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Abstract  
 

Induced pluripotent stem cell (iPSC) technology holds great potential for therapeutic 

and research purposes. The Human Induced Pluripotent Stem Cell Initiative (HipSci) 

was established to generate a panel of high-quality iPSCs, from healthy and disease 

cohorts, with accompanying multi-omics and phenotypic data. Here, we present a 

proteomic analysis of 217 HipSci iPSC lines obtained from 163 donors.  

This dataset provides a comprehensive proteomic map of iPSCs, identifying >16,000 

protein groups. We analyse how the expression profiles of proteins involved in cell 

cycle, metabolism and DNA repair contribute to key features of iPSC biology and we 

identify potential new regulators of the primed pluripotent state. To facilitate access, 

all these data have been integrated into the Encyclopedia of Proteome Dynamics 

(www.peptracker.com/epd), where it can be browsed interactively. Additionally, we 

generated an iPSC specific spectral library for DIA which we deposited in PRIDE 

along with the raw and processed mass-spectrometry data. 

 
Main text  
 
A decade ago, Yamanaka and colleagues reported methods allowing the induction of 

Pluripotent Stem Cells (iPSCs) from human fibroblast cultures1. Their report showed 

that by exogenously expressing a small set of key transcription factors, a somatic 

cell could be reprogrammed back into a pluripotent state. These reprogrammed cells 

were shown to have the key features of their physiological embryonic stem cell 

(ESC) counterparts. Furthermore, since these reprogrammed stem cells can 

subsequently be differentiated into different somatic cell types, there is currently 
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great interest in using iPSC technology to model human disease mechanisms and 

study development. 

The Human Induced Pluripotent Stem Cells Initiative (HipSci) was established to 

generate and characterise a large, high-quality panel of human iPSCs, accompanied 

with detailed multi-omics and phenotypic characterisation. This involved the 

systematic derivation of iPSCs from many hundreds of healthy volunteer donors, 

along with disease cohorts, using a standardized and well-defined experimental 

pipeline that was previously described2.  

Here, we provide a comprehensive, high-resolution proteomic map of human iPSCs, 

using lines generated by the HipSci consortium. Data are integrated from the 

quantitative, mass spectrometry-based analysis of 217 different iPSC lines derived 

from normal and disease cohorts. We provide a comprehensive proteomic overview 

of the human iPS cell type and explore how protein expression profiles account for 

key aspects of iPS cell biology affecting metabolism, cell cycle and DNA repair. 

Additionally, by comparing protein expression between iPSC lines with either a ‘High’ 

or ‘Low’ Pluritest3 score, we identify potential new regulators of the primed 

pluripotent cell state.  

To provide open access to all these data, the raw and the processed MS files, 

together with a spectral library for DIA analysis of human iPSCs, have been 

deposited to the ProteomeXchange4 PRIDE5 repository (PXD010557), while the 

processed protein level data have been integrated into the Encyclopedia of 

Proteome Dynamics6, where it can be explored and analysed interactively. 
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Results  

Comprehensive Proteomic map of human iPSCs  
 

 
Figure 1- iPSC Proteome: (a) The HipSci proteomics workflow from reprogramming to identification 
and quantification. (b) Histogram showing the sequence coverage for all proteins quantified. (c) 
Percentage of protein coding genes detected per chromosome. (d) Histogram showing the distribution 
of the median protein copy number across all lines. (e) Cumulative abundance plot showing the 
percentage of total copy numbers accumulated by protein rank, ordered by descending copy numbers  
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To provide a comprehensive overview of the human iPSC proteome, we used mass 

spectrometry-based (MS) quantitative proteomics to analyse 217 separate cell lines 

derived from 163 different donors. The iPSCs were all derived from human skin 

fibroblasts and reprogrammed as described previously2 (illustrated in Fig. 1a).  

To maximise throughput for the MS analysis, we combined high mass-accuracy MS 

with tandem mass tagging (TMT). This allowed the multiplexing of up to 10 cell lines 

in a single batch. The study was designed so that each batch contained 9 different 

iPSC lines and one common reference cell line, as shown in Fig.1a. The proteomic 

analysis of the 217 human iPSC lines was thus divided into 24 batches of 10plex-

TMT experiments. 

To maximize proteome coverage, a two-dimensional LC-MS strategy was used (see 

Methods). The first dimension was an off-line, basic reverse-phase HPLC 

fractionation step, separating the digested and TMT-labelled extracts from each 

iPSC line into 24 fractions. Each fraction was then analysed using online LC-MS on 

an Orbitrap Fusion MS. The resulting MS data were subsequently processed and 

quantified using the MaxQuant7 suite.  

