

1 SHORT-TERM FASTING AND IMPULSIVITY

2

3 **Short-term fasting selectively influences impulsivity in healthy**
4 **individuals**

5

6 Maxine Howard, Department of Clinical, Educational and Health Psychology, University College
7 London, London, United Kingdom. maxine.howard.11@ucl.ac.uk

8 Jonathan P Roiser, Institute of Cognitive Neuroscience, University College London, London,
9 United Kingdom. j.roiser@ucl.ac.uk

10 Sam Gilbert, Institute of Cognitive Neuroscience, University College London, London, United
11 Kingdom. sam.gilbert@ucl.ac.uk

12 Paul W Burgess, Institute of Cognitive Neuroscience, University College London, London, United
13 Kingdom. p.burgess@ucl.ac.uk

14 Peter Dayan, Gatsby Computational Neuroscience Unit, UCL, London, United Kingdom.
15 dayan@gatsby.ucl.ac.uk

16 Lucy Serpell*, Department of Clinical, Educational, and Health Psychology, University College
17 London, 1-19 Torrington Place, London, WC1E 7HB and Eating Disorder Service, North East
18 London NHS Foundation Trust, Orchards Health Centre, Gascoigne Rd, Barking, Essex, IG11 7RS,
19 United Kingdom. l.serpell@ucl.ac.uk. Orcid ID: <https://orcid.org/0000-0001-8543-8383>

20 *Corresponding Author

21 **Key words:** Fasting, Short-Term Starvation, Hunger, Impulsivity, Bulimia Nervosa

22 **Short title:** Fasting and impulsivity

SHORT-TERM FASTING AND IMPULSIVITY

23

24

Abstract

25 Previous research has shown that short-term fasting in healthy individuals (HIs) is
26 associated with changes in risky decision-making. The current experiment was designed to examine
27 the influence of short-term fasting in HIs on four types of impulsivity: reflection impulsivity, risky
28 decision-making, delay aversion, and action inhibition. HIs were tested twice, once when fasted for
29 20 hours, and once when satiated. Participants demonstrated impaired action inhibition when fasted;
30 committing significantly more errors of commission during a food-related Affective Shifting Task.
31 Participants also displayed decreased reflection impulsivity when fasted, opening significantly more
32 boxes during the Information Sampling Task (IST). There were no significant differences in
33 performance between fasted and satiated sessions for risky decision-making or delay aversion.
34 These findings may have implications for understanding eating disorders such as Bulimia Nervosa
35 (BN). Although BN has been characterised as a disorder of poor impulse control, inconsistent
36 findings when comparing individuals with BN and HIs on behavioural measures of impulsivity
37 question this characterisation. Since individuals with BN undergo periods of short-term fasting, the
38 inconsistent findings could be due to differences in the levels of satiation of participants. The
39 current results indicate that fasting can selectively influence performance on the IST, a measure of
40 impulsivity previously studied in BN. However, the results from the IST were contrary to the
41 original hypothesis and should be replicated before specific conclusions can be made.

42

SHORT-TERM FASTING AND IMPULSIVITY

43 Introduction

44 Impulsivity has been defined as behaviour that can lead to undesirable consequences, is
45 inappropriate to the circumstance, risky, or ill-considered (1). Impulsivity can be categorised into
46 several subtypes, assessed through self-report and behavioural measures [2, 3], and is widely
47 implicated in psychiatric illness (2, 3).

48 Impulsivity is a multifactorial construct that includes several sub-components, including:
49 reflection impulsivity, action inhibition, delay aversion, and risky decision-making [4, 5].

50 Reflection impulsivity refers to a reluctance to collect and reflect on information before
51 making a decision, commonly measured using the Matching Familiar Figures Test (MFFT) (4).
52 Participants decide whether figures presented on a screen match one another; the combination of
53 faster and inaccurate responses is associated with higher reflection impulsivity.

54 Action Inhibition is the failure to inhibit a motor response, and is commonly measured using
55 go/no-go tasks(5). Participants are instructed to respond to target stimuli, and to inhibit responses to
56 distractor stimuli. A greater number of inappropriate responses to the distractor stimuli (commission
57 errors) is usually interpreted as reflecting impaired action inhibition.

58 Risky decision-making is the tendency to select a larger, but less likely, versus a smaller, but
59 more likely reward and has been measured in a number of different ways, including the Iowa
60 Gambling Task (IGT) (6). The IGT combines different levels of uncertainty, reward, and
61 punishment, hypothesised to mimic real life risky decision-making (7). Participants are asked to
62 chose between four decks of identical looking cards. They are given a hypothetical sum of money
63 and told that some choices will lead to winning money whilst other choices may lead to losing
64 money. However, the decks have predetermined wins so that two decks (disadvantageous choices)
65 are associated with higher rewards, but larger losses, whilst the other two decks (advantageous
66 choices) pay out lower amounts, but rarely lead to a loss. A global score is calculated as the mean

SHORT-TERM FASTING AND IMPULSIVITY

67 number of advantageous choices minus the mean number of disadvantageous choices. Lower scores
68 indicate higher risky decision-making.

69 Delay aversion has been defined as a preference for smaller rewards sooner vs. larger
70 rewards later [4]. The concept of delay aversion has been captured by tasks such as the Temporal
71 Discounting Task that measures the degree to which an individual is driven by immediate
72 gratification vs. the prospect of a delayed reward (8).

73 There has been considerable interest in recent years into the impact of periods of fasting on
74 neurocognitive performance (9). Such studies have potential implications for understanding the
75 impact of fasting during diets (particularly those which involve intermittent fasting), or religious
76 fasting such as during Ramadan, as well as potentially for eating disorders. In terms of impulsivity,
77 acute starvation has previously been associated with changes in impulsive behaviour (10). In one
78 study, HIs were more risk seeking after fasting for four hours, compared to when satiated (11).
79 However, other studies find HIs to be more risk averse when fasted compared to satiated (12).

80 The excessive eating and compensatory behaviours observed in bulimia nervosa (BN) have
81 been understood in terms of problems of impulse control (13). Early research suggested that
82 individuals with BN score higher than healthy individuals (HIs) on self-report measures of
83 impulsivity (13-17). However, the validity of these self-report measures has been questioned (18).
84 More recently, studies have used behavioural tasks to measure different facets of impulsivity in BN.
85 In terms of reflection impulsivity, two studies found that individuals with BN were more impulsive
86 on the MFFT(19). However, another study found no difference between BN and HIs (20). Studies
87 of action inhibition comparing BN and HI have provided mixed results (21). A recent meta-analysis
88 concluded that there was stronger evidence for a deficit of action inhibition for disorder-relevant
89 stimuli (food, and body words/images) in BN compared to standard go/no-go tasks (22). Four
90 studies using the IGT have shown increased risky decision-making for BN when compared to HI

SHORT-TERM FASTING AND IMPULSIVITY

91 (23-26). However, one study found no differences (27). In terms of delay aversion, a recent study
92 showed increased temporal discounting in BN(28).

93 In summary, recent studies using more objective behavioural measures of impulsivity have
94 shown inconsistent results, suggesting that the clinical stereotype of BN as a disorder of poor
95 impulse control may be an oversimplification (14).

