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 2 

Abstract 29 

Nontuberculous mycobacteria (NTM) are a major cause of pulmonary and systemic disease in at-risk 30 

populations. Gaps in knowledge about transmission patterns, evolution, and pathogenicity during 31 

infection have prompted a recent surge in genomic NTM research. Increased availability and 32 

affordability of whole genome sequencing (WGS) techniques, including the advent of Oxford Nanopore 33 

Technologies, provide new opportunities to sequence complete NTM genomes at a fraction of the 34 

previous cost. However, extracting large quantities of pure genomic DNA is particularly challenging with 35 

NTM due to their slow growth and recalcitrant cell wall. Here we report a DNA extraction protocol that is 36 

optimized for long-read WGS of NTM, yielding large quantities of highly pure DNA. Our refined method 37 

was compared to 6 other methods with variations in timing of mechanical and enzymatic digestion, 38 

quantity of matrix material, and reagents used in extraction and precipitation. We also demonstrate the 39 

ability of our optimized protocol to produce sufficient DNA to yield near-complete NTM genome 40 

assemblies using Oxford Nanopore Technologies long-read sequencing.  41 
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 3 

Introduction  57 

The emergence of nontuberculous mycobacteria (NTM) infection in immunocompromised hosts, 58 

the elderly, patients with cystic fibrosis (CF), and patients with non-CF chronic lung disease (COPD, 59 

asthma, non-CF bronchiectasis) has prompted genomic investigations aimed at uncovering the 60 

determinants of pathogenicity, transmission, evolution, and adaptation (1-10). Recent studies of 61 

bacterial evolution and phylogenomics have been revolutionized by more available and affordable of 62 

whole genome sequencing (WGS) (11-15). Whole genome sequencing of NTM has begun to shed light 63 

on taxonomic conundrums, transmissibility, and global evolution (16-24). However, the unique 64 

challenges of slow growth rates and inefficient DNA extraction have impeded rigorous genomic 65 

investigation of NTM. 66 

Over recent years, the vast majority of genomic analysis has relied on short-read, shot-gun 67 

sequencing (125-500 base pairs), which can deliver exceptional accuracy, but rarely produces closed 68 

genomes. Indeed, less than 10% of available microbial genomes are complete (25).  Fragmented 69 

assemblies are problematic because they may unlink gene clusters, fail to resolve repetitive and G+C 70 

rich regions, neglect insertion and deletion elements (indels), and overlook recombination (26-29).  71 

Long-read sequencing promises an enhanced ability to complete bacterial genomes. The most 72 

commonly available techniques for long-read sequencing are the Single Molecule Real-Time (SMRT) 73 

technology by Pacific Biosciences® (PacBio) and the newer Oxford Nanopore Technologies (ONT) (14, 74 

27, 30). Unlike most short-read sequencing methods, which require only very small amounts of DNA 75 

(as low as 1 ng), long-read platforms require high quantities of very pure DNA for acceptable 76 

processing (Table 1). DNA purity and integrity (i.e., length or molecular weight [MW]) is not only 77 

essential for functionality of the sequencer, but also is directly related to the quality of downstream 78 

bioinformatic analyses, as the DNA MW places a natural upper bound on the potential read length.  79 

Extracting large quantities of intact, pure genomic DNA is exceptionally challenging with NTM 80 

due to their hardy, lipid-laden mycobacterial cell wall. Standard extraction techniques do not yield 81 

sufficient quantities of DNA for WGS while overly vigorous techniques shear DNA into suboptimal MWs 82 

for long-read sequencing. Previously, Käser et al. in 2010 published a mycobacterial-specific DNA 83 

extraction protocol, which is commonly used in the NTM research community (31, 32). In our 84 
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experience, this technique was unable to yield DNA that was of sufficient quality for ONT MinION 85 

sequencing. We developed an optimized protocol over the course of performing over 100 NTM DNA 86 

extractions, using components of several extraction techniques (31, 33-36). Our improved method is 87 

characterized by early bead-beating (prior to enzymatic digestion) in high concentrations of sodium 88 

dodecyl sulfate (SDS) followed by gentle extraction and precipitation focused on DNA purification and 89 

protection of long strands of DNA. The goal of our protocol is to extract high MW, pure DNA for use in 90 

long-read WGS. Here, we demonstrate its superiority to 6 variations in methodologic design and 91 

validate its capacity for producing near-complete genome assemblies with the ONT MinION sequencer.  92 

