

1 **IL-11 neutralising therapies target hepatic stellate cell-induced liver**
2 **inflammation and fibrosis in NASH**

3
4
5 **Authors**

6 Anissa A. Widjaja^{1†}, Brijesh K. Singh^{1†}, Eleonora Adami¹, Sivakumar Viswanathan¹,
7 Giuseppe A. D'Agostino¹, Jinrui Dong¹, Benjamin Ng^{1,2}, Jessie Tan^{1,2}, Bhairav S.
8 Paleja³, Madhulika Tripathi¹, Sze Yun Lim², Sonia P. Chothani¹, Wei Wen Lim^{1,2},
9 Anne Rabes⁴, Martina Sombetzki⁴, Eveline Bruinstroop¹, Rohit A. Sinha⁵, Salvatore
10 Albani³, Paul M. Yen¹, Sebastian Schafer^{1,2}, Stuart A. Cook^{1,2,6,7*}

11
12
13 **Affiliations**

14 ¹Cardiovascular and Metabolic Disorders Program, Duke–National University of Singapore
15 Medical School, 169857, Singapore.

16 ²National Heart Research Institute Singapore, National Heart Centre Singapore, 169609,
17 Singapore.

18 ³Translational Immunology Institute, SingHealth/Duke-NUS Academic Medical Centre,
19 169856, Singapore.

20 ⁴Department of Tropical Medicine and Infectious Diseases, University Medical Center,
21 Rostock, 18057, Germany.

22 ⁵Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences,
23 Lucknow, 226014, India.

24 ⁶National Heart and Lung Institute, Imperial College London, London, SW3 6LY, UK.

25 ⁷MRC-London Institute of Medical Sciences, Hammersmith Hospital Campus, London, W12
26 0NN, UK

27

28 *Correspondence: S.A.C. (stuart.cook@duke-nus.edu.sg)

29 †These authors contributed equally to this work.

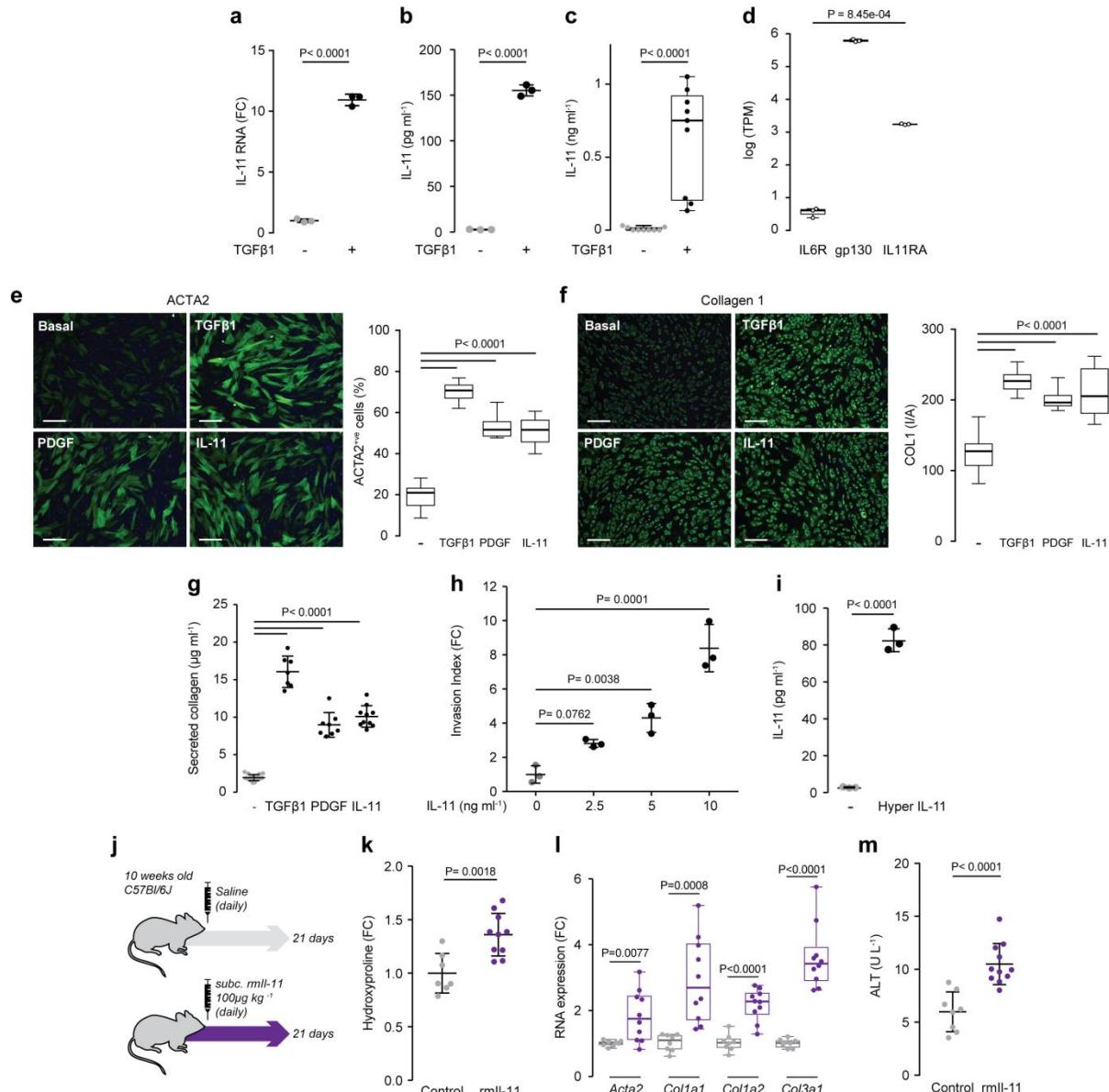
30 **Abstract**

31 The transformation of hepatic stellate cells (HSCs) into myofibroblasts is the defining
32 pathobiology in non-alcoholic steatohepatitis (NASH). Here we show that key NASH
33 factors induce IL-11, which drives an autocrine and ERK-dependent activation loop
34 to initiate and maintain HSC-to-myofibroblast transformation, causing liver fibrosis.
35 IL-11 is upregulated in NASH and *Il11ra1*-deleted mice are strongly protected from
36 liver fibrosis, inflammation and steatosis in murine NASH. Therapeutic inhibition of
37 IL11RA or IL-11 with novel neutralizing antibodies robustly inhibits NASH pathology
38 in preclinical models and reverses established liver fibrosis by promoting HSC
39 senescence and favourable matrix remodelling. When given early in NASH, IL-11
40 inhibition prevents liver inflammation and steatosis, reverses severe hepatocyte
41 damage and reduces hepatic immune cells and TGF β 1 levels. Our findings show an
42 unappreciated and central role for IL-11 in HSCs and prioritise IL-11 signalling as a
43 new therapeutic target in NASH while revealing an unexpected pro-inflammatory
44 function for IL-11 in stromal immunity.

45
46 **Introduction**

47 The global prevalence of nonalcoholic fatty liver disease (NAFLD) is estimated at
48 25%¹ and while NAFLD is reversible it can progress to nonalcoholic steatohepatitis
49 (NASH). NASH is characterized by steatosis-driven inflammation, hepatocyte death
50 and liver fibrosis that can lead to liver failure. Hepatic stellate cells (HSCs) are pivotal
51 in the pathogenesis of NASH and give rise to up to 95% of liver myofibroblasts²,
52 which drive the key pathologies in NASH, namely liver fibrosis, inflammation and
53 dysfunction³⁻⁵.

54
55 A number of factors are implicated in HSC activation and transformation, including
56 the canonical pro-fibrotic factors transforming growth factor- β 1 (TGF β 1) and platelet-
57 derived growth factor (PDGF)^{6,7} and also pro-inflammatory factors such as CCL2,
58 TNF α and CCL5^{4,7,8}. Perhaps reflecting this redundancy in HSC activation, no single
59 upstream initiating factor has been targeted successfully in NASH. Inhibition of
60 downstream pro-fibrotic targets such as LOXL2 has also been unsuccessful and
61 ongoing clinical trials are focused mostly on inhibiting steatosis. There are no
62 approved drugs for the treatment of NASH.


63
64 Quiescent HSCs are vitamin A storing cells and very distinct from fibroblasts.
65 However, common stimuli activate both cell types and stimulate their transition to
66 myofibroblasts with shared features^{2,9}. We recently identified Interleukin-11 (IL-11)
67 as a crucial factor for cardiovascular and pulmonary fibroblast-to-myofibroblast
68 transformation^{10,11}. To date, there are very limited insights into IL-11 in the liver,
69 where it is reported to have anti-inflammatory activity^{12,13}, and it is unknown if HSCs
70 respond to IL-11 at all. Here, we explore the hypothesis that IL-11 plays a role in the
71 transformation of HSCs into myofibroblasts and determine the effects IL-11 signalling
72 in the context of liver inflammation, steatosis and fibrosis in NASH.

73
74 **IL-11 activates HSCs and drives liver fibrosis in NASH**

75 Genome wide RNA-seq analysis revealed that TGF β 1 strongly upregulates *IL-11*
76 (14.9-fold, P = 3.40x10⁻¹⁴⁵) in HSCs that was confirmed by qPCR and at the protein
77 level and replicated in experiments using precision cut human liver slices (**Fig. 1a-c**,
78 **Supplementary Fig. 1a**). Independent RNA-seq data¹⁴ also show that *IL-11* is the
79 most upregulated gene in HSCs when grown on a stiff substrate to model cirrhotic

80 liver (**Supplementary Fig. 1b**). HSCs express very low levels of IL6R and higher
81 levels of the IL-11 receptor subunit alpha (IL11RA) than either cardiac or lung
82 fibroblasts (**Fig. 1d, Supplementary Fig. 1c**). We also performed Western blots on
83 patient liver samples and found increased IL-11 levels in NASH (**Supplementary**
84 **Fig. 1d,e**). These data show that HSCs are both a source and prominent target of IL-
85 11 in the human liver and that IL-11 is elevated in NASH.

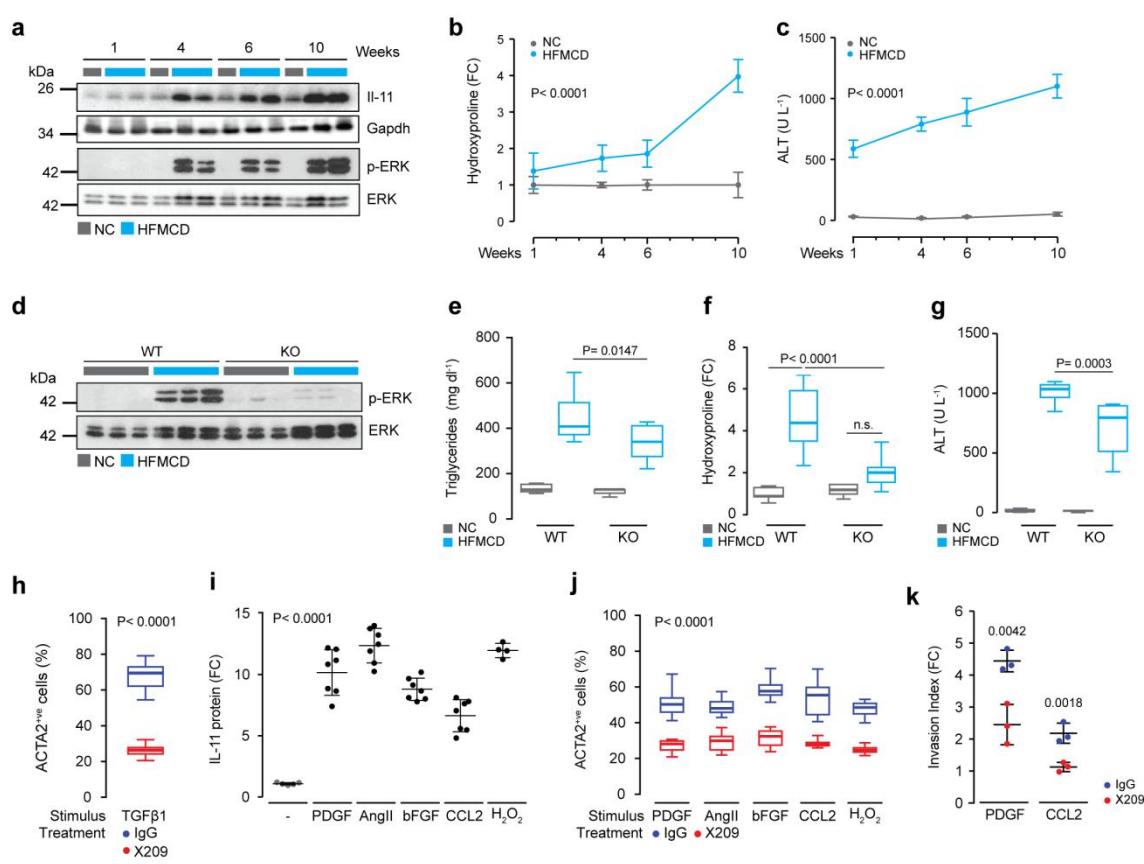
86
87 To investigate the effect of IL-11 on HSCs, we stimulated cells with either IL-11,
88 TGF β 1 or PDGF. IL-11 activated HSCs to a similar extent as TGF β 1 or PDGF,
89 transforming quiescent HSCs into ACTA2 $^{+ve}$ myofibroblasts that secrete collagen
90 and matrix modifying enzymes (**Fig. 1e-g, Supplementary Fig. 1f**). IL-11 also
91 promoted dose-dependent matrix invasion by HSCs that is an important aspect of
92 HSC pathobiology in NASH (**Fig. 1h**). We stimulated HSCs with hyperIL-11¹⁰ to
93 test for an autocrine loop of feed-forward IL-11 activity, inferred by IL-11 secretion
94 from HSCs that express IL11RA, and confirmed its existence (**Fig. 1i**). Moving *in*
95 *vivo*, subcutaneous administration of recombinant mouse IL-11 (rmIL-11) to mice for
96 21 days increased hepatic collagen content, fibrosis marker mRNA and serum
97 alanine aminotransferase (ALT) levels (**Fig. 1j-m**). Furthermore, *Col1a1-GFP*
98 reporter mice¹⁵ treated with rmIL-11 accumulated *Col1a1* $^{+ve}$ myofibroblasts in the liver
99 (**Supplementary Fig. 1g**).

Figure 1. IL-11 induces hepatic stellate cell activation and hepatic fibrosis.

102
103 **a**, *IL-11* is upregulated in hepatic stellate cells (HSCs) stimulated with TGF β 1 (n=3). **b**, *IL-11* protein is
104 secreted from HSCs stimulated with TGF β 1 (ELISA, n=3). **c**, Human precision cut liver slices were
105 stimulated with TGF β 1 and *IL-11* protein was measured in supernatant (ELISA, n=3). **d**, *IL6R*, *gp130*,
106 and *IL11RA* expression in HSCs (TPM, transcripts per million). **e**, **f**, Representative fluorescence
107 images (scale bars, 200 μ m) of HSCs and automated fluorescence quantification for **(e)** *ACTA2*^{+ve}
108 cells and **(f)** Collagen I immunostaining following incubation without stimulus (-), with TGF β 1, PDGF,
109 or *IL-11*. **g**, Collagen secretion supernatants of HSC stimulated with TGF β 1, PDGF, or *IL-11* (Sirius
110 red assay, n \geq 7). **h**, Dose-dependent matrigel invasion of HSCs induced by *IL-11* (n=3). **i**, Hyper *IL-11*
111 induces *IL-11* protein secretion from HSCs (ELISA, n=3). **a-c**, **e-g**, **i**, TGF β 1 (5 ng ml⁻¹), Hyper *IL-11*
112 (0.2 ng ml⁻¹), PDGF (20 ng ml⁻¹), *IL-11* (5 ng ml⁻¹); 24 h stimulation; **h**, 48 h stimulation. **j**, Schematic of
113 mice receiving daily subcutaneous injection of either saline (control) or *rml11* (100 μ g kg⁻¹). **k**, Relative liver hydroxyproline content, **l**, mRNA expression of pro-fibrotic markers, and **m**, serum ALT
114 levels (**k**, **l**, control, n=7; *rml11*, n=10; **m**, control n=8; *rml11*, n=11). **a**, **b**, **g**, **h**, **i**, **k**, **m** Data are
115 represented as mean \pm s.d. **c-f**, **l**, Box-and-whisker plots show median (middle line), 25th–75th
116 percentiles (box) and min-max percentiles (whiskers). **a-d**, **i**, **k-m**, Two-tailed Student's *t*-test; **e-h**,
117 two-tailed Dunnett's test. FC: fold change; I/A: intensity/area.