96 The variable findings in studies examining impulsivity in BN could be accounted for by
97 several factors. Firstly, studies have utilised different tasks, which makes comparisons difficult and
98 limits generalizability (7). Secondly, although researchers have matched HI and BN groups based
99 on Body Mass Index (BMI), a marker of chronic starvation, short-term eating behaviours are not
100 routinely measured. Individuals with BN may engage in acute starvation (short-term fasting) in
101 order to compensate for over-eating (29). As mentioned earlier, acute starvation has previously been
102 associated with changes in impulsive behaviour (9, 10).

103 Hence, the current study aimed to examine the effect of short-term fasting on performance
104 on well designed and validated tasks measuring four components of impulsivity in HIs, using a
105 within subject, repeated measures design.

106 In line with the findings that human risk attitudes vary as a function of metabolic state (11,
107 12), and risk seeking behaviour in animals increases following fasting (10), the primary hypothesis
108 was that (1) short-term fasting would increase risky (i.e. low probability) choices during decision-
109 making. Additionally, the effect of short-term fasting on measures of action inhibition, reflection
110 impulsivity, and delay aversion were explored. It was hypothesised that: (2) short-term fasting
111 would be associated with an increase in commission errors on a task of action inhibition; (3) short-
112 term fasting would decrease the amount of information sampled before making a decision on a task
113 of reflection impulsivity; and (4) short-term fasting would decrease the amount of time individuals
114 are willing to wait to receive a reward during a delay aversion task.

SHORT-TERM FASTING AND IMPULSIVITY

115

116 **Method**

117 **Participants**

118 Power calculation for a repeated measures, within subject ANOVA with a small effect size
119 (0.25) and 90% power conducted in G*Power indicated a required sample size of 30. Thirty-three
120 female participants (mean age = 25 years; $SD = 8.26$; range = 18.5-56) were recruited through the
121 University College London (UCL) subject pool. Eligible participants were female, aged 18-50, and
122 had a BMI >18.5 . Participants were excluded if: they were currently being treated for any serious
123 medical or psychological condition, including diabetes; they had any history of neurological illness
124 or head injury; or were currently pregnant or breastfeeding. Participants either received course
125 credits or were reimbursed for their time. The research was approved by the University College
126 London Ethics Committee, ref 2337/001. Participants gave written informed consent and a full
127 debrief was provided at the end of the study.

128

129 **Procedure**

130 The study used a within-subjects repeated-measures design, assessing behaviour under two
131 conditions: once when participants had fasted for 20 hours; and once when satiated. The mean time
132 between sessions was 7.2 days ($SD = 1.7$, range = 6-16), with each session lasting 90 minutes.
133 During the first session participants underwent the Mini International Neuropsychiatric Interview
134 (MINI), used to assess DSM-IV Axis 1 disorders (30), and completed four behavioural tasks.
135 During the other session participants completed questionnaires and the same behavioural tasks.
136 Task and session order (fasted/satiated) were counterbalanced and randomised. Fasting adherence
137 was assessed using self-reported hunger and blood glucose readings from the distal phalanx area of

SHORT-TERM FASTING AND IMPULSIVITY

138 the index finger using the Freestyle Freedom Lite Blood Glucose Monitoring System, supplied by
139 Abbott Diabetes Care, UK (www.abbottdiabetescare.co.uk). All behavioural tasks were
140 administered on a laptop computer, positioned approximately 60cm from the participant.

141 Participants were renumerated a the standard university rate for their participation.

142

143 Measures

144 Questionnaires

145 Participants completed: the Beck Depression Inventory (BDI-II, Beck, Steer, Ball, &
146 Ranieri, 1996) a measure of the severity of depressive symptoms; the Eating Disorder Examination
147 Questionnaire-6 (EDEQ-6; Fairburn & Beglin, 1994), to measure ED symptoms; the State-Trait
148 Anxiety Inventory (STAI; Spielberger, Gorsuch, Lushene, Vagg, & Jacobs, 1983), to measure
149 anxiety; and The Impulsive Behaviour Scale (UPPS; Whiteside & Lynam, 2001), to asses
150 impulsivity [39-41]. Additionally, participants filled in a hunger questionnaire that consisted of four
151 Likert scales measuring hunger, desire to eat, the amount of food the participant could eat, and
152 fullness. Participants were also asked to rate from *not at all* to *very much so* how much they were
153 experiencing each of the following: dry mouth, stomach aches, anxiety, dizziness, weakness,
154 nausea, thirst, headache, and stomach growling. A composite score was calculated by adding
155 together the four likert ratings associated with the subjective hunger and the nine ratings of physical
156 side effects. A higher score indicated higher levels of self-reported hunger.

157

158 Experimental Tasks

159 **Information Sampling Task (Clark, Robbins, Ersche, & Sahakian, 2006) to measure**
160 **reflection impulsivity**

SHORT-TERM FASTING AND IMPULSIVITY

161 The Information Sampling Task (IST) measures the degree to which participants sample
162 information before making a decision, whilst placing minimal demands on visual processing and
163 working memory. Participants are shown a 5x5 matrix of 25 grey boxes and are told that each grey
164 box covers one of two possible colours. Participants must decide which colour they think is in the
165 majority, and can click to uncover as many boxes as they wish before deciding. Once opened, boxes
166 remain visible for the remainder of that trial. Correct decisions in the Fixed Win (FW) condition
167 are awarded 100 points, irrespective of number of boxes opened. In the Decreasing Win (DW)
168 condition the number of points to be won decreases by 10 points with every box opened. Therefore
169 in the DW condition participants must tolerate higher uncertainty to win a high number of points as
170 sampling information to a point of high certainty would win few points.

171

172 **Temporal Discounting Task (TDT, Pine, Seymour, Roiser, Bossaert, Friston, Curran, &**
173 **Dolan, 2009) to measure delay aversion**

174 Temporal discounting is the degree to which individuals discount future rewards, such as
175 deciding whether to spend in the near future or whether to save for the further future, (8). Subjects
176 generally prefer near (spending) to far (saving) rewards, consistent with values being discounted in
177 line with the relevant time delay (temporal discounting). The steeper the discounting, the greater the
178 impulsivity. Participants were asked to choose between two serially presented options of differing
179 magnitude ranging from a monetary value of £1 to £100, and a time delay of one week to one year.
180 The rate at which future rewards are discounted (k) is used as a measure of delay aversion.
181 Participants with a greater discount rate devalue future rewards more quickly. Participants were told
182 that one of the options they chose would be randomly selected and paid for on a pre-paid card with
183 a timed activation date, as used in the original study [23]. However, they were debriefed at the end
184 of the task and no payment was made. The task also contained 20 trials in which one of the choices

SHORT-TERM FASTING AND IMPULSIVITY

185 presented was always larger and available sooner. These ‘catch’ trials were used to determine the
186 subject was paying attention to, and understood the task.

