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Abstract

Induced pluripotent stem cell (iPSC) technology holds great potential for therapeutic
and research purposes. The Human Induced Pluripotent Stem Cell Initiative (HipSci)
was established to generate a panel of high-quality iPSCs, from healthy and disease
cohorts, with accompanying multi-omics and phenotypic data. Here, we present a

proteomic analysis of 217 HipSci iPSC lines obtained from 163 donors.

This dataset provides a comprehensive proteomic map of iPSCs, identifying >16,000
protein groups. We analyse how the expression profiles of proteins involved in cell
cycle, metabolism and DNA repair contribute to key features of iPSC biology and we
identify potential new regulators of the primed pluripotent state. To facilitate access,
all these data have been integrated into the Encyclopedia of Proteome Dynamics

(www.peptracker.com/epd), where it can be browsed interactively. Additionally, we

generated an iPSC specific spectral library for DIA which we deposited in PRIDE

along with the raw and processed mass-spectrometry data.

Main text

A decade ago, Yamanaka and colleagues reported methods allowing the induction of
Pluripotent Stem Cells (iPSCs) from human fibroblast cultures’. Their report showed
that by exogenously expressing a small set of key transcription factors, a somatic
cell could be reprogrammed back into a pluripotent state. These reprogrammed cells
were shown to have the key features of their physiological embryonic stem cell
(ESC) counterparts. Furthermore, since these reprogrammed stem cells can

subsequently be differentiated into different somatic cell types, there is currently
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great interest in using iPSC technology to model human disease mechanisms and
study development.

The Human Induced Pluripotent Stem Cells Initiative (HipSci) was established to
generate and characterise a large, high-quality panel of human iPSCs, accompanied
with detailed multi-omics and phenotypic characterisation. This involved the
systematic derivation of iPSCs from many hundreds of healthy volunteer donors,
along with disease cohorts, using a standardized and well-defined experimental
pipeline that was previously described?.

Here, we provide a comprehensive, high-resolution proteomic map of human iPSCs,
using lines generated by the HipSci consortium. Data are integrated from the
quantitative, mass spectrometry-based analysis of 217 different iPSC lines derived
from normal and disease cohorts. We provide a comprehensive proteomic overview
of the human iPS cell type and explore how protein expression profiles account for
key aspects of iPS cell biology affecting metabolism, cell cycle and DNA repair.
Additionally, by comparing protein expression between iPSC lines with either a ‘High’
or ‘Low Pluritest® score, we identify potential new regulators of the primed
pluripotent cell state.

To provide open access to all these data, the raw and the processed MS files,
together with a spectral library for DIA analysis of human iPSCs, have been
deposited to the ProteomeXchange® PRIDE® repository (PXD010557), while the
processed protein level data have been integrated into the Encyclopedia of

Proteome Dynamics®, where it can be explored and analysed interactively.
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Results
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Figure 1- iPSC Proteome: (a) The HipSci proteomics workflow from reprogramming to identification
and quantification. (b) Histogram showing the sequence coverage for all proteins quantified. (c)
Percentage of protein coding genes detected per chromosome. (d) Histogram showing the distribution
of the median protein copy number across all lines. () Cumulative abundance plot showing the
percentage of total copy humbers accumulated by protein rank, ordered by descending copy numbers
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To provide a comprehensive overview of the human iPSC proteome, we used mass
spectrometry-based (MS) quantitative proteomics to analyse 217 separate cell lines
derived from 163 different donors. The IPSCs were all derived from human skin
fibroblasts and reprogrammed as described previously? (illustrated in Fig. 1a).

To maximise throughput for the MS analysis, we combined high mass-accuracy MS
with tandem mass tagging (TMT). This allowed the multiplexing of up to 10 cell lines
in a single batch. The study was designed so that each batch contained 9 different
iPSC lines and one common reference cell line, as shown in Fig.1a. The proteomic
analysis of the 217 human iPSC lines was thus divided into 24 batches of 10plex-
TMT experiments.

To maximize proteome coverage, a two-dimensional LC-MS strategy was used (see
Methods). The first dimension was an off-line, basic reverse-phase HPLC
fractionation step, separating the digested and TMT-labelled extracts from each
iPSC line into 24 fractions. Each fraction was then analysed using online LC-MS on
an Orbitrap Fusion MS. The resulting MS data were subsequently processed and
quantified using the MaxQuant’ suite.