In total, >16,000 protein groups were detected at 5% FDR (PSM and protein level). 

This corresponds to detecting the expression of proteins encoded by over 10,500 

different genes, representing 52% of all the human protein coding genes annotated 

within SwissProt. The depth of analysis achieved corresponds to a median protein 

sequence coverage of ~46% across all proteins (Fig.1b). Furthermore, this depth of 

protein coverage was relatively constant across most chromosomes. For the majority 

of chromosomes, we detected >50% of their protein coding genes expressed in 

iPSCs (Fig. 1c).  
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It is known from previous studies on differentiated human cells and cancer cell lines 

that there is a wide dynamic range of protein expression levels8. Understanding the 

copy numbers of specific proteins expressed in a cell can provide important insights 

into the metabolism and physiological state of each cell type. To investigate protein 

expression levels in the iPS cell lines, we estimated protein copy numbers using the 

‘proteomic ruler’ approach9, which calibrates protein expression relative to the level 

of histone proteins detected. This is well suited to analysis of the HipSci iPS lines, 

which are known to have near identical DNA content with little or no copy number 

variation2. 

Using the proteomic ruler, we detected wide differences in protein copy numbers 

expressed from different genes in iPS cells, spanning over 7 orders of magnitude, 

from <100 to ~100 million copies per cell (Fig. 1d). This wide dynamic range of 

expression means the 15 most abundant proteins represent >10% of the total protein 

molecules in the iPS cell (Fig.1e). These proteins include, as expected, histones, 

ribosomal proteins, translation factors and cytoskeletal components, which are 

abundant in most cell types. However, this hyper abundant group also includes two 

members of the glycolytic pathway, i.e. GAPDH (~45 million copies) and ENO1 (~18 

million copies), along with the antioxidant PRDX1 (~15 million copies), whose 

abundances are more variable in differentiated cell types. 

The human iPSC proteome shows comprehensive coverage of known protein 

complexes, including subunits from 92% of all complexes described in the 

mammalian protein complex database CORUM10.  It also includes multiple protein 

families involved in cell signalling. For example, we detect expression of 375 

different protein kinases. This represents ~74% of all confirmed human kinases11, 

consistent with predictions that hESCs express ~300-400 kinases12. We also detect 
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expression of 133 (~70%) protein phosphatases13, 247 (~66%) E3 ligases14 and 862 

(~53%) transcription factors15. Despite their functional importance, each of these 

protein families represent only a small portion of the total protein abundance in iPS 

cells: i.e. all kinases represent ~1.17%, phosphatases ~0.95%, E3 ligases ~0.70% 

and transcription factors ~ 2.28% of total protein copies.  

Proteomic profile of cell cycle, DNA repair and 
metabolism 
 

 
 
Figure 2- Cell cycle, DNA repair and metabolism: (a) Representation of the iPSC cell cycle, 
illustrating the phase duration, the phase specific cyclins, CDKs and their inhibitors. (b) iPSC 
metabolism, with the glycolytic, pentose phosphate and TCA pathways represented. Proteins are 
coloured in shades of blue to indicate copy numbers. (c) DNA double strand break pathways NEHJ 
and HR with proteins coloured in shades of blue to indicate copy numbers. 
 

Cell cycle 
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Human iPSCs are rapidly proliferating cells16. This is reflected in their proteome by 

high levels of key cell cycle regulators, including the D type cyclins, mitotic cyclins 

and DNA replication complexes. For example, all the MCM proteins (MCM2-7), 

which are the core components of the machinery that recognises DNA replication 

origins and licenses dormant origins17, are highly abundant (>1,3 million copies) in 

iPS cells. Conversely, the iPSC lines had low levels of the CDK inhibitors (CDKIs), 

which repress cell cycle progression (Fig. 2a). These observations help to explain 

how iPS cells achieve high rates of cell division. 

Increased expression of the CDK inhibitor CDKN1B is linked with lengthening of G1 

and loss of pluripotency18. Consistent with the short G1 phase in iPSCs, our data 

show that the expression level of CDKN1B is low, (<1,000 copies per cell). CDKN1B 

was only detected in ~3% of lines, compared with both cyclin D1 (~91,000 copies per 

cell) and cyclin D2 (~24,000 copies), which are detected in ~70% and 95% of all 

lines, respectively. D Cyclins form a complex with CDK4/CDK6 and their inhibition 

lengthens G1 phase19.  