Materials and Methods 93 

Bacterial growth  94 

Clinical isolates of M. avium complex were grown from frozen stocks to Löwenstein–Jensen slants and 95 

sub-cultured to Middlebrook 7H11 plates. Single colonies from 7H11 plates were inoculated in 96 

Middlebrook 7H9 broth supplemented with 10% OADC and incubated statically at 37°C for 2 weeks. 97 

Bacterial cultures were pelleted (4500 rpm x 10 min) and stored at -20°C until time of extraction.  98 

DNA extraction  99 

The following extraction protocol described is “Method 5.” Alternate methods are described in Table 2. 100 

Method 3 corresponds to the protocol by Käser et al (32). The comprehensive protocol with thorough 101 

descriptions of each step and reagent recipes is provided in Supplemental Figure 1.  102 

Sample Preparation. Bacterial pellets were resuspended and washed in 350 µL of 1X phosphate-103 

buffered saline (PBS) using 2 mL microcentrifuge tubes. Due to variability in starting mass between 104 

bacterial isolate cultures, and for the purposes of comparing extraction methods, all weights were 105 

normalized after a 2nd PBS wash and “washed weights” were recorded.  The samples were heat-106 

inactivated for 60 minutes at 95˚C, pelleted, and supernatant discarded.   107 

“Early” Mechanical Disruption in SDS followed by Enzymatic Digestion. Bacterial pellets were 108 

resuspended in 400 µL of lysis buffer and 100 µL of 20% SDS. Samples were homogenized with glass 109 

beads (4 x 30 second cycles at 3000 rpm, Fisher Scientific vortex mixer, MoBio adapter) (150 mg glass 110 

beads, 0.1-mm diameter, Research Products International). Subsequently, all vortexing was avoided. 111 

Cell walls were additionally lysed in lysozyme (final concentration 10 mg/mL) for 1 hour at 37°C.  112 
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Proteinase K (final concentration 200 µg/mL) was added and samples were incubated at 37°C for 90 113 

minutes with mixing by turning end-over-end by hand every 30 minutes. The lysates were centrifuged 114 

(4500 rpm x 10 min followed by 14,000 rpm x 2 min) and supernatants transferred to 2 mL 5Prime Light 115 

Phase Lock Gel™ (PLG, QuantaBio) microcentrifuge tubes. Variables tested in the aforementioned 116 

digestion steps included enzymatic digestion prior to mechanical digestion (Methods 2, 3) and the 117 

amount of matrix material added (Method 4). 118 

Phenol:Chloroform:isoamyl alcohol extraction. To extract DNA, 500 µL of phenol:chloroform:isoamyl 119 

alcohol (25:24:1, Tris-saturated, pH 8.0) was added to the PLG tubes. The tubes were rotated on a 120 

HulaMixer at 20 rpm for 20 minutes and then centrifuged (4500 rpm x 10 min). The DNA-containing 121 

aqueous layer was transferred to a new 2 mL microcentrifuge tube. Chloroform:isoamyl alcohol (24:1, 122 

Tris-saturated) without phenol was tested as a variable (Methods 1, 2, 4, 6, 7). 123 

Isopropanol precipitation. For DNA precipitation, 1/10 volume of 5 M sodium chloride (~20-45 µL) and 1 124 

volume of room temperature isopropanol (~200-450 µL) was added to the samples. The samples were 125 

incubated at room temperature overnight. The samples were then centrifuged (14,000 rpm x 30 min at 126 

22˚C, to avoid heating), washed with 700 µL 70% ethanol (14,000 rpm x 10 min at 22˚C), and the 127 

supernatant carefully discarded, with repeat of washing steps 3 times. The samples were air-dried at 128 

room temperature with lids open for 15 minutes, resuspended in 100 µL of Tris-Cl Elution Buffer 129 