119 **Anti-IL-11 therapies are effective in treating murine NASH**

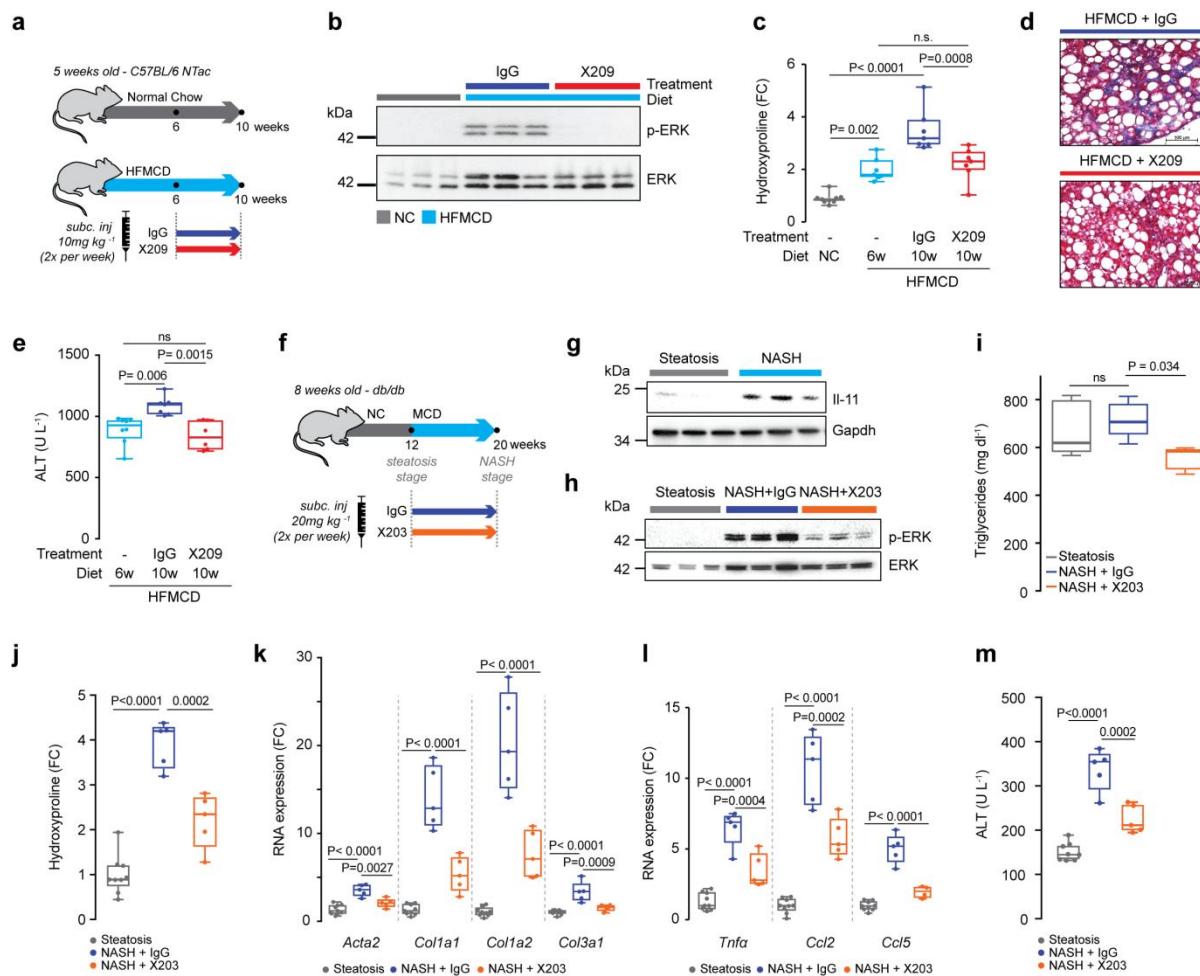
120 We next performed studies in a murine model of severe NASH using the high fat
121 methionine- and choline-deficient (HFMCD) diet¹⁶. In this model, *Il-11* mRNA was
122 mildly elevated whereas protein levels were highly upregulated, revealing strong
123 post-transcriptional regulation of *Il-11* expression in the liver (**Supplementary Fig.**
124 **2a,b**). The progressive induction of *Il-11* protein was mirrored by ERK activation,
125 increased collagen and elevated serum ALT levels (**Fig. 2a-c, Supplementary Fig.**
126 **2c**). To evaluate the physiological relevance of increased *Il-11* levels in NASH, we
127 used a genetic loss-of-function model: the *Il-11* receptor subunit alpha deleted
128 mouse (*Il11ra1*^{-/-})¹⁷. *Il11ra1*^{-/-} mice on the NASH diet were protected from fibrosis and
129 had lesser steatosis and liver damage and ERK activation (**Fig. 2d-g,**
130 **Supplementary Fig. 2d,e**). Hence, non-canonical and ERK-dependent *Il-11*
131 signalling, seen previously during fibroblasts-to-myofibroblast transformation¹⁰,
132 appeared relevant for several distinct aspects of NASH pathobiology.


133
134 In an attempt to target the *IL-11* autocrine loop, we genetically immunised mice with
135 *IL11RA* to generate neutralising anti-*IL11RA* antibodies. Clones that block fibroblast
136 transformation¹⁰ were identified and clone X209 (IgG1κ, $K_D = 6\text{nM}$) that neutralised
137 *IL-11* signalling across species was prioritised. X209 blocked fibrogenic protein
138 secretion from HSCs with an IC_{50} of 5.4pM. Pharmacokinetic studies using ¹²⁵I-X209
139 revealed an *in vivo* half-life of more than 18 days and strong uptake in the liver
140 (**Supplementary Fig. 3**). To ensure therapeutic specificity for *IL-11* signalling and
141 exclude off-target effects, we also developed a neutralising anti-*IL-11* antibody
142 (X203)¹¹ and used both antibodies in downstream studies.

143
144 Initial experiments revealed that both antibodies blocked the *TGFβ1*-driven transition
145 of HSCs into myofibroblasts (**Fig. 2h, Supplementary Fig. 4a,b,d,e,g**). Follow on
146 studies found that other key NASH stimuli such as PDGF, CCL2, angiotensin II,
147 bFGF or oxidative stress also induce *IL-11* secretion from HSCs. And, remarkably,
148 HSC-to-myofibroblast transformation downstream of these various stimuli is
149 consistently dependent on intact *IL-11* signalling (**Fig. 2i-k, Supplementary Fig.**
150 **4c,f,h,i**). Thus, *IL-11* activity is a critical and universal feature underlying HSC
151 transformation, which has similarities with its activity in fibroblasts^{10,11}.

152
153 We then tested X209 and X203 therapy *in vivo* and started antibody administration
154 (10 mg kg⁻¹ bi-weekly) after six weeks of NASH diet when *IL-11* is strongly
155 upregulated, collagen has accumulated and there is severe steatohepatitis (**Fig. 2a-**
156 **c, 3a, Supplementary Fig. 5a**). After four weeks of therapy both antibodies had
157 abolished ERK activation, demonstrating excellent target engagement and coverage.
158 Anti-*IL-11* therapies inhibited the progression in liver fibrosis and serum ALT levels,
159 while steatosis was largely unchanged (**Fig. 3b-e, Supplementary Fig. 5b-g**).

160
161 To extend these findings, we tested anti-*IL-11* therapy in an additional NASH model
162 using obese and insulin resistant (*db/db*) mice on a methionine- and choline-deficient
163 (MCD) diet (**Fig. 3f**)¹⁸⁻²⁰. As expected, *Il-11* expression and ERK activation were
164 increased in livers of MCD fed *db/db* mice (**Fig. 3g,h**). Furthermore, anti-*IL11*
165 therapy reduced hepatic steatosis, fibrosis, inflammation and improved ALT levels as
166 compared to controls (**Fig. 3i-m, Supplementary Fig. 6a**). A third model of
167 streptozotocin-induced diabetes and advanced NASH (**Supplementary Fig. 6b**) was
168 investigated although ALT was not elevated in this model at tissue collection,

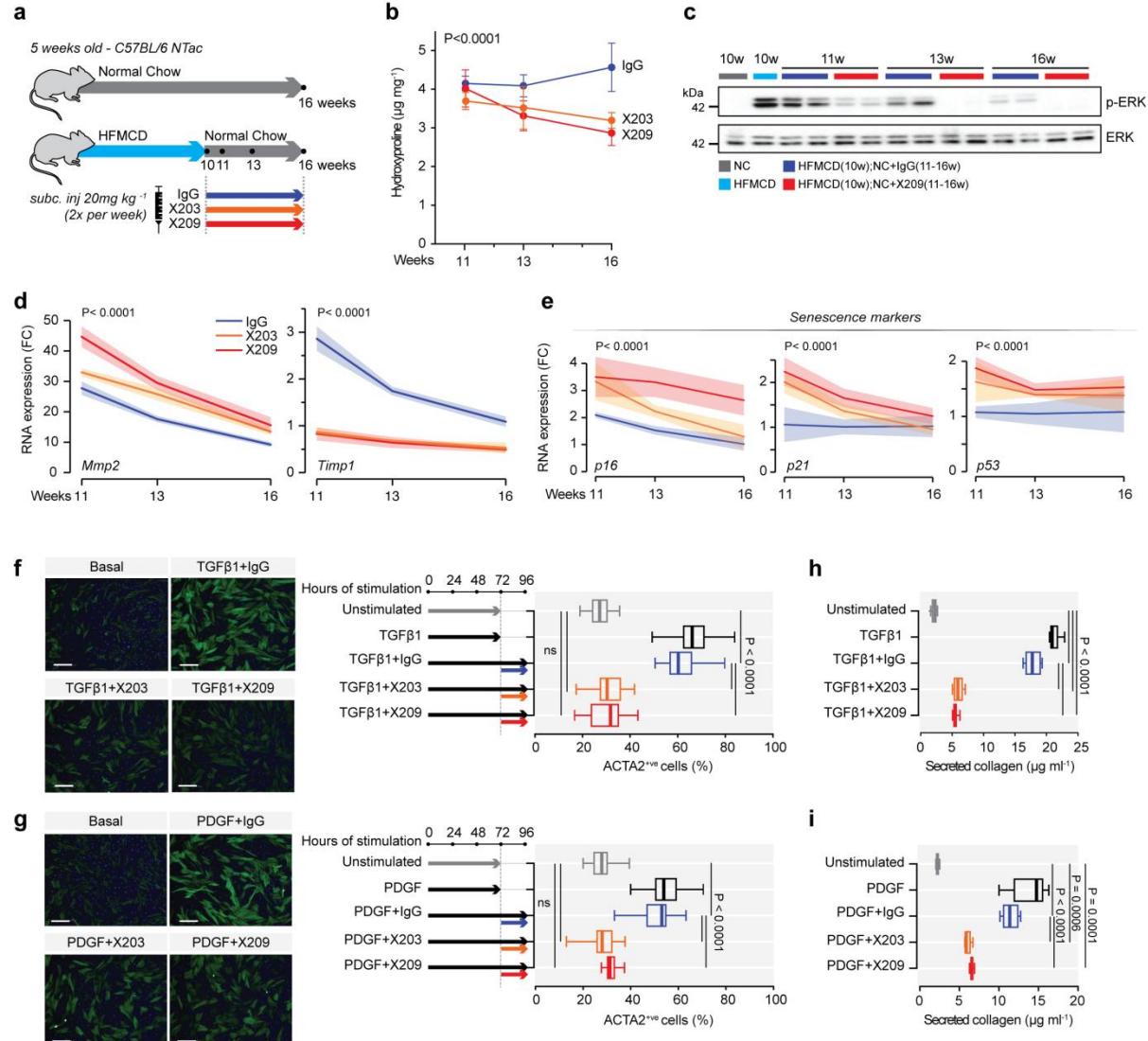

169 perhaps reflecting end-stage disease (**Supplementary Fig. 6c**). Nonetheless, levels
 170 of fibrosis and inflammation genes were robustly inhibited by either X203 or X209
 171 therapy in this third model (**Supplementary Fig. 6d,e**).
 172

173
 174

Figure 2. Inhibition of IL-11 signalling prevents hepatic stellate cell activation and hepatic fibrosis

a, Western blots of hepatic IL-11 and ERK activation status in mice on HFMCD diet. **b**, Relative liver hydroxyproline content and **c**, serum ALT levels in mice fed on HFMCD diet; liver tissues and serum were collected at the indicated time points (NC 1, 4, 6 week(s), n=5; NC HPA 10 weeks, n=4; NC ALT 10 weeks, n=5; HFMCD 1 week, n=7; HFMCD 4, 6 weeks, n=8; HFMCD 10 weeks, n=5). **d**, Western blots of hepatic ERK activation status after 10 weeks of HFMCD diet in *Il11ra*^{+/+} (WT) and *Il11ra*^{-/-} (KO) mice. **e**, Liver triglyceride levels and **f**, relative liver hydroxyproline content in WT and KO mice fed with HFMCD diet for 10 weeks (NC WT, n=9; HFMCD WT, n=9; NC KO, n=5; HFMCD KO, n=9). **g**, Serum ALT levels in WT and KO mice following HFMCD diet (NC WT, n=9; HFMCD WT, n=8; NC KO, n=5; HFMCD KO, n=9). **h**, ACTA2^{+ve} cells numbers in hepatic stellate cell (HSC) cultures stimulated with TGFβ1 in the presence of either IgG or X209. **i**, ELISA of IL-11 secretion from HSCs stimulated with various NASH factors (basal, n=5; PDGF, AngII, bFGF, CCL2, n=7; H₂O₂, n=4). **j**, Effect of X209 on ACTA2^{+ve} cell proportions in HSCs stimulated with various NASH factors. **k**, Effects of X209 on PDGF- or CCL2-induced HSC invasion (n=3). **h, j, k**, 24 h stimulation; **i, k**, 48 h stimulation. **h-k**, TGFβ1 (5 ng ml⁻¹), Hyper IL-11 (0.2 ng ml⁻¹), PDGF (20 ng ml⁻¹), AngII (100 nM), bFGF (10 ng ml⁻¹), CCL2 (5 ng ml⁻¹), H₂O₂ (0.2 mM), IgG and X209 (2 µg ml⁻¹). **b, c, i, k**, Data are represented as mean ± s.d; **e-h, j, k**, data are shown as box-and-whisker with median (middle line), 25th–75th percentiles (box) and min-max percentiles (whiskers). **b, c**, Two-way ANOVA; **e-g**, two-tailed, Sidak-corrected Student's *t*-test; **h-k**, two-tailed Dunnett's test. FC: fold change; NC: normal chow; HFMCD: high fat methionine- and choline-deficient.

Figure 3. Therapeutic inhibition of IL-11 signalling inhibits the progression of late stage NASH


a, Schematic showing therapeutic use of X209 in HFMCD-fed mice. X209 or IgG isotype control (10 mg kg⁻¹, twice a week) were administered from week 6 to 10 of HFMCD diet. **b-e**, Data for therapeutic dosing experiments as shown in 3a. **b**, Western blots of hepatic ERK activation status. **c**, Relative liver hydroxyproline content (NC, n=9; HFMCD 6 weeks, n=8; IgG, n=8; X209, n=9; the values of NC and HFMCD 6 weeks are the same as those used in 2b). **d**, representative Masson's Trichrome staining. **e**, serum ALT levels (HFMCD 6 weeks, n=8; IgG, n=7; X209, n=6; the values of HFMCD 6 weeks are the same as those used in 2c) of X209- and IgG- treated mice. **f**, Schematic of X203 or IgG administration to MCD-fed db/db mice and times of liver sample collection for use in experiments shown in g-m. **g**, Western blots of hepatic IL-11 and Gapdh. **h**, Western blots of total and phosphorylated ERK levels in livers of X203 or IgG- treated mice. **i**, Hepatic triglyceride content, **j**, liver hydroxyproline content, and **k**, pro-fibrotic and **l**, pro-inflammatory mRNA expression (steatosis, n=9; NASH+IgG, n=5; NASH+X203, n=5). **m**, Serum ALT levels (steatosis, n=8; NASH+IgG, n=5; NASH+X203, n=5). **c, e, i-m**, Data are shown as box-and-whisker with median (middle line), 25th–75th percentiles (box) and min-max percentiles (whiskers); two-tailed, Tukey-corrected Student's *t*-test. FC: fold change; NC: normal chow; HFMCD: high fat methionine- and choline-deficient; MCD: methionine- and choline-deficient.