187

188 **Choice x Risk Task (CRT, Rogers, Tunbridge, Bhagwagar, Drevets, Sahakian, & Carter,
189 2003) to measure risky decision making**

190 The Choice x Risk task is used to investigate three factors thought to affect decision-
191 making: the magnitude of expected gains (reward), the magnitude of expected losses (punishment)
192 and the probabilities of each. On each trial participants were required to choose between two
193 gambles, represented as two bars simultaneously presented on the screen. The amount the bar is
194 filled represents the probability of winning, while wins and losses are displayed numerically at the
195 top and bottom of each bar in green and red text respectively. Participants complete four games,
196 consisting of 20 trials presented in a pseudorandom order. There are eight repetitions of each of 10
197 trial types, including “gain only” and “loss only” trials. Participants were given 100 points at the
198 beginning of each game and instructed to win as many points as possible. After each trial feedback
199 was given on performance and an updated score was displayed for two seconds.

200 Standard trial types always contained a control gamble (50/50 chance of winning 10 points)
201 and an experimental gamble. The experimental gamble varies in the probability of winning to be
202 either high or low (75 vs. 25), expected gains are either large or small (80 vs. 20 points) and
203 expected losses either large or small (80 vs. 20 points), producing eight trial types. The other two
204 trial types, ‘gain only’ and ‘loss only’ were used to estimate risk-aversion when choosing between
205 losses, and risk-seeking when choosing between gains. In a ‘gains only’ trial, two options with the
206 same expected value are presented. For example, if participants more frequently choose a 100%
207 chance of a gain of £20 when compared to a 50% chance of gaining £40, they would be exhibiting
208 risk-aversion for gains. Similarly, in a ‘loss only’ trial, two options of equal expected value are
209 presented, such as a 50% chance of a £40 loss, compared to a 100% chance of a £20 loss. If

SHORT-TERM FASTING AND IMPULSIVITY

210 participants are more likely to choose the 50% chance of a £40 loss, they would be exhibiting risk-
211 seeking for losses.

212

213 **Affective Shifting Task (AST, modified from Murphy, Sahakian, Rubinsztein, Michael,
214 Rogers, Robbins, & Paykel, 1999) to measure action inhibition**

215 The AST is a measure of motor inhibitory control. Subjects see pictures from two classes -
216 target and distractor - presented rapidly, one at a time in the centre of the screen. They have to
217 respond to target stimuli by depressing the space bar (go) as quickly as possible, whilst inhibiting
218 responses to distractor stimuli (no-go). The time taken to respond to targets (RTs), failures to
219 respond (omissions), and incorrect responses (commission errors) are recorded, with the latter
220 providing a measure of motor inhibition.

221

222 Stimuli were pictures of food (F) or household items (H) taken from an existing database
223 designed for neuropsychological studies of AN (31). Instructions at the beginning of each block
224 indicated which stimulus type to respond to. Each stimulus was presented for 300ms with an inter-
225 trial interval of 900ms. A 500ms/450 Hz tone sounded for each error of commission, but not for
226 omissions. There were 10 blocks (2 practice blocks) with 18 stimuli presented in each block,
227 arranged in either of the following orders: FFHHFFHHFF, HHFFHHFFHH. This order means that
228 four blocks were 'shift' blocks, in which participants had to respond to stimuli that were previously
229 distractors, and inhibit responding to previous targets. In the 'non-shift' blocks participants had to
230 continue responding to the same targets and inhibiting responses to the same distractors as in the
231 immediately previous block. Note that this was the only one of the included tasks which
232 incorporated food stimuli.

233

SHORT-TERM FASTING AND IMPULSIVITY

234 Statistical Analysis

235 All statistical analyses were performed using SPSS 21 (IBM SPSS, 2010, Chicago, IL,
236 USA). Two tailed statistical significance was determined as $p < 0.05$. Descriptive statistics (mean
237 and standard deviations) were calculated for all demographic and questionnaire scores.

238

239 Information Sampling Task

240 To investigate the effect of fasting on the amount of information sampled during the IST,
241 the dependent variable, average number of boxes opened before making a decision, was entered
242 into a multivariate analysis. A mixed model ANOVA with the within-subject factors of Session
243 (fasted, satiated), Condition (Fixed Win, Decreasing Win) and the between-subject factor of Order
244 (FW-DW, DW-FW) was conducted separately on the primary outcome of average boxes opened,
245 and the secondary outcome of errors. Any significant interactions were then explored with
246 Bonferroni corrections applied.

247

248 Temporal Discounting Task

249 Impulsive choice was calculated as the number of sooner options chosen by each
250 participant, for each trial, separately for the fasted and satiated sessions. A pairwise comparison was
251 used to examine any differences across fasted and satiated sessions.

252 Maximum likelihood estimation was used in order to calculate the maximum likelihood
253 parameters for the discount rate (k), and utility concavity (r). For each of the 220 choices for each
254 participant a Bernoulli likelihood (based on the sigmoid of the difference in discounted value) was
255 calculated for the chosen option). Likelihood maximization proceeded via optimization functions in
256 Matlab (The MathWorks Inc., Natick, MA, United States). See Pine and colleagues' (2009) for

SHORT-TERM FASTING AND IMPULSIVITY

257 further information and methods. Pairwise comparisons were run to examine any differences in the
258 discount rate (k), or utility concavity (r), between fasted and satiated sessions.

259

260 **Choice x Risk Task**

261 To examine the effect of fasting on risky decision-making, multivariate analysis was
262 conducted on the number of times participants choose the experimental, over the control, gamble
263 (proportionate choice) and the mean deliberation times associated with these choices. The
264 proportionate choices were arcsine transformed prior to statistical analysis in line with Rogers, (32).
265 However, all values presented in tables are untransformed scores, for ease of interpretation.

266 The proportionate choices were analysed using a within subjects repeated measures $2 \times 2 \times 2$
267 $\times 2$ ANOVA with the factors of session (fast vs. satiated), probability (high vs. low), expected gains
268 (large vs. small), and expected losses (large vs. small). This ANOVA was then repeated with mean
269 deliberation times (ms) as the dependent variable.

270 The ‘gains only’ and ‘losses only’ trials were analysed using a within subjects repeated
271 measures 2×2 ANOVA with session (fast vs. satiated), and trial type (‘gains only’ vs. ‘losses
272 only’). Analysis was conducted on both proportion and deliberation times separately.

273

274 **Affective Shifting Task**

275 To determine the effect of fasting on performance during the AST, multivariate analyses
276 were conducted separately on reaction times (ms), errors of commission, and errors of omission
277 using a $2 \times 2 \times 2$ repeated measures ANOVA with Stimuli (food, household); Condition (shift, non-
278 shift); and Session (fast, satiated) entered as within-subject factors. Any significant interactions
279 were then explored and the Bonferroni correction was applied.

SHORT-TERM FASTING AND IMPULSIVITY

280 Results

281 Demographic characteristics and questionnaire scores are displayed in Table 1.

282

283 Physiological Analysis

284 Blood Glucose

285 Pairwise comparisons revealed a significant difference for blood glucose levels between
286 fasting and satiated sessions $t(32) = -5.07$, $p < 0.001$. Blood glucose levels in the fasted session
287 ($M = 4.06$, $SD = 0.51$) were lower than in the satiated session ($M = 4.90$, $SD = .871$).

