evidence that they are 

located within regulatory regions. Using the GWAS catalogue, lead and tagging SNPs from 

these 9 independent genomic loci were found to overlap with loci previously associated body 

mass index and obesity (2 loci), as well as with educational attainment and intelligence (3 

loci). (Supplementary Table S2). 
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Figure 3. Functional categories, RDB scores, and minimum chromatin states for 

independent risk loci associated with UKB email contact. 

 

 

The 25 loci associated with the MHQ participation phenotype notably included 

rs429358, a missense mutation in APOE. The rs429358-C allele is a marker for APOE- ε4 

genotype, and the direction of the effect for this SNP indicated that participants with more 

copies of APOE-ε4 were less likely to participate in the MHQ (OR = 1.029±0.0057SE for 

each additional ε4 copy). Functional annotation of the SNPs found within these regions 

showed that these SNPs were primarily located in introns (47.3%), and intergenic regions 

(17.7%) and 2.9% had no known function (Figure 4 and Supplementary Table S8). Of these 

SNPs, 30.8% had an RDB score of less than 2 and 83.8% had a minimum chromatin value of 

less than 8 providing further evidence that these variants are located in regions of the genome 

that are linked to gene regulation. These 25 loci showed overlap with the loci identified in 

previous GWAS examining cognitive abilities and education (6 loci), Schizophrenia (5 loci), 

and Alzheimer’s Disease (1 locus) (Supplementary Table S9).  

 

Figure 4. Functional categories, RDB scores, and minimum chromatin states for independent 

risk loci associated with UKB MHQ participation. 

 

 

Gene mapping of the Email access and MHQ phenotype 
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We used three strategies for mapping the SNPs in the genome wide significant loci to 

genes. First, positional mapping aligned the SNPs from the independent genomic loci 

associated with email contact to 20 genes by using location, whereas eQTL mapping matched 

cis-eQTL SNPs to 40 genes whose level of expression they have been shown to influence. 

Finally, chromatin interaction mapping annotated SNPs to a total of 41 genes, using three-

dimensional DNA-DNA interactions between the SNPs’ genomic regions, and close or 

distant genes (Supplementary Tables S4 and S5, Supplementary Figure 1a–f). Collectively 

these mapping strategies identified 70 unique genes, of which 21 were implicated by two 

mapping strategies and 10 being implicated by all three. A total of five genes, TNNI3K, 

LRRIQ3, NEGR1, FPGT, and FPGT-TNNI3K, were implicated using all three methods and 

showed evidence of a chromatin interaction between two independent genomic risk loci 

(Supplementary Table S4). Gene-based statistics derived in MAGMA indicated a role for 72 

genes (Supplementary Table S5), 4 of which overlapped with genes implicated by all three 

mapping strategies (Figure 5). 

 

Figure 5. Number of genes implicated by different mapping strategies for UKB email 

contact. 

 

For the MHQ data phenotype, positional mapping implicated 42 genes, with eQTL 

mapping indicating a role for 86 genes. Chromatin interaction mapping annotated a total of 

124 genes (Supplementary Tables S14 and S15, Supplementary Figure 2a-m). Across these 

three mapping strategies, 181 unique genes were identified with 46 of these being implicated 

by two mapping strategies and 25 being implicated by all three. A total of 181 unique genes 

were implicated by all three mapping strategies. MAGMA was also used to indicate a role for 
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81 genes (Figure 6 and Supplementary Table S15). Fifteen of these genes overlapped with 

those identified using the three mapping strategies. 

Figure 6. Number of genes implicated by different mapping strategies for UKB MHQ 

data. 

 

 

 

Gene-set and gene property analysis 

The presynaptic membrane gene-set was significantly enriched for the Email contact 

phenotype (P = 5.19×10−7) (Supplementary Table S6). Gene property analysis showed a 

relationship between expression in the EBV-transformed lymphocyte cells (P = 9.24×10−4) 

and for gene expression in the early mid-prenatal time of life (P = 0.004) (Supplementary 

Tables S9 and S10). 