Neutralisation of IL-11 signalling reverses hepatic fibrosis

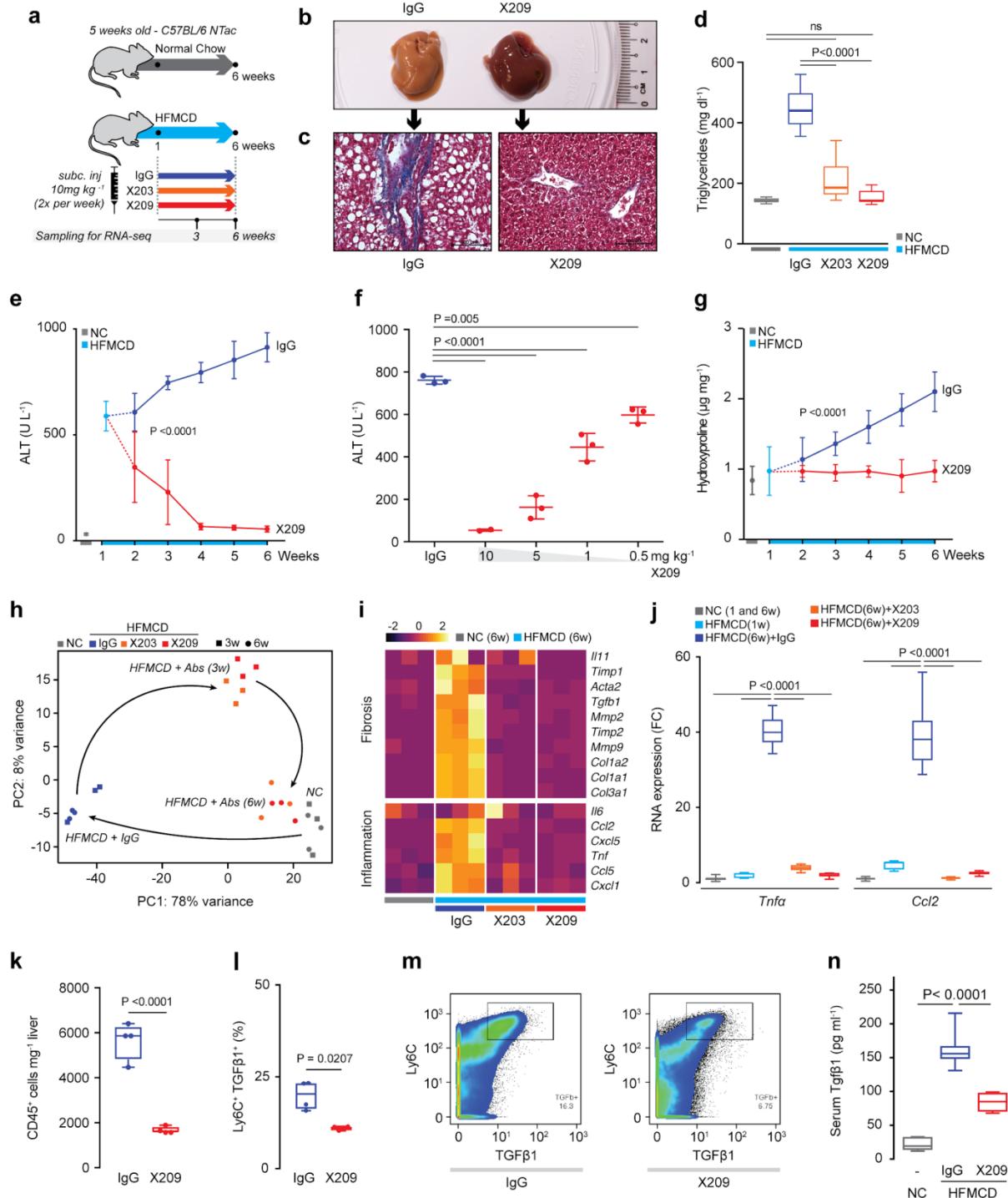
While inhibition of IL-11 signalling in mice on HFMCD diet did not reverse total hepatic collagen protein content, there was reversal of *Col1a1*, *Timp1*, and *Tgfb1* RNA expression (Supplementary Fig. 5g). To test more fully, if IL-11 inhibition can reverse the fibrotic phenotype beyond the RNA level, we first established severe liver fibrosis and then removed the fibrogenic stimulus and started antibody treatment (Fig. 4a). Hepatic collagen content was significantly reversed after three weeks of X203 or X209 treatment and even greater reversal was seen at 6 weeks (Fig. 4b,

224 **Supplementary Fig. 7a).** In the absence of the dietary trigger, ERK activation
225 spontaneously regressed, which was accelerated by X203 or X209-treatment.
226 Notably, collagen content remained unchanged in IgG control-treated animals for the
227 duration of the experiment (**Fig. 4c, Supplementary Fig. 7b**). As such, anti-IL-11
228 therapies reverse liver fibrosis but this effect is limited in the context of active and
229 severe steatosis where combination therapy with an anti-steatotic may be more
230 effective.

231
232 Regression of liver fibrosis is associated with lower TIMP and higher MMP levels,
233 which promotes favorable matrix remodelling^{3,21}. In keeping with this, X203 or X209
234 treated mice rapidly exhibited strong upregulation of *Mmp2* and marked
235 downregulation of *Timp1* (**Fig. 4d**). Reversal of hepatic fibrosis is favoured when
236 transformed HSCs undergo apoptosis²², senescence^{23,24} or reversion to an inactive,
237 ACTA2^{-ve} cellular state²⁵. We examined these potential mechanisms and found
238 decreased *Acta2*, increased senescence markers (*p21*, *p16*, and *p53*) but no change
239 in apoptosis factors with anti-IL-11 therapies (**Fig. 4e, Supplementary Fig. 7c,d**). To
240 check directly if IL-11 signalling is required to maintain HSCs in a transformed state,
241 we stimulated HSCs with TGF β 1 or PDGF and then inhibited IL-11 signalling in the
242 presence of ongoing stimulation. Within 24 h of IL-11 inhibition, the percentage of
243 ACTA2^{+ve} cells and the amount of secreted collagen were reversed to near baseline
244 levels, as was ERK activity (**Fig. 4f-i, Supplementary Fig. 7e,f**). These data show
245 that inhibition of IL-11-dependent HSC transformation causes HSC
246 senescence/reversion and favorable matrix remodelling leading to fibrosis
247 regression.

248
249

250 **Figure 4. Therapeutic inhibition of IL-11 signalling reverses HSC transformation and**
251 **fibrosis.**


252 **a**, Schematic showing reversal experiment with X203 or X209. Fibrosis was established by feeding
253 mice the NASH diet for 10 weeks and then replacing this with normal chow (NC) and initiating
254 antibody (X203 and X209) therapy. Mice were euthanised at the indicated time points. **b-e**, Data for
255 therapy experiments as shown in **4a**. **b**, Total liver hydroxyproline content, **c**, western blots of hepatic
256 ERK activation status, **d**, relative mRNA expression of *Mmp2* and *Timp1*, and **e**, senescence markers
257 at 1-, 3-, 6-weeks after X203, X209, or IgG treatment (n≥3/group). **f**, **g**, Automated fluorescence
258 quantification and representative fluorescence images of ACTA2⁺ve immunostaining (scale bars, 200
259 µm) following incubation without stimulus (-), **(f**) with TGFβ1, **(g**) with PDGF, either prior to or after the
260 addition of X203, X209, or IgG. **h**, **i**, The amount of collagen secreted by HSCs stimulated with **(h**)
261 TGFβ1 or **(i**) PDGF either prior to or after the addition of IgG, X203, or X209 (n=5/group). **f-i**, TGFβ1
262 (5 ng ml⁻¹), PDGF (20 ng ml⁻¹), IgG, X203 and, X209 (2 µg ml⁻¹). **b**, Data are shown as mean ± s.d; **d**,
263 **e**, data are represented as line chart (mean) and transparencies indicate s.d; **f-i**, data are shown as
264 box-and-whisker with median (middle line), 25th–75th percentiles (box) and min-max percentiles
265 (whiskers). **b**, **d**, **e**, Two-way ANOVA; **f-i**, Two-tailed, Tukey-corrected Student's *t*-test. FC: fold
266 change; NC: normal chow; HFMCD: high fat methionine- and choline-deficient.

267 **Blocking IL-11 signalling inhibits liver inflammation in NASH**
268 Beyond their role in liver fibrosis, HSCs have a central role in hepatic inflammation
269 through the secretion and paracrine activity of pro-inflammatory cytokines and
270 chemokines^{3,8,26,27}. We profiled inflammatory gene expression in NASH livers from
271 *Il11ra1*^{-/-}, X203- or X209-treated mice and observed consistently lower levels of
272 *TNF α* , *CCL2* and *CCL5* with IL-11 loss-of-function when compared to experimental
273 controls (**Supplementary Fig. 8a,b**). We determined if these effects on inflammation
274 *in vivo* were related to the action of IL-11 on HSCs and found that IL-11 stimulated
275 HSC secretion of *CCL2* whereas IL-11 inhibition blocked *CCL2* secretion
276 (**Supplementary Fig. 8c**). This reveals an unappreciated role for IL-11 in stromal
277 immunity and shows that IL-11 neutralisation inhibits paracrine effects of pro-
278 inflammatory factors secreted from HSCs on other cells in the hepatic niche^{3,8,26,27}.
279

280 In the HFMCD diet model of NASH, inflammation peaks at six weeks and is then
281 followed by a phase of severe fibrosis (**Supplementary Fig. 8d**). We inhibited IL-11
282 signalling early during steatohepatitis and found that livers of X203- and X209-
283 treated mice were strikingly less steatotic and had lesser ERK activation (**Fig. 5a,b**,
284 **Supplementary Fig. 8e-g**). At the molecular level, there was a significant reduction
285 in triglyceride content and lipid droplets in hepatocytes of X203- and X209-treated
286 mice were not apparent (**Fig. 5c,d**, **Supplementary Fig. 8h**). HFMCD diet induces
287 marked steatohepatitis and liver damage after one week (ALT>700 U L⁻¹), which was
288 reversed in a dose-dependent manner to near normal after three weeks of either
289 X203 or X209 treatment (**Fig. 5e,f**, **Supplementary Fig. 8i**). As expected, X203 or
290 X209 treated mice did not develop fibrosis during the experiment, reaffirming the
291 strong anti-fibrotic effects associated with inhibition of IL-11 signaling (**Fig. 5c,g**,
292 **Supplementary Fig. 8h,j,k**).
293

294 We next performed RNA-seq to profile globally the effects of IL-11 inhibition during
295 steatohepatitis. Unsupervised analyses of these data showed that antibody
296 treatment almost completely reverses the pathological RNA expression signature
297 induced by HFMCD diet (**Fig. 5h**, **Supplementary Fig. 9a,b**). Upregulation of pro-
298 fibrotic and pro-inflammatory genes was abolished and lipid metabolism gene
299 expression re-established by anti-IL11RA therapy (**Fig. 5i,j**, **Supplementary Fig. 9c-e**). Unbiased Gene Set Enrichment Analyses confirmed the reversion of HFMCD
300 diet-induced changes in metabolic and inflammatory transcriptional signatures
301 (**Supplementary Fig. 10**).
302

303 Resident macrophages and infiltrating monocytes are important for NASH
304 pathogenesis and a major source of TGF β 1 during disease progression²⁸. We
305 examined inflammatory cell populations in the liver during steatohepatitis and
306 observed fewer immune cells in general in X209-treated livers and a specific
307 reduction in Ly6C^{+ve}TGF β 1^{+ve} cells (**Fig. 5k-m**). TGF β 1 is a major determinant of
308 fibrosis in NASH and can be produced by Kupffer, HSCs and other cells in the liver⁵.
309 Circulating TGF β 1 levels were elevated by HFMCD diet but reduced by X209
310 therapy, which shows that anti-IL11RA therapy is disease-modifying (**Fig. 5n**).
311

312
313

314 **Figure 5: Neutralisation of II-11 signalling reverses liver damage in early stage NASH.**
315 **a**, Schematic of the anti-IL-11 therapy experiment early on in the HFMCD diet NASH model. Antibody
316 treatments were started 1 week after the start of NASH diet when X209, X203, or IgG control (10 mg
317 kg⁻¹, twice a week) were administered intraperitoneally for 5 weeks. **b-n**, Data for experiments as
318 shown in **5a**. **b**, Representative gross liver images and **c**, representative Masson's Trichrome stained
319 images of livers after 5 weeks of IgG or X209 treatments. **d**, Hepatic triglyceride levels (NC, n=5; IgG,
320 n=14; X203, n=10; X209, n=8). **e**, Serum ALT levels (n≥5/group, the values of NC and HFMCD 1
321 week are the same as those used in **2c**). **f**, Dose-dependent effect of 3-week X209 therapy on
322 reversal of serum ALT levels (n=3/group). **g**, Liver hydroxyproline content of X209- or control IgG-
323 treated mice (n≥5/group, the values of NC and HFMCD 1 week are the same as those used in **Fig.**
324 **2b**). **h**, Principal component analysis (PCA) plot of liver gene expression in mice on NC or HFMCD in

325 the presence of IgG, X203 or X209 antibodies for the times shown in **5a** (RNA-seq, n=3/group).
326 Arrows depict the transitions from normal gene expression (NC) to most perturbed gene expression in
327 NASH (HFMCD+IgG), to intermediately restored gene expression (HFMCD+Abs (3w)), to normalised
328 gene expression (HFMCD+Abs(6w)) **i**, Differential expression heatmap of pro-fibrotic and pro-
329 inflammatory genes Z-scores (Transcripts Per Million mapped reads, TPM). **j**, *Tnf α* and *Ccl2* mRNA
330 expression by qPCR (NC, n=9; HFMCD 1 week, n=7; IgG, n=14; X203, n=10; X209, n=8). **k**, Liver
331 CD45 $^{+ve}$ immune cell numbers, **l**, Ly6C $^{+ve}$ TGF β 1 $^{+ve}$ cells in the total CD45 $^{+ve}$ populations and **m**,
332 representative pseudocolor plots illustrating the gating strategy used to detect Ly6C $^{+ve}$ TGF β 1 $^{+ve}$ cells.
333 **k-m**, (n=4/group). **n** Serum TGF β levels (NC, n=5; IgG, n=14; X203, n=10; X209, n=8). **d, j, k, l, n**,
334 Data are shown as box-and-whisker with median (middle line), 25th–75th percentiles (box) and min-
335 max percentiles (whiskers); **e-g**, data are shown as mean \pm s.d. **d, j, n**, Two-tailed, Tukey-corrected
336 Student's *t*-test; **e, g**, two-way ANOVA; **f**, two-tailed Dunnett's test; **k, l**, two-tailed Student's *t*-test. FC:
337 fold change; NC: normal chow; HFMCD: high fat methionine- and choline-deficient.
338

339 Discussion

340 Recognition of HSCs as the major source for myofibroblasts in the liver² prioritizes
341 their transformation as a specific and fundamental target in fibrotic liver diseases.
342 We have previously identified an important function of IL-11 for cardiac and renal
343 fibroblast-to-myofibroblast transformation¹⁰. We reveal here that IL-11 has non-
344 redundant signalling activity required for HSC activation and transformation, which is
345 positioned at a decisive intersection of several pathogenic pathways. Our findings
346 show that non-canonical IL-11 signalling is an overlooked and cardinal process for
347 myofibroblast generation from both fibroblasts and HSCs, and likely pericytes and
348 other cell types, and confirm a key role for ERK signaling in hepatic fibrosis²⁹.
349