288 Table 1. Means and standard deviations for demographic variables and trait measures ($n = 33$),

289		Mean \pm SD	
<i>290 Demographic Variables</i>			
291	Age (years)	25.42 ± 8.26	
292	Body Mass Index (BMI)	21.65 ± 3.22	
293			
294			
295	UPPS-P = the		Impulsive
296	Behaviour Scale;		BDI = Beck
297	Depression		Inventory; EDE-Q
298			Examination
299			STAI = State-Trait
300			
301	= Eating Disorder	UPPS-P	
302	Questionnaire-6;		
303	Anxiety Inventory	BDI	
304			
305			
306			
307	EDE-Q	85.18 ± 11.55	
308			
309			
310	Trait-STAI	5.15 ± 4.87	
		7.97 ± 6.45	
		39.30 ± 9.96	

310 Information Sampling Task

SHORT-TERM FASTING AND IMPULSIVITY

311 Accuracy scores for identifying the correct box colour were examined and any participants
312 with accuracy scores lower than 60% were excluded from further analysis, in line with the original
313 study [31].

314 **Boxes Opened**

315 There was a significant main effect of Session [$F(1,28)=9.72, p=0.004$], a significant main
316 effect of Condition [$F(1,28)=76.16, p<0.001$] and a significant Session x Condition interaction
317 [$F(1,28)=4.49, p<0.05$]. There was no significant effect of Condition Order for the fasting
318 [$F(1,28)=0.008, p=0.928$] or satiated Session [$F(1,28)=0.284, p=0.599$]. Pairwise comparisons
319 revealed that participants opened significantly fewer boxes in the DW condition, compared to FW
320 for both fasting $t(30)=7.86, p<0.001$ and satiated $t(30)=6.78, p<0.001$ sessions, see Table 2 for
321 mean scores.

322

323 Table 2. Mean difference and standard deviation (\pm) scores across fasted and satiated sessions

		Boxes opened	Errors
Fasted	DW condition	10.41 ± 4.08	1.90 ± 1.33
	FW condition	17.07 ± 4.45	0.71 ± 0.90
Satiated	DW condition	9.79 ± 3.72	2.10 ± 1.42
	FW condition	13.73 ± 5.05	1.29 ± 1.22

324

325 Post-hoc analysis revealed a significant difference between sessions in the FW condition
326 $t(30)=3.81, p=0.001$ but not the DW condition $t(30)=1.41, p=0.168$. During the FW condition

SHORT-TERM FASTING AND IMPULSIVITY

327 participants opened more boxes before making a decision, when fasted ($M= 17.07$, $SD=4.45$)
328 compared to when satiated ($M=13.73$, $SD=5.05$).

329

330 Errors

331 Analysis of error data using a mixed model ANOVA showed a significant main effect of
332 Session [$F(1,28)=5.75$, $p<0.05$], and a significant main effect of Condition [$F(1,28)=22.21$,
333 $p<0.001$]. The Session x Condition interaction was not significant [$F(1,28)=0.744$, $p=0.396$].
334 Participants made a higher number of errors during the satiated session, and more errors during the
335 DW condition, see Table 2 for mean scores and standard deviations.

336

337 Temporal Discounting Task

338 Two participants scored under 80% on the catch trials across both sessions and were
339 therefore excluded from further analysis. All other participants had high accuracy (mean = 19.15)
340 on the catch trials (out of a possible 20). Participants varied on the number of trials in which the
341 sooner option was chosen, ranging from 2 to 184, out of a possible 200 trials. The model of best fit
342 from Pine et al., (2009) showed that participants discounted the value of future rewards (mean
343 fasted $k = 0.06$, $SD = 0.68$; mean satiated $k = 0.07$, $SD = 0.066$) and demonstrated a concave utility
344 function (mean fasted $r = 0.0213$, $SD = 0.03609$; mean satiated $r = 0.0140$, $SD = 0.02830$).
345 However, the discount rate $t(30) = -0.521$, $p=0.606$ and concave utility $t(30) = 1.438$, $p=0.161$ were
346 not significantly different between fasted and satiated sessions. The impulsive choices made did not
347 differ across session $t(30) = -0.327$, $p=0.746$.

348

349 Choice x Risk Task

SHORT-TERM FASTING AND IMPULSIVITY

350 Data from three participants were missing for the Choice x Risk Task due to a recording error;
351 therefore 30 participants were included in the following analyses.

352 Probability, Wins, and Losses

353 Proportionate Choice

354 There was no main effect of Session (fasted, satiated) on the proportion of times that
355 participants chose the ‘experimental’ gamble over the ‘control’ gamble [$F(1,29)=0.22, p=0.643$].
356 However, participants chose the ‘experimental’ gamble significantly more often when the
357 probability of winning was high compared to when it was low, [$F(1,29)=204.73, p<0.001$],
358 significantly less often when the expected losses were large compared to small [$F(1,29)=32.95,$
359 $p<0.001$], and significantly more often when the expected gains were large compared to when they
360 were small [$F(1,29)=28.30, p<0.001$]. However, there was no significant interaction that involved
361 Session (fasted vs. satiated).

362

363 Table 3. Proportion of choices of the ‘experimental’ over the ‘control’ gamble for the probability of
364 winning, expected losses and gains across fasted and satiated sessions

Group	Probability of winning on the ‘experimental’ gamble		Levels of expected losses on ‘experimental’ gamble		Levels of expected gains on ‘experimental’ gamble	
	High	Low	Large	Small	Large	Small
Fasted	0.77 ± 0.33	0.18 ± 0.18	0.45 ± 0.25	0.62 ± 0.21	0.59 ± 0.23	0.48 ± 0.20
Satiated	0.78 ± 0.30	0.14 ± 0.13	0.46 ± 0.22	0.61 ± 0.18	0.58 ± 0.20	0.48 ± 0.18

365

366

367 Table 4. Mean deliberation times (ms) and standard deviation scores for probability of winning,
368 expected losses and gains across fasted and satiated sessions

SHORT-TERM FASTING AND IMPULSIVITY

Group	Probability of winning on the ‘experimental’ gamble		Levels of expected losses on ‘experimental’ gamble		Levels of expected gains on ‘experimental’ gamble	
	High	Low	Large	Small	Large	Small
Fasted	1637 ± 729	1674 ± 642	1733 ± 740	1577 ± 609	1655 ± 650	1656 ± 683
Satiated	1811 ± 1008	1954 ± 1180	1936 ± 1140	1829 ± 1028	1902 ± 1149	1862 ± 1026

369

370 Deliberation Times

371 There was no main effect of Session [$F(1,29)=1.41, p=0.26$], Probability [$F(1,29)=1.90, p=0.18$], or Expected Gains [$F(1,29)=0.34, p=0.57$], but a significant main effect of Expected Losses [$F(1,29)=8.72, p<0.01$]. Participants took longer to choose when then ‘experimental’ gamble was associated with large expected losses compared to small losses. Means and standard deviations are presented in Table 3. There was no significant interaction that involved Session (fasted vs. satiated).

377

378 **‘Gains Only’ vs. ‘Losses Only’ Trials**

379 Proportionate Choice

380 Participants chose the guaranteed options significantly more often on the ‘gains only’ trials
381 compared to the ‘losses only’ trials [$F(1,29)=83.07, p<0.001$]. Overall choice was unaffected by
382 Session [$F(1,29)=0.41, p=0.53$] and the interaction between session and trial type was non-
383 significant [$F(1,29)=0.85, p=0.77$].