In total, >16,000 protein groups were detected at 5% FDR (PSM and protein level).
This corresponds to detecting the expression of proteins encoded by over 10,500
different genes, representing 52% of all the human protein coding genes annotated
within SwissProt. The depth of analysis achieved corresponds to a median protein
sequence coverage of ~46% across all proteins (Fig.1b). Furthermore, this depth of
protein coverage was relatively constant across most chromosomes. For the majority
of chromosomes, we detected >50% of their protein coding genes expressed in

iPSCs (Fig. 1c).
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It is known from previous studies on differentiated human cells and cancer cell lines
that there is a wide dynamic range of protein expression levels®. Understanding the
copy numbers of specific proteins expressed in a cell can provide important insights
into the metabolism and physiological state of each cell type. To investigate protein
expression levels in the iPS cell lines, we estimated protein copy numbers using the
‘proteomic ruler’ approach?, which calibrates protein expression relative to the level
of histone proteins detected. This is well suited to analysis of the HipSci iPS lines,
which are known to have near identical DNA content with little or no copy number
variation®.

Using the proteomic ruler, we detected wide differences in protein copy numbers
expressed from different genes in iPS cells, spanning over 7 orders of magnitude,
from <100 to ~100 million copies per cell (Fig. 1d). This wide dynamic range of
expression means the 15 most abundant proteins represent >10% of the total protein
molecules in the iPS cell (Fig.1e). These proteins include, as expected, histones,
ribosomal proteins, translation factors and cytoskeletal components, which are
abundant in most cell types. However, this hyper abundant group also includes two
members of the glycolytic pathway, i.e. GAPDH (~45 million copies) and ENO1 (~18
million copies), along with the antioxidant PRDX1 (~15 million copies), whose
abundances are more variable in differentiated cell types.

The human iPSC proteome shows comprehensive coverage of known protein
complexes, including subunits from 92% of all complexes described in the
mammalian protein complex database CORUM™. It also includes multiple protein
families involved in cell signalling. For example, we detect expression of 375
different protein kinases. This represents ~74% of all confirmed human kinases™?,

consistent with predictions that hESCs express ~300-400 kinases™. We also detect
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expression of 133 (~70%) protein phosphatases®®, 247 (~66%) E3 ligases* and 862
(~53%) transcription factors™. Despite their functional importance, each of these
protein families represent only a small portion of the total protein abundance in iPS
cells: i.e. all kinases represent ~1.17%, phosphatases ~0.95%, E3 ligases ~0.70%

and transcription factors ~ 2.28% of total protein copies.

Proteomic profile of cell cycle, DNA repair and
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Figure 2- Cell cycle, DNA repair and metabolism: (a) Representation of the iPSC cell cycle,
illustrating the phase duration, the phase specific cyclins, CDKs and their inhibitors. (b) iPSC
metabolism, with the glycolytic, pentose phosphate and TCA pathways represented. Proteins are
coloured in shades of blue to indicate copy numbers. (c) DNA double strand break pathways NEHJ
and HR with proteins coloured in shades of blue to indicate copy numbers.
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Human iPSCs are rapidly proliferating cells'®. This is reflected in their proteome by
high levels of key cell cycle regulators, including the D type cyclins, mitotic cyclins
and DNA replication complexes. For example, all the MCM proteins (MCM2-7),
which are the core components of the machinery that recognises DNA replication
origins and licenses dormant origins®’, are highly abundant (>1,3 million copies) in
iPS cells. Conversely, the iPSC lines had low levels of the CDK inhibitors (CDKIs),
which repress cell cycle progression (Fig. 2a). These observations help to explain
how iPS cells achieve high rates of cell division.

Increased expression of the CDK inhibitor CDKN1B is linked with lengthening of G1
and loss of pluripotency™®. Consistent with the short G1 phase in iPSCs, our data
show that the expression level of CDKN1B is low, (<1,000 copies per cell). CDKN1B
was only detected in ~3% of lines, compared with both cyclin D1 (~91,000 copies per
cell) and cyclin D2 (~24,000 copies), which are detected in ~70% and 95% of all
lines, respectively. D Cyclins form a complex with CDK4/CDK6 and their inhibition
lengthens G1 phase™.