350 The multi-faceted pathobiology of HSCs touches upon many aspects of liver
351 disease: fibrosis, metabolism, immunoregulation and secretion of paracrine factors in
352 the hepatic niche³. Confirming the central role of IL-11 for HSC pathobiology, our
353 first-in-class IL-11 neutralising treatments show disease-modifying therapeutic
354 impact beyond anti-fibrotic effects alone. Inhibition of IL-11 signaling prevents
355 inflammation and steatosis and can reverse liver fibrosis and hepatocyte damage.
356 Unlike steatosis, fibrosis in NASH predicts clinical endpoints and anti-fibrotic IL-11
357 blocking therapies may offer benefits over drugs that primarily target liver
358 metabolism¹.
359

360 While earlier publications suggest IL-11 is anti-inflammatory in liver^{12,13}, these
361 studies use high-dose recombinant human IL-11 in the mouse, where effects can be
362 non-specific¹⁰. In contrast, we show here that the biological effect of endogenous IL-
363 11 at physiological levels is the opposite: HSC-immune cell crosstalk and activation
364 is IL-11 dependent and inhibition of IL-11 is anti-inflammatory and cytoprotective.
365 Our study demonstrates robust modulation of the immune response by targeting
366 stromal cells through IL-11 inhibition, which was unexpected. This may have
367 implications for other fibro-inflammatory processes where stromal and immune cell
368 functions are closely interlinked, as in tumour microenvironments^{30,31} and
369 autoimmune diseases^{32,33}.
370

371 Human³⁴ and mouse¹⁷ knockouts of *IL11RA* have mild developmental abnormalities
372 of the skull but are otherwise healthy and IL-11 appears largely redundant in adult
373 mammals. This provides compelling genetic safety data for IL-11 as a viable drug
374 target and we suggest that IL-11 neutralising therapies should be evaluated in
375 NASH. This is the first study to demonstrate a role for IL-11 in HSC biology, NASH or
376 stromal immunity and lays the groundwork for future studies to dissect fully the

377 effects of IL-11 signaling in the liver. We believe this presents an exciting opportunity
378 and that our findings may have broad implications across tissues and diseases.
379

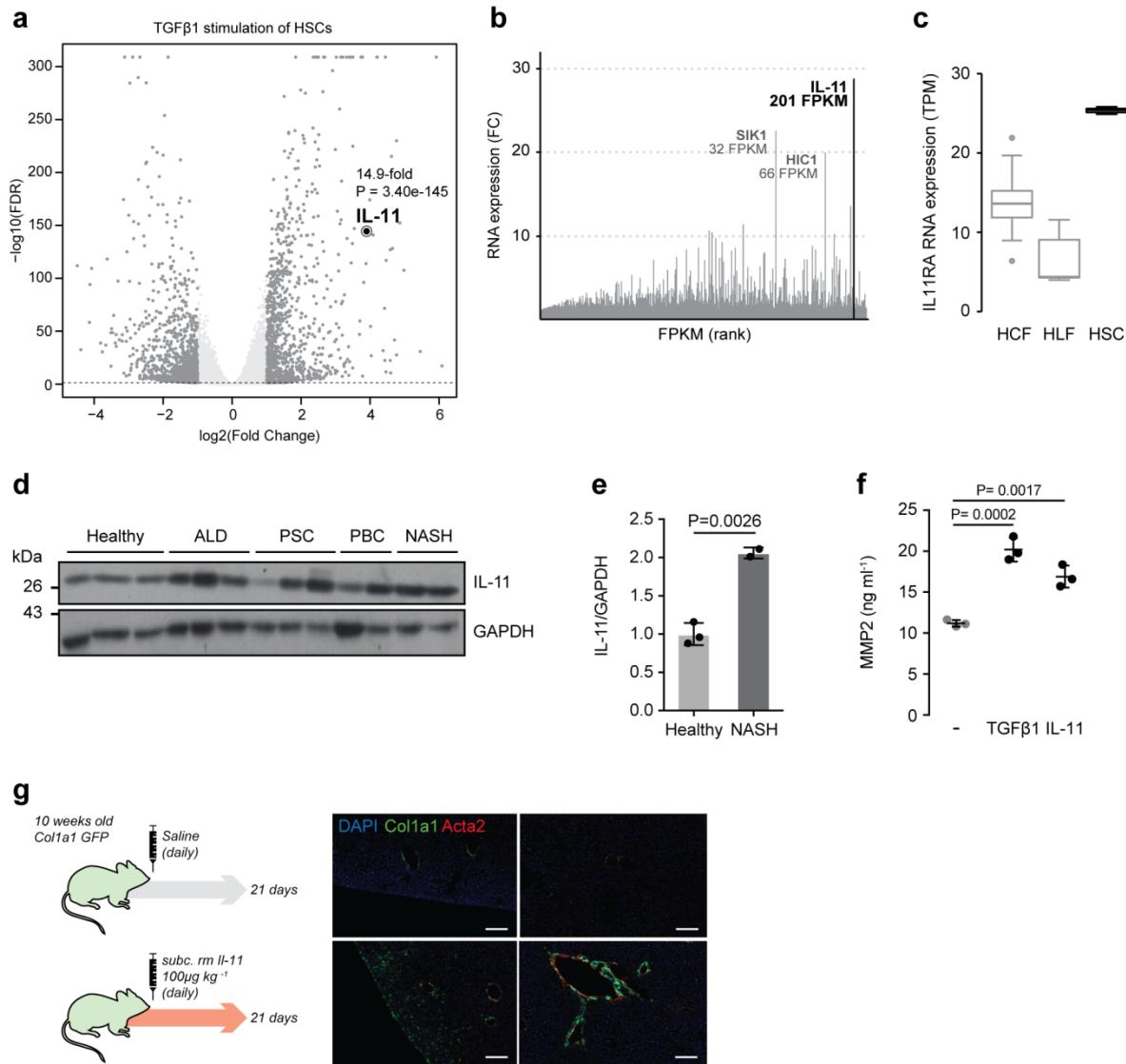
380 **Acknowledgements**

381 The authors would like to acknowledge the technical expertise and support of N.S.-
382 J.Ko, B.L.George, M. Wang, and NGS Team at NHCS. The research was supported
383 by the National Medical Research Council (NMRC) Singapore STaR awards to
384 S.A.C. (NMRC/STaR/0029/2017), the NMRC Central Grant to the NHCS, Goh
385 Foundation, Tanoto Foundation and a grant from the Fondation Leducq. A.A.W. is
386 supported by the NMRC YIRG (NMRC/OFYIRG/0053/2017). B.K.S. is supported by
387 the NMRC YIRG (NMRC/OFYIRG/0002/2016). P.M.Y. is supported by
388 NMRC/CSA/0054/2013 and NMRC/CIRG/1457/2016.

389

390 **Author contributions**

391 A.A.W., B.K.S., S.S., and S.A.C. conceived and designed the study. A.A.W., B.K.S.,
392 S.V., J.R.D., B.N., J.T., and M.T. performed *in vitro* cell culture, cell biology and
393 molecular biology experiments. A.A.W., B.K.S., J.T., M.T., A.R., M.S., E.B., and
394 R.A.S. performed *in vivo* gain- and loss-of function mouse studies. N.G-C. and
395 S.M.E. performed gain-of function studies on *Col1a1-GFP* mice. A.A.W., W.W.L.,
396 and S.Y.L. performed histology analysis. A.A.W and S.V. performed *in vitro* antibody
397 screening. G.D., S.P.C., and S.S performed computational analysis. B.S.P and S.A.
398 performed CyTOF. A.A.W., B.K.S, E.A., G.D., B.N., R.A.S., P.M.Y., S.S., and S.A.C
399 analyzed the data. A.A.W., E.A., S.S., and S.A.C prepared the manuscript with input
400 from co-authors.


401

402 **Competing interests**

403 S.A.C. and S.S. are co-inventors of the patent applications (WO2017103108,
404 WO2017103108 A2, WO 2018/109174 A2, WO 2018/109170 A2). S.A.C. and S.S.
405 are co-founders and shareholders of Enleofen Bio PTE LTD, a company (which
406 S.A.C. is a director of) that develops anti-IL-11 therapeutics. All other authors
407 declare no competing interest.

408 **Supplementary Figures**

409

410
411

412 **Supplementary Figure 1. HSCs secrete and respond to IL-11.**

413 a, Genome-wide changes in RNA expression in HSCs (n=3) after TGF β 1 stimulation (5 ng ml $^{-1}$, 24 h).

414 b, Stiffness-induced RNA upregulation in human HSCs (RNA-seq 14), genes are ranked according to

415 fragments per kilobase million (FPKM), *IL-11* upregulation is the most highly upregulated gene

416 genome wide. c, IL11RA transcripts in human cardiac fibroblasts (HCF), human lung fibroblasts

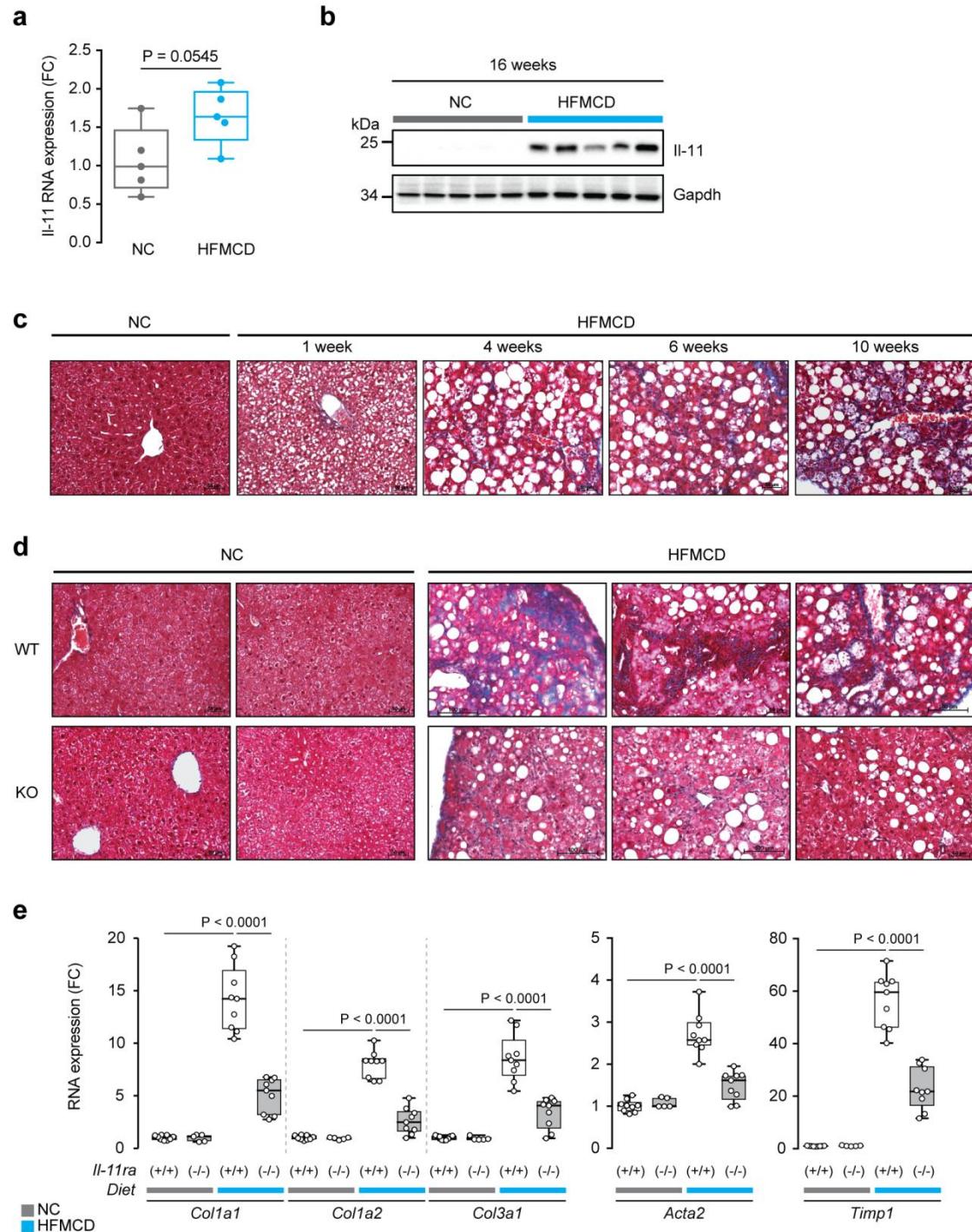
417 (HLF), and human HSC (TPM, Transcript per millions). Data are shown as box-and-whisker with

418 median (middle line), 25th–75th percentiles (box) and min-max percentiles (whiskers). d, Western

419 blots and e, densitometry of IL-11 and GAPDH in human liver samples of healthy individuals and

420 patients suffering from alcoholic liver disease (ALD), primary sclerosing cholangitis (PSC), primary

421 biliary cirrhosis (PBC), and non-alcoholic steatohepatitis (NASH). Data are shown as scatter plot with


422 bar, mean \pm s.d; two-tailed Student's *t*-test. f, MMP-2 concentration in the supernatant of HSC

423 (n=3/group) without stimulus (-), with TGF β 1 or IL-11 (5 ng ml $^{-1}$, 24 h) by ELISA. Data are represented

424 as mean \pm s.d; two-tailed Dunnett's test. g, Schematic and representative fluorescence images

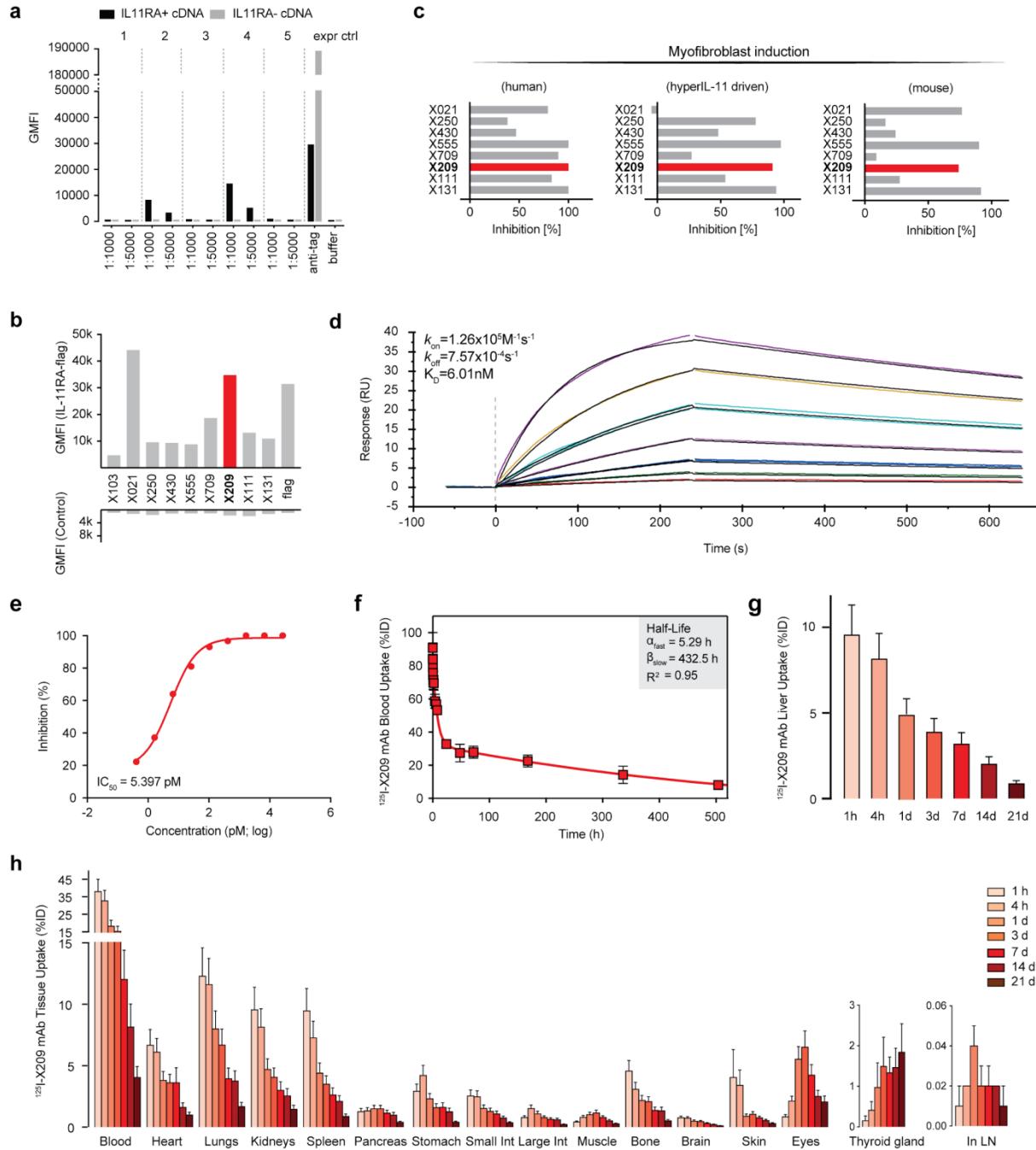
425 GFP $^{+ve}$ cells of *Col1a1-GFP* mice injected daily with either rmIL-11 (100 μ g kg $^{-1}$) or saline. Sections

426 were immunostained for Acta2 and counterstained with DAPI (scale bars, 200 μ m). FC: fold change.