(Qiagen), and eluted overnight on a nutator (24 rpm fixed speed, FisherbrandTM). DNA was stored at 130 

4°C for 3-4 days prior to quality assessment. Variables tested during precipitation include use of cold 131 

100% ethanol (Methods 3, 6) and use of an alternative salt (Methods 1-4, 6, 7). 132 

Quality measures. DNA was heated to 65°C x 1 hour prior to quality assessment. DNA purity was 133 

assessed with NanoDrop 2000 UV-Vis Spectrophotometer (260/280, 260/230) and concentrations 134 

measured with Qubit® 2.0 Fluorometer (dsDNA BR Assay). Gel electrophoresis (0.6% agarose ethidium 135 

bromide gel, 40V x 2 hours) estimated molecular weights and shearing. One-way ANOVA with post-hoc 136 

Tukey’s multiple comparison test in Prism 7.0d for Mac OS X (GraphPad Software, La Jolla California 137 

USA, www.graphpad.com) was used to determine significance differences.  138 

Whole genome sequencing. Two representative samples of M. avium subsp. hominissuis 139 

(CHOP101034 and CHOP101174) were prepared for WGS with library preparations of Nextera XT 140 
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(Illumina) and Rapid Barcoding Kit (ONT), and libraries were sequenced on their respective platforms of 141 

Illumina HiSeq 2500 and ONT MinION sequencer (FLO-MIN107). Read qualities were assessed with 142 

FastQC and MultiQC (37, 38). Genome assemblies were constructed with short-reads only, long-reads 143 

only, and with a combination of short and long-reads (hybrid) with error correction. Raw reads were 144 

trimmed and demultiplexed with Trim Galore (39, 40), de novo assembled with Unicyler (41), and 145 

assembly graphs generated by Bandage (42). Long-read and hybrid assemblies were additionally 146 

polished and circularized with Circlator (43). Assembly quality control measurements were assessed 147 

with QUAST (44).  148 

 Results                                                               149 

Initial bacterial pellets averaged a normalized “washed weight” of 26.4 mg. With the exception of 150 

Method 6, all methods tested produced sufficient total DNA quantity and concentration (Figure 1a, 1b). 151 

Methods 1 and 3 produced the highest total amounts of DNA with 12.45 and 11.43 µg of DNA, 152 

respectively (Table 3). All methods except Method 6 gave sufficient 260/280, indicating low protein 153 

contamination overall (Table 3, Figure 2a). Method 3 and 5 produced the highest 260/280 154 

measurements, which were significantly higher than other methods. Only Method 5 produced sufficient 155 

260/230 for use with long-read sequencers without the need for any clean-up steps (Table 3, Figure 156 

2b). Despite apparent variation in DNA quantity, all methods produced high MW DNA as evidenced on 157 

an ethidium bromide gel, indicating preservation of long reads of genomic DNA (Figure 3).  158 

Representative samples of DNA from single colony extractions (CHOP101034 and 159 

CHOP101174) were sequenced by both Illumina NGS and ONT MinION with quality control statistics of 160 

reads listed in Table 3. Remarkably, ONT reads averaged over 1000 bp without size selection with 161 

longest reads of approximately 35,000 bp. Such high read lengths supplied higher coverage for ONT 162 

reads despite lower base calling accuracy. In this regard, Illumina and ONT read qualities generated 163 

expected results. Comparison of mean Phred scores of Illumina reads (37) and ONT reads (13) 164 

demonstrated a lower probability of a miscalled base at any given position with Illumina sequencing 165 