384

385 Deliberation Times

SHORT-TERM FASTING AND IMPULSIVITY

386 Participants were significantly faster to choose on the ‘gains only’ trials compared to the
387 ‘losses only’ trials [$F(1,29)=12.34, p=0.001$]. Reaction times were unaffected by Session session
388 [$F(1,29)=1.11, p=0.30$] and the interaction between session and trial type was non-significant
389 [$F(1,29)=0.314, p=0.58$].

390

391 **Affective Shifting Task**

392 **Reaction Time**

393 There was a significant main effect of Stimuli [$F(1,32)= 15.26, p < 0.001$], and Condition
394 [$F(1,32)= 5.38, p < 0.05$, but no significant effect of Session [$F(1,32)=0.25, p = 0.617$]. There was
395 no significant interaction between: Session and Condition [$F(1,32)= 1.76, p = 0.194$]; Session and
396 Stimuli ($F(1,32)= 1.34, p = 0.26$); Condition and Stimuli [$F(1,32)= 0.48, p = 0.49$]; or between
397 Session, Condition and Stimuli [$F(1,32)= 0.08, p = 0.78$].

398 Overall, reaction times (RTs) for food stimuli were shorter ($M=462.65, SD=57.89$) than for
399 household items ($M=482.02, SD=56.70$). Non-shift trials also had shorter RTs ($M=468.44,$
400 $SD=57.55$), compared to shift trials ($M=476.24, SD=57.04$).

401

402 **Errors of Commission**

403 There was a significant main effect of Session [$F(1,32)= 5.39, p < 0.05$] but not of Stimuli
404 [$F(1,32)= 0.15, p = 0.69$]. There was also a significant main effect of Condition [$F(1,32)= 43.5, p <$
405 0.001]. The interaction between Session and Stimuli was not significant [$F(1,32)= 2.88, p = 0.10$],
406 nor was the interaction between Session and Condition [$F(1,32)= 0.27, p = 0.610$], or Stimuli by
407 Condition [$F(1,32)= 0.16, p = 0.695$]. However there was a significant interaction between Session,
408 Stimuli, and Condition [$F(1,32)= 4.82, p = p < 0.05$].

SHORT-TERM FASTING AND IMPULSIVITY

409

410 More commission errors were made during the fasted session ($M=1.55$, $SD=0.89$), than the
411 satiated session, ($M=1.19$, $SD=0.82$). Participants also made a higher number of commission errors
412 for shift ($M=1.41$, $SD=1.02$), compared to non-shift conditions ($M=0.14$ $SD=0.81$).

413 Bonferroni post hoc comparisons to explore the Session by Stimuli by Condition interaction
414 showed that there was no difference in the number of commission errors made towards household
415 items between fasted and satiated sessions, for either shift ($p= 0.33$) or non-shift ($p=0.23$) blocks.
416 There was also no difference in commission errors towards food stimuli for fasted or satiated
417 sessions during the non-shift block ($p = 0.44$). However, there was a significant difference in the
418 number of commission errors in response to food stimuli during the shift blocks ($p < 0.05$). There
419 was a higher number of commission errors in response to food stimulus during fasted ($M=2.39$,
420 $SD=2.21$) compared to satiated sessions ($M=1.36$, $SD=1.48$), see Figure 1.

421 Figure 1 here

422 Errors of Omission

423 There was no main effect of Session $F(1,32)=0.62$, $p = 0.44$ or Stimuli $F(1,32)=0.005$, $p =$
424 0.95. However, there was a significant main effect of Condition $F(1,32)= 6.17$, $p < 0.05$. The
425 interaction between Session and Stimuli was not significant, $F(1,32) = 0.88$, $p = 0.36$, nor was the
426 interaction between Stimuli and Condition $F(1,32)= 0.25$, $p =0.62$, nor the interaction between
427 Session, Stimuli, and Condition $F(1,32)= 0.42$, $p = 0.517$. There was a significant interaction
428 between Session and Condition $F(1,32)= 7.52$, $p < 0.05$. Participants made a higher number of
429 errors of omission during shift blocks ($M=1.06$, $SD=0.90$), compared to non-shift blocks ($M=0.77$,
430 $SD=0.87$). The Session by Condition interaction was explored using Bonferroni adjusted
431 comparisons and revealed that participants made more errors of omission during shift blocks when

SHORT-TERM FASTING AND IMPULSIVITY

432 satiated ($p < 0.05$) .However, there was no difference in omission errors between shift and non-shift
433 blocks when fasted ($p = 0.44$).

434

435

436 Relationship between Self report and Behavioural Measures

437 Change scores between satiated and fasted sessions were calculated for the commission
438 errors made during the AST, and for the number of boxes opened during the FW condition of the
439 IST. Change scores for the state self report measures were also calculated (state anxiety, blood
440 glucose, and hunger). Correlations between these variables were then calculated. However there
441 was no significant correlation between the self report measures and difference scores for the IST
442 and AST. See Table 5.

443

444 Table 5. Pearson correlations between the IST and AST difference scores (satiated minus fasted)
445 and state changes in Anxiety, Blood Glucose and Hunger.

Difference between Satiated and Fasted Sessions		
	IST Boxes Opened FW Condition	AST Commission Errors
<i>Demographic Variables</i>		
Age (years)	-0.12	-0.10
Body Mass Index (BMI)	-0.28	-0.07
<i>Trait Measures</i>		
UPPS-P	-0.22	-0.02
BDI	0.09	0.00

SHORT-TERM FASTING AND IMPULSIVITY

EDE-Q	-0.07	-0.12
Trait-STAI	-0.01	-0.19

State Measures (Difference Scores)

State-STAI	0.16	-0.04
Blood Glucose	0.14	0.16
Hunger	0.17	-0.00

446

447 Note: All correlations were non-significant, $P > 0.05$. IST = Information Sampling Task; AST =
448 Affective Shifting Task; UPPS-P = the Impulsive Behaviour Scale; BDI = Beck Depression
449 Inventory; EDE-Q = Eating Disorder Examination Questionnaire-6; STAI = State-Trait Anxiety
450 Inventory

451

452

453

454 **Discussion**

455 This study aimed to examine the effect of short-term fasting on tasks measuring four
456 components of impulsivity. Results showed that, contrary to expectations, participants took longer
457 and opened more boxes in the Fixed Win (FW) condition of the Information Sampling Task (IST), a
458 measure of reflection impulsivity, in the fasted compared to the satiated state. Additionally, short-
459 term fasting was associated with more commission errors during the Affective Shifting Task (AST),
460 indicative of a deficit in action inhibition. When fasted, participants made significantly more errors
461 of commission for food compared to household stimuli during shift blocks. There was no difference

SHORT-TERM FASTING AND IMPULSIVITY

462 between fasted and satiated sessions on the impulsive choices made during the Temporal
463 Discounting Task, or in risky decision-making during the Choice x Risk Task.