431

432

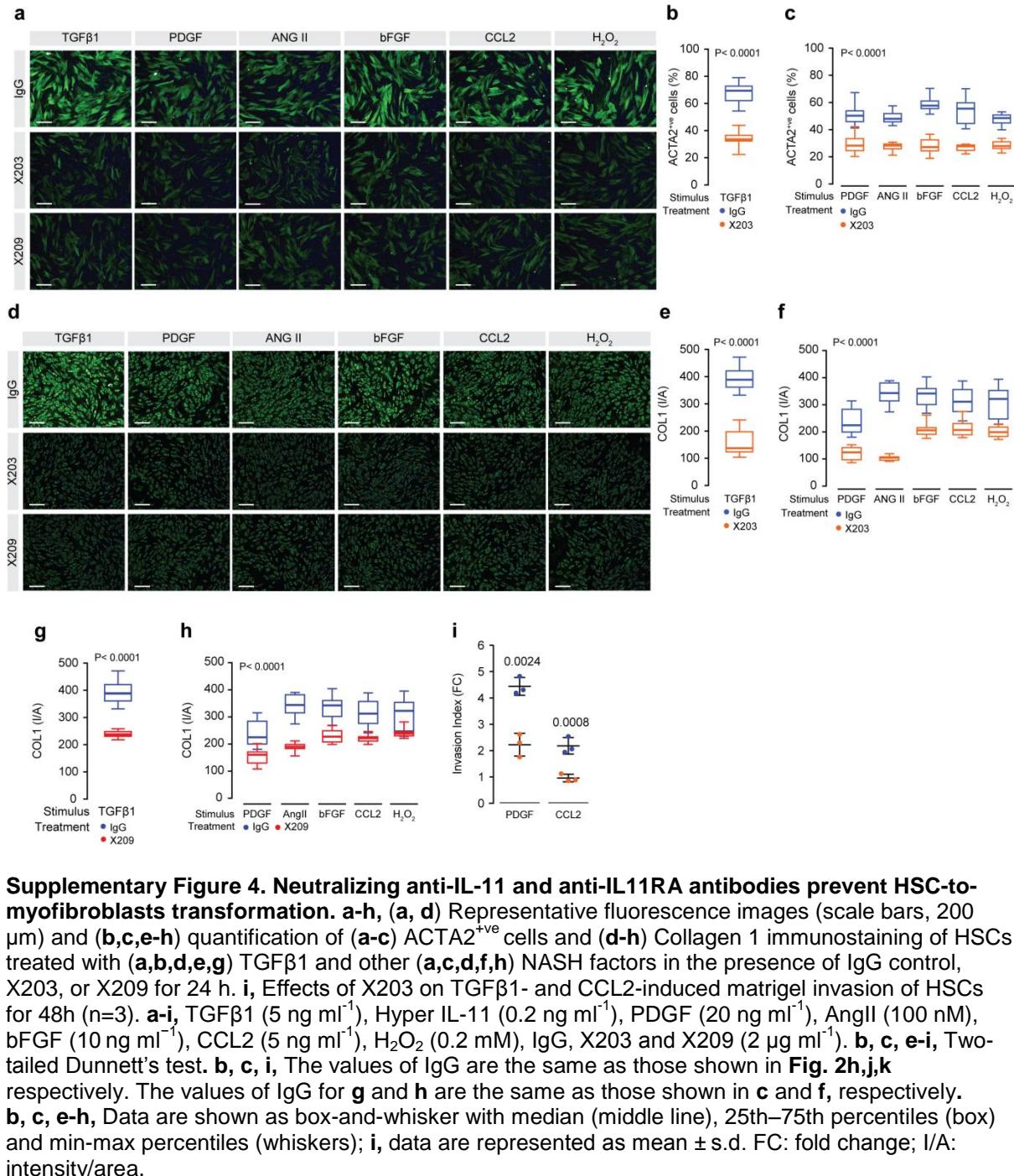
433

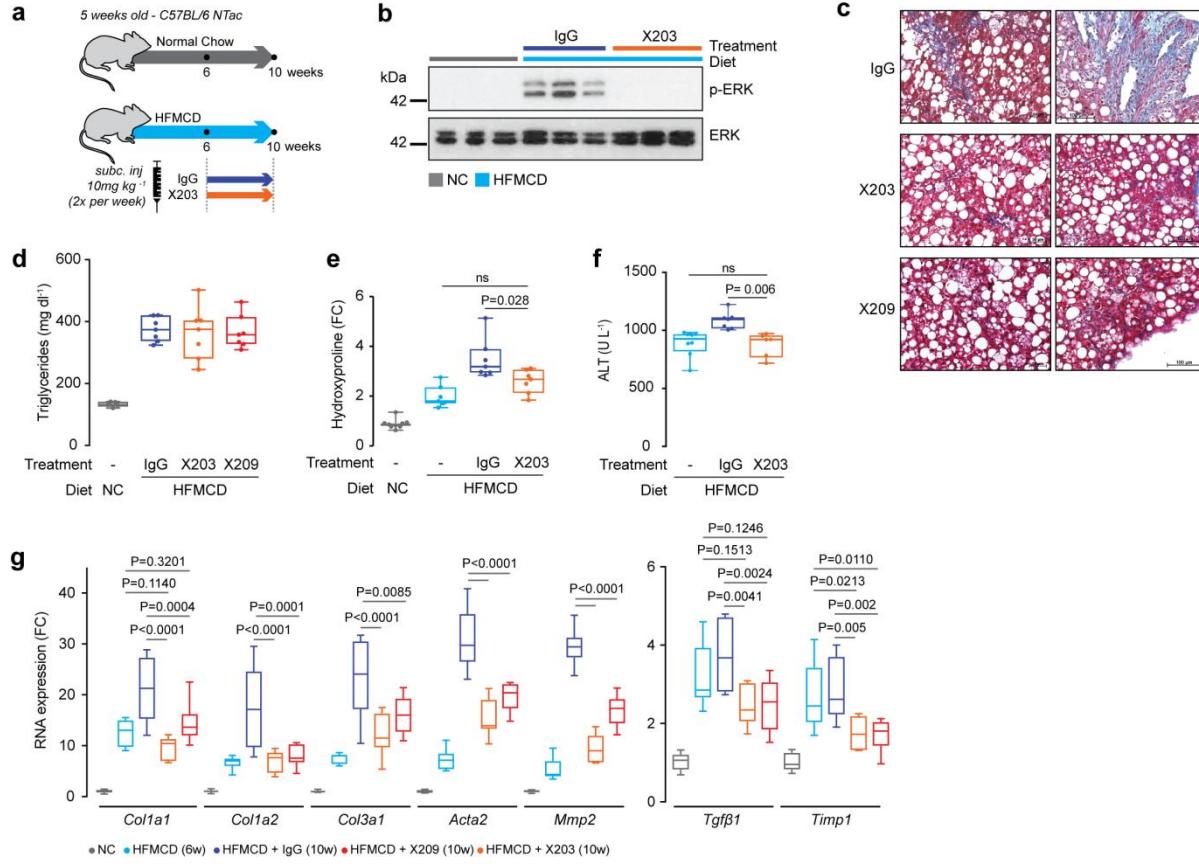

434

435

436

437

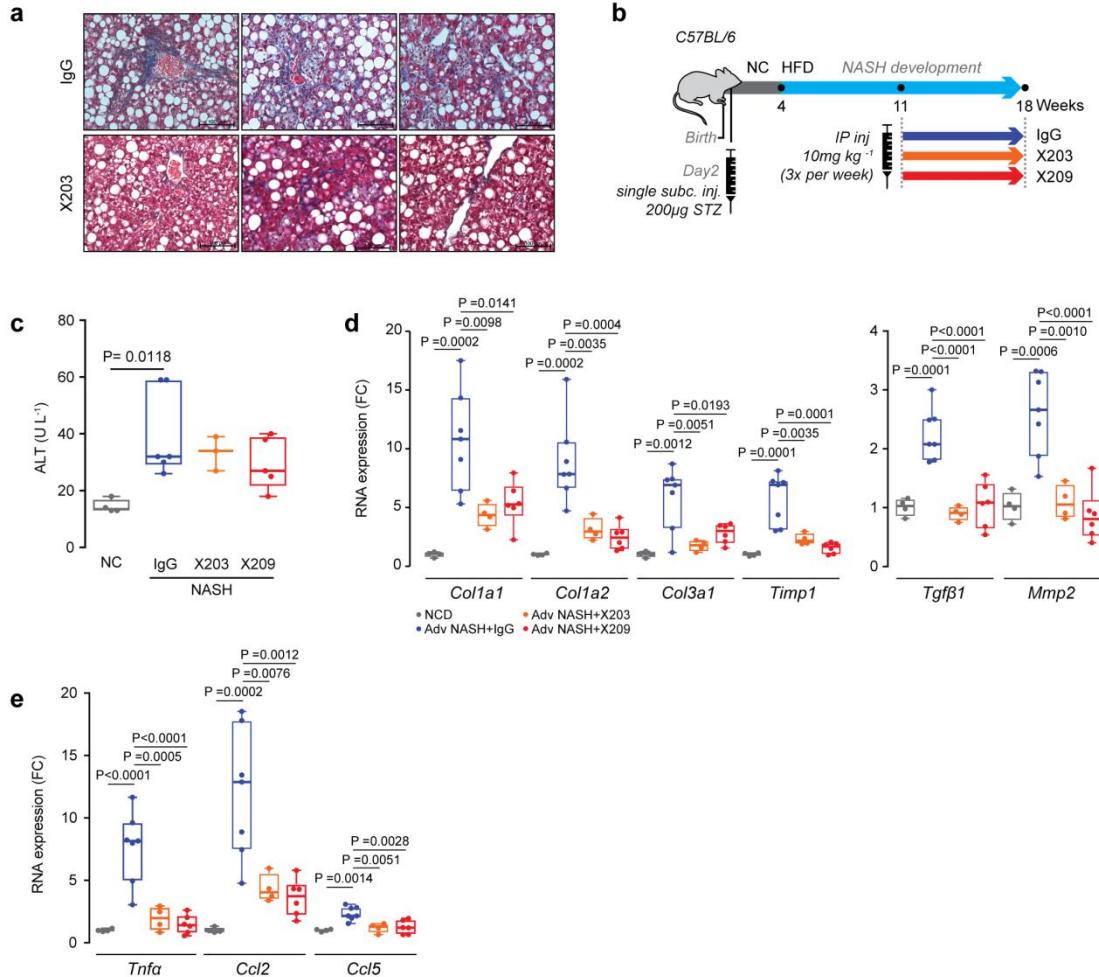

438



439
440

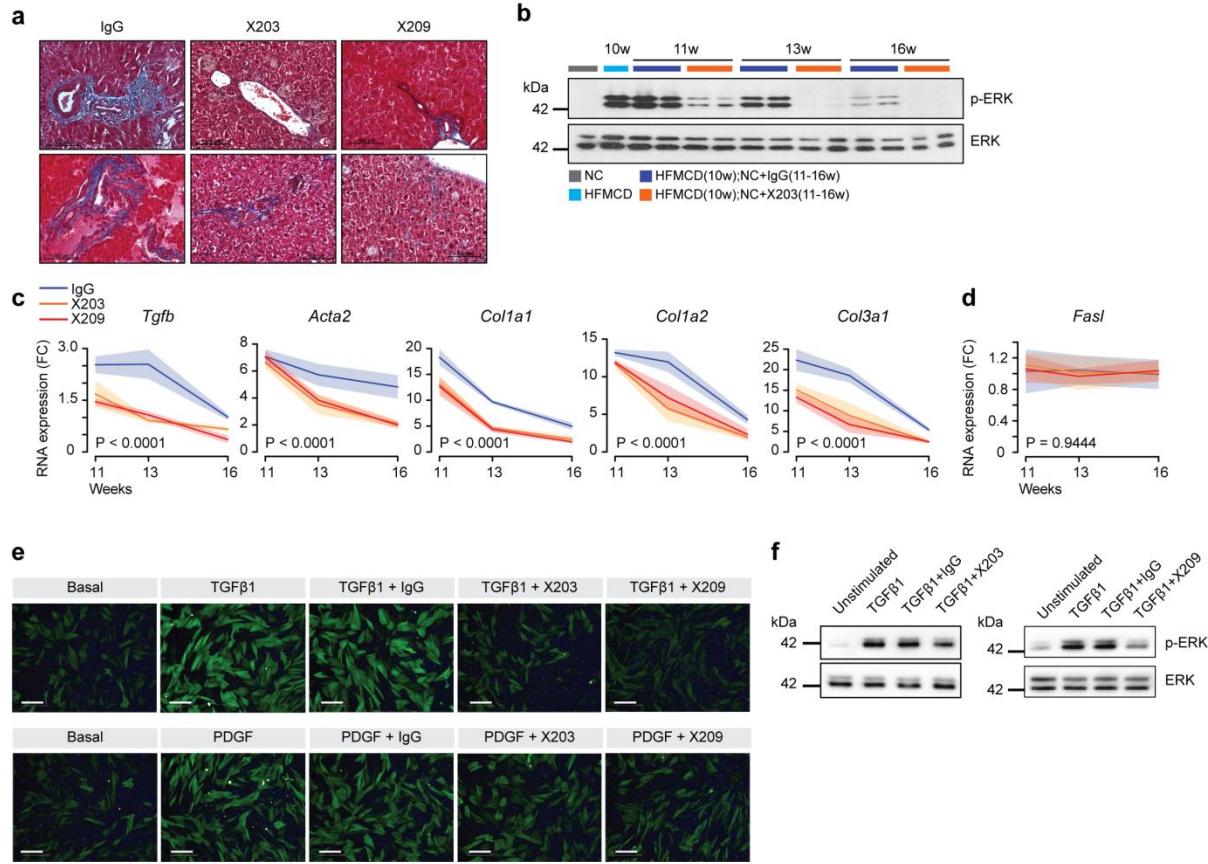
Supplementary Figure 3. Development of a neutralizing anti-IL-11RA monoclonal antibody.