(0.02% versus 5.01%). 166 

Quality control statistics of assembled genomes computed in QUAST and assembly graphs 167 

generated by Bandage are featured in Figure 4 (42, 44). Short-read only assemblies were considerably 168 
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more fragmented with an average of 90 contigs compared to the long-reads only and hybrid 169 

assemblies, which averaged 13 and 7 contigs, respectively. The best assembly (CHOP101174, hybrid) 170 

was 5.15 Mb in length with 5 contigs and an N50 of 3.0 Mb. Notably, ONT-only assemblies were overall 171 

similar to hybrid assemblies by basic quality statistic measures, but have significantly more errors 172 

based on Phred scores of input reads (Table 3). 173 

Discussion 174 

Our protocol was used to supply sufficient input DNA for long-read WGS with the ONT MinION 175 

sequencer. To demonstrate direct comparisons to alternative methods, we completed DNA extraction 176 

with 6 variations of methodology with normalized starting DNA for head-to-head comparisons. Method 5 177 

demonstrated superiority as the only method to provide appropriate quality control measurements 178 

without requiring any clean-up steps. Method 5 was characterized by early bead-beating in high-SDS 179 

concentration, gentle phenol-based extraction, and room temperature isopropanol precipitation. While 180 

Method 5 was the only method to use NaCl as the precipitation salt, later direct comparisons of NaCl 181 

versus NaOAc alone did not demonstrate any superiority of NaCl. Thus, while either salt is appropriate, 182 

we recommend NaCl over NaOAc because it does not require pH titration. In addition to the variables 183 

presented in this manuscript, we also trialed an alternative buffer, higher concentrations of lysozyme 184 

and proteinase K, variable starting weights of bacterial pellets, extraction without bead-beating, and 185 

bead-beating with and without SDS,  186 

 In comparison to a widely-used method (Method 3, Käser et al.), we noted improvements in the 187 

purity of DNA (260/280 and 260/230) with modifications of the composition of lysis buffer (See 188 

Supplemental Figure 1), the timing of bead beating (early vs. late), the use of Phase Lock Gel™ tubes, 189 

and precipitation in room temperature isopropanol as opposed to cold 100% ethanol. Others have 190 

shown improved DNA purity with isopropanol extractions compared to cold ethanol extractions with less 191 

salt carry-over, albeit at the expense of reduced DNA yields (31, 32). While Method 1 and 3 gave more 192 

total DNA, neither reached a suitable 260/230. Thus, total DNA yield may need to be sacrificed in order 193 

to achieve high DNA purity.  194 

The trademark of the mycobacterial cell wall is its heavily lipophilic exterior. In addition, 195 

mycobacterial peptidoglycans are characterized by an oxidation modification rendering lysozyme less 196 
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effective at cleaving the β(1,4) linkages between N-acetylmuramic acid and N-acetyl-D-glucosamine 197 

residues (45). Thus, it is no surprise that mechanical digestion is necessary for DNA extraction. We 198 

reason that early mechanical digestion allows the exterior mycolic acid cell wall and peptidoglycan layer 199 

to be broken down first, with subsequent enzymatic disruption with lysozyme and proteinase K to digest 200 

the remainder of the cell wall and expose the cellular contents. In our preliminary trials, early 201 

mechanical digestion demonstrated superiority to late mechanical digestion. Although not seen in the 202 

head-to-head comparisons presented here, we have noted increased shearing with late mechanical 203 

digestion, resulting in homogenously distributed smears of lower MW DNA on gel electrophoresis. In 204 

addition, we found that early addition of high concentrations of SDS during early beat-beating was also 205 

independently superior to early bead-beating without SDS (data not shown). The detergent properties 206 

of SDS likely assist with mechanical lysis and may additionally protect exposed DNA from degradation.  207 

There are several reasons why long-read sequences are important for the interpretation of 208 

genomic evolution and phylogeny. Studies aimed at understanding patterns of transmission and intra-209 

host adaptation must pay specific attention to unique genomic characteristics, such as mosaicism (46), 210 

recombination tracks (19), and large repeat regions (28, 29, 47), which can all function to confound 211 

phylogenetic inference. Current short-read techniques cannot obtain the contig sizes necessary to 212 

detect these genomic features. Complete WGSs also allow for optimal reference sequence generation 213 

for comparison of clonal relatives because they contain a more complete picture of genome content 214 

and organization and may detect genomic changes that would be missed otherwise. Thus, with the 215 

exception broad phylogenetic estimations, comprehensive variation-based analyses warrant 216 

supplementation with long-read assemblies.  217 

Undoubtedly, long-read assembled genomes are the way of the future. As technology improves, 218 

assembly construction will be less and less reliant on short-read sequencing. However, we will remain 219 

at the mercy of the cell wall, and continue to be faced with the delicate challenge of mining unscathed 220 