Both CDK4 and CDK6 are significantly more abundant in iPSCs (>250,000 copies 

per cell), than their inhibitors, (e.g. CDKN1 & CDKN2). Thus, we detect two isoforms 

for CDKN2A expressed in iPSCs, p16INK4a and p12. The predominant isoform is 

p12, at ~125,000 copies, which has been reported not to have activity towards 

CDK4/620. The inhibitor CDKN1C is only present at ~28,000 copies, i.e. ~tenfold 

lower than CDK4 and CDK6. The CDK2 (~599,000 copies)/CyclinA (~227,000 

copies) complex is also highly abundant. It contributes to a short G1 phase by 

phosphorylating and inactivating RB family proteins, which would otherwise bind to 

E2F4 and E2F5 to repress transcription of genes encoding proteins that regulate the 

G1-S phase transition21.  
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Moreover, CDK1 is the most abundant kinase within iPSCs with ~2 million copies per 

cell. CDK1 plays a vital role in rapidly proliferating iPSCs as it drives both the G2-M 

and the G1-S transitions, via its association with cyclins D1, E and A22. The 

CDK1/CCNB1 complex also induces expression of LIN28A, which assists 

reprogramming to a glycolytic state by repressing oxidative phosphorylation 

(OXPHOS)23. 

DNA Damage Repair 

High rates of DNA replication and cell division are linked with an increased risk of 

DNA damage, which can lead to enhanced rates of mutation and/or cell death. A 

characteristic of cells responding to DNA damage is increased levels of induced 

DNA damage response factors. Interestingly, histone H2AFX, an indicator of DNA 

damage, arising from either Double Strand Breaks (DSB)24, or replicative stress25, is 

the 9th most abundant protein in iPSCs, with a median copy number of ~20 million. 

However, it shows considerable variation in expression levels between the different 

iPSC lines, fluctuating between 16 and 74 million copies per cell.  

A hallmark of pluripotent stem cells is their ability to differentiate into the three 

primary germ layers and thus any mutations they sustain could affect entire cell 

lineages during differentiation26. To avoid DNA damage being propagated to the 

progeny, stem cells have a robust DNA Damage Repair (DDR) system and show a 

lower mutation frequency than somatic cells. DSBs generated from reprogramming 

and replicative stress are mended by the intervention of the Homologous 

Recombination (HR) or Non-Homologous End Joining (NHEJ) pathways27. iPS cells 

are particularly effective at the error free repair of DSBs by HR, which is facilitated by 

a short G1 phase28.  Proteins acting in both of these pathways are highly abundant 
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in iPSCs (Fig. 2b). For example, RPA proteins are vital components of HR, they coat 

single-strand DNA to facilitate the loading of the RAD51 recombinase24, 28 and both 

RPA1 and 3 are present at >1.4 million copies per cell. Similarly, XRCCC6/5 (also 

known as Ku70 and Ku80), start the NHEJ process by forming a dimer on broken 

DNA ends and recruiting PRKDC (DNA-PK)29. PRKDC is the second most abundant 

kinase in iPS cells (~1.2 million copies) and both XRCCC6/5 are present at >3 

million copies per cell. Furthermore, all members of the DSB repair pathways are 

expressed at >14,000 copies per cell.  

If DNA damage is not repaired, iPSCs can either temporarily arrest in G2 phase, 

upon ATM activation30, or activate cell death31. ATM will operate at DSBs and ATR 

at ssDNA stretches, phosphorylating the downstream targets CHEK1/2 and H2AFX. 

Efficient DDR is facilitated in iPS cells via high expression of SALL4, (~500,000 

copies), which favours ATM activation32 and DICER1, (~145,000 copies), which 

helps resolve replicative stress33. CHEK1 and CHEK2 are among the top 10% most 

abundant kinases in iPS cells, (both>330,000 copies) and the p53 DNA damage 

induced transcription factor is also abundant, at ~115,000 copies per cell. Vital 

Single Strand Breaks (SSB) repair proteins are also highly abundant with PARP1 

with ~3.7 million copies per cell and XRCC1 ~350,000 copies. 

In summary, we detect iPS cells expressing very high levels of a wide range of 

protein factors involved in the repair of DNA damage. This is consistent with the 

protection of iPSCs from an increased risk of DNA damage and mutation during 

rapid proliferation and subsequent differentiation. 

Metabolism 
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The expression levels of key enzymes and molecules that control cell metabolism 

are highlighted in Fig. 2c, giving insights about the iPSC metabolic programs. All the 

iPSC lines expressed high levels of glycolytic enzymes. Glycolysis is inefficient for 

ATP production, compared with OXPHOS. Cells dependent upon glycolysis for 

energy metabolism therefore must sustain high levels of glucose uptake, which is 

reflected in the iPSC proteome by the high expression levels of multiple glucose 

transporters. For example, SLC2A1 (GLUT1) and SLC2A3 (GLUT3) are both present 

at ~500,000 copies per cell in all the iPSC lines.  