Both CDK4 and CDK6 are significantly more abundant in iPSCs (>250,000 copies
per cell), than their inhibitors, (e.g. CDKN1 & CDKN2). Thus, we detect two isoforms
for CDKN2A expressed in iPSCs, p16INK4a and pl2. The predominant isoform is
pl2, at ~125,000 copies, which has been reported not to have activity towards
CDK4/6%°. The inhibitor CDKN1C is only present at ~28,000 copies, i.e. ~tenfold
lower than CDK4 and CDK6. The CDK2 (~599,000 copies)/CyclinA (~227,000
copies) complex is also highly abundant. It contributes to a short G1 phase by
phosphorylating and inactivating RB family proteins, which would otherwise bind to
E2F4 and E2F5 to repress transcription of genes encoding proteins that regulate the

G1-S phase transition*!,
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Moreover, CDK1 is the most abundant kinase within iPSCs with ~2 million copies per
cell. CDK1 plays a vital role in rapidly proliferating iPSCs as it drives both the G2-M
and the G1-S transitions, via its association with cyclins D1, E and A%. The
CDK1/CCNB1 complex also induces expression of LIN28A, which assists
reprogramming to a glycolytic state by repressing oxidative phosphorylation

(OXPHOS)%,

DNA Damage Repair

High rates of DNA replication and cell division are linked with an increased risk of
DNA damage, which can lead to enhanced rates of mutation and/or cell death. A
characteristic of cells responding to DNA damage is increased levels of induced
DNA damage response factors. Interestingly, histone H2AFX, an indicator of DNA
damage, arising from either Double Strand Breaks (DSB)?*, or replicative stress®, is
the 9th most abundant protein in iPSCs, with a median copy number of ~20 million.
However, it shows considerable variation in expression levels between the different

iPSC lines, fluctuating between 16 and 74 million copies per cell.

A hallmark of pluripotent stem cells is their ability to differentiate into the three
primary germ layers and thus any mutations they sustain could affect entire cell
lineages during differentiation®®. To avoid DNA damage being propagated to the
progeny, stem cells have a robust DNA Damage Repair (DDR) system and show a
lower mutation frequency than somatic cells. DSBs generated from reprogramming
and replicative stress are mended by the intervention of the Homologous
Recombination (HR) or Non-Homologous End Joining (NHEJ) pathways?’. iPS cells
are particularly effective at the error free repair of DSBs by HR, which is facilitated by

a short G1 phase®®. Proteins acting in both of these pathways are highly abundant

9
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in iIPSCs (Fig. 2b). For example, RPA proteins are vital components of HR, they coat
single-strand DNA to facilitate the loading of the RAD51 recombinase®* ?® and both
RPA1 and 3 are present at >1.4 million copies per cell. Similarly, XRCCC6/5 (also
known as Ku70 and Ku80), start the NHEJ process by forming a dimer on broken
DNA ends and recruiting PRKDC (DNA-PK)®. PRKDC is the second most abundant
kinase in iPS cells (~1.2 million copies) and both XRCCC6/5 are present at >3
million copies per cell. Furthermore, all members of the DSB repair pathways are

expressed at >14,000 copies per cell.

If DNA damage is not repaired, iPSCs can either temporarily arrest in G2 phase,
upon ATM activation®’, or activate cell death®'. ATM will operate at DSBs and ATR
at ssDNA stretches, phosphorylating the downstream targets CHEK1/2 and H2AFX.
Efficient DDR is facilitated in iPS cells via high expression of SALL4, (~500,000
copies), which favours ATM activation®* and DICER1, (~145,000 copies), which
helps resolve replicative stress®**. CHEK1 and CHEK2 are among the top 10% most
abundant kinases in iPS cells, (both>330,000 copies) and the p53 DNA damage
induced transcription factor is also abundant, at ~115,000 copies per cell. Vital
Single Strand Breaks (SSB) repair proteins are also highly abundant with PARP1

with ~3.7 million copies per cell and XRCC1 ~350,000 copies.

In summary, we detect iPS cells expressing very high levels of a wide range of
protein factors involved in the repair of DNA damage. This is consistent with the
protection of iPSCs from an increased risk of DNA damage and mutation during

rapid proliferation and subsequent differentiation.

M etabolism

10
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The expression levels of key enzymes and molecules that control cell metabolism
are highlighted in Fig. 2c, giving insights about the iPSC metabolic programs. All the
iPSC lines expressed high levels of glycolytic enzymes. Glycolysis is inefficient for
ATP production, compared with OXPHOS. Cells dependent upon glycolysis for
energy metabolism therefore must sustain high levels of glucose uptake, which is
reflected in the iPSC proteome by the high expression levels of multiple glucose
transporters. For example, SLC2A1 (GLUT1) and SLC2A3 (GLUT3) are both present

at ~500,000 copies per cell in all the iPSC lines.