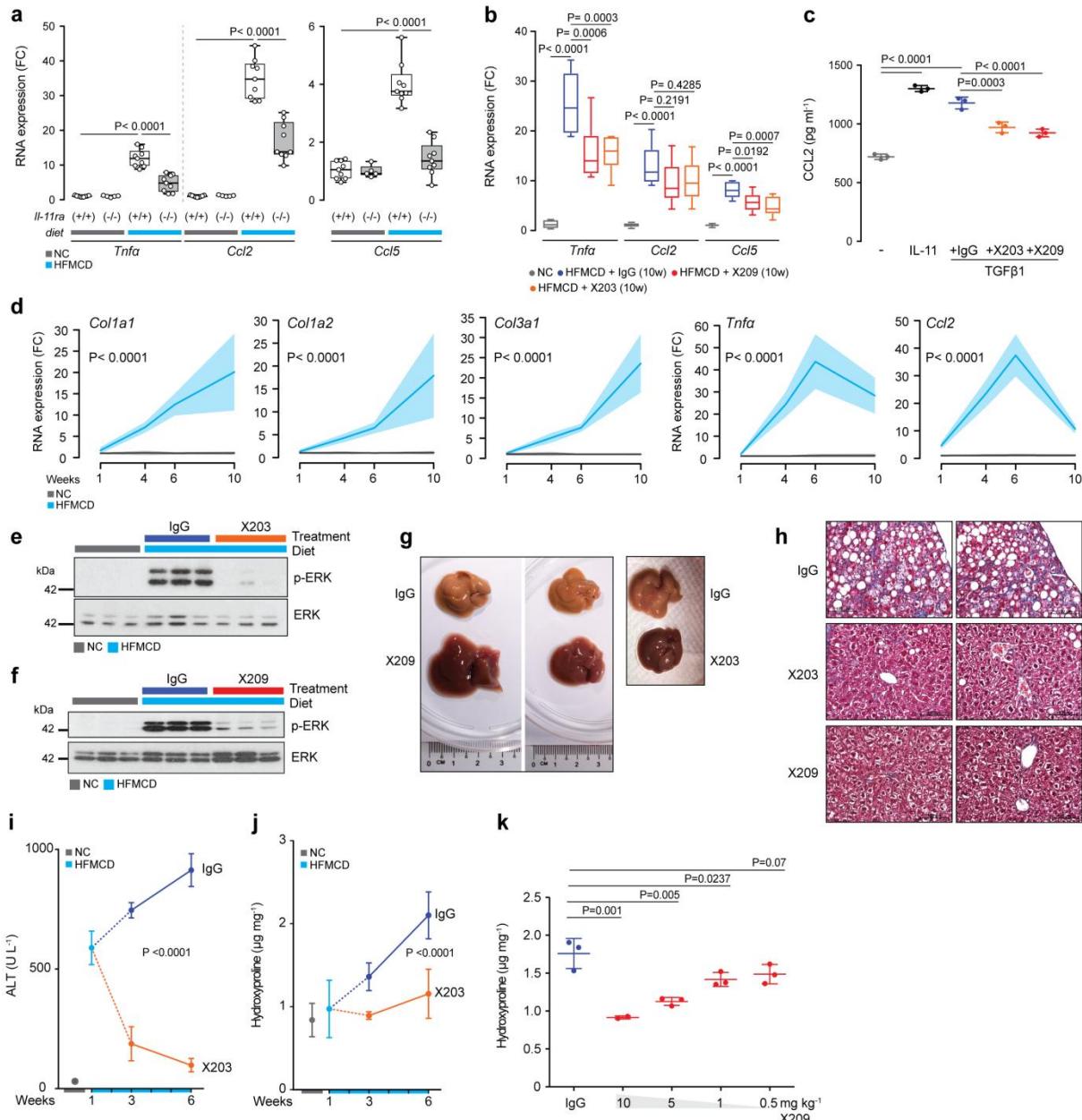
441 **a**, Sera of 5 mice after genetic immunization with human IL11RA. Sera of five animals tested with
442 HEK cells transiently transfected with an *IL11RA*-flag or control cDNA vector, incubated with a goat
443 anti-mouse fluorescent antibody ($10 \mu\text{g ml}^{-1}$). Cells were then analysed by flow cytometry. Signal is
444 geometric mean of the relative fluorescence (GMFI) as measured by flow cytometry. **b**, Supernatants
445 of early stage hybridoma cultures on transfected cells. **c**, Inhibition of ACTA2^{+ve} cell transformation of
446 TGF β 1-(left), hyperIL-11-(middle) stimulated human atrial fibroblasts and TGF β 1-(right) stimulated
447 mouse atrial fibroblasts with purified mouse monoclonal anti-IL11RA candidates ($6 \mu\text{g ml}^{-1}$). **d**, X209
448 interactions with IL11RA as determined by SPR (1:1 Langmuir). **e**, Dose-response curve and IC_{50}
449 value of X209 (61 pg ml^{-1} to $4 \mu\text{g ml}^{-1}$; 4-fold dilution) in inhibiting MMP2 secretion by HSCs
450 stimulated with TGF β 1. **c, e**, TGF β 1 (5 ng ml^{-1}), Hyper IL-11 (0.2 ng ml^{-1}); 24 h. **f**, Blood
451 pharmacokinetics of ^{125}I -X209 in mice ($n=5$). Result was fitted ($R^2=0.92$) to a two-phase exponential
452 decay model. **g, h**, Percentage of ^{125}I -X209 uptake by **(g)** liver ($n=5$) and **(h)** other organs at the
453 indicated time points, following retro-orbital injection. **f-h**, Data are represented as mean + s.d.
454



469
470

**471 Supplementary Figure 5. Neutralizing anti-IL-11 and anti-IL11RA antibodies inhibit hepatic
472 fibrosis and liver damage.**

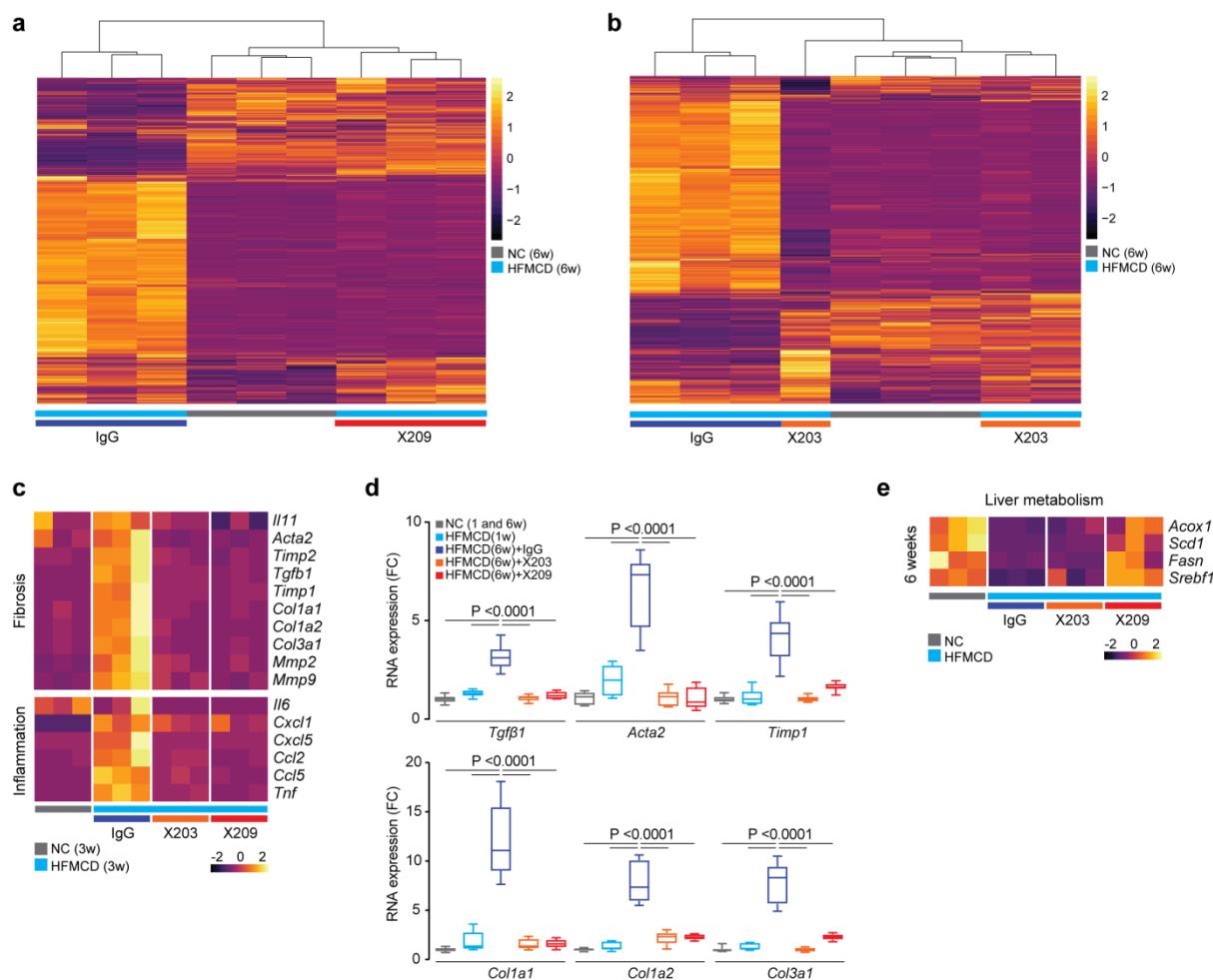

473 **a**, Schematic of therapeutic dosing regimen of X203 in HFMCD fed mice. X203 or IgG (10 mg kg⁻¹,
474 twice a week) were administered for 4 weeks, starting from week 6 of the NASH diet. Livers and
475 serum were collected at week 10. **b-g**, Data for therapeutic dosing experiments as shown in **Fig. 3a**
476 and **Supplementary Data Fig. 5a**. **b**, Western blots of liver ERK activation, **c**, representative
477 histological images (Masson's Trichrome staining) of liver sections, **d**, liver triglyceride content, **e**,
478 relative liver hydroxyproline collagen content, and **f**, serum ALT levels from IgG- and X203-treated
479 mice. **d**, NC, n=5; IgG, n=7; X203, n=7, X209, n=7. **e**, The values of NC and HFMCD 6 weeks are the
480 same as those used in **Fig. 2b**; the values of IgG are the same as those used in **Fig. 3c**; X203, n=7. **f**,
481 The values of HFMCD 6 weeks are the same as those used in **Fig. 2c**; the values of IgG are the
482 same as those used in **Fig. 3e**; X203, n=6. **g**, Expression levels of liver pro-fibrotic genes (NC, n=9;
483 HFMCD 6 weeks, n=8; IgG, n=8; X203, n=7; X209, n=9). **d-g**, Data are shown as box-and-whisker
484 with median (middle line), 25th–75th percentiles (box) and min-max percentiles (whiskers); two-tailed,
485 Tukey-corrected Student's *t*-test. FC: fold change; NC: normal chow; HFMCD: high fat methionine-
486 and choline-deficient.

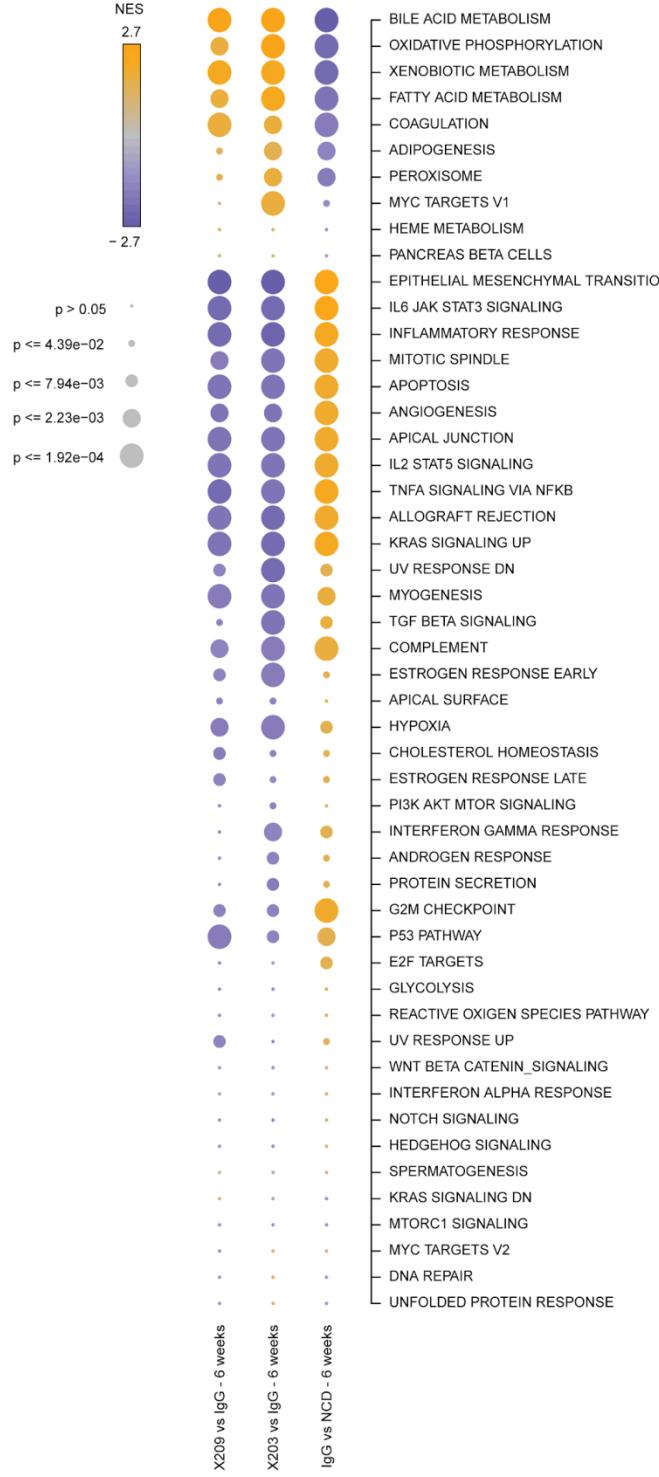


487
488

489 **Supplementary Figure 6. Neutralizing anti-IL-11 and anti-IL11RA antibodies reduce hepatic
490 fibrosis and hepatic inflammation in additional NASH models.**

491 **a**, Representative Masson's Trichrome images of livers from *db/db* mice treated with X203 or IgG. **b**,
492 Schematic representation of the STAM™ model. Mice were injected with 200 μ g of Streptozotocin
493 (STZ) 2 days after birth followed by feeding with high fat diet (HFD) at 4-week of age to develop
494 NASH. IgG, X203, and X209 were intraperitoneally injected 3x/week at a dosage of 10 mg kg⁻¹ for 7
495 weeks, starting at 11-weeks of age. **c-e**, Relative liver mRNA expression levels of fibrosis (**d**) and inflammation (**e**)
496 genes in STAM™ mice treated with X203 or X209 (NC, n=4; IgG, n=7; X203, n=4; X209, n=6). **c-e**,
497 Data are shown as box-and-whisker with median (middle line), 25th–75th percentiles (box) and min-
498 max percentiles (whiskers); two-tailed, Tukey-corrected Student's *t*-test. FC: fold change; NC: normal
499 chow; HFD: high fat diet.
500





515
516 **Supplementary Figure 8. Neutralizing anti-IL-11 and anti-IL11RA antibodies prevent hepatic**
517 **fibrosis and reduce hepatic inflammation in HFMCD fed mice.**

518 **a, b,** Relative mRNA expression of inflammation markers (*Tnfa*, *Ccl2*, and *Ccl5*) from the livers of **(a)**
519 *Il11ra*^{+/+} (WT) and *Il11ra*^{-/-} (KO) after 10 weeks of HFMCD diet and **(b)** mice injected with X203 or
520 X209 as shown in **Fig. 3a** and **Supplementary Data Fig. 5a**. **a**, NC WT, n=9; HFMCD WT, n=8, NC
521 KO, n=5; HFMCD KO, n=9. **b**, NC, n=9; IgG, n=8; X203, n=7; X209, n=9. **c**, CCL2 in the supernatants
522 of HSCs (n=4/group) without stimulus (-), with IL-11, or with TGFβ1 in the presence of IgG, X203, or
523 X209 by ELISA; IL-11 (5 ng ml⁻¹), TGFβ1 (5 ng ml⁻¹), IgG, X203, and X209 (2 μg ml⁻¹). **d** Relative liver
524 mRNA expression of fibrosis and inflammation markers from mice fed with NC or HFMCD diets.
525 Livers were collected at the indicated time points. The values of NC 1 and 6 week(s) for *Tnfa* and
526 *Ccl2* are the same as those shown in **Fig. 5j**; the values of NC 6 and 10 weeks and HFMCD 6 weeks
527 are the same as those shown in **Supplementary Data Fig. 5g and 8b** (n≥5/group). **e-f**, Data for
528 therapeutic dosing experiments as shown in **Fig. 5a**. **e-f**, Western blots of hepatic ERK activation
529 status after **(e)** X203 and **(f)** X209 treatments. **g**, Representative gross liver images, **h**, representative
530 Masson's Trichrome stained images of livers, **i**, serum ALT levels, **j**, liver hydroxyproline content, and
531 **k**, dose dependent effects of X209 on total hydroxyproline content in HFMCD-fed mice (n=3/group). **i**,
532 The values of NC and HFMCD 1 week are the same as those used in **Fig. 2c**, the values of IgG 3 and
533 6 weeks (2 weeks and 5 weeks treatment, respectively) are the same as those used in **Fig. 5e**. **j**, The
534 values of NC and HFMCD 1 week diets are the same as those used in **Fig. 2b**, the values of IgG 3

535 and 6 weeks are the same as those used in **Fig. 5g, i, j**, X203 3 weeks, n=5; X203 6 weeks, n=10). **a**,
 536 **b**, Data are shown as box-and-whisker with median (middle line), 25th–75th percentiles (box) and
 537 min-max percentiles (whiskers); **c, i–k**, data are represented as mean \pm s.d; **d**, data are represented
 538 as line chart (mean) and transparencies indicate s.d. **a**, Two-tailed, Sidak-corrected Student's *t*-test;
 539 **b, c**, two-tailed, Tukey-corrected Student's *t*-test; **d, i, j**, two-way ANOVA; **k**, two-tailed Dunnett's test.
 540 FC: fold change; NC: normal chow; HFMCD: high fat methionine- and choline-deficient.
 541

562
563
564
565 **Supplementary Figure 10. Gene Set Enrichment Analysis of the effects of anti-IL-11 or anti-**
566 **IL11RA antibody therapy in mice of HFMCD diet as compared to control.**
567 Bubblemap showing results of the Gene Set Enrichment Analysis (GSEA) for differentially expressed
568 genes found in every comparison after 6-weeks of NC or HFMCD diet and antibody therapy, as
569 shown. Each dot represents the Normalized Enrichment Score (NES) for the gene set and its FDR-
570 corrected significance level, summarized by colour and size respectively. Gene sets for the
571 enrichment test were selected from the “H - Hallmark” collection in MSigDB.