Within cells, glucose is converted to glucose 6-phosphate by Hexokinase, which is 

rate limiting for glucose metabolism. Cells with high glycolytic rates thus express 

elevated expression levels of Hexokinases (HKs)34. We detect abundant HK 

expression in iPSCs, with HK1 at ~1,470,000 copies, followed by HK2 at ~650,000 

copies per cell. Multiple other glycolytic pathway components are also highly 

expressed in iPSCs (Fig. 2c), including GAPDH (~45 million copies) and ENO1, 

PGAM1, PGK1 and PKM, each with >7 million copies. 

Pyruvate produced by glycolysis can either be converted into L-lactate, via lactate 

dehydrogenases (LDH), or into Acetyl-CoA, via the pyruvate dehydrogenase 

complex (PDC)35. The lower reliance of iPSCs on OXPHOS, compared with somatic 

cells36, is consistent with the high expression of LDHs and the PDC inhibitors, PDK1-

3 (Fig. 2c). The HipSci iPSC lines express high levels of both LDHA (~7 million 

copies) and LDHB (~13 million copies per cell). LDH isozymes have different affinity 

and inhibition patterns, with LDHB isozymes present in cells that are less inhibited by 

L-lactate37. Nonetheless L-lactate must still be removed by monocarboxylate 

transporters and our data show all iPSC lines have high levels (~1 million copies) of 
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the lactate transporter SLC16A1. We also detect high expression of specific amino 

acid transporters, such as LAT1 (SLC7A5) (~635,000 copies) and its heavy subunit 

CD98 (SLC3A2) (~1,500,000 copies). 

We detect abundant expression in iPSCs of the key enzymes of the PDC and TCA 

cycle. The PDC, which converts Pyruvate to Acetyl-CoA and is linked with histone 

acetylation and maintenance of pluripotency, hence is still vital for iPSCs38. 

However, consistent with the lower reliance of iPSCs on OXPHOS, we also detect 

high expression of OXPHOS inhibitors, such as PDK1-3 and LIN28A/B39. 

Furthermore, we detect expression of all enzymes in the Pentose Phosphate 

Pathway (PPP). Congruent with reports that iPSCs have preference for the non-

oxidative side of the PPP40, we detect highest levels of the non-oxidative enzymes 

Transketolase and Transaldolase, both expressed at >2 million copies per cell. 

A feature of iPSCs is that they require high expression of antioxidants to reduce the 

oxidative stress caused by metabolism. In line with this requirement, our data show 

that the antioxidant PRDX1 is one of the most abundant proteins in all the iPSC 

lines, with ~16 million copies per cell. PRDX1 has been shown to regulate gene 

expression in response to ROS41. 

Evaluating pluripotency and primed pluripotency 
markers   

 
Human iPS cells share the hallmarks of primed pluripotency with their hESC 

counterparts, including the ability to self-renew and to differentiate into the three 

main germ layers. We initially evaluated the expression of 3 key factors known to 

maintain pluripotency and prevent spontaneous differentiation in primed iPSCs; i.e. 
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SOX2, OCT4 and NANOG (Fig. 3a). All 3 were expressed ubiquitously across nearly 

all iPSC lines. 

 

Figure 3- Evaluating iPSC pluripotency: (a) Radial bar plots showing Log10 copy numbers of SOX2, 
OCT4, and NANOG proteins in all HipSci lines. (b) Violin plots with geometric means and standard 
deviation showing the expression levels of SOX2, OCT4, and NANOG, when comparing ‘High’ vs 
‘Low’ Pluritest score categories. 
 

Focussing on iPSC lines derived from healthy donors, we used the Pluritest3 score to 

stratify the lines into ‘High’ and ‘Low’ Pluritest score categories (see methods). We 

compared protein expression across the ‘High’ and ‘Low’ populations for 123 lines. 

The levels of the 3 canonical pluripotency factors remained virtually identical 

between the two groups (Fig. 3b), consistent with the high QC within the HipSci 

pipeline2. 

We evaluated proteomic changes within the two conditions and generated a Volcano 

plot comparing the ‘High’ vs ‘Low’ categories (Fig. 4a). The plot shows that the two 
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populations are very similar. However, the statistical analysis revealed a subset of 

differentially expressed proteins affecting 3 main pathways, i.e. NF-kB, TGFB and 

RAS/RAF/ERK.  