Within cells, glucose is converted to glucose 6-phosphate by Hexokinase, which is
rate limiting for glucose metabolism. Cells with high glycolytic rates thus express
elevated expression levels of Hexokinases (HKs)**. We detect abundant HK
expression in iPSCs, with HK1 at ~1,470,000 copies, followed by HK2 at ~650,000
copies per cell. Multiple other glycolytic pathway components are also highly
expressed in iPSCs (Fig. 2c), including GAPDH (~45 million copies) and ENOL1,

PGAM1, PGK1 and PKM, each with >7 million copies.

Pyruvate produced by glycolysis can either be converted into L-lactate, via lactate
dehydrogenases (LDH), or into Acetyl-CoA, via the pyruvate dehydrogenase
complex (PDC)®*. The lower reliance of iPSCs on OXPHOS, compared with somatic
cells®, is consistent with the high expression of LDHs and the PDC inhibitors, PDK1-
3 (Fig. 2c). The HipSci iPSC lines express high levels of both LDHA (~7 million
copies) and LDHB (~13 million copies per cell). LDH isozymes have different affinity
and inhibition patterns, with LDHB isozymes present in cells that are less inhibited by
L-lactate®’. Nonetheless L-lactate must still be removed by monocarboxylate

transporters and our data show all iPSC lines have high levels (~1 million copies) of

11
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the lactate transporter SLC16A1. We also detect high expression of specific amino
acid transporters, such as LAT1 (SLC7A5) (~635,000 copies) and its heavy subunit

CD98 (SLC3A2) (~1,500,000 copies).

We detect abundant expression in iPSCs of the key enzymes of the PDC and TCA
cycle. The PDC, which converts Pyruvate to Acetyl-CoA and is linked with histone
acetylation and maintenance of pluripotency, hence is still vital for iPSCs®.
However, consistent with the lower reliance of iPSCs on OXPHOS, we also detect
high expression of OXPHOS inhibitors, such as PDK1-3 and LIN28A/B¥.
Furthermore, we detect expression of all enzymes in the Pentose Phosphate
Pathway (PPP). Congruent with reports that iPSCs have preference for the non-
oxidative side of the PPP*, we detect highest levels of the non-oxidative enzymes

Transketolase and Transaldolase, both expressed at >2 million copies per cell.

A feature of iPSCs is that they require high expression of antioxidants to reduce the
oxidative stress caused by metabolism. In line with this requirement, our data show
that the antioxidant PRDX1 is one of the most abundant proteins in all the iPSC
lines, with ~16 million copies per cell. PRDX1 has been shown to regulate gene

expression in response to ROS*.

Evaluating pluripotency and primed pluripotency
markers

Human iPS cells share the hallmarks of primed pluripotency with their hESC
counterparts, including the ability to self-renew and to differentiate into the three
main germ layers. We initially evaluated the expression of 3 key factors known to

maintain pluripotency and prevent spontaneous differentiation in primed iPSCs; i.e.

12
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SOX2, OCT4 and NANOG (Fig. 3a). All 3 were expressed ubiquitously across nearly
all iPSC lines.
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Figure 3- Evaluating iPSC pluripotency: (a) Radial bar plots showing Log,o copy numbers of SOX2,
OCT4, and NANOG proteins in all HipSci lines. (b) Violin plots with geometric means and standard
deviation showing the expression levels of SOX2, OCT4, and NANOG, when comparing ‘High’ vs
‘Low’ Pluritest score categories.

Focussing on iPSC lines derived from healthy donors, we used the Pluritest® score to
stratify the lines into ‘High’ and ‘Low’ Pluritest score categories (see methods). We
compared protein expression across the ‘High’ and ‘Low’ populations for 123 lines.
The levels of the 3 canonical pluripotency factors remained virtually identical
between the two groups (Fig. 3b), consistent with the high QC within the HipSci
pipeline?.

We evaluated proteomic changes within the two conditions and generated a Volcano

plot comparing the ‘High’ vs ‘Low’ categories (Fig. 4a). The plot shows that the two
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populations are very similar. However, the statistical analysis revealed a subset of
differentially expressed proteins affecting 3 main pathways, i.e. NF-kB, TGFB and

RAS/RAF/ERK.
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Figure 4- Fine-tuning primed pluripotency: (a) Volcano plot showing the Log, fold change in
protein abundance between High/Low Pluritest score vs the —log;o p-value for each protein detected in
more than 2 TMT batches in both conditions and with more than 2 unique+razor peptides. (b)
Activin/BMP/TGF-B and FGF2/ERK signalling pathways with components coloured by fold change
and the borders by the p-value (c) Violin plots with geometric means and standard deviation showing
the expression of NFKBIB, RELB and PIM2 across Pluritest categories. (d) Violin plots with geometric
means and standard deviation showing the expression levels of the SOD3 and PRDK1 across
Pluritest categories.