 For the MHQ data phenotype none of the gene sets were enriched (Supplementary 

Table S16). However, gene property analysis indicated a relationship between gene 

expression in the brain and the MHQ phenotype (P = 2.64×10−4) (Supplementary Table S17) 

when examining the specific tissue gene groupings this relationship was driven by expression 

change in the cerebellar hemisphere (P = 8.52×10−6) and the Cerebellum (P = 1.27×10−5) 

(Supplementary Table S18). A relationship between gene expression in the early prenatal 

lifespan range (P = 0.002) and the early mid-prenatal lifespan was also found (P = 5.33×10−4) 

(Supplementary Table S19). 

 

LD Score regression analysis 

We used LD score regression (Bulik-Sullivan et al., 2015) to estimate SNP heritability from 

the GWAS results. The LD score intercept for email contact and MHQ data in UK Biobank 

were 1.013 (SE 0.008) and 1.020 (SE 0.008) respectively, while the inflation ratios were 
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0.037 (SE 0.025) and 0.043 (SE 0.020), respectively. Heritability on the liability scale for 

email contact was 0.073 (0.004SE) and for MHQ data was 0.099 (0.004SE),. The genetic 

correlation between email contact and MHQ data was 0.822 (0.020SE).  

 

We used LD Hub (Zheng et al., 2017) to estimate genetic correlations with a large 

number of other traits. Both email contact and having MHQ data were significantly 

genetically correlated with a broad spectrum of traits. Results for an illustrative set of traits is 

plotted in Figure 7 and the results for all traits are listed in Supplementary Table S21. For 

most anthropometric, behavioral, cognitive, psychiatric, health-related, and life-history traits 

the direction of the genetic correlations with email contact and MHQ participation was the 

same. In general, genetic factors associated with providing an email address for recontact to 

UK Biobank and taking part in the MHQ were also associated with better health, higher 

intelligence, lower burden of psychiatric disorders, and a slower life-history (e.g., later age at 

menarche, age at first birth, and menopause). Both email contact and MHQ participation were 

not significantly genetically correlated with any traits categorized as bone, kidney, uric acid, 

and metals (transferrin/ferritin). Additionally, email contact was not significantly genetically 

correlated with glycemic traits while MHQ data availability was not genetically correlated 

with hormone or metabolite phenotypes.  

 

Figure 7. LD Score genetic correlations (rg) with email contact and MHQ data. Correlations 

that are significant at FDR are marked with an asterisk.  

 

 

 

Replication in Generation Scotland 
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 We examined whether any of the associations results for the email and MHQ data 

phenotypes replicated in an independent sample, using whether members of Generation 

Scotland participated in the STRADL follow-up of mental health. None of the independent 

SNPs in the UKB GWASs were significant in Generation Scotland after Bonferroni 

correction (35 tests) (Supplementary Tables S22 and S23). However, the STRADL data 

phenotype was genetically correlated with both UKB email contact (rg = 0.618, p = 1.98 × 10-

6) and UKB MHQ data (rg = 0.666, p = 6.12 × 10-6) and had a SNP heritability on the liability 

scale of 0.112 (SE 0.0408). 

 

Discussion 

Using data from UK Biobank, we found that individuals who provided an email address for 

recontact and who participated in follow-up surveys of mental health differed from those who 

did not with regards to demographic, psychological, health, and lifestyle, and genetic factors. 

Most of the phenotypic and genetic associations were in the same direction. These results 

were not the result of population stratification as only 4% of the inflation in GWAS statistics 

could be attributed to factors other than polygenic heritability. Having greater educational 

attainment, being a non-smoker or a former smoker, having fewer hospital diagnoses of 

illness or injury, and having a family history of dementia or a family history of serious 

depression all predicted greater likelihood of providing email contact information. 