572 **References**

- 573 1. Friedman, S. L., Neuschwander-Tetri, B. A., Rinella, M. & Sanyal, A. J.
574 Mechanisms of NAFLD development and therapeutic strategies. *Nat. Med.*
575 (2018). doi:10.1038/s41591-018-0104-9
- 576 2. Mederacke, I. *et al.* Fate tracing reveals hepatic stellate cells as dominant
577 contributors to liver fibrosis independent of its aetiology. *Nat. Commun.* **4**, 2823
578 (2013).
- 579 3. Friedman, S. L. Hepatic stellate cells: protean, multifunctional, and enigmatic
580 cells of the liver. *Physiol. Rev.* **88**, 125–172 (2008).
- 581 4. Friedman, S. L. Molecular Regulation of Hepatic Fibrosis, an Integrated Cellular
582 Response to Tissue Injury. *J. Biol. Chem.* **275**, 2247–2250 (2000).
- 583 5. Higashi, T., Friedman, S. L. & Hoshida, Y. Hepatic stellate cells as key target in
584 liver fibrosis. *Adv. Drug Deliv. Rev.* **121**, 27–42 (2017).
- 585 6. Hellerbrand, C., Stefanovic, B., Giordano, F., Burchardt, E. R. & Brenner, D. A.
586 The role of TGF β 1 in initiating hepatic stellate cell activation in vivo. *J. Hepatol.*
587 **30**, 77–87 (1999).
- 588 7. Tsuchida, T. & Friedman, S. L. Mechanisms of hepatic stellate cell activation.
589 *Nat. Rev. Gastroenterol. Hepatol.* **14**, 397–411 (2017).
- 590 8. Kim, B.-M., Abdelfattah, A. M., Vasan, R., Fuchs, B. C. & Choi, M. Y. Hepatic
591 stellate cells secrete Ccl5 to induce hepatocyte steatosis. *Sci. Rep.* **8**, 7499
592 (2018).
- 593 9. Iwaisako, K. *et al.* Origin of myofibroblasts in the fibrotic liver in mice. *Proc. Natl.*
594 *Acad. Sci. U. S. A.* **111**, E3297–305 (2014).
- 595 10. Schafer, S. *et al.* IL-11 is a crucial determinant of cardiovascular fibrosis. *Nature*
596 **552**, 110–115 (2017).
- 597 11. Cook, S. *et al.* IL-11 is a therapeutic target in idiopathic pulmonary fibrosis.
598 (2018). doi:10.1101/336537
- 599 12. Zhu, M. *et al.* IL-11 Attenuates Liver Ischemia/Reperfusion Injury (IRI) through
600 STAT3 Signaling Pathway in Mice. *PLoS One* **10**, e0126296 (2015).
- 601 13. Yu, J., Feng, Z., Tan, L., Pu, L. & Kong, L. Interleukin-11 protects mouse liver
602 from warm ischemia/reperfusion (WI/Rp) injury. *Clin. Res. Hepatol.*
603 *Gastroenterol.* **40**, 562–570 (2016).
- 604 14. Dou, C. *et al.* P300 Acetyltransferase Mediates Stiffness-Induced Activation of

605 Hepatic Stellate Cells Into Tumor-Promoting Myofibroblasts. *Gastroenterology*
606 **154**, 2209–2221.e14 (2018).

607 15. Yata, Y. DNase I-hypersensitive sites enhance α 1(I) collagen gene expression
608 in hepatic stellate cells. *Hepatology* **37**, 267–276 (2003).

609 16. Matsumoto, M. *et al.* An improved mouse model that rapidly develops fibrosis in
610 non-alcoholic steatohepatitis. *Int. J. Exp. Pathol.* **94**, 93–103 (2013).

611 17. Nandurkar, H. H. *et al.* Adult mice with targeted mutation of the interleukin-11
612 receptor (IL11Ra) display normal hematopoiesis. *Blood* **90**, 2148–2159 (1997).

613 18. Lau, J. K. C., Zhang, X. & Yu, J. Animal models of non-alcoholic fatty liver
614 disease: current perspectives and recent advances. *J. Pathol.* **241**, 36–44
615 (2017).

616 19. Rinella, M. E. *et al.* Mechanisms of hepatic steatosis in mice fed a lipogenic
617 methionine choline-deficient diet. *J. Lipid Res.* **49**, 1068–1076 (2008).

618 20. Wortham, M., He, L., Gyamfi, M., Copple, B. L. & Wan, Y.-J. Y. The Transition
619 from Fatty Liver to NASH Associates with SAMe Depletion in db/db Mice Fed a
620 Methionine Choline-Deficient Diet. *Dig. Dis. Sci.* **53**, 2761–2774 (2008).

621 21. Hemmann, S., Graf, J., Roderfeld, M. & Roeb, E. Expression of MMPs and
622 TIMPs in liver fibrosis - a systematic review with special emphasis on anti-
623 fibrotic strategies. *J. Hepatol.* **46**, 955–975 (2007).

624 22. Elsharkawy, A. M., Oakley, F. & Mann, D. A. The role and regulation of hepatic
625 stellate cell apoptosis in reversal of liver fibrosis. *Apoptosis* **10**, 927–939 (2005).

626 23. Krizhanovsky, V. *et al.* Senescence of activated stellate cells limits liver fibrosis.
627 *Cell* **134**, 657–667 (2008).

628 24. Schnabl, B., Purbeck, C. A., Choi, Y. H., Hagedorn, C. H. & Brenner, D.
629 Replicative senescence of activated human hepatic stellate cells is
630 accompanied by a pronounced inflammatory but less fibrogenic phenotype.
631 *Hepatology* **37**, 653–664 (2003).

632 25. Kisseleva, T. *et al.* Myofibroblasts revert to an inactive phenotype during
633 regression of liver fibrosis. *Proc. Natl. Acad. Sci. U. S. A.* **109**, 9448–9453
634 (2012).

635 26. Seki, E. *et al.* TLR4 enhances TGF- β signaling and hepatic fibrosis. *Nat. Med.*
636 **13**, 1324–1332 (2007).

637 27. Marra, F., Valente, A. J., Pinzani, M. & Abboud, H. E. Cultured human liver fat-
638 storing cells produce monocyte chemotactic protein-1. Regulation by

639 proinflammatory cytokines. *J. Clin. Invest.* **92**, 1674–1680 (1993).

640 28. Koyama, Y. & Brenner, D. A. Liver inflammation and fibrosis. *J. Clin. Invest.* **127**,

641 55–64 (2017).

642 29. Makarev, E. *et al.* Common pathway signature in lung and liver fibrosis. *Cell*

643 *Cycle* **15**, 1667–1673 (2016).

644 30. Ma, J., Song, X., Xu, X. & Mou, Y. Cancer-Associated-Fibroblasts Promote the

645 Chemo-Resistance in Gastric Cancer through Secreting IL-11 targeting

646 JAK/STAT3/Bcl2 Pathway. *Cancer Res. Treat.* (2018). doi:10.4143/crt.2018.031

647 31. Marusyk, A. *et al.* Non-cell-autonomous driving of tumour growth supports sub-

648 clonal heterogeneity. *Nature* **514**, 54–58 (2014).

649 32. Arijs, I. *et al.* Mucosal gene signatures to predict response to infliximab in

650 patients with ulcerative colitis. *Gut* **58**, 1612–1619 (2009).

651 33. Elshabrawy, H. A. *et al.* IL-11 facilitates a novel connection between RA joint

652 fibroblasts and endothelial cells. *Angiogenesis* (2018). doi:10.1007/s10456-017-

653 9589-y

654 34. Brischoux-Boucher, E. *et al.* IL11RA-related Crouzon-like autosomal recessive

655 craniosynostosis in ten new patients: resemblances and differences. *Clin.*

656 *Genet.* (2018). doi:10.1111/cge.13409.

657 **Material and Methods**

658

659 **Animal experiments**

660 All animal procedures were approved and conducted in accordance with the
661 SingHealth Institutional Animal Care and Use Committee (IACUC). All mice were
662 provided food and water *ad libitum*.

663

664 *Mouse models of NASH*

665 *High fat methionine- and choline-deficient (HFMCD) diet fed mice*

666 Five-week old male C57BL/6N mice were fed methionine- and choline-deficient diet
667 supplemented with 60 kcal% fat (A06071301B, Research Diets); control mice were
668 fed with normal chow (NC, Specialty Feeds). Durations of diet and antibody
669 therapies varied as outlined in the main text.

670

671 *MCD diet fed Leprdb/db mice*

672 Male BKS.Cg-Dock7m^{+/+}LeprdbJ (*db/db*) mice were used when they are at 12-
673 weeks of age and at the hepatic steatosis stage. Animals were then fed methionine-
674 and choline-deficient diet (MCD, A02082002BRi, Research Diets) for 8 weeks;
675 control mice were of the same genotype. Durations of diet and antibody therapies
676 varied as outlined in the main text.

677

678 *Model of streptozotocin-induced diabetes and advanced NASH*

679 We engaged contract research organization (CRO) service from SMC Laboratories,
680 Japan to perform this study. Briefly, two-day old male wild-type mice received a
681 single subcutaneous injection of 200 µg streptozotocin (STZ, S1030, Sigma),
682 followed by feeding with high fat diet (HFD32, CLEA Japan) from when they were of
683 4-weeks of age until the end of the experiment at 18-weeks. Control mice received
684 NC diet for the duration of the experiment. Mice received either IgG, X203 or X209
685 from week 11 until the end of the experiment.

686

687 *Il11ra-deleted mice*

688 Mice lacking functional alleles for Il11ra (*Il11ra*^{-/-}) were on C57Bl/6J genetic
689 background (B6.129S1-*Il11ra*^{tm1Wehi}/J, Jackson's Laboratory). Both *Il11ra*^{-/-} mice and
690 their wild-type littermates (*Il11ra*^{+/+}) were fed with HFMCD for 10 weeks from 5-
691 weeks of age to develop NASH; control mice were fed with NC for the same
692 duration.

693

694 ***In vivo administration of IL-11***

695 Recombinant mouse IL-11 (rmil-11) was reconstituted to a concentration of 50 µg ml⁻¹
696 in saline. Ten-week-old male *Col1a1-GFP* reporter mice¹ and wild-type C57BL/6J
697 mice received daily subcutaneous injection of either 100 µg kg⁻¹ of rmil-11 or
698 identical volume of saline for 21 days.

699

700 ***In vivo administration of anti-IL-11 or anti-IL11RA monoclonal antibodies***

701 Mice were injected intraperitoneally with either anti-IL-11 (X203) or anti-IL11RA
702 (X209) or an identical amount of IgG isotype control for the treatment durations
703 outlined in the main text.

704

705 **Antibodies**

706 ACTA2 (ab7817, Abcam), CD45 (103102, Biolegend), Collagen I (ab34710, Abcam),

707 p-ERK1/2 (4370, Cell Signaling), ERK1/2 (4695, Cell Signaling), GAPDH (2118, Cell
708 Signaling), IgG (Aldevron), IL-11 (X203, Aldevron), IL11RA (X209, Aldevron), Ly6C
709 (128039, Biolegend), TGF β 1 (141402, Biolegend), anti rabbit HRP (7074, CST), anti
710 mouse HRP (7076, CST).

711

712 **Recombinant proteins**

713 Commercial recombinant proteins: Human angiotensin II (A9525, Sigma-Aldrich),
714 human CCL2 (279-MC-050/CF, R&D Systems), human bFGF (233-FB-025, R&D
715 Systems), human IL-11 (PHC0115, Life Technologies), human PDGF (220-BB-010,
716 R&D Systems), human TGF β 1 (PHP143B, Bio-Rad), and mouse TGF β 1 (7666-MB-
717 005, R&D Systems).

718 Custom recombinant proteins: Mouse IL-11 (UniProtKB: P47873) were synthesized
719 without the signal peptide, HyperIL-11 was constructed using a fragment of IL11RA
720 (amino acid residues 1–317; UniProtKB: Q14626) and IL-11 (amino acid residues
721 22–199, UniProtKB: P20809) as described previously³. All custom recombinant
722 proteins were synthesized by GenScript using a mammalian expression system.

723

724 **Chemical**

725 Hydrogen Peroxide (H₂O₂, 31642, Sigma)

726

727 **Cell culture**

728 Cells (HSCs or fibroblasts) were grown and maintained at 37°C and 5% CO₂. The
729 growth medium was renewed every 2–3 days and cells were passaged at 90%
730 confluence using standard trypsinization techniques. All the experiments were
731 carried out at low cell passage (<P4) and cells were serum-starved for 16 h prior to
732 respective stimulations. Stimulated cells were compared to unstimulated cells that
733 have been grown for the same duration under the same conditions (serum-free
734 media), but without the stimuli.

735

736 *Primary human atrial fibroblasts*

737 Human atrial fibroblasts were prepared and cultured as described previously².

738

739 *Primary human hepatic stellate cells (HSCs)*

740 HSCs (5300, ScienCell) were cultured in stellate cells complete media (5301,
741 ScienCell) on poly-L-lysine-coated culture plates (2 μ g cm⁻², 0403, ScienCell).

742

743 **Operetta high throughput phenotyping assay**

744 The Operetta phenotyping assay was performed mostly as described previously³
745 with minor modifications described here: HSCs were seeded in 96-well black
746 CellCarrier plates (PerkinElmer) at a density of 5x10³ cells per well. Following
747 experimental conditions, cells were fixed in 4% paraformaldehyde (PFA, 28908,
748 Thermo Fisher Scientific), permeabilized with 0.1% Triton X-100 (Sigma) and non-
749 specific sites were blocked with 0.5% BSA and 0.1% Tween -20 in PBS. Cells were
750 incubated overnight (4°C) with primary antibodies (1:500), followed by incubation
751 with the appropriate AlexaFluor 488 secondary antibodies (1:1000). EdU-Alexa Fluor
752 488 was incorporated using a Click-iT EdU Labelling kit (C10350, Thermo Fisher
753 Scientific) according to manufacturer's protocol. Cells were counterstained with 1 μ g
754 ml⁻¹ DAPI (D1306, Thermo Fisher Scientific) in blocking solution. Each condition was
755 imaged from duplicated wells and a minimum of 7 fields per well using Operetta
756 high-content imaging system 1483 (PerkinElmer). The quantification of ACTA2^{+ve}

757 cells was measured using Harmony v3.5.2 (PerkinElmer). The measurement of
758 fluorescence intensity per area of Collagen I (normalized to the number of cells) was
759 performed with Columbus 2.7.1 (PerkinElmer).

760

761 **Matrigel invasion assay**

762 The invasive behavior of human HSCs was assayed using 24-well Boyden chamber
763 invasion assays (Cell Biolabs Inc.). Equal numbers of HSCs in serum-free HSC
764 media were seeded in triplicates onto the ECM-coated matrigel and were allowed to
765 invade towards HSC media containing 0.2% FBS. After 48 h of incubation with
766 stimuli, media was aspirated and non-invasive cells were removed using cotton
767 swabs. The cells that invaded towards the bottom chamber were stained with cell
768 staining solution (Cell Biolabs Inc.) and invasive cells from 5 non-overlapping fields
769 of each membrane were imaged and counted under 40x magnification. For antibody
770 inhibition experiments, HSCs were pretreated with X203, X209, or IgG control
771 antibodies for 15 m prior to addition of stimuli.