The canonical FGF2-RAS/RAF/ERK pathway is vital to primed pluripotency*® and
our data show the core members remain virtually unchanged between populations.
However, we detect increased expression of MLK1/3. MLKs can phosphorylate and
activate MEK, with MLK1 and MLK3 being the most effective at activating ERK*®.

We also see an increase in the nuclear ERK phosphatase DUSP5, which is activated
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as a negative feedback control for ERK*™ and PAKS5, a constitutively active kinase
that can phosphorylate BAD to prevent apoptosis™.

The Activin/TGFB pathway is important for primed pluripotency due to its direct
modulation of NANOG expression®®. Our data show that while canonical
Activin/TGFB signalling remains unchanged between the two conditions (Fig. 4b),
there is a difference with the non-canonical BMP4/TGF-B pathway. Though required
to maintain pluripotency in mESC, BMP4 signalling promotes differentiation of
primed PSCs*'. Our data show increased expression in the ‘High’ Pluritest category
of calcineurin, which is the catalytic subunit gamma of PP3 (Fig. 4b). FGF activated
calcineurin can directly modulate BMP signalling by dephosphorylating
SMAD1/SMAD5%,

Lastly, our data highlight multiple effects of antioxidants, including side-effects from
the knockout serum replacement (KOSR) growth medium. KOSR is rich in vitamin C,
which assists with the reprogramming of iPSCs*®, however its effects extend beyond
reprogramming. Vitamin C has been reported to have multiple effects on NF-kB
signalling, including the inhibition of IKKB and IKKa®®. Our data show NFKBIB is not
phosphorylated and degraded, suggesting reduced canonical NF-kB signalling.
Another effect is seen through the alternative NF-kB signalling component,
RELB/p52. In the ‘High’ Pluritest category we see an increase in RELB levels and its
transcriptional target PIM2.

Furthermore, vitamin C promotes the expression SOD3, but not SOD1 or SOD2>.
SOD3, which contributes to an antioxidative response by converting two superoxide
radicals into hydrogen peroxide and water, is upregulated in cell lines in the ‘High’
Pluritest category. We also see upregulation of PRDK1, which is activated in

response to ROS, more specifically by hydrogen peroxide®.
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In summary, our data indicate that ‘High’ Pluritest category iPS cell lines have lower
BMP4 signalling, a stronger antioxidant response and potentially less vulnerability to

apoptotic signals.

The Encyclopedia of Proteome Dynamics (EPD):
Interactive iPSC analysis and visualisation

g ———— —tar b "*'—"—:'"' il

v
%0 ¢ @
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Figure 5- HipSci Data in the EPD: (a) Navigation interface for HipSci in the ‘Global Analysis
Mode’. (b) Navigation interface for HipSci in the ‘Protein Analysis Mode’. (c) The HipSci
dashboard. This can be accessed through the ‘Protein Analysis Mode’ and shows an overview of
data available for the specific protein of interest. (d) Histogram of abundance for protein copy
numbers across all iPS lines. A histogram can also be generated for each individual iPS line
present within the HipSci dataset. (e) Bubble plot of protein abundance calculated for all iPS cell
lines, with sequence coverage shown on the colour scale. It can be generated for either raw copy
numbers, or Log;o transformed copy numbers. It can also be generated separately for each iPS
line present within the HipSci dataset. (f) Volcano plot showing the comparison of protein
expression in iPS lines with ‘High’ vs ‘Low’ Pluritest scores. Highlighted elements display the
protein, Pathway and Protein Complex search functionality. (g) Reactome pathway analysis
showing ‘Developmental Biology’ pathway, with HipSci copy numbers overlaid. (h) Interactive
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Kinase map showing kinase expression in iPS cells with copy numbers overlaid via the colour
scale.

The EPD is an online database and web-application that provides open access to
multi-omics data, featuring graphical navigation with interactive visualisations that
enable data exploration in an intuitive, user-friendly manner®. All of the processed
iPSC proteomics data, has been integrated within the EPD ecosystem and is

available at: https://peptracker.com/epd/analytics/?section id=40100.