464

465 Participants opened more boxes and made fewer errors in the Fixed Win (FW) condition of
466 the IST when fasted, indicating a decrease in reflection impulsivity. However, there were no
467 fasted/satiated differences for the Decreasing Win (DW) condition. This suggests that the two
468 conditions were differentially affected by fasting. During the DW condition participants were told
469 that with every box opened, the number of points to be won decreases, hence there is a cost to
470 opening more boxes. However, during the FW condition participants are told that they can open as
471 many boxes as they wish, with no decrease in winnings. An adaptive strategy would be to open all
472 boxes to guarantee a win. However, participants typically guess before all of the boxes have been
473 opened (33).

474

475 The results of the IST were contrary to the hypothesis that short-term fasting would be
476 associated with increased reflection impulsivity. The decreased reflection impulsivity displayed
477 during the fasted session could be due to a number of different factors. Firstly, the ability to flexibly
478 shift attention between decision making (deciding which box colour is in the majority), and the
479 action of box opening could be affected by fasting, causing the ‘repetitive’ box opening during the
480 FW condition. This is unlike the DW condition, in which participants are cued by the decreasing
481 points to shift from opening boxes to make a decision about which colour is in the majority. Set-
482 shifting is the process of changing, or switching, between responding to different tasks, rules, or
483 mental sets(31), and has been extensively studied in EDs, (31). Recent research (9) has
484 demonstrated that fasting affects set-shifting, particularly with cue-induced craving (9, 34), and that
485 18 hours of fasting exacerbates set-shifting difficulties on a rule change task (35). Although this
486 type of short-term fasting in a healthy population is not identical to the patterns of food restriction

SHORT-TERM FASTING AND IMPULSIVITY

487 and chronic or intermittent fasting seen in EDs, it could explain, in part, why participants opened
488 more boxes in the FW condition of the IST when fasted.

489

490 Secondly, participants in the fasted session may have become fixated on the detail of
491 opening each box individually and were unable to stand back to see the ‘whole picture’ to make a
492 decision. The term central coherence is used to refer to the ability to combine information into the
493 ‘bigger picture’ rather than focussing only on the finer detail. An impairment in central coherence
494 has been shown in individuals with ED’s (36) and fasted HIs (37). However, an impairment in
495 central coherence may not have occurred in the DW condition as participants may have been cued
496 into making a decision by the decreasing points.

497

498 However, it is not possible to determine the contribution of either of these explanations from
499 the current experiment. Therefore the results require further investigation and replication to
500 understand the mechanisms underpinning the effect of decreased reflection impulsivity on the IST.

501

502 Results from the current study indicate that short-term fasting did not affect delay aversion.
503 Participants in the fasted condition did not choose to delay the receipt of a monetary reward any less
504 than when satiated. However, participants may have been less susceptible to the fasting
505 manipulation as the hypothetical on-screen choices are viewed as more distant, compared to
506 immediate presentation, and are more objectively assessed (38). The degree to which an individual
507 discounts future rewards has also been described as a trait characteristic (39), and is stable over time
508 (40, 41). Therefore manipulating the state of the individual (fasting) may not influence an
509 established trait discount rate towards monetary rewards.

510

SHORT-TERM FASTING AND IMPULSIVITY

511 Participants also showed no difference between fasted and satiated sessions for the different
512 probabilities of winning, different magnitudes of expected losses, and expected gains on the Choice
513 x Risk Task. This indicates that risky decision-making was not influenced by short-term fasting.
514 This finding is in contrast to previous research that found increased risky decision-making for food,
515 water, and money following four hours of food and water deprivation [36]. However, this could be
516 related to differences in the salience of the reward as participants in the current study received
517 points rather than food, water, or money, which may be differentially affected by fasting.
518 Additionally, exploratory analysis of fasted state on risk preferences in Levy and colleagues' study
519 revealed a small effect (5% change) that appeared to be related to the baseline characteristics of the
520 included sample [36].

521

522 Another study demonstrated that risky decision-making decreased when fasted participants
523 were provided with a meal to reach satiation. However, this study involved exclusively male
524 participants [37], whereas, the participants in the current study were all female. Hence, gender
525 differences might account for the inconsistent results, especially when males and females have been
526 shown to respond to fasting differently (42). Furthermore, the effect on risky decision-making in the
527 previous study was only significant immediately after a satiated meal but not one hour later
528 [37]. This appears to be in line with the current lack of effect of fasting given that participants in the
529 current study were told to eat normally prior to the satiated session, and were not provided with
530 food during task completion which took between 30 and 60 minutes.

531

532 Participants exhibited more errors of commission for food stimuli during the AST when
533 fasting compared to when satiated, indicating a deficit of action inhibition. However, there were no
534 differences in response times between fasted and satiated sessions. The increased number of errors
535 of commission in the fasted condition indicated decreased action inhibition. Higher errors of

SHORT-TERM FASTING AND IMPULSIVITY

536 commission, or decreased action inhibition, in BN compared to HIs have previously been
537 interpreted as indicative of greater impulsivity (21). Participants made significantly more
538 commission errors when fasted during the more difficult shift blocks for food compared to
539 household stimuli. This difference was not present in the non-shift blocks. This result could indicate
540 that participants are less able to control motor impulsivity during a more demanding task, and
541 towards food stimuli when fasted.

542

543 Therefore the current findings suggest that short-term fasting may be an important
544 consideration when examining differences in action inhibition between HIs and BN. If individuals
545 with BN undergo periods of short-term fasting, and have a similar response to HIs in the current
546 study, then the increased commission errors in BN could be attributed to fasted state, rather than
547 reflecting an impulsive neurocognitive profile, or trait. It is important to disentangle the
548 contribution of short-term fasting to impulsivity seen in BN so that treatments that focus on
549 reducing impulsivity such as Dialectical Behaviour Therapy can be appropriately informed and
550 targeted.

551

552 A limitation of the current experiment is the inability to address whether the differences
553 found between fasted and satiated sessions is due to the primary effect of lowered blood glucose on
554 brain function, or the secondary effect of hunger (induced through fasting) influencing motivation,
555 or fatigue. Previous research indicates that changes in cognition can be independent of blood
556 glucose, and may be mediated by other factors (43), and could be controlled by homeostatic
557 mechanisms not assessed in the current study (44).

558

SHORT-TERM FASTING AND IMPULSIVITY

559 Green and colleagues have previously found that although there was a significant difference
560 between self-reported hunger for fasted and satiated sessions, task performance was not affected.
561 This indicates that subjective measures of hunger may not always relate to differences in task
562 performance. The tasks in the current study for which there were non-significant findings may not
563 have sensitive enough to detect subtle differences in performance that could occur as a result of
564 fasting(45). Further research is needed in order to examine the role of subjective hunger on
565 cognition and to separate out the influence of primary and secondary effects of fasting on cognitive
566 performance.

567

568 Furthermore, the fasting manipulation might not have increased the value of a monetary
569 reward, but instead increased the value of a food reward. Previous studies have demonstrated that
570 nicotine deprivation can lead to a steeper discounting rate for cigarettes, but not monetary rewards
571 (46). This demonstrates that state manipulations can have differential effects on the impulsive
572 choices made in response to different rewards. The present findings are therefore only applicable to
573 monetary rewards, and future studies should investigate food rewards using this paradigm. This
574 could also account for the non-significant findings during the delay aversion and risky-decision
575 making task, which used monetary values as rewards. However, the present results show that
576 general delay aversion towards money did not differ as a function of fasting. Including food stimuli
577 during the temporal discounting task could make the results difficult to interpret. It might be hard to
578 separate impulsiveness towards food items as a result of fasting from the increased value of food
579 items caused by food deprivation.