 

Figure 4- Fine-tuning primed pluripotency: (a) Volcano plot showing the Log2 fold change in 
protein abundance between High/Low Pluritest score vs the –log10 p-value for each protein detected in 
more than 2 TMT batches in both conditions and with more than 2 unique+razor peptides. (b) 
Activin/BMP/TGF-B and FGF2/ERK signalling pathways with components coloured by fold change 
and the borders by the p-value (c) Violin plots with geometric means and standard deviation showing 
the expression of NFKBIB, RELB and PIM2 across Pluritest categories. (d) Violin plots with geometric 
means and standard deviation showing the expression levels of the SOD3 and PRDK1 across 
Pluritest categories.  
 
The canonical FGF2-RAS/RAF/ERK pathway is vital to primed pluripotency42 and 

our data show the core members remain virtually unchanged between populations. 

However, we detect increased expression of MLK1/3. MLKs can phosphorylate and 

activate MEK, with MLK1 and MLK3 being the most effective at activating ERK43.  

We also see an increase in the nuclear ERK phosphatase DUSP5, which is activated 
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as a negative feedback control for ERK44 and PAK5, a constitutively active kinase 

that can phosphorylate BAD to prevent apoptosis45.  

The Activin/TGFB pathway is important for primed pluripotency due to its direct 

modulation of NANOG expression46. Our data show that while canonical 

Activin/TGFB signalling remains unchanged between the two conditions (Fig. 4b), 

there is a difference with the non-canonical BMP4/TGF-B pathway. Though required 

to maintain pluripotency in mESC, BMP4 signalling promotes differentiation of 

primed PSCs47. Our data show increased expression in the ‘High’ Pluritest category 

of calcineurin, which is the catalytic subunit gamma of PP3 (Fig. 4b). FGF activated 

calcineurin can directly modulate BMP signalling by dephosphorylating 

SMAD1/SMAD548. 

Lastly, our data highlight multiple effects of antioxidants, including side-effects from 

the knockout serum replacement (KOSR) growth medium. KOSR is rich in vitamin C, 

which assists with the reprogramming of iPSCs49, however its effects extend beyond 

reprogramming. Vitamin C has been reported to have multiple effects on NF-kB 

signalling, including the inhibition of IKKβ and IKKα50. Our data show NFKBIB is not 

phosphorylated and degraded, suggesting reduced canonical NF-kB signalling.  

Another effect is seen through the alternative NF-kB signalling component, 

RELB/p52. In the ‘High’ Pluritest category we see an increase in RELB levels and its 

transcriptional target PIM2.   

Furthermore, vitamin C promotes the expression SOD3, but not SOD1 or SOD251. 

SOD3, which contributes to an antioxidative response by converting two superoxide 

radicals into hydrogen peroxide and water, is upregulated in cell lines in the ‘High’ 

Pluritest category. We also see upregulation of PRDK1, which is activated in 

response to ROS, more specifically by hydrogen peroxide52.  
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In summary, our data indicate that ‘High’ Pluritest category iPS cell lines have lower 

BMP4 signalling, a stronger antioxidant response and potentially less vulnerability to 

apoptotic signals. 

 

The Encyclopedia of Proteome Dynamics (EPD): 
Interactive iPSC analysis and visualisation  

 

Figure 5- HipSci Data in the EPD: (a) Navigation interface for HipSci in the ‘Global Analysis 
Mode’. (b) Navigation interface for HipSci in the ‘Protein Analysis Mode’. (c) The HipSci 
dashboard. This can be accessed through the ‘Protein Analysis Mode’ and shows an overview of 
data available for the specific protein of interest. (d) Histogram of abundance for protein copy 
numbers across all iPS lines. A histogram can also be generated for each individual iPS line 
present within the HipSci dataset. (e) Bubble plot of protein abundance calculated for all iPS cell 
lines, with sequence coverage shown on the colour scale. It can be generated for either raw copy 
numbers, or Log10 transformed copy numbers. It can also be generated separately for each iPS 
line present within the HipSci dataset. (f) Volcano plot showing the comparison of protein 
expression in iPS lines with ‘High’ vs ‘Low’ Pluritest scores. Highlighted elements display the 
protein, Pathway and Protein Complex search functionality. (g) Reactome pathway analysis 
showing ‘Developmental Biology’ pathway, with HipSci copy numbers overlaid. (h) Interactive 
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Kinase map showing kinase expression in iPS cells with copy numbers overlaid via the colour 
scale. 
 

The EPD is an online database and web-application that provides open access to 

multi-omics data, featuring graphical navigation with interactive visualisations that 

enable data exploration in an intuitive, user-friendly manner5. All of the processed 

iPSC proteomics data, has been integrated within the EPD ecosystem and is 

available at: https://peptracker.com/epd/analytics/?section_id=40100. 