As illustrated in Fig. 5, the EPD provides dynamic visualisations specifically created
to analyse and explore the iPSC data. A dashboard presents an overview of the data
for each specific protein, summarising correlation with RNA data, copy numbers and
identification details (Fig. 5c). Global views of the dataset are provided with
histograms (Fig. 5d) and bubble plots (Fig. 5e), both displaying the median protein
copy numbers across all lines. For the Pluritest analysis, the Volcano plot (Fig. 5f),
showing p-values and log: fold changes, is available interactively. We also integrated
the iPSC dataset with the Reactome® Pathway widget for pathway analysis (Fig. 5g)
and with the KinoViewer®, to explore kinase expression via the kinase phylogenetic

tree (Fig. 4h).

hiPSC spectral library
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Figure 6- DIA Spectral Library: Workflow showing the process used to generate the DIA library
specific for human iPSCs.

To facilitate further MS analyses on human iPS cells, we also created a data
independent acquisition (DIA) Spectral Library. To generate the library, an initial
DDA workflow was set up (Fig. 6). Three representative iPSC lines were selected for
in-depth analysis, via reversed-phase and HILIC chromatography. 24 fractions were
analysed by LC-MS/MS on a Q-Exactive Plus Orbitrap mass-spectrometer in ‘Label
Free’ mode, with two technical replicates per line. The samples were spiked with the
Biognosys IRT Kit to align retention time. In total, 288 raw files were collected and
guantified using MaxQuant v 1.6.0.13. This output was used to generate the spectral
library using Spectronaut.

The resulting human iPSC DIA library is compatible with Orbitrap MS platforms and
with popular DIA software packages, e.g. Skyline and Spectronaut. This iPSC DIA

library is freely available within the PRIDE submission (PXD010557).
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Discussion

Human induced pluripotent stem cells have great potential for therapeutic and
research applications, providing improved ethical models for studies on disease
mechanisms and personalised regenerative medicine. We provide here a valuable
research resource with the most in-depth proteome map of human iPSCs reported to

date.

Our proteomic data provides insights into iIPSC metabolism, highlighting the
important role of glycolysis, along with elevated levels of glucose, amino acid and
lactate transporters. The hyper-abundant group of iIPSC proteins include the
glycolytic pathway members GAPDH and ENO1, along with the elongation factor
EEF1A1 and the antioxidant PRDX1. Their high expression highlights mechanisms
supporting rapid proliferation and high metabolic activity in iPS cells. The proteomic
profile of metabolic enzymes in iPS cells revealed high expression of OXPHOS
inhibitors, e.g. PDK1-3 and LIN28A/B, as well as showing a preference for the
anaerobic side of the PPP.

Human stem cells are characterised by a short G1 phase, with >50% of
asynchronous hESCs in S phase®. Lengthening of G1 within pluripotent stem cells
(PSCs) is linked with a loss of pluripotency. Our data revealed high expression
levels of G1 modulating CDKs (with CDK1 being the most abundant kinase) and
their respective cyclins, along with correspondingly low expression levels of their
respective inhibitor proteins. This accounts for the observed short G1 phase in iPS
cells.

The proteomic data also help to explain the highly efficient DNA Damage Repair
phenotype of iPS cells, which is important to prevent accumulation of mutations

during proliferation and differentiation. Thus, we detect high expression levels of
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members of the NHEJ and HR pathways, along with elevated expression of p53,
which will trigger cell death should DNA damage not be corrected.

The HipSci pipeline included in the QC process an evaluation also of the pluripotent
potential of each line, reflected in a ‘Pluritest Score’>. We used these Pluritest scores
measured for the individual iPSC lines to correlate proteome variation with
pluripotency. This identified new potential protein regulators of the primed pluripotent
state. For example, in lines with high Pluritest scores, we detected elevated levels of
PPP3CC, which modulates BMP4 signalling. We also detected high levels of PAK5,
which has been shown to prevent apoptosis, both by phosphorylating BAD and by
activating and translocating RAF1 to mitochondria®®. Overall, our data support the
view that the ‘High’ Pluritest category is linked potentially with reduced BMP4
signalling and increased resistance to apoptotic signals. Moreover, the data revealed
an antioxidant response to the growth medium, with reduced canonical NF-kB
signalling and increased expression of the antioxidant proteins SOD3 and PRDK1.
To add value to these rich proteomic data, we have integrated all of the protein-level
information into the Encyclopedia of Proteome Dynamics, an open access,
interactive online web app. Additionally, all of the corresponding raw MS data are
provided for open access via the ProteomeXchange PRIDE repository (PXD010557).
Furthermore, we have generated a human iPSC spectral library, to support future
proteomic studies on healthy and disease iPSCs lines using data independent
acquisition (DIA). The iPSC spectral library is also freely available via the PRIDE
repository. We are confident these data will provide a valuable resource that will

facilitate further research and applications using human iPSCs.