580

581 It is clear that further studies need to be conducted in order to better understand the effect of
582 short-term fasting in healthy participants. Research should continue to investigate the most
583 appropriate design in which to examine the role of short-term fasting on cognitive performance. In

SHORT-TERM FASTING AND IMPULSIVITY

584 the meantime, caution should be used when interpreting findings from ED participants, particularly
585 BN, as indicative of trait differences in cognitive performance due to the influence of fasted state on
586 these measures.

587 References

588

589

590 1. Daruna JH, Barnes, P.A., . A neurodevelopmental view of impulsivity. In: McCown, W.G., Johnson,
591 J.L., Shure, M.B. (Eds.), *The Impulsive Client Theory, Research, and Treatment*. American Psychological
592 Association, Washington, DC, pp. 23–37. 1993.

593 2. Reynolds B, Ortengren A, Richards JB, de Wit H. Dimensions of impulsive behavior: Personality and
594 behavioral measures. *Personality and Individual Differences*. 2006;40(2):305-15.

595 3. Waxman SE. A systematic review of impulsivity in eating disorders. *European eating disorders review : the journal of the Eating Disorders Association*. 2009;17(6):408-25.

597 4. Kagan J, Rosman BL, Day D, Albert J, Phillips W. Information processing in the child: Significance of
598 analytic and reflective attitudes. *Psychological Monographs: General and Applied*. 1964;78(1):1.

599 5. Murphy F, Sahakian B, Rubinsztein J, Michael A, Rogers R, Robbins T, et al. Emotional bias and
600 inhibitory control processes in mania and depression. *Psychological medicine*. 1999;29(06):1307-21.

601 6. Bechara A, Damasio AR, Damasio H, Anderson SW. Insensitivity to future consequences following
602 damage to human prefrontal cortex. *Cognition*. 1994;50(1):7-15.

603 7. Dunn BD, Dalgleish T, Lawrence AD. The somatic marker hypothesis: A critical evaluation.
604 *Neuroscience & Biobehavioral Reviews*. 2006;30(2):239-71.

605 8. Pine A, Seymour B, Roiser JP, Bossaerts P, Friston KJ, Curran HV, et al. Encoding of marginal utility
606 across time in the human brain. *The Journal of Neuroscience*. 2009;29(30):9575-81.

607 9. Benau E, Orloff N, Janke E, Serpell L, Timko CA. A Systematic Review of the Effects of Experimental
608 Fasting on Cognition. *Appetite*. 2014;77c:52-61.

609 10. Fessler DM. The implications of starvation induced psychological changes for the ethical treatment
610 of hunger strikers. *Journal of medical ethics*. 2003;29(4):243-7.

611 11. Levy DJ, Thavikulwat AC, Glimcher PW. State Dependent Valuation: The Effect of Deprivation on
612 Risk Preferences. *PloS one*. 2013;8(1):e53978.

613 12. Symmonds M, Emmanuel JJ, Drew ME, Batterham RL, Dolan RJ. Metabolic state alters economic
614 decision making under risk in humans. *PloS one*. 2010;5(6):e11090.

615 13. Newton JR, Freeman CP, Hannan WJ, Cowen S. Osteoporosis and normal weight bulimia nervosa--
616 which patients are at risk? *Journal of Psychosomatic Research*. 1993;37(3):239-47.

617 14. Claes L, Nederkoorn C, Vandereycken W, Guerrieri R, Vertommen H. Impulsiveness and lack of
618 inhibitory control in eating disorders. *Eating behaviors*. 2006;7(3):196-203.

619 15. Fischer S, Smith GT, Anderson KG. Clarifying the role of impulsivity in bulimia nervosa. *The
620 International journal of eating disorders*. 2003;33(4):406-11.

621 16. Myers TC, Wonderlich SA, Crosby R, Mitchell JE, Steffen KJ, Smyth J, et al. Is multi-impulsive bulimia
622 a distinct type of bulimia nervosa: Psychopathology and EMA findings. *The International journal of eating
623 disorders*. 2006;39(8):655-61.

624 17. Yeomans MR, Leitch M, Mobini S. Impulsivity is associated with the disinhibition but not restraint
625 factor from the Three Factor Eating Questionnaire. *Appetite*. 2008;50(2-3):469-76.

626 18. Evenden JL. Varieties of impulsivity. *Psychopharmacology*. 1999;146(4):348-61.

SHORT-TERM FASTING AND IMPULSIVITY

627 19. Kaye WH, Bastian AM, Moss H. Cognitive style of patients with anorexia nervosa and bulimia
628 nervosa. *IJED*. 1995;18(3):287-90.

629 20. Southgate L, Tchanturia K, Treasure J. Information processing bias in anorexia nervosa. *Psychiatry*
630 *research*. 2008;160(2):221-7.

631 21. Mobbs O, Van der Linden M, d'Acremont M, Perroud A. Cognitive deficits and biases for food and
632 body in bulimia: investigation using an affective shifting task. *Eating behaviors*. 2008;9(4):455-61.

633 22. Wu M, Hartmann M, Skunde M, Herzog W, Friederich H-C. Inhibitory Control in Bulimic-Type Eating
634 Disorders: A Systematic Review and Meta-Analysis. *PLoS ONE*. 2013;8(12):e83412.

635 23. Chan TW, Ahn WY, Bates JE, Busemeyer JR, Guillaume S, Redgrave GW, et al. Differential
636 impairments underlying decision making in anorexia nervosa and bulimia nervosa: a cognitive modeling
637 analysis. *The International journal of eating disorders*. 2014;47(2):157-67.

638 24. Boeka AG, Lokken KL. The Iowa gambling task as a measure of decision making in women with
639 bulimia nervosa. *Journal of the International Neuropsychological Society : JINS*. 2006;12(5):741-5.

640 25. Brogan A, Hevey D, Pignatti R. Anorexia, bulimia, and obesity: shared decision making deficits on
641 the Iowa Gambling Task (IGT). *Journal of the International Neuropsychological Society*. 2010;16(04):711-5.

642 26. Liao P-C, Uher R, Lawrence N, Treasure J, Schmidt U, Campbell IC, et al. An examination of decision
643 making in bulimia nervosa. *Journal of Clinical and Experimental Neuropsychology*. 2009;31(4):455-61.

644 27. Guillaume S, Sang CN, Jausset I, Raingeard I, Bringer J, Jollant F, et al. Is decision making really
645 impaired in eating disorders? *Neuropsychology*. 2010;24(6):808-12.

646 28. Kekic M, Bartoldy S, Cheng J, McClelland J, Boysen E, Musiat P, et al. Increased temporal
647 discounting in bulimia nervosa. *IJED*. 2016;49:1077-81.

648 29. Vitousek K, Manke F. Personality Variables and Disorders in Anorexia Nervosa and Bulimia Nervosa.
649 *Journal of Abnormal Psychology*. 1994;103:137-47.