 
As illustrated in Fig. 5, the EPD provides dynamic visualisations specifically created 

to analyse and explore the iPSC data. A dashboard presents an overview of the data 

for each specific protein, summarising correlation with RNA data, copy numbers and 

identification details (Fig. 5c). Global views of the dataset are provided with 

histograms (Fig. 5d) and bubble plots (Fig. 5e), both displaying the median protein 

copy numbers across all lines. For the Pluritest analysis, the Volcano plot (Fig. 5f), 

showing p-values and log2 fold changes, is available interactively. We also integrated 

the iPSC dataset with the Reactome53 Pathway widget for pathway analysis (Fig. 5g) 

and with the KinoViewer8, to explore kinase expression via the kinase phylogenetic 

tree (Fig. 4h). 

 
hiPSC spectral library 
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Figure 6- DIA Spectral Library: Workflow showing the process used to generate the DIA library 
specific for human iPSCs. 
 
 
To facilitate further MS analyses on human iPS cells, we also created a data 

independent acquisition (DIA) Spectral Library. To generate the library, an initial 

DDA workflow was set up (Fig. 6). Three representative iPSC lines were selected for 

in-depth analysis, via reversed-phase and HILIC chromatography. 24 fractions were 

analysed by LC-MS/MS on a Q-Exactive Plus Orbitrap mass-spectrometer in ‘Label 

Free’ mode, with two technical replicates per line. The samples were spiked with the 

Biognosys IRT Kit to align retention time. In total, 288 raw files were collected and 

quantified using MaxQuant v 1.6.0.13. This output was used to generate the spectral 

library using Spectronaut.  

The resulting human iPSC DIA library is compatible with Orbitrap MS platforms and 

with popular DIA software packages, e.g. Skyline and Spectronaut. This iPSC DIA 

library is freely available within the PRIDE submission (PXD010557). 
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Discussion 

Human induced pluripotent stem cells have great potential for therapeutic and 

research applications, providing improved ethical models for studies on disease 

mechanisms and personalised regenerative medicine. We provide here a valuable 

research resource with the most in-depth proteome map of human iPSCs reported to 

date. 

Our proteomic data provides insights into iPSC metabolism, highlighting the 

important role of glycolysis, along with elevated levels of glucose, amino acid and 

lactate transporters. The hyper-abundant group of iPSC proteins include the 

glycolytic pathway members GAPDH and ENO1, along with the elongation factor 

EEF1A1 and the antioxidant PRDX1. Their high expression highlights mechanisms 

supporting rapid proliferation and high metabolic activity in iPS cells. The proteomic 

profile of metabolic enzymes in iPS cells revealed high expression of OXPHOS 

inhibitors, e.g. PDK1-3 and LIN28A/B, as well as showing a preference for the 

anaerobic side of the PPP.  

Human stem cells are characterised by a short G1 phase, with >50% of 

asynchronous hESCs in S phase54. Lengthening of G1 within pluripotent stem cells 

(PSCs) is linked with a loss of pluripotency55. Our data revealed high expression 

levels of G1 modulating CDKs (with CDK1 being the most abundant kinase) and 

their respective cyclins, along with correspondingly low expression levels of their 

respective inhibitor proteins. This accounts for the observed short G1 phase in iPS 

cells.  

The proteomic data also help to explain the highly efficient DNA Damage Repair 

phenotype of iPS cells, which is important to prevent accumulation of mutations 

during proliferation and differentiation. Thus, we detect high expression levels of 
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members of the NHEJ and HR pathways, along with elevated expression of p53, 

which will trigger cell death should DNA damage not be corrected. 

The HipSci pipeline included in the QC process an evaluation also of the pluripotent 

potential of each line, reflected in a ‘Pluritest Score’2. We used these Pluritest scores 

measured for the individual iPSC lines to correlate proteome variation with 

pluripotency. This identified new potential protein regulators of the primed pluripotent 

state. For example, in lines with high Pluritest scores, we detected elevated levels of 

PPP3CC, which modulates BMP4 signalling. We also detected high levels of PAK5, 

which has been shown to prevent apoptosis, both by phosphorylating BAD and by 

activating and translocating RAF1 to mitochondria56. Overall, our data support the 

view that the ‘High’ Pluritest category is linked potentially with reduced BMP4 

signalling and increased resistance to apoptotic signals. Moreover, the data revealed 

an antioxidant response to the growth medium, with reduced canonical NF-kB 

signalling and increased expression of the antioxidant proteins SOD3 and PRDK1. 