M ethods
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Generation of iPSC lines

All lines included in this study are part of the HipSci resource and were
reprogrammed from primary fibroblasts as previously described?. Out of the total of
more than 800 iPSC lines available within the HipSci resource (www.hipsci.org), 217
lines, predominantly from healthy donors, were selected for in depth proteomic

analysis in this study using Tandem Mass Tag Mass Spectrometry.

TMT Sample preparation

For protein extraction, iPSC cell pellets were washed with ice cold PBS and
redissolved immediately in 200 uyL of lysis buffer (8 M urea in 100 mM triethyl
ammonium bicarbonate (TEAB)) and mixed at room temperature for 15 minutes.
The DNA content of the cells is sheared using ultrasonication (6 X 20 s on ice). The
proteins were reduced using tris-carboxyethylphosphine TCEP (25 mM) for 30
minutes at room temperature, then alkylated in the dark for 30 minutes using
iodoacetamide (50 mM). Total protein was quantified using the EZQ assay (Life
Technologies). The lysates were diluted with 100 mM TEAB 4-fold for the first
digestion with mass spectrometry grade lysyl endopeptidase, Lys-C (Wako, Japan),
then further diluted 2.5-fold before a second digestion with trypsin. Lys-C and trypsin
were used at an enzyme to substrate ratio of 1:50 (w/w). The digestions were carried
out overnight at 37°C, then stopped by acidification with trifluoroacetic acid (TFA) to
a final concentration of 1% (viv). Peptides were desalted using C18 Sep-Pak

cartridges (Waters) following manufacturer’s instructions.
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For tandem mass tag (TMT)-based quantification, the dried peptides were re-
dissolved in 100 mM TEAB (50 ul) and their concentration was measured using a
fluorescent assay (CBQCA, Life Technologies). 100 ug of peptides from each cell
line to be compared, in 100 ul of TEAB, were labelled with a different TMT tag
(20 ug mI™ in 40 pl acetonitrile) (Thermo Scientific), for 2 h at room temperature.
After incubation, the labelling reaction was quenched using 8 ul of 5% hydroxylamine

(Pierce) for 30 min and the different cell lines/tags were mixed and dried in vacuo.

The TMT samples were fractionated using off-line high-pH reverse-phase (RP)
chromatography: samples were loaded onto a 4.6 x 250 mm Xbridge BEH130 C18
column with 3.5-um particles (Waters). Using a Dionex bioRS system, the samples
were separated using a 25-min multistep gradient of solvents A (10 mM formate at
pH 9) and B (10 mM ammonium formate pH 9 in 80% acetonitrile), at a flow rate of
1 ml min~*. Peptides were separated into 48 fractions, which were consolidated into
24 fractions. The fractions were subsequently dried and the peptides re-dissolved in

5% formic acid and analysed by LC-MS/MS.

TMTLC-MSMS

TMT-based analysis. Samples were analysed using an Orbitrap Fusion Tribrid mass
spectrometer (Thermo Scientific), equipped with a Dionex ultra-high-pressure liquid-
chromatography system (RSLCnano). RPLC was performed using a Dionex
RSLCnano HPLC (Thermo Scientific). Peptides were injected onto a 75 pm X 2 cm
PepMap-C18 pre-column and resolved on a 75 um x 50 cm RP- C18 EASY-Spray
temperature-controlled integrated column-emitter (Thermo Scientific), using a four-
hour multistep gradient from 5% B to 35% B with a constant flow of 200 nl min™. The

mobile phases were: 2% ACN incorporating 0.1% FA (solvent A) and 80% ACN
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incorporating 0.1% FA (solvent B). The spray was initiated by applying 2.5 kV to the
EASY-Spray emitter and the data were acquired under the control of Xcalibur
software in a data-dependent mode using top speed and 4 s duration per cycle. The
survey scan is acquired in the orbitrap covering the m/z range from 400 to
1,400 Thomson with a mass resolution of 120,000 and an automatic gain control
(AGC) target of 2.0x10° ions. The most intense ions were selected for
fragmentation using CID in the ion trap with 30% CID collision energy and an
isolation window of 1.6 Th. The AGC target was set to 1.0 x 10* with a maximum

injection time of 70 ms and a dynamic exclusion of 80 s.