DNA from a distinctly robust substrate. Here, we presented a finely-tuned extraction method designed 221 

for preparation of highly purified DNA to be used for long-read sequencing and demonstrated the ability 222 

to produce complete (or near complete) genome assemblies.  223 

 224 
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Table 1. DNA specifications by long-read WGS platform 421 

 PacBio MinION 

Minimum Input 
DNA 5 µg 400 ng 

260/280 1.6-1.8 1.6-1.8 

260/230 2.0 2.0 

Expected 
Library Insert 

Size 
500bp – 20 Kb unlimited 

Expected DNA 
read length up to 500 Kb unlimited 

Expected GB 
per flow cell 20 GB 10 – 20 GB 

 422 

 423 

 424 

 425 

 426 

 427 

 428 

 429 

 430 

 431 

 432 

 433 

 434 

 435 

 436 

 437 

 438 
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Table 2. Differentiation of Tested Methods by Variable 439 

* “Early” bead-beating refers to the timing prior to enzymatic digestion; “Late” bead-beating refers to timing after enzymatic digestion. 440 

All Early bead-beating was done in high SDS concentration, see Supplemental Figure 1.  441 
† DNA extractions in “Phenol” were extracted as described in the Materials and Methods with phenol:chloroform:isoamyl alcohol 442 

(25:24:1, Tris-saturated, pH 8.0); extractions in “No phenol” were extracted using chloroform:isoamyl alcohol (24:1, Tris-saturated).  443 
‡ Precipitation reagent was either RT 2-Prop (room temperature isopropanol) or Cold ETOH (100% ethanol chilled at -20°C). 444 
ǁ Precipitation salt was either 3 M sodium acetate (pH 5.2) or 5 M NaCl. 445 

 446 

 447 

 448 

 449 

 450 

 451 

 452 

 453 

 454 

 455 

 456 

 457 

 Method 1 Method 2 Method 3 Method 4 Method 5 Method 6 Method 7 

Early vs. Late 
bead-beating* Early Late Late Early Early Early Early 

Bead Quantity 150 mg 150 mg 150 mg 75 mg 150 mg 150 mg 150 mg 

Phenol vs. No 
Phenol† 

 

No phenol No phenol Phenol No phenol Phenol No Phenol No phenol 

Precipitation 
Temp/ 

Reagent‡ 
 

RT/2-Prop RT/2-Prop Cold ETOH RT/2-Prop RT/2-Prop Cold ETOH RT/2-Prop 

Precipitation 
Saltǁ 

NaOAc NaOAc NaOAc NaOAc NaCl NaOAc NaOAc 

Number of 
washes 

3 3 3 3 3 3 5 
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Table 3. Average Quality and Quantity Measurements by Method. All reported values are averages of 458 

extractions performed in triplicate with ± standard deviation. The highlighted method achieved sufficient QC on all 459 

measurements. 460 

* Sufficient QC measurement for long-read sequencing. 461 

 462 

 463 

 464 

 465 

 466 

 467 

 468 

 469 

 470 

 471 

 472 

 473 

 474 

 475 

 476 

 477 

 478 

 479 

 Method 1 Method 2 Method 3 Method 4 Method 5 Method 6 Method 7 

260/280 1.77* ± 0.01 1.73* ± 0.03 1.87* ± 0.05 1.64* ± 0.04 1.89* ± 0.01 0.743 ± 0.02 1.75* ± 0.03 

260/230 1.15 ± 0.05 1.03 ± 0.07 0.905 ± 0.47 0.833 ± 0.15 1.95* ± 0.03 0.46 ± 0.01 1.09 ± 0.06 

Conc. 
DNA 

(ng/uL) 
 