To add value to these rich proteomic data, we have integrated all of the protein-level 

information into the Encyclopedia of Proteome Dynamics, an open access, 

interactive online web app. Additionally, all of the corresponding raw MS data are 

provided for open access via the ProteomeXchange PRIDE repository (PXD010557). 

Furthermore, we have generated a human iPSC spectral library, to support future 

proteomic studies on healthy and disease iPSCs lines using data independent 

acquisition (DIA). The iPSC spectral library is also freely available via the PRIDE 

repository. We are confident these data will provide a valuable resource that will 

facilitate further research and applications using human iPSCs. 

 

Methods 
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Generation of iPSC lines 
All lines included in this study are part of the HipSci resource and were 

reprogrammed from primary fibroblasts as previously described2. Out of the total of 

more than 800 iPSC lines available within the HipSci resource (www.hipsci.org), 217 

lines, predominantly from healthy donors, were selected for in depth proteomic 

analysis in this study using Tandem Mass Tag Mass Spectrometry. 

 
TMT Sample preparation 
 

For protein extraction, iPSC cell pellets were washed with ice cold PBS and 

redissolved immediately in 200 μL of lysis buffer (8 M urea in 100 mM triethyl 

ammonium bicarbonate (TEAB)) and mixed at room temperature for 15 minutes.  

The DNA content of the cells is sheared using ultrasonication (6 X 20 s on ice).  The 

proteins were reduced using tris-carboxyethylphosphine TCEP (25 mM) for 30 

minutes at room temperature, then alkylated in the dark for 30 minutes using 

iodoacetamide (50 mM). Total protein was quantified using the EZQ assay (Life 

Technologies). The lysates were diluted with 100 mM TEAB 4-fold for the first 

digestion with mass spectrometry grade lysyl endopeptidase, Lys-C (Wako, Japan), 

then further diluted 2.5-fold before a second digestion with trypsin. Lys-C and trypsin 

were used at an enzyme to substrate ratio of 1:50 (w/w). The digestions were carried 

out overnight at 37ºC, then stopped by acidification with trifluoroacetic acid (TFA) to 

a final concentration of 1% (v:v). Peptides were desalted using C18 Sep-Pak 

cartridges (Waters) following manufacturer’s instructions. 
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For tandem mass tag (TMT)-based quantification, the dried peptides were re-

dissolved in 100 mM TEAB (50 μl) and their concentration was measured using a 

fluorescent assay (CBQCA, Life Technologies). 100 μg of peptides from each cell 

line to be compared, in 100 μl of TEAB, were labelled with a different TMT tag 

(20 μg ml−1 in 40 μl acetonitrile) (Thermo Scientific), for 2 h at room temperature. 

After incubation, the labelling reaction was quenched using 8 μl of 5% hydroxylamine 

(Pierce) for 30 min and the different cell lines/tags were mixed and dried in vacuo. 

The TMT samples were fractionated using off-line high-pH reverse-phase (RP) 

chromatography: samples were loaded onto a 4.6 × 250 mm Xbridge BEH130 C18 

column with 3.5-μm particles (Waters). Using a Dionex bioRS system, the samples 

were separated using a 25-min multistep gradient of solvents A (10 mM formate at 

pH 9) and B (10 mM ammonium formate pH 9 in 80% acetonitrile), at a flow rate of 

1 ml min−1. Peptides were separated into 48 fractions, which were consolidated into 

24 fractions. The fractions were subsequently dried and the peptides re-dissolved in 

5% formic acid and analysed by LC–MS/MS. 

TMT LC–MS/MS 
TMT-based analysis. Samples were analysed using an Orbitrap Fusion Tribrid mass 

spectrometer (Thermo Scientific), equipped with a Dionex ultra-high-pressure liquid-

chromatography system (RSLCnano). RPLC was performed using a Dionex 

RSLCnano HPLC (Thermo Scientific). Peptides were injected onto a 75 µm × 2 cm 

PepMap-C18 pre-column and resolved on a 75 µm × 50 cm RP- C18 EASY-Spray 

temperature-controlled integrated column-emitter (Thermo Scientific), using a four-

hour multistep gradient from 5% B to 35% B with a constant flow of 200 nl min−1. The 

mobile phases were: 2% ACN incorporating 0.1% FA (solvent A) and 80% ACN 
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incorporating 0.1% FA (solvent B). The spray was initiated by applying 2.5 kV to the 

EASY-Spray emitter and the data were acquired under the control of Xcalibur 

software in a data-dependent mode using top speed and 4 s duration per cycle. The 

survey scan is acquired in the orbitrap covering the m/z range from 400 to 

1,400 Thomson with a mass resolution of 120,000 and an automatic gain control 

(AGC) target of 2.0 x 105 ions. The most intense ions were selected for 

fragmentation using CID in the ion trap with 30% CID collision energy and an 

isolation window of 1.6 Th. The AGC target was set to 1.0 x 104 with a maximum 

injection time of 70 ms and a dynamic exclusion of 80 s. 