650 30. Lecrubier Y, Sheehan D, Weiller E, Amorim P, Bonora I, Harnett Sheehan K, et al. The Mini
651 International Neuropsychiatric Interview (MINI). A short diagnostic structured interview: reliability and
652 validity according to the CIDI. *European Psychiatry*. 1997;12(5):224-31.

653 31. Uher R, Murphy T, Brammer MJ, Dalgleish T, Phillips ML, Ng VW, et al. Medial prefrontal cortex
654 activity associated with symptom provocation in eating disorders. *American Journal of Psychiatry*.
655 2004;161(7):1238-46.

656 32. Rogers RD, Owen AM, Middleton HC, Williams EJ, Pickard JD, Sahakian BJ. Choosing between small,
657 likely rewards and large, unlikely rewards activates inferior and orbital prefrontal cortex. *Journal of*
658 *Neuroscience*. 1999;19:9029-38.

659 33. Clark L, Robbins TW, Ersche KD, Sahakian BJ. Reflection impulsivity in current and former substance
660 users. *Biological psychiatry*. 2006;60(5):515-22.

661 34. Piech RM, Hampshire A, Owen AM, Parkinson JA. Modulation of cognitive flexibility by hunger and
662 desire. *Cognition and Emotion*. 2009;23(3):528-40.

663 35. Bolton HM, Burgess PW, Gilbert SJ, Serpell L. Increased set shifting costs in fasted healthy
664 volunteers. *PloS one*. 2014;9(7):e101946.

665 36. Lopez C, Tchanturia K, Stahl D, Treasure J. Central coherence in eating disorders: a systematic
666 review. *Psychological Medicine*. 2008;38(10):1393-404.

667 37. Pender S, Gilbert SJ, Serpell L. The Neuropsychology of Starvation: Set-Shifting and Central
668 Coherence in a Fasted Nonclinical Sample. *PloS one*. 2014;9(10):e110743.

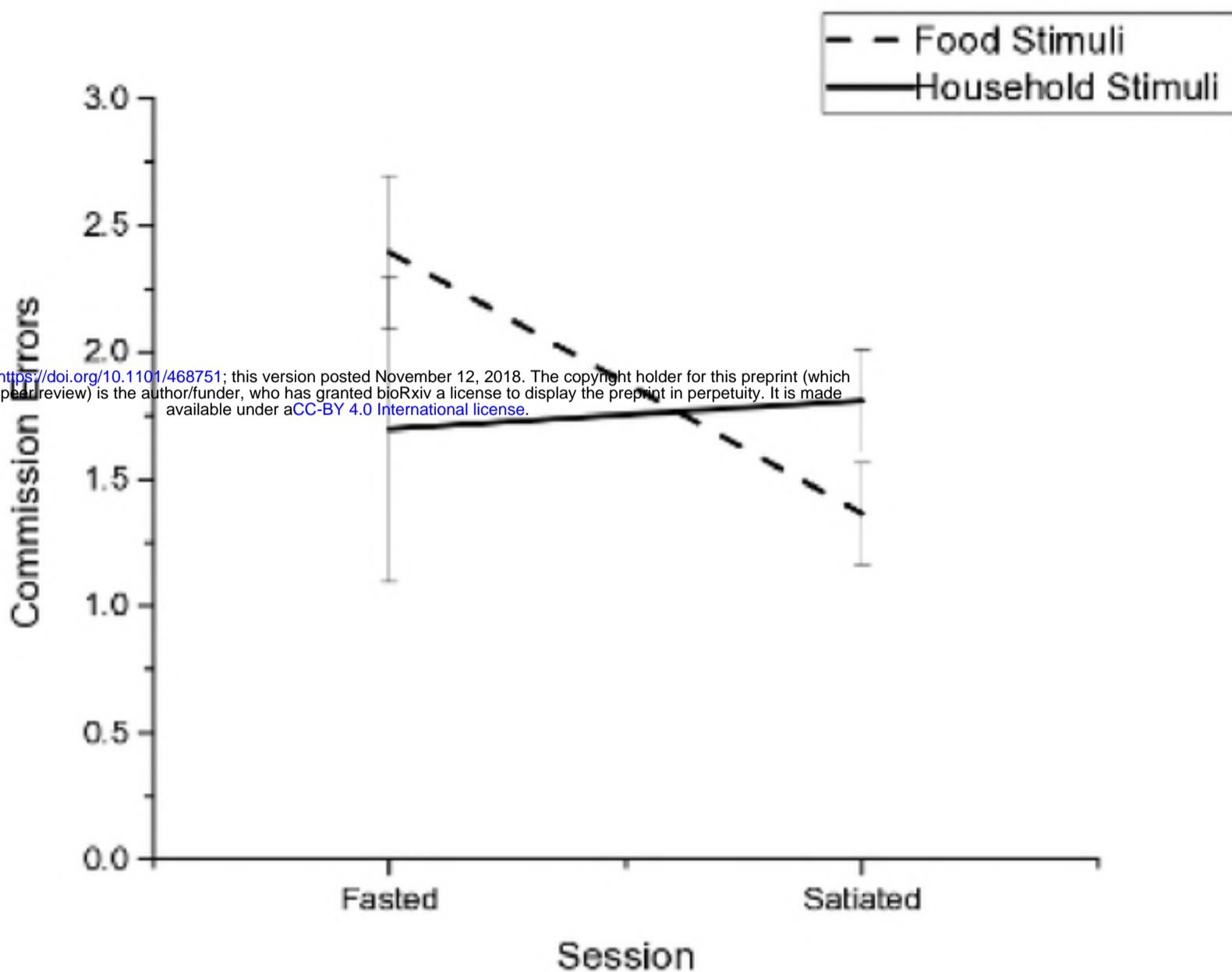
669 38. Rachlin H. *The science of self-control*: Harvard University Press; 2009.

670 39. Odum AL. Delay discounting: I'm ak, you're ak. *Journal of the Experimental Analysis of Behavior*.
671 2011;96(3):427-39.

672 40. Kirby KN. One-year temporal stability of delay-discount rates. *Psychonomic Bulletin & Review*.
673 2009;16(3):457-62.

674 41. Mischel W, Shoda Y, Rodriguez ML. Delay of gratification. *Choice over time*. 1992;147.

675 42. Uher R, Treasure J, Heining M, Brammer MJ, Campbell IC. Cerebral processing of food-related
676 stimuli: Effects of fasting and gender. *Behavioural Brain Research*. 2006;169(1):111-9.


677 43. Pollitt E, Lewis NL, Garza C, Shulman RJ. Fasting and cognitive function. *J Psychiatr Res*.
678 1983;17(2):169-74.

SHORT-TERM FASTING AND IMPULSIVITY

679 44. Cryer PE. Glucose counterregulation in man. *Diabetes*. 1981;30(3):261-4.
680 45. Green MW, Elliman NA, Rogers PJ. Lack of effect of short-term fasting on cognitive function. *J*
681 *Psychiat Res*. 1995;29(3):245-53.
682 46. Mitchell SH. Measuring impulsivity and modeling its association with cigarette smoking. *Behavioral*
683 *and Cognitive Neuroscience Reviews*. 2004;3(4):261-75.

684

Figure 1. Mean number of commission errors made during the Affective Shifting Task for food and household stimuli across fasted and satiated sessions.

(a) Shift condition