Furthermore, in those with that information, those variables were also associated with 

providing responses to the online Mental Health Questionnaire (MHQ). A few effects went in 

the opposite direction, with men and younger individuals more likely to provide an email 

address to UK Biobank, whereas women were more likely to provide MHQ data. 

 Email contact and MHQ data availability had SNP heritabilities of 7.3% and 9.9% 

respectively. We identified nine independent SNPs associated with email contact and 25 for 

MHQ data, more than for many GWAS studies of disease traits in the same sample. Loci for 

both phenotypes were mostly located within regulatory regions. Of particular interest was the 

association of MHQ data availability with the apolipoprotein E (APOE) ε4 genotype that is a 

major risk factor for Alzheimer's disease. (Coon et al., 2007).  While none of these variants 

individually replicated in an independent data set (Generation Scotland), this may be because 

Generation Scotland includes a wider age range of participants, the STRADL follow-up was 

sent by post rather than done online, and because Generation Scotland may be underpowered 

for finding these effects. However, the strong genetic correlation between STRADL 
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participation and the email contact and MHQ data phenotypes suggests that similar genetic 

factors are driving participation in follow-up studies. 

 Email contact and MHQ data shared similar genetic correlations with other traits. 

There were strong genetic correlations between email contact and indicators of cognitive 

ability (college completion, rg = 0.76; intelligence, rg = 0.73). Contact and data availability 

were also genetically associated with a lower burden of genetic risk to mental illness. The 

negative genetic correlation with schizophrenia matches results from follow-up participation 

in the ALSPAC cohort using polygenic risk scores (Martin et al., 2016) but suggests that this 

association is not specific to schizophrenia. 

 The similarity in the results for phenotypic and genetic factors associated with email 

contact and MHQ data show that the availability of an individual to be contacted by email 

and their choice to participate both act as a filter for selection into the subsample of UK 

Biobank with Mental Health Questionnaire data. Notably, self-reports of a family history of 

dementia and a family history of severe depression were more common in email providers 

and MHQ completers, but individual genetic associations with both these disorders showed 

significant negative correlations. Individuals who reported dementia or severe depression in 

their family were therefore more likely to be MHQ participants, even though having a 

personal genetic predisposition to these disorders may also decrease their likelihood of 

participating. Knowledge of family history may be a strong motivational factor for 

participating in follow-up surveys of mental health.  

 Our sample was large enough that we were able to identify specific genetic loci that 

were related to participation in follow up studies of mental health. We were also able to 

analyse the genetics of one particular factor (the availability of email contact for receiving 

invitations) that is heavily involved in the specific process of follow-up participation. 

However, a limitation of our analysis is that information on email contact was available for 

participants at baseline only and thus did not distinguish the entire subset of participants who 

would have received an email invitation. Another limitation is that information from 

electronic health records only covered hospital admissions and thus would underestimate 

associations with milder health conditions. 

 Individuals in large epidemiological cohorts who participate in follow-up surveys 

differ in their patterns of phenotypic and genetic association with traits of interest from those 

who do not. Because most factors had a consistent relationship with the two-step selection 

process (contactability by email and opting to participate in follow-up), it is likely that these 

same factors may also differentiate people who choose to become part of the cohort in the 
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first place from other people in the larger population. These factors are very likely to bias the 

selection of individuals selected for inclusion in population-based studies towards those with 

positive family histories but lower personal genetic risk of mental health conditions such as 

depression and dementia. Going forward, studies should evaluate (e.g., using simulations 

(Munafò et al., 2018)) the particular effects that selection and attrition might have on effect 

estimates and, where available, check results from follow-up assessments against those from 

baseline data, even in the cases where the follow-up data provides better or more 

comprehensive measures of phenotypes of interest.  Because continued participation in large 

cohorts studies recapitulates the “healthy volunteer” effect, comparing responders and non-

responders in follow-up surveys may be a useful way of selection bias may influence the 

generalizability of findings.  
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