During the MS3 analysis for more accurate TMT quantifications, 5 fragment ions 

were co-isolated using synchronous precursor selection using a window of 2 Th and 

further fragmented using HCD collision energy of 55%. The fragments were then 

analysed in the orbitrap with a resolution of 60,000. The AGC target was set to 

1.0 x 105 and the maximum injection time was set to 105 ms. 

Accession codes 

All of the mass-spectrometry data generated from the TMT batches, the DIA library, 

fasta file, and MaxQuant outputs have been uploaded to PRIDE (PXD10557).    

Identification & Quantification 

The TMT-labelled samples were collected and analysed using Maxquant7, 57 v. 

1.6.0.13 in a single large run. The FDR threshold was set to 5% on the Peptide 

Spectrum Match, Peptide and Protein level. Proteins and peptides were identified 

using the UniProt human reference proteome database (SwissProt & TrEMBL). Run 

parameters have been deposited to PRIDE5 along with the full MaxQuant 

quantification output (PDX010557). 
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Data for the analysis were obtained from the ProteinGroups.txt output of MaxQuant. 

Contaminants, reverse hits and ‘only identified by site’ were excluded from analysis. 

For either a protein, or a protein group to be considered, we required at least one 

unique peptide mapping to it. Overall, we quantified 16,755 protein groups in at least 

one of the samples. 

Copy number generation 

Every TMT batch had 1 control cell line (bubh3, reporter channel 0) and 9 sample 

cell lines. Protein copy numbers were calculated following the proteomic ruler9 and 

using the MS3 intensity. To minimise potential batch effects, the protein copy 

numbers were normalised using the reference cell line present in every batch. 

For every protein, the references lines in each TMT batch were used to calculate a 

median copy number, and then calculate a ratio between the control in every TMT 

batch and the median. All values within the batch were corrected via this ratio. 

Lead razor protein assignment 

The lead razor protein for each Protein Group was modified from the MaxQuant 

output. The number of peptides that could theoretically be assigned to each element 

of the protein groups were selected, and all the elements of the Protein Group with 

highest number of peptides were selected. If there was only one candidate protein, 

then this element became the lead razor protein, if multiple candidates were present 

additional filtering was required. 

Among the candidates the priority was given to the canonical SwissProt entry, if no 

canonical entry was present it would default to a reviewed protein isoform. If no 

reviewed proteins isoforms were present among the candidate proteins, then the 

lead element would be assigned to a TrEMBL proteoform. A TrEMBL proteoform 
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would only be assigned a lead protein role based on the previously described 

scenario. 

Chromosome mapping 
To map gene products to their specific chromosomes, we utilised the UniProt58 

protein-chromosome mapping file. We used the file to produce a list of unique 

protein coding genes for each specific chromosome. Subsequently, we mapped the 

proteins detected in our iPSC dataset to their corresponding chromosomes based on 

the UniProt mapping file and produced a list of genes for each chromosome as well. 

We compared the iPSC specific list of genes, with the reference list to determine the 

percentage of protein coding genes detected in our iPSC dataset for each 

chromosome. 

Statistical analysis 

The Pluritest statistical analysis, illustrated on the volcano plot, was generated based 

on the copy number and Pluritest scores data. The lines were stratified into two 

categories, i.e. ‘High’ and ‘Low’, based on the median Pluritest score. Only proteins 

that were detected in at least two distinct TMT batches for each condition were 

selected for analysis. Additionally, 2 or more Unique and Razor peptides had to be 

assigned to the protein group. 

P-values were calculated in R utilising the bioconductor package Linear Models for 

Microarray Data (LIMMA) version 3.7. The fold change used was also calculated by 

LIMMA and uses the Log2 geometric mean. Q-values were generated in R using the 

“qvalue” package version 2.10.0 

Dynamic visualisations within the EPD 
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All processed proteomic data were integrated into the Encyclopedia of Proteome 

Dynamics6 (https://peptracker.com/epd/analytics/). The tabular data are stored within 

Cassandra, and the relationships between datasets and identified proteins were 

modelled and stored within Neo4j. 

The EPD server runs on Django, while the front end is a mixture of Angular, jQuery 

and D3.js. All of the visualisations were generated via D3.js as a client-side 

JavaScript library. The Reactome53 Pathway browser was integrated into the EPD 

using the Reactome JavaScript widget and Analysis Services. 
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