124.5* ± 29.3 99.0* ± 12.6 114.3* ± 17.4 54.97* ± 26.7 72.63* ± 5.0 7.22 ± 4.9 78.67* ± 13.7 

Total 
DNA 
(ug) 

 

12.45* ± 2.93 9.903* ± 1.26 11.43* ± 1.74 5.497* ± 2.67 7.263* ± 0.5 0.722 ± 0.49 7.867* ± 1.37 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 14, 2018. ; https://doi.org/10.1101/470245doi: bioRxiv preprint 

https://doi.org/10.1101/470245
http://creativecommons.org/licenses/by-nc-nd/4.0/


 20 

Table 4. Quality Statistics of Isolates Sequenced for Long-Read Hybrid Assembly. Statistics were generated 480 

with FastQC and MultiQC (37, 38).  481 

* Coverage calculated by C = LN/G, where L=average read length, N=number of reads, G=genome size of 5.2 Mb. 482 

† Error probability percentage is a function of Mean Phred score, where probability P%=100*10^(-Phred/10). 483 

 484 

 485 

 486 

 487 

 488 

 489 

 490 

 491 

 492 

 493 

 494 

 495 

 496 

 497 

 498 

 499 

 500 

 501 

 502 

 503 

 504 

 505 

 506 

 507 

  Total reads GB 
Data 

Avg. read 
length (bp) 

Longest 
read (bp) %GC Coverage* 

Mean 
Phred 
score 

% Error 
Probability† 

Illumina 
CHOP101034 2,521,793 1.6 126 126 65% 122x 37 0.01995% 

CHOP101174 2,348,600 1.5 126 126 67% 113x 37 0.01995% 

ONT 
CHOP101034 545,494 1.3 1,139 34,615 66% 119x 13 5.0119% 

CHOP101174 875,670 2.0 1,122 36,523 66% 188x 13 5.0119% 
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Figure 1. Quantification of DNA by Method. (A) DNA concentration as measured by Qubit fluorometry with 508 

dotted line indicating the minimum required input DNA concentration for PacBio (PB) and Oxford Nanopore 509 

Technologies MinION (ONT). (B) Total DNA as measured by Qubit fluorometry with dotted lines indicating 510 

minimum required input DNA for PB and ONT sequencing.  511 
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Figure 2. Quality and Quantity Measurements by Method. All values are presented as averages of each tested 529 

method in triplicate with error bars indicating standard deviation. Significance was computed with one-way 530 

ANOVA with post-hoc Tukey’s multiple comparison test. For clarity, significance bars were only depicted for 531 

comparisons against Method 5. (A) 260/280 by method and (B) 260/230 by method. 532 

Significance depicted by p-values as follows: 0.0332 (*), 0.0021 (**), 0.0002 (***), <0.0001 (****).   533 
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Figure 3. Gel Electrophoresis of gDNA. Methods 1-7 in triplicate (left to right) on a 0.6% EtBr gel demonstrating 550 

high MW genomic DNA.  551 
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Figure 4. Assembly Statistics and Graphs. All assemblies were de novo assembled in Unicycler (41) with 580 

hybrid assemblies circularized with Circlator (43). Assembly statistics by QUAST (44) demonstrate considerably 581 

more complete assemblies with utilization of ONT long-reads and ssembly graphs generated by Bandage (42) 582 

provide visualization of more complete assemblies with long-read based assemblies. 583 

 584 

 585 

 Length N. of 
Contigs N50 Largest 

contig GC% Assembly graph 

Short-read 
Only 

Assemblies 

CHOP101034 5,245,237 113 166,829 535,319 69.04 

 

CHOP101174 5,047,590 68 219,394 293,364 69.21 

 

Long-read  
ONT-only 

Assemblies 

CHOP101034 5,626,623 16 908,880 2,330,090 68.97 

 

CHOP101174 5,626,623 10 336,829 1,985,353 69.17 

 

Long-read 
Hybrid 

Assemblies 

CHOP101034 5,380,960 9 2,969,173 2,969,173 68.96 

 

CHOP101174 5,145,196 5 2,981,005 2,981,005 69.15 
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