During the MS3 analysis for more accurate TMT quantifications, 5 fragment ions
were co-isolated using synchronous precursor selection using a window of 2 Th and
further fragmented using HCD collision energy of 55%. The fragments were then
analysed in the orbitrap with a resolution of 60,000. The AGC target was set to

1.0 x 10° and the maximum injection time was set to 105 ms.

Accession codes

All of the mass-spectrometry data generated from the TMT batches, the DIA library,

fasta file, and MaxQuant outputs have been uploaded to PRIDE (PXD10557).

| dentification & Quantification

The TMT-labelled samples were collected and analysed using Maxquant” °’

V.
1.6.0.13 in a single large run. The FDR threshold was set to 5% on the Peptide
Spectrum Match, Peptide and Protein level. Proteins and peptides were identified
using the UniProt human reference proteome database (SwissProt & TrEMBL). Run

parameters have been deposited to PRIDE®> along with the full MaxQuant

quantification output (PDX010557).
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Data for the analysis were obtained from the ProteinGroups.txt output of MaxQuant.
Contaminants, reverse hits and ‘only identified by site’ were excluded from analysis.
For either a protein, or a protein group to be considered, we required at least one
unique peptide mapping to it. Overall, we quantified 16,755 protein groups in at least

one of the samples.

Copy number generation

Every TMT batch had 1 control cell line (bubh3, reporter channel 0) and 9 sample
cell lines. Protein copy numbers were calculated following the proteomic ruler® and
using the MS3 intensity. To minimise potential batch effects, the protein copy

numbers were normalised using the reference cell line present in every batch.

For every protein, the references lines in each TMT batch were used to calculate a
median copy number, and then calculate a ratio between the control in every TMT

batch and the median. All values within the batch were corrected via this ratio.

L ead razor protein assignment

The lead razor protein for each Protein Group was modified from the MaxQuant
output. The number of peptides that could theoretically be assigned to each element
of the protein groups were selected, and all the elements of the Protein Group with
highest number of peptides were selected. If there was only one candidate protein,
then this element became the lead razor protein, if multiple candidates were present

additional filtering was required.

Among the candidates the priority was given to the canonical SwissProt entry, if no
canonical entry was present it would default to a reviewed protein isoform. If no
reviewed proteins isoforms were present among the candidate proteins, then the
lead element would be assigned to a TrEMBL proteoform. A TrEMBL proteoform
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would only be assigned a lead protein role based on the previously described

scenario.

Chromosome mapping

To map gene products to their specific chromosomes, we utilised the UniProt®®
protein-chromosome mapping file. We used the file to produce a list of unique
protein coding genes for each specific chromosome. Subsequently, we mapped the
proteins detected in our iPSC dataset to their corresponding chromosomes based on
the UniProt mapping file and produced a list of genes for each chromosome as well.
We compared the iPSC specific list of genes, with the reference list to determine the
percentage of protein coding genes detected in our IPSC dataset for each

chromosome.

Statistical analysis

The Pluritest statistical analysis, illustrated on the volcano plot, was generated based
on the copy number and Pluritest scores data. The lines were stratified into two
categories, i.e. ‘High’ and ‘Low’, based on the median Pluritest score. Only proteins
that were detected in at least two distinct TMT batches for each condition were
selected for analysis. Additionally, 2 or more Unique and Razor peptides had to be

assigned to the protein group.

P-values were calculated in R utilising the bioconductor package Linear Models for
Microarray Data (LIMMA) version 3.7. The fold change used was also calculated by
LIMMA and uses the Log, geometric mean. Q-values were generated in R using the

“qvalue” package version 2.10.0

Dynamic visualisations within the EPD
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All processed proteomic data were integrated into the Encyclopedia of Proteome
Dynamics® (https://peptracker.com/epd/analytics/). The tabular data are stored within
Cassandra, and the relationships between datasets and identified proteins were

modelled and stored within Neo4;.

The EPD server runs on Django, while the front end is a mixture of Angular, jQuery
and D3.s. All of the visualisations were generated via D3.js as a client-side
JavaScript library. The Reactome® Pathway browser was integrated into the EPD

using the Reactome JavaScript widget and Analysis Services.
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