772

773 **Generation of mouse monoclonal antibodies against IL11RA**

774 *Genetic immunisation and screening for specific binding*

775 A cDNA encoding amino acids 23-422 of human IL11RA was cloned into expression
776 plasmids (Aldevron). Mice were immunised by intradermal application of DNA-coated
777 gold-particles using a hand-held device for particle-bombardment. Cell surface
778 expression on transiently transfected HEK cells was confirmed with anti-tag
779 antibodies recognising a tag added to the N-terminus of the IL11RA protein. Sera
780 were collected after 24 days and a series of immunisations and tested in flow
781 cytometry on HEK293 cells transiently transfected with the aforementioned
782 expression plasmids. The secondary antibody was goat anti-mouse IgG R-
783 phycoerythrin-conjugated antibody (Southern Biotech, #1030-09) at a final
784 concentration of 10 μ g ml⁻¹. Sera were diluted in PBS containing 3% FBS. Interaction
785 of the serum was compared to HEK293 cells transfected with an irrelevant cDNA.
786 Specific reactivity was confirmed in 2 animals and antibody-producing cells were
787 isolated from these animals and fused with mouse myeloma cells (Ag8) according to
788 standard procedures. Supernatant of hybridoma cultures were incubated with HEK
789 cells expressing an IL11RA-flag construct and hybridomas producing antibodies
790 specific for IL11RA were identified by flow cytometry.

791

792 *Identification of neutralizing anti-IL11RA antibodies*

793 Antibodies that bound to IL11RA-flag cells but not to the negative control were
794 considered specific binders and subsequently tested for anti-fibrotic activity on
795 human and mice atrial fibroblasts as described by Schafer et al². Briefly, primary
796 human or mouse fibroblasts were stimulated with human or mouse TGF β 1,
797 respectively (5 ng ml⁻¹; 24 h) in the presence of the antibody candidates (6 μ g ml⁻¹).
798 TGF β 1 stimulation results in an upregulation of endogenous IL-11, which if
799 neutralized, blocks the pro-fibrotic effect of TGF β 1. The fraction of activated
800 myofibroblasts (ACTA2^{+ve} cells) was measured on the Operetta platform as
801 described above to estimate the neutralization potential of the antibody candidates.
802 In order to block potential trans-signalling effects, antibodies were also screened in
803 the context of hyperIL-11 stimulation of human fibroblasts (200 pg ml⁻¹). We detected
804 three specific and neutralizing IL11RA antibodies, of which X209 was taken forward
805 for *in vivo* studies. The same procedures were performed to obtain a neutralizing
806 antibody that binds to the ligand IL-11, as detailed by Cook et al³.

807

808 *Binding kinetics of X209 to IL11RA*

809 Binding of X209 to human IL11RA was measured on Biacore T200 (GE Healthcare).
810 X209 was immobilized onto an anti-mouse capture chip. Interaction assays were
811 performed with HEPES-buffered saline pH 7.4 containing 0.005% P20 and 0.5%
812 BSA. A concentration range (1.56 nM to 100 nM) of the analyte (human IL11RA) was
813 injected over X209 and reference surfaces at a flow rate of 40 $\mu\text{l min}^{-1}$. Binding to
814 mouse IL11ra1 was confirmed on Octet system (ForteBio) using a similar strategy. All
815 sensograms were aligned and double-referenced⁵. Affinity and kinetic constants
816 were determined by fitting the corrected sensograms with 1:1 Langmuir model. The
817 equilibrium binding constant K_D was determined by the ratio of k_d/k_a .

818

819 *X209 IC₅₀ measurement.*

820 HSCs were stimulated with TGF β 1(5 ng ml^{-1} , 24 h) in the presence of IgG (4 $\mu\text{g ml}^{-1}$)
821 and varying concentrations of X209 (4 $\mu\text{g ml}^{-1}$ to 61 pg ml^{-1} ; 4-fold dilutions).
822 Supernatants were collected and assayed for the amount of secreted MMP2. Dose-
823 response curves were generated by plotting the logarithm of X209 tested
824 concentration (pM) versus corresponding percent inhibition values using least
825 squares (ordinary) fit. The IC₅₀ value was calculated using log(inhibitor) versus
826 normalized response-variable slope equation.

827

828 *Blood pharmacokinetics and biodistribution*

829 C57BL/6J mice (10-12-weeks old) were retro-orbitally injected (left eye) with 100 μl
830 of freshly radiolabeled ¹²⁵I-X209 (5 μCi , 2.5 μg) in PBS. Mice were anesthetized with
831 2% isoflurane and blood were collected at several time points (2, 5, 10, 15, 30 m, 1,
832 2, 4, 6, 8 h, 1, 2, 3, 7, 14 and 21 days) post injection via submandibular bleeding. For
833 biodistribution studies, blood was collected via cardiac puncture and tissues were
834 harvested at the following time points: 1, 4 h, 1, 3, 7, 14, 21 days post injection. The
835 radioactivity contents were measured using a gamma counter (2480 Wizard2, Perkin
836 Elmer) with decay-corrections (100x dilution of 100 μl dose). The measured
837 radioactivity was normalized to % injected dose/g tissue.

838

839 **Precision cut liver slices (PCLS) and Western blotting of NASH patient liver**

840 We engaged CRO service (FibroFind, UK) to perform these studies. Briefly, human
841 PCLS were cut and incubated with TGF β 1 for 24 h. ELISA from the supernatant was
842 performed using Human IL-11 DuoSet (DY218, R&D Systems). This CRO also
843 collected liver biopsies from patients undergoing liver resections for cancers where
844 adjacent, non-cancerous tissue was collected for molecular studies. Patients had
845 either no documented intrinsic liver disease (controls) or previously documented
846 alcoholic liver disease, primary biliary cirrhosis, primary sclerosing cholangitis or
847 NASH. For confidentiality reasons no further information was provided for these
848 samples.

849

850 **RNA-seq**

851 *Generation of RNA-seq libraries*

852 Total RNA was quantified using Qubit RNA high sensitivity assay kit (Thermo Fisher
853 Scientific) and RNA integrity number (RIN) was assessed using the LabChip GX
854 RNA Assay Reagent Kit (Perkin Elmer). TruSeq Stranded mRNA Library Preparation
855 Kit (Illumina) was used to prepare the transcript library according to the
856 manufacturer's protocol. All final libraries were quantified using KAPA library

857 quantification kits (KAPA Biosystems). The quality and average fragment size of the
858 final libraries were determined using LabChip GX DNA High Sensitivity Reagent Kit
859 (Perkin Elmer). Libraries were pooled and sequenced on a NextSeq 500 benchtop
860 sequencer (Illumina) using NextSeq 500 High Output v2 kit and paired-end 75-bp
861 sequencing chemistry.

862
863 *RNA-seq analysis*

864 *Stiffness-induced RNA regulation in hepatic stellate cells:* Normalized gene
865 expression values were downloaded from Dou et al⁵. Lowly expressed genes (FPKM
866 at baseline ≥ 2) were removed from the analysis and fold changes were calculated
867 as average FPKM in HSCs on stiff surface divided by average FPKM in HSCs on
868 soft surface. The fold change of RNA expression for upregulated genes (f.c. >1) was
869 plotted and genes were ranked according to their average FPKM value.

870 *TGFB1 stimulation of human hepatic stellate cells and antibody treatment in*
871 *HFMCD:* Sequenced libraries were demultiplexed using bcl2fastq v2.19.0.316 with
872 the --no-lane-splitting option. Adapter sequences were then trimmed using
873 trimmomatic⁶ v0.36 in paired end mode with the options MAXINFO:35:0.5

874 MINLEN:35. Trimmed reads were aligned to the *Homo sapiens* GRCh38 using
875 STAR⁷ v. 2.2.1 with the options --outFilterType BySJout --outFilterMultimapNmax 20
876 --alignSJoverhangMin 8 --alignSJDBoverhangMin 1 --outFilterMismatchNmax 999 --
877 alignIntronMin 20 --alignIntronMax 1000000 --alignMatesGapMax 1000000 in paired
878 end, single pass mode. Only unique alignments were retained for counting. Counts
879 were calculated at the gene level using the FeatureCounts module from subread⁸ v.
880 1.5.1, with the options -O -s 2 -J -T 8 -p -R -G. The Ensembl release 92 hg38 GTF
881 was used as annotation to prepare STAR indexes and for FeatureCounts.

882 For the antibody treatment experiments in mouse, libraries were treated as for the
883 human samples, only using mm10 Ensembl release 86 genome and annotation.

884 Differential expression analyses were performed in R 3.4.1 using the Bioconductor
885 package DESeq2⁹ 1.18.1, using the Wald test for comparisons and including the
886 variance shrinkage step setting a significance threshold of 0.05.

887 Gene set enrichment analyses (GSEA) were performed in R 3.4.1 using the fgsea
888 package and the MSigDB Hallmark genesets^{10,11}, performing 100000 iterations. The
889 “stat” column of the DESeq2 results output was used as ranked input for each
890 enrichment, taking only mouse genes with one-to-one human orthologs.

891

892 **Mass cytometry by Time of Flight (CyTOF)**

893 Immune cells were isolated from liver as described previously¹². Liver tissues were
894 minced and digested with 100 μ g ml⁻¹ Collagenase IV and 20 U ml⁻¹ DNase I, at 37°C
895 for 1 h. Following digestion, cells were passed through strainer to obtain single cell
896 suspension and subjected to percoll gradient centrifugation for isolation of immune
897 cells. CyTOF staining was performed as previously described¹³. Cells were thawed
898 and stained with cisplatin (Fluidigm) to identify live cells, followed by staining with
899 metal-conjugated CD45 antibody, for barcoding purpose. After barcoding, cells were
900 stained with metal-conjugated cell surface antibody (Ly6C). Cells were then fixed
901 with 1.6% PFA, permeabilized with 100% methanol, and subjected to intracellular
902 antibody staining (TGF β 1). Cells were finally labeled with DNA intercalator before
903 acquisition on Helios mass cytometer (Fluidigm). For analysis, first live single cells
904 were identified, followed by debarcoding to identify individual samples. Manual
905 gating was performed using Flowjo software (Flowjo, LLC, USA).

906

907 **Enzyme-linked immunosorbent assay (ELISA) and colorimetric assays**
908 The levels of IL-11 and MMP-2 in equal volumes of cell culture media were
909 quantified using Human IL-11 Quantikine ELISA kit (D1100, R&D Systems) and
910 Total MMP-2 Quantikine ELISA kit (MMP200, R&D Systems), respectively. Mouse
911 serum levels of alanine aminotransferase (ALT) was measured using Alanine
912 Transaminase Activity Assay Kit (ab105134, abcam). Total secreted collagen in the
913 cell culture supernatant was quantified using Sirius red collagen detection kit (9062,
914 Chondrex). Total hydroxyproline content in the livers was measured using
915 Quickzyme Total Collagen assay kit (Quickzyme Biosciences). Liver Triglycerides
916 (TG) measurements were performed using triglyceride colorimetric assay kit
917 (10010303, Cayman). All ELISA and colorimetric assays were performed according
918 to the manufacturer's protocol.

919
920 **Quantitative polymerase chain reaction (qPCR)**
921 Total RNA was extracted from either the snap-frozen liver tissues or HSCs lysate
922 using Trizol (Invitrogen) followed by RNeasy column (Qiagen) purification. The
923 cDNAs were synthesized with iScriptTM cDNA synthesis kit (Bio-Rad) according to
924 manufacturer's instructions. Gene expression analysis was performed on duplicate
925 samples with either TaqMan (Applied Biosystems) or fast SYBR green (Qiagen)
926 technology using StepOnePlusTM (Applied Biosystem) over 40 cycles. Expression
927 data were normalized to *GAPDH* mRNA expression and fold change was calculated
928 using $2^{-\Delta\Delta Ct}$ method. The sequences of specific TaqMan probes and SYBR green
929 primers are available upon request.

930
931 **Immunoblotting**
932 Western blots were carried out on total protein extracts from HSCs and liver tissues.
933 Both cells and frozen tissues were homogenized in radioimmunoprecipitation assay
934 (RIPA) buffer containing protease and phosphatase inhibitors (Thermo Scientifics),
935 followed by centrifugation to clear the lysate. Protein concentrations were
936 determined by Bradford assay (Bio-Rad). Equal amount of protein lysates were
937 separated by SDS-PAGE, transferred to PVDF membrane, and subjected to
938 immunoblot analysis for the indicated primary antibodies. Proteins were visualized
939 using the ECL detection system (Pierce) with the appropriate secondary antibodies.

940
941 **Histology**
942 Liver tissues were fixed for 48 h at RT in 10% neutral-buffered formalin (NBF),
943 dehydrated, embedded in paraffin blocks and sectioned at 7 μ m. Sections stained
944 with Masson's Trichrome were examined by light microscopy.

945
946 **Statistical analysis**
947 Statistical analyses were performed using GraphPad Prism software (version 6.07).
948 Fluorescence intensity (Collagen I) was normalized to the number of cells detected
949 in the field and recorded for 7 fields per well. Cells expressing ACTA2 were
950 quantified and the percentage of activated fibroblasts (ACTA2^{+ve}) was determined for
951 each field. P values were corrected for multiple testing according to Dunnett's (when
952 several experimental groups were compared to one condition), Tukey (when several
953 conditions were compared to each other within one experiment), Sidak (when
954 several conditions from 2 different genotypes were compared to each other).
955 Analysis for two parameters (antibody efficacy across time) for comparison of two
956 different groups were performed by two-way ANOVA. The criterion for statistical

957 significance was $P < 0.05$.

958

959 **Data Availability**

960 High-throughput sequencing data generated for this study can be downloaded from
961 the (GEO) repository (data currently under submission). All other data are in the
962 manuscript or in the supplementary materials.

963

964 **References**

- 965 1. Yata, Y. DNase I-hypersensitive sites enhance $\alpha 1(I)$ collagen gene
966 expression in hepatic stellate cells. *Hepatology* **37**, 267–276 (2003).
- 967 2. Schafer, S. *et al.* IL-11 is a crucial determinant of cardiovascular fibrosis.
968 *Nature* **552**, 110–115 (2017).
- 969 3. Cook, S. *et al.* IL-11 is a therapeutic target in idiopathic pulmonary fibrosis.
970 (2018). doi:10.1101/336537
- 971 4. Myszka, D. G. Improving biosensor analysis. *J. Mol. Recognit.* **12**, 279–284
972 (1999).
- 973 5. Dou, C. *et al.* P300 Acetyltransferase Mediates Stiffness-Induced Activation
974 of Hepatic Stellate Cells Into Tumor-Promoting Myofibroblasts.
975 *Gastroenterology* **154**, 2209–2221.e14 (2018).
- 976 6. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for
977 Illumina sequence data. *Bioinformatics* **30**, 2114–2120 (2014).
- 978 7. Dobin, A. *et al.* STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* **29**,
979 15–21 (2013).
- 980 8. Liao, Y., Smyth, G. K. & Shi, W. The Subread aligner: fast, accurate and
981 scalable read mapping by seed-and-vote. *Nucleic Acids Res.* **41**, e108
982 (2013).
- 983 9. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and
984 dispersion for RNA-seq data with DESeq2. *Genome Biol.* **15**, 550 (2014).
- 985 10. Subramanian, A. *et al.* Gene set enrichment analysis: a knowledge-based
986 approach for interpreting genome-wide expression profiles. *Proc. Natl. Acad.
987 Sci. U. S. A.* **102**, 15545–15550 (2005).
- 988 11. Liberzon, A. *et al.* Molecular signatures database (MSigDB) 3.0.
989 *Bioinformatics* **27**, 1739–1740 (2011).
- 990 12. Sheng, J., Ruedl, C. & Karjalainen, K. Most Tissue-Resident Macrophages
991 Except Microglia Are Derived from Fetal Hematopoietic Stem Cells. *Immunity*
992 **43**, 382–393 (2015).
- 993 13. Chew, V. *et al.* Delineation of an immunosuppressive gradient in
994 hepatocellular carcinoma using high-dimensional proteomic and
995 transcriptomic analyses. *Proc. Natl. Acad. Sci. U. S. A.* **114**, E5900–E5909
996 (2017).